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Abstract

We provide a structural approach to disentangle Granger versus instantaneous causality
effects from transaction durations to price volatility. So far, in the literature, instantaneous
causality effects have either been excluded or cannot be identified separately from Granger type
causality effects. By giving explicit moment conditions for observed returns over (random)
transaction duration intervals, we are able to identify the instantaneous causality effect where
news events drive simultaneously surprises in durations and surprises in volatilities. Based on
ten large stocks traded at the NYSE, we conclude that instantaneous variance forecasts must
be decreased by as much as one-third when not having seen the next transaction before its
conditional median time. Also, taking into account the causality effects that we document,
instantaneous variances are found to be much higher than indicated by standard volatility as-
sessment procedures.

KEYWORDS: Causality, Continuous time models, Transaction prices, Transaction times,
Ultra-high frequency data.

1 Introduction

Engle (2000) defines “ultra-high frequency” data as those provided by the measurement of economic
(financial) variables when all transactions or quotes are recorded. He argues that there is no higher
frequency data available to econometricians. In this framework, transaction (or quote) data are
described by two random variables: the first is the time at which the transaction occurs or the
quote is given and the second is a vector (marks) observed at that time. To present the essence of
our ideas, we consider the times at which a transaction takes place and a corresponding price, e.g.,
the transaction price or the mid-price of the best prevailing bid and ask at that time. Following
Engle (2000), let t; be the time at which the i-th trade occurs and let At;y; = #;41 — t; be the
duration between the i + 1-th and i-th trade. The so-called marks describe the actual event (trade)
that occurs at time #; and consist of a k-vector y; at this time. Engle (2000) states that “the relevant
economic questions can all be determined” from the densities:

P (Yit1, Ativ1|Gr,) = p (Yir1|Ativ1, Gr,) p (Ativ1|Ge,) (1.1)

which decomposes the joint conditional density of (y;+1,At;+1) given the natural past in discrete
time, i.e., given Gy, = o(y;, At; : j < i).
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The focus of interest in the present paper is the economic interpretation of the occurrence of
the current duration At;4q in the function p(yit1|Atiy1,Ge;). We consider exclusively the effect
of durations on prices, i.e., y; = S, is the price prevailing at time ¢;. In particular, we focus
on the effect of durations on volatilities. However, as will become clear, the results can easily be
extended to other marks, e.g., volume traded at time ¢;. As Engle (2000), we want in particular to
“admit the possibility that variations in At and variations in (the volatility) o could be related to
the same news events”. Basically, we want to further address the issue of interest in Dufour and
Engle (2000), which “lies in providing empirical evidence of the relevance of time in the process
of price adjustment to information”. Our contribution is to stress that the influence of durations
on prices, i.e., the occurrence of At;y; in p(Sy, ., |Atiy1,Gy, ), is twofold and should be split, in an
identifiable way, into a temporal aggregation effect and an informational effect. Since both effects
have different repercussions for risk measurement and management, this separate identification has
important consequences.

We have shown in a previous paper (Meddahi, Renault, and Werker, 2003), that, even if the time
sequence At; ;i = 1,...,n, were purely deterministic or strongly exogenous, the current duration
At; would explicitly appear in the model p(S,,, [Atiy1,Gy,) of the price dynamics, simply through
a “time-to-build” effect in volatility fluctuations. This dependence is caused by two effects. On
the one hand, the application of a standard discrete time volatility model in itself must consider
the “volatility per unit of time”, as in Engle (2000) in the context of GARCH modelling. On the
other hand, the volatility clustering effect is likely to be erased by longer durations and, therefore,
the model of volatility persistence must be conformable to the temporal aggregation formulas (see,
e.g., Drost and Werker, 1996, Ghysels and Jasiak, 1998, or Grammig and Wellner, 2002, for pro-
posals to apply the Drost and Nijman, 1993, formulas of temporal aggregation of weak GARCH
processes). The exact formulas taking both into account are rigorously derived in Meddahi, Renault,
and Werker (2003) using the Meddahi and Renault (2003) formulas for temporal aggregation of con-
tinuous time linear autoregressive volatility dynamics. Without the continuous time paradigm, the
application of temporal aggregation formulas with random times has to be justified by resorting to
something like a latent “normal duration GARCH process” (Grammig and Wellner, 2002) whose
structural foundations are not clear.

But the most interesting economic issue, as put forward by Dufour and Engle (2000), has nothing
to do with the aforementioned deterministic effects of irregular time sampling. In fact, the issue is
to see the time between trades as a measure of trading activity which could affect price behavior.
This is the reason why the economic interpretation of the information content of time durations,
in models of price and trade dynamics, is better founded by identifying a structural continuous
time model. Actually, only such a continuous time model will be able to disentangle what we have
called the time-to-build effect from the genuine information effect. Typically, this structural model
specifies the joint probability distribution of the price process S; over some reference period [0, 7] as
well as a sequence of stopping times t;, 7 = 1,...,n, over the same period. The marginal probability
distribution of the price process provides, for any (fixed and deterministic) time interval A, the
density function pp (S, +r|Gt;) of the conditional distribution of Sy, , given the natural past Gi,.
Then, the economic issue of interest is the validity of the condition:

pAti+1 (St,'+1 |gti) =P (St,'+1 |Ati+17 gti) . (12)

When this equality is fulfilled, and under the additional assumption that the marginal process de-
scribing transaction times does not contain information about the structural parameters in the price
dynamics, transaction times contain no genuine information regarding these asset price dynamics
and there is no cost when these transaction times are considered to be deterministic, still taking
into account that they are irregularly spaced. Ait-Sahalia and Mykland (2003) study the full in-
formation maximum likelihood under the maintained assumption (1.2). They also document the
fact that there is, of course, an efficiency loss when one decides to integrate out the likelihood with



respect to the random durations and, even worse, a misspecification bias if one incorrectly supposes
that durations are fixed (i.e., At;1; = A for all 7).

But if, on the contrary, some instantaneous causality relationship between durations and asset
prices leads to a violation of equality (1.2), the incremental information content of At;.; about Sy, .,
given the past G, is crucial in several respects. First, one cannot perform meaningful statistical
inference about the probability distribution of the price process without taking into account the
probability distribution of durations. Typically, when plugging into a likelihood function based
on the densities par, ., (St, |gt1,) the observed values Sy, as if the times ¢; at which the trades
occur were deterministic, one would introduce some kind of selection bias which may be significant.
Besides statistical inference issues, the randomness of durations between trades is also of foremost
importance for risk management. When equation (1.2) is violated, one cannot compute the volatility
at time ¢; of the asset price Sy, as if the duration At; were deterministic or even conditionally
independent (given the past Gi,) of the asset price. When the equality (1.2) is fulfilled, the total
volatility of the asset return between the present trade (at time ¢;) and the next (at random time
ti+1), may simply be computed by, in a first step, considering that the horizon t;11 = t; + At;41
is known and deterministic and, as a second step, integrating out the duration At;y1, with respect
to with respect to its conditional probability distribution (given G;,). There is no selection bias
induced by conditioning in the first stage on the random value of the next duration due to (1.2).

Our main contribution is to characterize the additional risk that may be introduced by random
times in situation where (1.2) does not hold. We focus here on the instantaneous causality rela-
tionship between transaction durations and price volatilities, which may, for instance, imply that in
the situation of exceptionally long times between two transactions, one is lead to adjust volatility
forecasts downwards. This is illustrated in Figure 1.1, which is based on the empirical analysis as
it is performed in Section 5. This figure shows that a present time prediction made for the instan-
taneous variance 60 seconds from now conditional on not having seen a transaction by that time, is
50% less than the unconditional prediction. Similarly, Figure 1.2 gives the update in present time
instantaneous variance predictions conditional on having seen a transaction. From this figure, we
see that conditionally on having seen a transaction within the next 60 seconds, the instantaneous
variance prediction has to be increased by 22%.

To be more precise, we prove a decomposition of the total volatility of asset returns over (random)
durations in a standard component (where the randomness in the duration is just integrated out) and
an additional component which has a direct interpretation as transaction time risk. The interest
of this decomposition is to provide a framework for the joint modelling of volatility and inter-
transaction duration processes. As stressed by Dufour and Engle (2000), this may give useful insights
in the dynamic behavior of market liquidity and thus could be used to design optimal trading and
timing strategies. The focus of interest in the present paper is more to state a set of moment
conditions that allows one to assess the statistical and economic significance of the aforementioned
instantaneous causality relationship. For the purpose of statistical inference about the continuous
time price processes, this gives an important semiparametric specification test to decide whether the
non-causality assumption (1.2) is satisfied. For the purpose of risk management, this gives insights
in the measurement and hedging of liquidity risk.

A byproduct of our framework is the possibility to fruitfully revisit the conclusions of some
models previously proposed in discrete time for irregularly spaced financial data. Starting from
the seminal Engle and Russell (1998) autoregressive conditional duration (ACD) model, Ghysels
and Jasiak (1998) have proposed the ACD-GARCH model to jointly model the volatility and inter-
transaction duration processes. This joint modelling issue has since been studied in more detail by
several authors, including Engle (2000) and Grammig and Wellner (2002). A crucial issue for all
these papers (see also Dufour and Engle, 2000) is the treatment of causality relationships between
asset price volatility and durations between trades. Both Engle (2000) and Dufour and Engle (2000)
maintain as “a simplifying operative assumption” that durations are not Granger caused by prices.
This allows them to estimate a simple ACD model where durations are forecasted only from their
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Figure 1.1: Relative update in instantaneous variance prediction due to not having seen a transaction
by the time (in seconds) indicated on the horizontal axis. Mean transaction duration is 50 seconds
and graph is based on an exponential duration distribution and the average estimates from Section 5.
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Figure 1.2: Relative update in instantaneous variance prediction when having seen a transaction by
the time (in seconds) indicated on the horizontal axis. Mean transaction duration is 50 seconds and
graph is based on an exponential duration distribution and the average estimates from Section 5.



own past (Engle, 2000) and to compute univariate impulse response functions for durations (Dufour
and Engle, 2000). However, Dufour and Engle (2000) provide some convincing empirical evidence
to show that “a buy transaction arriving after a long time interval has a lower price impact than a
buy transaction arriving right after a previous trade”. This gives support to a significant causality
relationship from durations towards prices (through their realized volatility) consistent with the
Easley and O’Hara (1992) microstructure model: long durations are likely to indicate an absence of
news received by the traders, and thus to be associated with low volatility of returns. However, the
direction of causality appears to be quite controversial. While Dufour and Engle (2000) focus on
the Granger causality relation from times to prices, Ait-Sahalia and Mykland (2003) put forward on
the contrary a negative causality effect from the volatility of returns (through their absolute value)
towards the duration. They find the Granger causality effect so striking that they go even further by
considering it more important than the clustering effect of durations (long waits tend to be followed
by long wait times). This ambiguity about the direction of causality may be a signal that some
bi-directional instantaneous causality has been overlooked. Although our focus in the present paper
is on instantaneous causality relations between durations and transaction prices, we do not exclude,
nor impose, Granger type causality relations in either direction.

The incremental information of the current duration At;;; in the function p (Sti | Atigr, gti),
in excess of the deterministic time-to-build effect, is typically neglected in the current literature.
The ACD-GARCH model as proposed by Ghysels and Jasiak (1998) or Grammig and Wellner
(2002) use the temporal aggregation formulas for weak GARCH processes as derived by Drost and
Nijman (1993) with time-varying aggregation period (expected duration). This setup does not allow
for a parameter taking into account instantaneous causality between durations and transaction
prices. For example, the volatility equation of Grammig and Wellner (2002), which just takes
into account the temporal aggregation effect in a “normal duration GARCH process”, implicitly
assumes that this “normal” regime is not influenced by unexpected durations. In spite of its name
(“interdependent duration-volatility model”) the model of Grammig and Wellner (2002) cannot
capture any instantaneous causality relationship between volatility and duration since both the
volatility equation and the duration equation are only about conditionally expected squared returns
and expected durations given the past. This is the reason why the only discrete time model which
can be compared with the discrete time moment restrictions that we derive from our continuous
time structural model is the one of Engle (2000). In this model, according to (1.1), the conditional
expectation of squared returns is computed given not only the past but also given the current
duration. While volatility depends on past durations through the reciprocal of the past conditional
expectation of the current duration, the dependence on the current duration goes not only through
the reciprocal of the current duration but also through “surprises in durations”, as measured by
the relative difference between the current duration and its past conditional expectation. While
the first of the three duration/volatility causality effects is typically a Granger one, the two others,
and especially the last one, are more focused on instantaneous causality relationships. The general
conclusion is that longer (shorter) durations lead to lower (higher) volatility. However, it is important
to note that the instantaneous causality and the Granger causality relationships may play in opposite
directions. We find that our continuous time structural model is useful for disentangling precisely the
two causality effects, making tests of various microstructure models possible (e.g., those of Easley
and O’Hara, 1992, or that of Admati and Pfeiderer, 1988). Actually, it allows to test without
ambiguity the significance and the sign of an instantaneous causality relationship between duration
and volatility, in the presence of, but separate from, possible Granger causality.

The paper is organized as follows. In Section 2, we present our general continuous time framework
for joint modelling of transaction times and prices. We allow in our semiparametric framework for
causality from transaction times towards asset volatilities that is in line with parametric models
such as considered by Duffie and Glynn (2001). In Section 3, we discuss the informational content
of transaction durations by making explicitly the difference between volatility conditional only on
the past and volatility expected given the past and the current duration. As mentioned before,



we derive a decomposition in two terms for the total volatility of asset returns over transaction
intervals. Section 4 gives explicit moment conditions for observed returns that can be derived under
some more specific assumptions. These are the moment conditions that we use in Section 5 where we
present an empirical study to illustrate the economic and statistical significance of the instantaneous
causality from trade durations to volatilities. Section 6 discusses four possible extensions to relax
some assumptions of previous subsections. Without going in all details, we show that the same
kind of empirical study as we carried out in Section 5 could be performed in more general settings.
Section 7 concludes.

2 A general framework for modelling transaction times and
volatilities

We introduce our framework for the analysis of continuous time price processes observed at random
transaction times. This framework allows us to identify separately the marginal price volatility
process, the marginal process for the transaction times, and the interaction between both.

An often-used approach, see, e.g., Engle (2000), is to model the marginal distribution of transac-
tion times and the conditional distribution of transaction prices given the transaction times. This,
clearly, requires a priori information on the form of the conditional distribution of returns given
(future) transaction times. We feel that it is more natural to model the marginal process for trans-
action prices, as the majority of the empirical finance literature so far deals with this marginal price
processes. We show that, given the (marginal) distributions of transaction times and prices, we can
model possible causality relations between both using a simple (conditional) regression coefficient.
This regression coefficient is sufficient to derive observable moment conditions. In Section 3 we use
these results to identify the noncausality assumptions made in previous papers. We want to stress
that not all previous papers assume noncausality of transaction times to transaction prices (e.g.,
Engle, 2000, and Duffie and Glynn, 2001). However, we think that the present paper is the first to
explicitly address the question of (non)causality in a structural way and does not rely on ad hoc
reduced form specifications.

The basis of our model is the filtration that generates the information accumulation in the
market. Following the majority of the literature, we suppose that this information structure is
exogenously given and that it satisfies the so-called 'usual conditions’ with respect to the underlying
probability space (see, e.g., Protter, 1995, p. 3).

Assumption A The information flow in the market is described by the filtration (F;);>o that is
supposed to satisfy the usual conditions.

All stochastic processes that appear in the sequel of this paper are assumed to be adapted to the
filtration (F;), unless explicitly stated otherwise. Note that the filtration (F;) is generally not
completely observed by the econometrician. The econometrician’s information, as described in the
introduction, is denoted by (G, ), with i referring to the i-th transaction and where ¢; denotes the
transaction time to be introduced in Assumption C. We assume that Gy, C Fy,.

Consider a financial asset with price at time ¢ given by S;. The evolution of the price S; is
supposed to be given by Sp = 1 and

legSt = Jt,st7 t Z 0. (21)

Following Engle (2000), we ignore a possible drift which is also usual practise in short horizon risk
management. Section 6.1 discusses the consequences of including a non-zero drift in the model (2.1).
In our specification, (o;) is an arbitrary predictable processes and (L;) is a Lévy process. In
particular, we do not assume that the volatility process (o) is continuous or Markovian. Clearly,
in order to derive moment conditions, we need some assumptions on the existence of moments. We
assume the following.



Assumption B The innovation process (L;) is assumed to be a locally square-integrable local
martingale, with respect to (F;), whose compensated quadratic variation is time, i.e. d(L, L), = dt.
The volatility process (o) is assumed to be predictable with respect to the filtration (F;) and square-
integrable. We assume that second-order moments of the process log .S; exist. For any stopping time
T, with respect to the filtration (F;), we write Ep for the conditional expectation operator given
the o-field Fr (Protter, 1995, p. 5). Moreover, we define

§T(u) = ET {0’%4_“} . (2.2)
We denote by Z¢ the primitive of {7, with the normalization that Z7(0) = 0.

Note that Assumption B implies that (S;) is a semimartingale adapted to the filtration (F;). In fact,
this provides a desirable price model since it is well-known that ruling out arbitrage possibilities
(in the appropriate way) in continuous time, implies that the price processes are semimartingales
(Delbaen and Schachermayer, 1997). The assumption d(L, L}; = dt is a normalization that identifies
oy as the volatility process. Assuming that L is continuous would, by Lévy’s characterization theorem
(Protter, 1995, p. 79), imply that L is a Brownian motion. A Brownian motion for L is the only
way to exclude jumps in S. The function Z7 of the conditional variance predictor & will appear in
the moment condition that we derive below for returns observed over (random) durations between
transactions.

The process (S;) is not observed in continuous time by the econometrician. If it would be,
the inference problems that follow become extremely different and in some sense degenerated. We
assume that S; is only observed at some particular (random) times ¢y, ta, .. ..

Assumption C The times t1,t,,... form an increasing sequence of bounded stopping times with
respect to the filtration (7). We denote durations by At;y1 = t;+1 — ¢;. Finally, F}, denotes the
distribution function of the conditional distribution of At;; given Fy,, i.e.,

Fti (u) = P{Ati+1 S U| ]:ti} . (23)

In this paper, ¢; will refer to transaction times. The stopping time assumption merely states that,
at time ¢, all transactions up to time ¢ have been observed. For notational convenience we define
to = 0. Under (2.1), returns on the asset .S, as they are observed over the interval (¢;,¢;+1], are
given by

S, Atiy1
Rtiiti+1 = IOgS;Jrl = / UtiJru,stiJru, ) :0,1,2,.... (24)
t; 0

Note that, under the assumptions stated, Ry, ., is a martingale stopped at time At;y;, so that
Doob’s optional sampling theorem (Protter, 1995, p. 10) implies

Ei, {Ritip, ) =0, i=0,1,2,.... (2.5)

The following proposition relates the conditional variance of observed returns Ry, .¢,,, to the variance
predictor Z;,, to the distribution function of the transaction durations Fj,, and to some regression
coefficient that we denote Sy, (-) and formally define below.

Proposition 2.1 Under Assumptions A-C we have the following observable moment condition:
Var, {Rit,} = Ee{Rf,.}
- [ Cmwin @ [ @@ @, 20
where B, () is the (conditional) regression coefficient (given Fi,)

B, (u) = Covti{ai‘*‘“’I(O’Atiﬂ}(u)}
' Varti{I(U,Ati+1](u)} 7

where I o A, denotes the indicator function of the (random) interval (0, At;y].

2.7)



Note that, since the conditional expectation given an indicator coincides with affine regression,
we can write

Ei {07 vl Lo,ati) (@)} = Er; {07 10} = Br:(w) (Lo,at40) (w) = [1 = Fi, (w)]) - (2.8)

From (2.8), we see that the 8 function characterizes by how much an instantaneous variance assess-
ment is influenced by the information that no transaction occurred for some time. It is then not
surprising that this information matters as well for measuring the volatility of returns between two
consecutive transaction times as in (2.6). Observe, moreover, that the times ¢; are not restricted
to be transaction times, but can also refer to, e.g., times at which either the bid or ask quote is
revised or any other sequence of stopping times. Generally speaking, when returns are considered
over random time intervals (t;,t;+1], the duration At;;; between two consecutive stopping times
may convey (through a non-zero coefficient ) some relevant information about the risk borne at
time t; over the horizon At;;. A general discussion of this informational content of these stopping
times is provided in the next section.

3 Informational content of transaction durations

The volatility decomposition (2.6) allows us to characterize the triple role of the current value At;;
of the duration between subsequent trades in the measurement of Vary, { Ry, .1, , }. Roughly speaking
these three roles are:

1. What we have called in the introduction the time-to-build effect which is nothing but the
deterministic effect of irregular sampling. When the duration At;;; is random, one has to
integrate out this random variable in order to define an average risk, but this has nothing to
do with causality effects.

2. The filtering effect due to stochastic volatility. Our model is a stochastic volatility one. The
information F;, that defines the conditioning in the risk measurement Var; {R;,.,,,} does
contain the current latent value oy, of the spot volatility process. Then, if one wants to specify
a GARCH type model that characterizes the dynamics of the conditional variance given the
smaller information set defined only from the past observations of the asset price (G, ), one has
to reproject the above conditional variance on this smaller information set. If the current value
At;y1 of the transaction duration is added, as, e.g., in Engle (2000), to this smaller information
set, it may have an informational content, just as way to better filter the past values of the
volatility process. This informational content may occur even when the regression coefficient
is zero. This would be akin to some indirect Granger causality effect from durations to prices
through volatility (see, e.g., Renault, Sekkat, and Szafarz, 1998) and does not correspond to
the instantaneous causality relationship between duration and volatility that is the focus of
the present paper.

3. The instantaneous causality effect between the duration and the volatility is encapsulated in
the second part of the right-hand side of (2.6) when the regression coefficient § is non-zero.
It is typically this effect that may capture “the possibility that variations in durations and
variations in the volatility could be related to the same news events”. Besides its relevance for
microstructure theory, this effect is also important for risk measurement. Typically, neglecting
it would amount to overlooking a liquidity component of the risk borne by an investor who
wonders at time t; how risky the investment in this asset is over the next period.

The main advantage of the continuous time framework used in this paper is to allow one to
clearly disentangle the afore described three roles of durations in volatility measurement. Let us
now discuss more explicitly each of them.



Effect 1: The time-to-build effect

This effect is encapsulated in the first term of the right-hand side of the decomposition (2.6). This
term can be seen as an expected integrated volatility imposing non-causality between transaction
times and prices. To be more precise, note that

[e’e) Aty
0 0

Here, ® indicates that the expectation is taken with respect to the product measure of the
marginal (yet conditional on F3,) distributions of At;11 and (04,4, : w > 0), i.e., the measure
ignoring possible instantaneous causality relations. By application of Fubini’s theorem, it can then
be seen as the expectation with respect to the marginal distribution Fj, of At;y; of the expected
integrated volatility as computed for a deterministic duration A:

A
20 = [ Eufo ) (5:2)
0

therefore -
/ St (A)dF;, (A) = B Ey, (Atiy). (3.3)
0

The conditional expectation of integrated volatility for deterministic duration A as in (3.2) has been
studied in detail in Bollerslev and Zhou (2002).

Effect 2: The filtering effect

Following Engle (2000) and the decomposition (1.1), an alternative route amounts to renounce to
integrate out the stochastic duration and to consider directly for the return R, ., over the interval
(ti,tiy1] a volatility measurement given the augmented o-field 7y, = Fy, Vo(At;11), that is not only
given past observations on prices, volatilities, and transaction times, but also the time needed for
the next transaction to come. Actually, the Engle (2000) volatility models (39) and (40), p. 18, can
be interpreted as reprojections of this volatility measure on the smaller o-field R}, = Ry, Vo (Atiyq)
where Ry, is the sub-o-field of F;, defined by the econometrician’s information about past returns
and durations only. Then, even if the regression coefficient J is zero, the volatility measure must
depend on the duration (At;11) as conditional expectation of Z, (At;11) given R},. This dependence
may go through not only the aforementioned time-to-build effect but also through E{o7 |R},}.

This is the reason why we argue that, in this framework, even an additional significant role
(besides the time-to-build effect) of the duration in the volatility measurement does not really prove
that “variations in durations and variations in the volatility are related to the same news events”.
Of course, the empirical evidence documented by Engle (2000) is fairly convincing. The functional
forms (39) and (40) in that paper are sufficiently specific to make it difficult to imagine that the
significant role of the duration (At¢;4+1) is just a filtering effect. However, we do consider that, to
fully disentangle the filtering effect from the instantaneous causality effect of interest, the stochastic
volatility framework in continuous time is better suited. The filtering effect is not an issue when
considering the moment condition (2.6), since this is not conditional on the current duration Ats41.
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Effect 3: The instantaneous causality effect

Since we focus on the volatility process, we consider that this effect is significant when S is
non-zero, that is when the fact to know that At;1; > u modifies our optimal forecast at time ¢;
of the future spot volatility o7,,,. Note that this effect is well in line with the doubly-stochastic
counting processes as a model for transaction arrivals as proposed in Duffie and Glynn (2001). If
the events arriving at time ¢ are viewed as a Poisson process with time varying intensity A(S, oy),
it is not surprising that the information that no event occurs between dates t; and ¢; + u is relevant
to modify the forecast of the state vector (St +4,0¢,++). Note however that, in contrast with Duffie
and Glynn (2001), we are not interested here in the inference issue about a parametric model from
observations of this Markov process. Actually, we do not consider that the econometrician observes
the volatility process but we perform a semiparametric inference based on the conditional variance
of observed returns.

Our focus of interest is the causality property which makes § non-zero, that is

Ei {0} yulAtiyr > u} # B {0] 1} (3.4)
The equality
Ey {07, 1ol Ati1 > u} = By {07 1) (3.5)
is actually a testable implication of the non-causality property:
Ei {0} +ulAti1} = B {of 1} (3.6)

Following the Florens and Fougere (1996) terminology (more precisely, their Definition 2.1, p. 1197),
(3.6) means that the filtration F; = F; V 0(Aty,+1) does not weakly globally cause the volatility
process, given F;, where n, = max(i : ¢; < t) denotes the number of transactions up to time ¢. In
more intuitive terms, the next transaction time to come does not weakly (i.e., in expectation) cause
the spot volatility process. Note that, given the absence of a drift function, (3.6) would imply also
that (F}) does not weakly instantaneously cause the price process given (F;) in the Granger sense
(Florens and Fougere, 1996, Definition 3.1., p. 1202), insofar as it does not cause the innovation
process L in (2.1). Then, the price process remains a martingale with respect to the augmented
filtration (F;). If we knew more generally that the Doob-Meyer decomposition would not change for
any (R;)-adapted special semimartingale, we would say (Florens and Fougere, 1996, Definition 3.2.,
p. 1203) that (F;) does not strongly instantaneously cause the price process given (F;) in the
Granger sense. In this case, for any function of the price process, the Doob-Meyer decomposition
is not modified by the knowledge of the next transaction time. This strong instantaneous non-
causality property in the Granger sense is obviously implied by the strong global non-causality
property (Florens and Fougere, 1996, Definition 2.2., p. 1197):

F; and R4y are conditionally independent given F;, for all h > 0. (3.7)

The converse is less clear. Theorem 3.1, p. 1203, in Florens and Fougere (1996) states that “strong
global non-causality” and “strong instantaneous non-causality in the Granger sense” are equivalent
when F; = R, that is typically not our case since a stochastic volatility process has been added to
the filtration (R;) of past returns to define the filtration (F;). The additional instantaneous causality
effects in continuous time to consider to get strong global non-causality in the context of stochastic
volatility are sketched in Comte and Renault (1996). The reason why strong global non-causality
of transaction times towards the price process is not guaranteed, even when strong instantaneous
non-causality is, is that the Doob-Meyer decomposition of the volatility process itself might also be
modified by the knowledge of transaction times. Testing for this later causality effect is beyond the
scope of the present paper. We define below a simple test for the hypothesis = 0, which is an
implication of the weak instantaneous non-causality of transaction times towards volatility.
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4 Explicit moment conditions

In this section we show how the parameters of interest in the present paper can be identified
from moment restrictions concerning conditional variances of observed returns. Clearly, we want
to avoid as far as possible any additional assumption about the joint probability distribution of
future volatility and durations. We know from Proposition 2.1 that two terms are involved. First,
a time-to-build effect

TBti = /Ooo Eti (U)dFtl (u), (41)

and, secondly, an instantaneous causality effect
Ik = [ ()i 0) (1= Fiy () du. (42)
0

We first notice from (4.1) that any forecasting formula for the volatility process which implies
a nonlinear primitive function =, (v) = fov Ey, {atzi +u} du will involve higher order conditional mo-
ments of future durations At;11 to compute the time-to-build effect T'B;,. In order to avoid any
additional assumption about the duration process, we assume that E, {a‘fﬁ_ +u} is constant with
respect to the horizon u, that is that the (squared) volatility process is a martingale:

Ey, {0} 4u} =0}, for all u > 0. (4.3)

Note that such an integrated volatility process is often found to be empirically reasonable for high-
frequency financial data (see Hansen, 1995, and the references therein). We will see in Section 6.2
that linear mean reversion in the volatility process can be accommodated at the cost of additional
assumptions on the conditional distribution of duration. Moreover, one may expect that a small
level of mean reversion would not significantly modify the inference conclusions about causality that
we derive under the simplifying assumption (4.3). In this context, we have Z¢, (u) = o7,u and the
time-to-build effect is nothing but

TBti = Ut2i wtﬂ (44)

where ¢y, = Ey, {At; 11} denotes the expected value of the duration At; 1, given all the information
available at time ¢;.

In order to characterize the instantaneous causality effect (4.2) by some simple parameters, it is
convenient to assume that the normalized durations At;;1 /vy, are independent of past information
"Ttm i.e.,

F,(u)=F (%) , (4.5)

for some fixed distribution function F'. Such an assumption is commonly made in the ACD litera-
ture. Note that this does not preclude instantaneous causality relationships between durations and
volatility, that is durations and future volatility can be, conditionally on F;,, dependent. More-
over, thanks to the martingale assumption (4.3) on the volatility process, we are able to handle the
time-to-build effect without a parametric specification of the conditional probability distribution
of durations and, hence, we remain fully non-parametric with respect to distribution F' of rescaled
durations. In that respect, we adopt a semiparametric ACD approach, much along the lines of Drost
and Werker (2003).
However, to write explicit moment conditions for the instantaneous causality effect

1c,, = / " By (W) F (/) (1= F(ufin,)) du
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we also need to extend the ACD kind of assumption to the specification of the regression coefficient
function f, (). Our maintained assumption will be

1.0 = 8 (1) Bu o). (4.6)

for some given function §(-). Combining with the martingale assumption (4.3), this leads to

Bry(u) = 8 (wi) o2,

1C; = 6*015211/)1517 (4.7)

and thus

with
5= [ BWFE) - Fe)d (4.8)
0

When testing for instantaneous causality between volatility and durations, §* will actually be our
key parameter of interest. Clearly, rejection of the null hypothesis Hy : * = 0, implies that there
exist causality effects for some rescaled horizon w/y,.

It is worth noticing that our maintained assumption (4.6) is quite natural in an ACD context.
More precisely, we have the following lemma, whose proof is omitted.

Lemma 4.1 Under the maintained assumption (4.5) the two following properties are equivalent:
1. By (u) = B(u/be, ) By, {07 1} for all u >0, for some given function B(-);
2. By, {02 d0,ati40) (W)} = G(u/tbe, ) By, {07} for all u >0, for some given function G.
In this case, the function [(-) is identically equal to zero if and only if G =1 — F.

To get more feeling for our chosen specification of the causality term, which actually measures
the relation between surprises in volatility and surprises in durations, let us rewrite (2.8) as

Eti{UtQi-i-u‘At""‘lZu}:1_{_5(%)}7(“). (4.9)
t;

2
Eti O-ti “+u wti

Using the conditional quantile transform u = 1, F~1(a), for some quantile a € (0,1), (4.9) states
that the revision in the instantaneous variance estimate, assuming that the next transaction will
take more time than the a-th quantile of the conditional probability of the duration, is given by

Eti { 0§i+¢ti F=1(a) AtiJrl /wt’ = F= (O()}

‘ =1+ af(F(a)).
Eti O-tZHrwtiF_l(a)

Such an assumption essentially means that surprises in durations have the same relative effect on
volatility forecasts, independent of the actual state F;, of the market.

Summarizing, we will maintain the following additional assumptions in our empirical analysis in
Section 5 below.

Assumption D We assume the following in our empirical analysis.

1. Rescaled durations are independent of the past, i.e.,
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2. Instantaneous volatility-duration causality depends, in relative terms, on the rescaled waiting
time only, i.e.,

6ti (U) =p (%) Eti {at2i+u} )
t;

3. Volatility is integrated, i.e.,
E:, afi+u = Jtzi.

Assumption D is maintained to get simple explicit moment conditions, allowing us to identify the
instantaneous volatility-duration causality relationship, in a semiparametric ACD kind of framework.
More precisely, we deduce from Proposition 2.1, jointly with (4.4), and (4.7)

Vary, { Riyitiy, } = (1+ B%)07 4y, (4.10)

In other words, the causality effect manifests itself through a multiplicative factor applied to the
time-to-build effect oi. 1, . This multiplicative factor is smaller than one if and only if the informa-
tion that the next transaction will take more time than some a-th quantile will lead to a downward
revision in the instantaneous variance prediction. Condition (4.7) paves the way for feasible GMM
inference insofar as o7,¢, can be related to a conditional expectation of a known function of ob-
servables, that is returns and durations. Various tricks may be imagined to meet this requirement.
While we propose one approach in Section 6.3 that is tightly related to the standard way to write
duration-volatility models in discrete time, we choose here to focus on the causality issue, through
an assumed linear relationship

O'tzi = Qg + a1¢ti~ (4].].)

We remark already that such a specification will allow us to avoid parametric relations on the way
expected durations iy, depend on F;,, as would be generally required in duration analysis.

In this specification, ag + a1 Et¢;, measures the unconditional instantaneous variance while oy
measures the sensitivity of instantaneous volatility with respect to expected duration. Given that
larger volatility usually goes together with expecting more trades, that is smaller expected durations,
we expect a; to be negative. However, note that this volatility-expected duration relationship has
nothing to do with the instantaneous causality effect between volatility and durations as measured
by £*. While the former will generate a kind of Granger causality effect from past durations to
current volatility (see, e.g., Dufour and Engle, 2000), the latter relates instantaneously surprises in
durations to surprises in volatility. From Relation (4.11) we deduce that

o7 = agly, + anyf = Ey, {OtoAtiH +ap (Ati+1)2} ;

where ¢ € (0,1] is a parameter measuring the duration dispersion

in other words .
0= [/ v2dF(v)] : (4.12)
0

Some well-documented empirical evidence of overdispersion of durations with respect to the bench-
mark exponential distribution would lead to expect that ¢ < % We will see in the empirical section
that incorrectly excluding instantaneous causality when in fact 5* < 0, leads to upward biased
estimates for .

To summarize, we have the following result.
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Proposition 4.2 Under Assumptions A-D and the a constant sensitivity of volatility with respect
to expected durations, J?i = oo + a1y, , returns and transaction times are related by the conditional
moment restriction

Buy { Bty — 00(1+ 5)A i1 — as(1+ 57)p (Atiza)*} =0 (4.13)

Not surprisingly, the two causality parameters a; and * cannot be separately identified from
transaction data alone. The two sensitivity factors, oy (for Granger causality) and 1 + S* (for
instantaneous causality) play multiplicativ roles in the moment condition (4.13). But this problem
can be easily resolved by adding extra identifying moment restrictions based on deterministic dura-
tion intervals. By definition, the instantaneous causality effect is no longer at stake when observing
returns over fixed time intervals of length 5, say h corresponding to five minutes intervals. Then,
Proposition 2.1 applied to deterministic durations of length h leads straightforwardly to the moment
conditions

Eti {R?i:ti"rh - Ctoh - OélhAtiJrl} =0. (414)

Now, the full set (ag, a1, ¢, 8*) of unknown parameters can be identified from the conditional
moment restrictions (4.13) and (4.14). This is the basis of our empirical study in the following
section.

5 Empirical illustration

In order to assess the economic and statistical relevance of our discussion on instantaneous causality
between transaction durations and volatility, we estimate the causality parameter §* as introduced
in Section 4, for ten liquid stocks traded at the NYSE. Although the scope of this empirical exercise
is limited, it does show that possible instantaneous causality effects need to be taken into account in
ultra-high frequency inference and risk-management. We first discuss in Section 5.1 the ten stocks
that we analyse and, subsequently, in Section 5.2 we show that, at least for these stocks and the
time period we study, instantaneous causality effects from durations to volatilities are statistically
and economically significant.

5.1 Data description

We consider ten stocks traded at NYSE. We use price/duration data from the TAQ dataset for 64
days from August 2, 1999, until October 29, 1999. No trade took place on September 6 due to Labor
day. Zero durations are removed from the data set. The only other pre-analysis data cleaning we
performed was to replace returns above 100 basis points (in absolute value) by the average return.
For the present data set, 100 basis points corresponds to at least five, but usually more than ten,
standard deviations and at most 69 observations are affected. Durations are measured below in
seconds (sec) and returns in basis points (bp). Returns at transaction times are calculated using the
best prevailing bid and ask price at the time of each transaction. Note that no seasonal adjustment
is made to either prices or durations. We do not a priori exclude seasonal effects, but relation (4.11)
does impose that seasonal effects in volatilities and durations are synchronized through time.

The ten stocks we use, with ticker symbol in parentheses, are Dillard’s (DDS), Federated (FD),
IBM (IBM), JCPenney (JCP), Mattel (MAT), May (MAY), McDonald’s (MCD), Saks (SKS),
Schlumberger (SLB), and Walmart (WMT). Summary statistics are in Table 1. The first row
in Table 1 gives, for each of the ten stocks, the number of observations that are available in the
estimation. For a fairly illiquid stock like Dillard’s, we still have more than 14000 observations
available. For the most liquid stock (IBM), we have almost ten times as many. The difference in
liquidity also follows from the second row, that gives the average duration (in seconds) between
subsequent transactions for each stock, ranging from 11 seconds again for IBM to more than one
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17
19
26
0.0
5.2

DDS FD IBM | JCP | MAT | MAY | MCD SKS | SLB | WMT
Observations 14389 | 24344 | 137796 | 26444 | 40907 | 23079 | 56618 | 14259 | 62799 | 88432
Average dur. 102 60 11 56 36 64 30 101 23
Stand.dev. dur. 134 78 10 72 48 81 31 130 28
Robustified ret. 51 19 24 9 25 18 15 69 21
Average ret. 0.0 -0.1 0.0 -0.2 -0.2 0.0 0.0 -0.1 0.0
Stand.dev. ret. 18.7 9.6 3.6 10.5 10.5 9.3 5.6 19.1 5.1

Table 1: Summary statistics for durations and returns for ten stocks from TAQ database August
2, 1999, until October 29, 1999. The rows of the table present from top to bottom the number of
observations, the average duration between transactions, the standard deviation of durations, the
number of returns that have been replaced by the average for robustness reasons, the average return
between transactions, the standard deviation of returns between transactions. All durations are in
seconds, returns in basis points.

and a half minute for Dillard’s. The standard deviation of durations is usually slightly above the
average, indicating unconditional excess dispersion with respect to the Exponential distribution. As
mentioned before, transaction returns over 100 basis points have been replaced by average returns
for reasons of robustness. The fourth row in Table 1 shows, for each of the ten stocks, how many
returns have been affected. For all stocks this number is below 0.5% of the total number of observa-
tions available, and for most stocks below 0.1%. Finally, we present the average transaction returns
and standard deviations. Note that there is a clear positive relationship between average durations
and standard deviations of transaction returns, due to, in particular, the time-to-build effect.

5.2 Empirical results

We present estimation results on the causality effect from duration to volatility based on the moment
conditions detailed in Section 4 and the ten stocks described above. Following standard GMM
practice, the conditional moment conditions (4.13) and (4.14) are transformed into unconditional
ones using various instruments. It is well-known that both durations and squared returns are
autocorrelated. Therefore, the obvious candidates for our instruments, besides the constant, are
At; and R%i—liti' We use the standard optimal weighting matrix for weighting the unconditional
moment conditions. The use of both returns over transaction intervals and deterministic intervals
of length h induces a overlapping samples problem, since clearly R+, , = Ry;.t;+A¢;, and Re.¢;4n
are correlated. To resolve this problem, we estimate the variance of the unconditional moment
conditions using a Newey-West estimator with a fixed number of lags. The number of lags is fixed
at 30. Given the average durations in Table 1, this number of lags ensures that we always cover at
least h = 300 seconds of overlap, which is the length of the deterministic intervals that we use in
our moment conditions.

The estimation results are in Table 2. The parameter oy determines the level of the instantaneous
variance. Given the average durations in Table 1 and the estimated values for a;, we can easily derive
the average level of the instantaneous variance for each of the ten stocks. These values are presented
in the rows with label “Average variance”. Clearly, there are some variations in riskiness, ranging
from 1.6 to 4.8 bp?/sec?. A typical value of 2.0 is equivalent to /2.0 x 3600 x 8 x 252/100 = 38
percent volatility on an annual basis, using the standard rule of thumb for temporally aggregat-
ing volatilities (which is strictly speaking, of course, not applicable in this case). The parameter
a; is estimated to be negative in all cases. Recall that a; measures the relation between instan-
taneous volatility and expected durations. Consequently, a higher instantaneous volatility indeed
goes together with smaller expected durations.
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DDS FD IBM JCP MAT
Parameter est. | t-val est. | t-val est. | t-val est. t-val est. | t-val
ag | 725 | 841 | 487 | 816 | 2.05| 6.80 5.98 9.58 | 5.38 | 7.22
a1 (%) | -2.46 | -3.47 | -4.04 | -4.75 | -4.52 | -1.80 | -5.56 | -6.23 | -6.26 | -4.32
p* | -0.07 | -0.59 | -0.32 | -3.46 | -0.06 | -0.42 | -0.22 | -2.50 | 0.37 | 1.99
o | 055 | 6.08| 041 | 9.46 | 0.91 | 2.46 0.43 | 15.03 | 0.52 | 10.68

Average variance 4.8 2.5 1.6 2.9 31
Variance update | -7% -32% -6% -22% 37%
Underestimation 8% 47% 6% 28% -27%

MAY MCD SKS SLB WMT

ap | 6.05| 917 | 324 | 1320 | 721 | 3.87 453 | 16.54 | 2.53 | 4.07
a1 (%) | -5.65 | -5.95 | -6.46 | -7.99 | -2.62 | -1.68 | -10.56 | -10.92 | -4.20 | -1.56
p*1-049 | -6.82 | -0.13 | -1.78 | 0.14 | 044 | -0.48 | -14.57 | 0.53 | 1.68
¢ | 0371018 | 046 | 1738 | 0.63 | 3.10 041 | 2413 | 095 | 226

Average variance 2.5 1.6 4.6 2.1 1.8
Variance update | -49% -13% 14% -48% 53%
Underestimation | 95% 15% -13% 93% -35%

Table 2: Point estimates and asymptotic t-values for the relation between instantaneous volatility
and expected durations (oo and «1), the instantaneous causality parameter (5*), and the duration
dispersion parameter (¢). The last three lines in each panel refer to the average instantaneous
variance of the stock prices (in bp?/sec?), the implied variance update due to not having seen a
transaction by the predicted median duration, and the variance underestimation due to not taking
into account the instantaneous causality. See main text for details.

However, the key interest in the present paper is instantaneous causality between future volatil-
ities and surprises in durations as measured by #*. This parameter is estimated negative for seven
out of ten stocks, while for four stocks the estimate is significantly negative at the 5% level. This
gives ample support for our claim that the instantaneous causality effects are statistically significant,
at least for several stocks. If we combine all the estimates for §*, we find a (precision weighted)
average value of 8* = —36%, with a t-value of —14.9 (which is only indicative since it is based on
the assumption that the estimates for the different stocks are independent). Figures 1.1 and 1.2 in
the introduction are based on this estimate of §*, considering, for illustrative purposes only, the
typical case of exponentially distributed durations, martingale volatility, and a constant function
B(-). Using (4.8) and since for the exponential distribution [ F(v)[1 — F(v)]dv = 1/2, we find that
the function 8 in (4.6) is equal in size to —0.36 x 2 = —0.72. Now consider the event that, after
waiting the (conditional) median duration, we have not seen the next transaction yet. Then, accord-
ing to (4.9), we should update our current instantaneous variance prediction with £(u /vy, ) F(u/y;)
for u = th1(1/2) = 9, F71(1/2). We find that we update the current instantaneous variance
prediction with S(F~1(1/2))/2 = B* = —0.36, i.e., a 36% decrease.

An alternative interpretation of S* is based on the formula for the variance of observed re-
turns (4.10). Incorrectly putting 8* = 0, would lead to an estimate for the instantaneous variance
per unit of time of Vary {Ry.4,., }/¢¢,. Such a formula is often used implicitly in microstructure
research. However, Equation (4.10) shows that, in case of negative §*, this would underestimate
instantaneous volatility significantly. For the average 5* of —36% the actual instantaneous volatility
would be —p*/(1 + 8*) = 56% higher than the estimated one. Clearly, this may have important
repercussion for risk management.

For the individual stocks, the appropriate updates in instantaneous volatility predictions and
assessments as calculated above for the average value of 5*, are given in the rows with “Variance

17



DDS FD IBM JCP MAT
Parameter est. | t-val est. t-val est. | t-val est. | t-val est. t-val
ag | 7.25 | 10.20 | 4.83 9.82 | 2.02 | 14.16 | 5.92 | 11.16 7.95 | 17.00
ay (%) | -2.47 | -4.17 | -4.06 | -5.60 | -4.53 | -3.63 | -5.60 | -7.09 | -11.35 | -11.40

B* | 0.00 - | 0.00 - | 0.00 - | 0.00 - 0.00 -
@ | 059 1272 | 051 | 2534 | 095 | 737 | 048 | 41.16 0.44 | 59.19
MAY MCD SKS SLB WMT

oo | 406 | 9.01| 323 | 1769 | 7.18 | 4.96 | 2.84 | 19.93 2.54 9.79
ag (%) | -2.78 | -4.37 | -6.46 | -10.44 | -2.55 | -2.08 | -4.81 | -9.46 | -4.18 | -2.95
B* | 0.00 - | 0.00 - | 0.00 - | 0.00 - 0.00 -
¢ | 059 | 14.03 | 0.50 | 54.00 | 0.58 | 7.76 | 0.65 | 26.07 0.64 9.00

Table 3: Point estimates and asymptotic t-values for the relation between instantaneous volatility
and expected durations (oo and a4) and the duration dispersion parameter (¢) when instantaneous
causality between durations and volatilities is excluded a priori.

update” and “Variance underestimation” in Table 2, respectively. Overall, we find that both from
a statistical and an economic point of view, the instantaneous causality effect is significant, with
some variation for the individual stocks.

Finally, let us consider the parameter ¢ which measures the dispersion of the rescaled (by
their conditional expectation) durations. For exponentially distributed rescaled durations, we have
¢ = 1/2. The results for the ten stocks we study vary in this respect, leading to the conclusion that
some stocks exhibit overdispersion and others exhibit underdispersion for the conditional duration
distribution. For illustrative purposes, we conclude this section with Table 3 that provides the es-
timation results for the same parameters, based on the same moment conditions, but excluding a
priori the instantaneous causality effect from durations to volatilities, i.e., fixing 8* = 0. Comparing
Table 3 with Table 2, we see that for most stocks imposing 5* = 0 does not affect the point esti-
mates for the other parameters. However, the estimated standard errors are dramatically affected.
An analysis of intraday prices and durations ignoring the instantaneous causality effect between
durations and volatilites documented in this paper, may thus lead to misleadingly precise results.
For all stocks, the estimated values of ¢ become larger when §* is estimated negative, and smaller
when it is estimated positive. This shows that allowing for the causality effect is not only interesting
in itself, but also affects the marginal estimation of the duration process.

To the best of our knowledge, the present paper is the first one that specifically addresses
empirically the origin of observed dependencies between durations and volatility. Reduced form
VAR-models do not allow for disentangling dependencies between expected durations and current
instantaneous volatility on the one hand, and surprises in durations and in future instantaneous
volatility on the other hand. As mentioned before, the approach of Grammig and Wellner (2002)
implicitly imposes that all dependence takes place through the relation between expected durations
and instantaneous volatility. We confirm this effect, but find in addition that exogenous news events
apparently drive both durations and volatility.

6 Possible extensions

Although the results in Section 2 require no specific assumptions on the volatility or duration model
that one wishes to adopt, our empirical illustration does rely on several more specific assumptions
(in particular, Assumption D). We now discuss four possible extensions which all lead to a more
difficult empirical analysis than the one presented in Section 5. First of all, we discuss the possibility
of including a non-zero drift p in the log-price process. Secondly, we consider the consequences of
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relaxing the martingale volatility assumption towards the more common case of a volatility model
with linear mean-reversion. Subsequently, we focus on the imposed linear relationship between
instantaneous variance and expected durations. Finally, we show how one could add microstructure
noise in the model following Bandi and Russell (2003).

6.1 Price process with a non-zero drift

If a general semi-martingale model for the price process is considered, returns over the interval
(t;, ti+1] would be given by

Sti+1

S:,

JANZERY At
/ .utiJrudu + / Jti+U*sti+u7
0 0

where pi, 4, denotes the drift of the log-price process. Of course, any source of randomness in
the drift term would possibly introduce other causality relationships with transactions times. For
instance, a risk premium related to O'tzi would introduce causality in higher order moments. Let us
focus here on the simplest case of a constant drift term

Rti:ti+1 = IOg

Atiy1
Ryt = pAtip +/ Otitu—ALti4u- (6.1)
0

It is clear from (6.1) that, due to the introduction of the drift term, two instantaneous causality
effects involving transaction times are now at stake when computing conditional variances of returns.
Not only, as explained in Section 3, we need to know whether the filtration F;* = F;: V 0 (Atp,+1)
does weakly globally cause the volatility process. But, we also need to know whether F; may weakly
globally cause the innovation process L. If it is the case, L is not a F;- martingale and the two
terms of Ry,.¢,,, will, in general, be correlated given J3,.

While the former causality effect is the focus of our interest in this paper, its interpretation
and statistical identification are simpler if the latter is precluded. This is the reason why we will
maintain the following strengthened version of Assumption B.

Assumption E In addition to Assumption B, the innovation process (L;) is assumed to be a locally
square-integrable local martingale with respect to (F;*) whose compensated quadratic variation is
time.

In this framework, we deduce from (6.1),

Atip1
Varti {Rti;tiJrl} = ,u2Varti {Ati+1} + Varti {/ Uti+u—sti+u} s
0

which, using (4.13), immediately leads to a moment condition. Summarizing, a straightforward
extension of the arguments leading to Proposition 4.2 gives the following result.

Proposition 6.1 Under Assumptions A-FE, a constant drift ;v and a constant sensitivity of volatility
with respect to expected durations ai = oo + a1y, returns and transaction times are related by the
conditional moment restrictions

Eti {Rti:ti+1 — ,uAti_H} 07 (62)
Eti {R?iiti+1 - 040(1 + 6*)Ati+1 - [M2 + QDOél(l + B*)] (Ati+1)2} = 0. (63)
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As in Section 4, these moment restrictions must be completed by extra identifying moment
restrictions based on deterministic duration intervals of length h. A straightforward generalization
of (4.14) to the case of non-zero drift gives

Et, {Rt;:ti4n —ph} = 0,
By, {RY..1n — coh — p®h* —anhAtiy} = 0
i ti:t;+h 0 M 1 i+1 .

We also performed the empirical analysis of Section 5, including a non-zero but constant drift
based on the above moment conditions. The conclusion is that for almost all of the ten stocks the
drift is estimated small and insignificantly different from zero and the estimates of the parameters
of interest remain unchanged. This justifies a posteriori our maintained assumption g = 0 in
Section 5. A zero drift assumption is also very usual in the literature about market microstructure,
see, e.g., Engle (2000). From our point of view, a great advantage of this assumption is that,
even when causality from durations to the innovation process L is present, this does not affect our
analysis focused on possible causality relationships between duration and volatility. In particular,
Proposition 2.1 remains valid.

6.2 Volatility mean-reversion

The often used volatility models that exhibit linear mean-reversion can also be accommodated in
our framework. They fall in the framework where there exist some deterministic functions a(-) and
b(-) such that

& (u) = Ee {0} 1} = a(u)oy, + b(u). (6.4)

Note that this volatility prediction formula is found in the linear autoregressive volatility model
put forward in Meddahi and Renault (2003). In that case, there is a positive coefficient x of mean
reversion such that we have

a(u) = exp(—ru), (6.5)
bu) = o?(1 - exp(—ku)), (6.6)

where 02 denotes the unconditional variance Eo?, which is assumed to be time-constant in these
models. Formula (6.4), together with (6.5) and (6.6), is, for instance, also implied by a square-root
or Ornstein-Uhlenbeck like model of volatility (Barndorff-Nielsen and Shephard, 2002). Clearly, the
martingale case that we studied in Sections 4 and 5 above correspond to k = 0, i.e., a{u) = 1 and
b(u) = 0. While (6.5) and (6.6) translate the GARCH(1,1) model to a stochastic volatility setting,
the martingale volatility case extends the IGARCH(1,1) model. All these models correspond to
ARMAC(1,1) dynamics for squared innovations of returns (see Meddahi and Renault, 2003). The log-
normal stochastic volatility model (Harvey, Ruiz, and Shephard, 1994) is also conformable to (6.4)
with vanishing b(u).

If we denote by A and B the primitive functions of a and b, respectively, normalized to zero for
u =0, we deduce from (6.4)

Er(Atiy1) = A(Atiy1)o;, + B(Atiga), (6.7)
and, for the specification (6.5) and (6.6), we get immediately

1 —exp(—ku)

A(u) and B(u) = o*(u — A(u)). (6.8)

Formulas (6.7) and (6.8) basically correspond to the formulas used by Ghysels and Jasiak (1998)
or Grammig and Wellner (2002), Formula (5), p.374, when one focuses only on the volatility persis-
tence parameter A(At;.) that is the sum of the two GARCH(1,1) coefficients. As already stressed,
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the occurrence of the current duration (At;41) in these formulas has nothing to do with any causal
relationship between volatility and durations that would deserve a microstructure theory based
interpretation. It is just a time-to-build effect that would equally occur with deterministic transac-
tion times (see Meddahi, Renault, and Werker, 2003). Actually, to get rid of the random feature
of durations, Grammig and Wellner (2002) replace the duration (A#;11) in (6.7) by its conditional
expectation computed from the distribution F;,. The above formulas show that this is not correct,
since the functions A and B are in general nonlinear, and the correct formula for the first part of
our volatility decomposition is

Ey {Z0 (Ati1)} = B, {A(Atit1)}of, + B {B(Atipa)}- (6.9)

Clearly, for small durations, we get E;, {A(At;+1)} = A(¢y,) and Ey, {B(Ati+1)} = B(vy,), but the
exact implication of this approximation for estimation and testing remains unclear.

We focus here on the derivation of moment restrictions for the variance of returns over the period
(t;,ti+1] in the simplest case of the linear autoregressive volatility model defined by (6.4) with (6.5)
and (6.6). In that case, we have

Ei, {A(Ati1)} k(L= By, {exp (—kAti11)}) (6.10)
Ey, {B(Atit1)} = 0% (¢ — By, {A(Atig1)}) . (6.11)

For ease of exposition, we consider the time-to-build and causality effect separately.

6.2.1 Time-to-build effect for mean-reverting volatility

By comparison to the martingale volatility case, we see from (6.10) and (6.11) that linear mean
reversion adds two important difficulties to the analysis, that can however be solved with standard
tools.

First, the specification of E;, {A (At;11)} is tantamount to the specification of the Laplace trans-
form Ey, {exp (—kAt;41)} of the conditional distribution of durations. Since this Laplace transform
must be computed for any possible value x of the mean reversion parameter in some parameter
interval (0,%) C Ry, its parametric specification is akin to a fully parametric specification of the
conditional probability model of rescaled durations. This is actually the price to pay to introduce
mean reversion in volatility while the martingale model allowed us to remain nonparametric with
respect to the ACD specification. However, while the additional restriction of constant sensitivity
of (squared) volatility with expected durations, i.e., ofi = ap + 19y, implies a martingale structure
for expected durations when volatility is integrated, the autoregressive model (6.4) for volatilities
applies also to expected durations, in line with the ACD model of Engle and Russell (1998).

The second difficulty that arises due to the introduction of volatility mean reversion is that,
for a given specification of the Laplace transform of the conditional distribution of durations, the
computation of the time-to-build effect from (6.9) will lead to products E;, {A (At;11)} o7, that may
be more difficult to translate in terms of observable moment conditions than in the martingale case,
i.e., for k = 0. However, simple Taylor expansions of the Laplace transform in the neighborhood
of k = 0 may alleviate this second complication. To see this, let us focus on the example of a
Gamma conditional distribution for durations. Generally speaking, all the standard conditional
duration models, as reviewed for instance in Bauwens and Giot (2001), admit simple closed-form
expressions for the Laplace transform and can be used similarly. See also Darolles, Gourieroux, and
Jasiak (2002).

Let us assume that the conditional probability distribution of At;1, given F;, is gamma with
parameters v and vy, so that its expectation is indeed 1;,. Then the rescaled durations At; 11 /v,
are i.i.d. I'(v,v) and




where ¢ is the overdispersion parameter introduced in (4.12). Now, we find (see, e.g., Bauwens and
Giot, 2001, p. 98),

v v (k)T T(v +j) ¥,

Ey; {exp (—rkAti41)} = <7y n ’Wt) =1+ ; ( VI;) 7(11(1_)” it,, (6.12)
where the latter series converges for 1y, < v/k. When the support of the conditional expected
duration v, is not included in the interval (0, v/k), the expansion in (6.12) should be truncated and
understood as a Taylor expansion. For sake of notational simplicity, we always write formal series
expansions. It is now easy to get observable moment restrictions since, for any positive integer j,
we have )

i, D(v +5)

i
Eti {AtH‘l} Vi F(l/)

(6.13)

Together with afi = ap + a1¢y;, we now find the time-to-build effect in terms of observable moment
conditions using

[o.] y o
, 2 _ (=r)! T(v +j) j j+1
Ey, {exp (—kAtiy1) o2 = a0+ agty, + ; T T [aov], +arsf] (6.14)
% ()i . y ,
= oo+ oy + ]2:; ( j!) [OéoEti (Atip1)! +ay » +jEti (Ati+1)]+1:| .

It is worth noting that the assumption of a Gamma distribution for rescaled durations is not
needed, at the cost of introducing extra parameters. A direct expansion of E;, {exp (—kAt;+1)}
implies, without any specification of the probability distribution F' of rescaled durations,

% ()i , © (_
B foxp (—ntia)} =1+ Y S B (At =143 S,
| 2

j=1

where v; = Ey, {(Ati.}rl/ Uy, )j } denotes the j-th uncentered conditional moment of rescaled dura-

tions. Then, again imposing ofi = g + a1y, we find

(=r)
!

Ey, {exp (—rAti+1)} atzi = ap+ a1y + Z ; [040%‘1/),{1- + aij{fl] (6.15)
j=1

= ao+aiEy, (Atigg)

J! Yi+1

> (—g) . : .
+ Z ( K) [OzoEti (Ati+1)J + o BF Eti (Ati+1)J+1] .
j=1
To summarize, the time-to-build effect as component of the conditional variance of observed

returns can always be expressed in terms of observable moment conditions involving all the higher
order moments of durations. However, the important advantage of a parametric specification of the
probability distribution of rescaled durations is that, as exemplified by (6.14) for the Gamma case,
these moment conditions do not involve additional nuisance parameters relative to the integrated
volatility case. Only the overdispersion parameter ¢ is at play through v = ¢/(1 — ¢). By contrast,
the general moment condition (6.15), although similar to (6.14), introduces an infinite number of
nuisance parameters through the quotients v;/v;41 which simply collapse into v/(v + j) in the
Gamma case.
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6.2.2 The instantaneous causality effect for mean-reverting volatility

Allowing for mean reversion in the volatility process also complicates the computation of the causal-
ity term in the conditional variance of observed returns. Using Assumption D, we get

Ic,, = /Ooo Ey, {02} (%) F (%) (1 —F (%)) du. (6.16)

Insofar as E¢, {07 ,,} depends on the forecasting horizon u, the causality effect can no longer be
characterized only by a single parameter $* defined by (4.8). From the forecasting formula (6.4)
with (6.5) and (6.6), we see that the crucial building block to characterize the instantaneous causality

effect will be
2 [ (et (<) P () (1= F () du = o2 3
Uti/o exp(—ku)f <¢ti> F (L/fti> (1 F (djti)) du = o}, Yy, B, (k), (6.17)

Bu. (k) = /0 ~ exp (—rthe,0) ) F(v) (1 — F(0)) do, (6.18)

with:

As already announced, the particular integrated volatility case corresponds to x = 0, i.e., Bti (0) =
B*. In order to obtain the instantaneous causality term in the decomposition of the variance of
observed returns for the general case x € R, we provide the following lemma.

Lemma 6.2 Define 3, (k) by (6.18) and

By, () = /OZ exp (—kiy, x) Bx)de.

bon=n o (3 e (3) .

Let us indicate how Lemma 6.2 may be used in the simplest case of a constant function 3(-) = j3.
The way the computations are performed below shows that more general functions §(+) of exponential
form would also work. An application of Lemma 6.2 gives

At;
2F <—l+1> - 1] } 7 (6.19)
wti

5 B
Aty _
2 () -]}

Bulr) = —F,, {[1 — exp (—rAti41)]
"”/Jti

and the building block (6.17) of IC}, becomes

It is then manifest that, insofar as the distribution function F' of rescaled durations is simply ex-
pressed from exponential functions (as it is the case for the exponential ACD model), the instanta-
neous causality effect will be expressed from products of afi times the Laplace transform of rescaled
durations. Therefore, the instantaneous causality effect will be expressed in terms of observable
moment conditions in the same way that it has been done above for the time-to-build effect.

Then, we have

O';i_ Etig {[1 — exp (—KAtH_l)]

6.3 The relation between instantaneous volatility and expected durations

Our empirical analysis is simplified significantly by the assumption that instantaneous variance and
expected durations are perfectly linearly related. Note, once more, that in turn we do not rely on any
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specification that relates expected durations to past durations, past volatilities, or past expected
durations. Moreover, the assumption also implies that we do not need to specify and possible
intra-day seasonality for either volatilities or durations. However, a possible alternative would be,
under the maintained assumption of martingale volatility and zero expected returns, to impose the

common assumption that for some horizon h, rescaled returns Ry,.¢;+-1/4/ho?, and scaled durations

At;y1/1y, are jointly independent of the past. Clearly, such an assumption would imply

R} Aty
Covy, { —ttith 2okl & 5 6.20
tz { hO_tQZ wti bl ( )
where ¢ is some constant (i.e., not depending on the information available at time ¢;). Now, condi-
tion (6.20), together with Ey, R} ,, ., = ho?,, implies

Ey, {R?i:ti+hAti+1} = hO’i.’(ﬂti + Cov {R?i:ti—&-h? Ati—i—l} (621)
= (1+08)ho} ty,. (6.22)

This result can be used to turn the moment condition (4.10) in a condition in terms of observables
only. To be more precise, we clearly have
1+ 8* 5
Vary, {Rtiiti+1} = mEti {Rti:ti+hAti+1} .
Observe that this moment condition can also be used to determine the horizon A at which the
scaled returns and durations are indeed independent of the past. Moreover, the argument is easily
extended to the situation of a non-zero constant drift u, as in Section 6.1.

6.4 The role of independent microstructure noise

Bandi and Russell (2003) have recently pointed out how to take into account possible contaminations
in observed prices due to market microstructure effects. Their approach consists in postulating that
observed asset prices S; are related to “fundamental” asset prices Sy via

log Sy =1log St + ne, (6.23)

where the contaminations n;, ¢ € Ry, are i.i.d., mean zero, and independent of past and future
values of the fundamental price process (S¢) and the transaction times (¢;). We assume that 7; has
finite variance 0727. Observed returns over the transaction interval (t;, ¢;4+1] are now given by

Rtizti+1 = Rti:ti+1 + nt,'+1 - 77t,» . (624)

Moment conditions in terms of the observed contaminated returns Rti.

;4. are now easily derived
from those obtained for Ry,.;, ., upon noting that

Eti {Rti:ti+1} = Eti {Rtiiti+1} ) (625)
Vartz. {Rti:ti+1 } = Vartz. {Rtiiti-H } + 20'727 (626)

Combining these with the moment conditions for “fundamental” returns Ry,.,,, as for instance
derived in Proposition 4.2, we can estimate both the parameters of interest in this paper and the
variance of the microstructure noise, i.e., 0727. We applied these moment conditions to the same
data as in Section 5. It turns out that the estimates for the parameters of interest in the present
paper are hardly affected. At the same time, the variance of microstructure noise is estimated very
imprecisely. The exact reasons for this have still to be established, but they have no repercussions

for the present analysis.
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7 Concluding remarks

The present paper considers a structural continuous time model for the analysis of instantaneous
causality relations between transaction price volatility and transaction durations, in addition to pos-
sible Granger causality. We argue that these instantaneous causality effects are significant and that
failure to take them into account may lead to severely biased volatility estimates and, consequently,
inappropriate risk management.

We identify the instantaneous causality effects using appropriate moment conditions. These con-
ditions (see, Proposition 2.1) are sufficiently general to be applicable for a wide range of statistical
and economic model specifications. The analysis does not yet take into account relevant microstruc-
ture variables, like volume and quote revision times. Since our results for the variance of observed
returns is based on a specification of volatility predictions given all current information (the function
&r in Assumption B), volume can easily be included. Also, while we focus on an interpretation of ¢;
as transaction times, this is not required in our Propositions 2.1 and 4.2. As such, interesting empir-
ical application could include situations where quote revisions times are studied or cross-causality
effects where surprises in transaction durations for one stock, may cause instantaneous volatility in
an other stock.

Appendix: Proofs

PROOF OF PROPOSITION 2.1: We consider the conditional expectation of squared observed re-

, 2
turns. Note that, using the Doob-Meyer decomposition applied to ( OMMZH Uti+u_sti+u) (Prot-
ter, 1995, p. 94),

Atiy1
2 2
Eti {Rti:tiJrl} = Eti / o—ti+udu'
0

Consequently,

Eti R?i:ti+1 - Eti /0\ I(OyAtz+1](u)0-t21+udu

/ Pti {Ati-i-l > u}gti (u)du + / Covti {I(O,Ati+1} (U’)7 U?i—&-u}du
0 0

- [ " 2 (w)dE () + / " B () Foy () (1 — i, (1)),
0 0

where the first equality follows from the optional sampling theorem (Protter, 1995, p. 10), the
compensated quadratic variation of L, and the fact the At;;; is a stopping time for the filtration
(fti"rU w2 0)

PrOOF OF LEMMA 6.2 The proof is based on the following textbook formula
o0
Eh(X) = / W(2)(1 - F(2))dz,
0
where X is a positive random variable with distribution function F' and h a differentiable function

with derivative A/, and h(0) = 0. Applying this formula to h(z) = B(z)F(x) and, thus, h'(x) =
B'(x)F(x) + B(x)f(x), where f denotes the density function of X, we deduce

Eh(X) = /OOO B'(z)F(z)(1 — F(z))dz + E{B(X)(1 — F(X))}.
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Therefore, from the definition of h, we get
/ B'(z)F(z)(1 — F(z))dz = E{B(X)(2F(X) - 1)}.
0

With B = By, defined as in Lemma 6.2, we deduce with X = At; 11 /vy,

/Ooo exp (=kby,v0) B(0)F(v)(1 — F(v))dv = By, {Bti <A;t“> <2F <%> - 1) } .

This proves the lemma.
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