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Abstract

We propose and test a new method for pricing American options in a
high-dimensional setting. The method is centred around the approximation
of the associated complementarity problem on an irregular grid. We approx-
imate the partial differential operator on this grid by appealing to the SDE
representation of the underlying process and computing the root of the tran-
sition probability matrix of an approximating Markov chain. Experimental
results in five dimensions are presented for four different payoff functions.

Keywords: American options, high-dimensional problems, free bound-
ary problems, optimal stopping, variational inequalities, numerical methods,
unstructured mesh, Markov chain approximation

MSC 2000: 35R35, 60G40, 65D15, 90C33

JEL Codes: C15, C61, C63

∗Research support by the Dutch National Science Foundation (NWO).

1



1 Introduction

The pricing of American options has always required numerical solution methods;
in high-dimensional cases even the most sophisticated methods have difficulty in
providing accurate solutions. Given the practical importance of such cases, it is
of considerable interest to develop solution methods which are reliable and which
provide accompanying exercise and hedging strategies.

Barraquand and Martineau [1] are perhaps the first to consider pricing high-
dimensional American options specifically, proposing an algorithm based on the
aggregation of paths with respect to the intrinsic value. The method is difficult to
analyse and has a possible lack of convergence; Boyle et al. [2] demonstrate this
and propose a modification of the algorithm which leads to a low-biased estimator.

Broadie and Glasserman [5] use a stochastic tree algorithm to give both a low-
biased and a high-biased estimator of the price, both asymptotically unbiased. They
also argue that there exists no nontrivial unbiased estimator for the price. Their
method requires an exponentially increasing amount of work in the number of ex-
ercise opportunities. In subsequent work [6] they present a related method based on
a stochastic mesh which does not suffer from this problem, although this method
has been found to be slow by several authors and to have a large finite-sample bias
(see e.g. Fu et al. [11]).

The least squares Monte Carlo (LSM) method presented by Longstaff and
Schwartz [21] attempts to approximate the price of an American option using
cross-sectional information from simulated paths. The optimal exercise strategy
is successively approximated backwards in time on the paths by comparing the in-
trinsic values to the continuation values projected onto a number of basis functions
over the states. Experimental success is reported for the LSM method, although in
high dimensions the basis functions must be chosen carefully. Recently Clément
et al. [7] and Stentoft [26] independently provide proofs of convergence for the
LSM method, showing that the convergence rate is n−1/2 in the number of paths
used. The convergence behaviour in the number of basis functions however has not
been determined. Stentoft [26] and Glasserman and Yu [13] establish relationships
between the paths and number of basis functions which are necessary for conver-
gence; Stentoft finds that the number of paths should be greater than cubic in the
number of basis functions to achieve convergence in probability, while Glasserman
and Yu find the relationship should be exponential in the square for convergence
on a worst case basis. Stentoft [25] and Moreno and Navas [22] test the LSM al-
gorithm numerically. Stentoft suggests that basis functions up to order three are
sufficient in five dimensions for arithmetic and geometric average options, but not
for minimum or maximum options. Moreno and Navas find that the method is
sensitive to the choice of basis functions in five dimensions.
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Tsitsiklis and Van Roy [27] propose a method similar to LSM where approx-
imate value functions are projected onto an orthogonal set of basis functions, the
orthogonality being with respect to a suitably chosen inner product which in gen-
eral changes between time periods. They provide a proof of convergence but no
empirical results. The method differs from LSM in that the projection is used to
determine an approximate value function rather than an exercise rule.

Boyle et al. [4] recently extended the stochastic mesh method of Broadie and
Glasserman [6] with their low discrepancy mesh (LDM) method. This involves
generating a set of low discrepancy interconnected paths and using a dynamic pro-
gramming approach to find prices on the mesh.

An interesting alternative approach is proposed independently by Rogers [24]
and Haugh and Kogan [16] and later developed by Jamshidian [18] and Kolodko
and Schoenmakers [19]. They use a dual formulation of the problem in which a
minimisation is performed over martingales. The method is sensitive to the choice
of basis martingales chosen to perform the minimisation, and so requires the basis
to be well-chosen in order to give an accurate solution. The method gives a high-
biased estimator.

In this paper, we propose a new approach to solving the American option pric-
ing problem inspired by the success of numerical integration in high dimensions
and related to the method of lines for solving partial differential equations (PDEs).

We first perform a discretisation of the state space using quasi-Monte Carlo
(QMC) points, the points being taken with respect to an importance sampling dis-
tribution related to the transition density of the process at expiry. We then pro-
pose an approximation to the partial differential operator on this grid by taking the
logarithm of a transition probability matrix P (T−t) which approximates the joint
density of the underlyings at the expiry of the option, T − t. This approximation is
then used to formulate linear complementarity problems (LCPs) at successive time
points, working back from the option expiry.

We propose an implementation of this method in which the matrix logarithm
of P (T−t) does not need to be calculated explicitly, but instead a root of the matrix
can be calculated. The root operation is cheaper than the logarithm, although the
logarithm allows variation of the time step without recalculation. The computa-
tional elements of the method are thus the QMC trials, the generation of the matrix
P (T−t), the matrix root and solving an LCP at each time step. For approximating
the European option price this method amounts to performing a numerical integra-
tion with importance sampling, which is known to be an efficient method in high
dimensions as long as the importance sampling distribution is chosen appropriately.

The remainder of the paper is organised as follows. In Section 2 we present a
mathematical formulation of the problems to be solved numerically and in Section
3 we show how an irregular grid method can be used to solve the problem. We then
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present the experimental setup in Section 4, results in Section 5 and concluding
remarks in Section 6.

2 Formulation

We consider a complete and arbitrage-free market described by state variableX(s) ∈
R

d for s ∈ [t, T ] which follows a Markov diffusion process

dX(s) = µ(X(s), s)ds + σ(X(s), s)dW (s) (2.1)

with initial condition X(t) = xt, and a derivative product on X(s) with intrinsic
value ψ(X(s), s) at time s and value V (s) = v(X(s), s) for some pricing function
v(x, s). The process V (s) satisfies

dV (s) = µV (X(s), s)ds + σV (X(s), s)dW (s) (2.2)

where µV and σV can be expressed in terms of µ and σ by means of Itô’s lemma.
The terminal value is given by v(·, T ) = ψ(·, T ).

In such a market there exists a unique equivalent martingale measure under
which all price processes are martingales. The risk-neutral process in this case is
given by

dX(s) = µRN (X(s), s)ds + σ(X(s), s)dW (s) (2.3)

where µRN is the risk-neutral drift.
Our objective is to provide approximations for the current value v(xt, t) of the

derivative product and the corresponding optimal exercise and hedging strategies τ
and H:

τ : R
d × [t, T ] → {0, 1} (2.4)

H : R
d × [t, T ] → R

d. (2.5)

In the following, we appeal to the complementarity formulation of the Ameri-
can option price which is presented for example in Jaillet et al. [17]. Let L be the
related diffusion operator

L = 1
2 trσσ′

∂2

∂x2
+ µRN

∂

∂x
− r (2.6)

where r is the risk-free rate. Then the option value is found by solving the comple-
mentarity problem















∂v
∂t + Lv ≤ 0

v − ψ ≥ 0
(

∂v
∂t + Lv

)

(v − ψ) = 0

(2.7)

for (x, s) ∈ R
d × [t, T ] with the terminal condition v(·, T ) ≡ ψ(·, T ).
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3 Methodology

To solve the complementarity problem (2.7) we first form a semidiscrete comple-
mentarity problem by discretising the state space but leaving time continuous. This
involves sampling the state space using QMC trials and finding a suitable approx-
imation of L. We then use standard time stepping techniques to form a system of
fully discrete LCPs. There are many methods for solving LCPs; examples include
projected successive overrelaxation (PSOR) and linear programming.

We first present and motivate each step of the algorithm separately, and then
summarise by providing a concise statement of the algorithm.

3.1 State space discretisation

We first consider a semidiscrete approximation to the complementarity problem
(2.7) in which the state space is discretised and time left continuous. This is often
called the method of lines. In the pricing problem this amounts to approximating
(2.7) by a system of ordinary differential equations with complementarity condi-
tions.

The choice of a constant grid in the state space has the advantage that Crank-
Nicolson and implicit solutions can be easily considered. This seems advantageous
since, in the case of solving PDEs without complementarity conditions, the Crank-
Nicolson method is known to have a convergence rate of δt2 rather than δt for
other first order schemes. Furthermore when solving discretised complementar-
ity problems, the implicit scheme is the only time stepping method known to be
unconditionally stable (see Glowinski et al. [14]).

The choice of grid begs importance sampling considerations. That is, in order
to obtain a more accurate approximation, more grid points should be placed at
states which are more likely to be visited by the process, and at locations where the
value function has greater magnitude.

We denote the grid by X = {x1, . . . , xn} ⊆ R
d, and the corresponding op-

erator approximation by A. The construction of A will be considered in Section
3.2.

Assuming that X and A are given, we form the corresponding semidiscrete
complementarity problem







dv
dt (s) +Av(s) ≤ 0

v(s) − ψ ≥ 0
(

dv
dt (s) +Av(s)

)′

(v(s) − ψ) = 0

(3.1)

for s ∈ [t, T ] with terminal condition vi(T ) = ψ(xi) for each i = 1, . . . , n. Note
that v(s) is now a time-dependent vector in R

n where n is the number of grid
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points.
It is also instructive to view the semi-discrete setting as a Markov chain approx-

imation to the optimal stopping problem. That is, the processX(s) is approximated
by a process restricted to the grid X . The operator A gives transition intensities on
this grid.

3.2 Approximating the partial differential operator

We now propose a method for specifying A in (3.1) for a given grid X . The method
is inspired by numerical integration, and in the European case the resulting method
will reduce to numerical integration with importance sampling. This property is
emphasised in Glasserman [12] as a favourable property of the stochastic mesh
method presented by Broadie and Glasserman [6].

We assume that the grid X has been generated using random or QMC draws
with respect to a certain density g(x). We also assume that the joint density fx,T−t

of the stochastic process is available for arbitrary initial points x and time horizons
T − t, although in principle one could adapt the following construction to the
case where the density is not known explicitly, but for example the process can be
simulated.

Denote by P (T−t) the matrix with entries

p
(T−t)
ij =

1
∑n

k=1 f̃xi,T−t(xk)
· f̃xi,T−t(xj) (3.2)

where the weights are given by

f̃xi,T−t(x) =
fxi,T−t(x)

g(x)
. (3.3)

The matrix P (T−t) is a stochastic matrix, that is, a matrix with nonnegative
entries and unit row sums. We think of the entries as giving transition probabilities
between points in the grid over the horizon T − t.

In the semidiscrete Markov chain setting, whereA represents transition intensi-
ties, we note that the evolution of state probabilities is given by p(s) = eA′(s−t)p(t)
where p(t) is the initial probability distribution at time t, for example it may be a
delta function in the case where the initial state is known. The matrix P (T−t) thus
gives us access to an approximation A to L on X as follows:

A ,
1

T − t
log P (T−t). (3.4)

The matrix logarithm of P (T−t) certainly exists and is unique if the matrix
is diagonalisable and has positive eigenvalues. We find these two properties hold
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in our experiments; note however that P (T−t) is in general not symmetric. We
shall see in Section 3.3 that instead of computing the matrix logarithm, one may
alternatively compute the matrix root corresponding to the required time step.

3.3 Time discretisation

Let us now discretise (3.1) with respect to time. We denote the approximation at
state xi and time step tk by vi,k.

We use the θ-method, standard in the numerical solution to PDEs, to discre-
tise (3.1). For PDE solutions, θ = 0 corresponds to the explicit method, θ = 1
corresponds to the implicit method and θ = 1

2 corresponds to the Crank-Nicolson
method. The latter has δt2 convergence for European problems, whereas the ex-
plicit and implicit methods exhibit δt convergence.

To implement the θ-method, we consider the vector v(k) of values at our grid
points each at time tk and discretise the first line of (3.1) as

v(k+1) − v(k)

δtk
+A

(

(1 − θ)v(k+1) + θv(k)
)

≤ 0 (3.5)

where δtk , tk+1 − tk. Thus (3.1) becomes







(I + (1 − θ)Aδtk) v
(k+1) − (I − θAδtk) v

(k) ≤ 0

v(k) − ψ ≥ 0
(

(I + (1 − θ)Aδtk) v
(k+1) − (I − θAδtk) v

(k)
)′ (

v(k) − ψ
)

= 0.

(3.6)

Now note that I +Aδtk = exp(Aδtk) + o(δtk). We thus define the matrices

ML = exp {−θAδtk} (3.7)

MR = exp {(1 − θ)Aδtk} . (3.8)

The approximating complementarity problem to solve is then














MRv
(k+1) −MLv

(k) ≤ 0

v(k) − ψ ≥ 0
(

MLv
(k) −MRv

(k+1)
)′ (

v(k) − ψ
)

= 0

(3.9)

for k = K − 1, . . . , 0 where the inequalities are componentwise and v(K) = ψ.
Numerically we must solve a LCP at each time step, for which the PSOR

method of Cryer [8] has been used with much success in the past. Since the solu-
tion does not change greatly between time steps, a good starting guess for PSOR is
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the solution at the previous time step. Various other methods may be used for solv-
ing (3.9); for example, see Dempster and Hutton [9] for American option pricing
using linear programming in the one-dimensional case.

An error analysis of the discretisation in (3.5) may be undertaken along the
lines of Glowinski et al. [14] on variational inequalities or that of Kushner and
Dupuis [20] on stochastic control.

It turns out that the matrix logarithm does not have to be calculated explicitly
in our method; instead we may calculate roots of the matrix P (T−t) corresponding
to the time step and implicitness parameters. In particular we have

ML =
(

P (T−t)
)

−θδtk/(T−t)
(3.10)

MR =
(

P (T−t)
)(1−θ)δtk/(T−t)

. (3.11)

We prefer to use the matrix root because we have found it to be a quicker and
more robust operation in Matlab than the matrix logarithm. If one would choose
to compute the logarithm however, one would have access to a varying time step
without performing any extra computations.

There are many methods available for evaluating matrix functions, as detailed
in Golub and Van Loan [15]. The general method suggested involves Schur decom-
position in combination with Parlett’s algorithm, which computes general functions
of an upper triangular matrix. Matrix functions can also be computed using eigen-
decomposition, which is the method used by Matlab to compute general matrix
powers. We note that the structure of the matrix P (T−t) may mean that more effi-
cient methods are available for computing matrix roots and logarithms; it is not the
purpose of the current research to investigate such methods however.

We now highlight the importance of using the matrix logarithm or root, as op-
posed to constructing P (δt) directly (the latter being more attractive computation-
ally). The intuition for this importance is that P (δt) does not produce consistent
transition probabilities over longer time horizons as in (3.12). We demonstrate
the difference between the two constructions in Figure 3.1 for a one-dimensional
example and a random grid. In particular, when δt is too small compared to the
separation of grid points, the solutions become distorted. This problem is more
pronounced in higher dimensions due to the larger average separation between grid
points.

Remark 3.1 It is clearly more efficient if the matrices ML and MR need be cal-
culated only once; hence the choice of a constant time step δtk ≡ δt seems conve-
nient. We also note that, given a small enough δt, ML and MR should be approxi-
mately sparse in that most elements can be set to zero without affecting the solution
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Figure 3.1: Random grid valuation of an American put option on a single asset
with expiry 1, strike 1 and 100 asset points, using transition matrices P (0.01) and
(

P (1)
)0.01

respectively (dots). The plots are in the log domain. Also plotted are
values computed to high accuracy (solid lines) using a standard finite difference
method.

significantly. Using this observation can dramatically improve the efficiency of the
solution procedure.

Remark 3.2 As already noted above, an important property of this construction
in the European setting is that the time stepping reconstructs numerical integration
with importance sampling function g. The reconstruction is realised as follows:

vi(t) =

(

K
∏

k=1

e−rδtM−1
L MR

)

v(K)

= e−r(T−t) exp(A)v(K)

= e−r(T−t)
n
∑

j=1

ψ(xj)p
(T−t)
ij (3.12)

where vi(t) is the value in state xi at initial time t and p(T−t)
ij is defined in (3.2).

The last line of the equation is precisely QMC integration of the payoff ψ with
importance sampling function equal to the grid density g. Note that in caseML and
MR are constructed from the matrix logarithm, (3.12) holds only asymptotically as
δt→ 0.

Equation (3.12) also shows that the calculation of the European price on the
grid may be carried out without time stepping, given that the transition probabilities
p
(T−t)
ij are available. Thus, using the European price as control variate is a faster

operation than would normally be expected.
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3.4 Randomisation

The QMC grids we have proposed are deterministic; however perturbing these
points randomly allows us to observe the behaviour of solutions for a random se-
lection of QMC grids, and thus to obtain estimates of the bias and standard error
of solutions. The use of such methods is surveyed in Owen [23] for integration
problems. The importance of randomised QMC is also emphasised in Glasserman
[12].

When using Sobol’ points and a normal density for example, one first gener-
ates the Sobol’ points, then applies the inverse normal distribution function to the
points. In order to realise randomised QMC points, one perturbs the Sobol’ points
modulo one by a random factor before applying the inverse normal distribution
function.

Suppose S = (si) is our sequence of n Sobol’ points, and Uj is a sequence of
random variables uniformly distributed on the unit cube [0, 1]d. We then realise the
jth randomised Sobol’ sequence as

Sj = (sj,i)i∈N = (si + Uj mod 1)i∈N
. (3.13)

We refer to grids obtained in this way as randomised QMC (RQMC) grids.

3.5 Summary of procedure

We now present a concise statement of the proposed procedure as Algorithm 3.1.
We let v̂i,j denote the solution at initial time t and state xi in the jth RQMC exper-
iment. For the statement of the algorithm we assume a fixed number of grid points
n and a constant time step δt = (T − t)/K where K is the number of time steps.

4 Experimental setup and details

We now use the algorithm presented in Section 3.5 to estimate prices of multi-
asset options. We first present a detailed exposition of the setting, experimental
procedure and various considerations. Numerical results are presented in the next
section.

4.1 Specification of dynamics

Suppose our American option is based on d assets following a correlated geometric
Brownian motion where the risk-neutral dynamics in the log domain are given by

dX =
(

r11 − δ − 1
2diag(Σ)

)

dt+R′dW (4.1)
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Algorithm 3.1 The proposed irregular grid algorithm
for j = 1, . . . , J do

Generate a RQMC grid X
Compute the transition matrix for expiry P (T−t)

Compute the matrix root
(

P (T−t)
)1/2K

(Crank-Nicolson)
Solve the LCPs (3.9)
Let v̂i,j be the solution at initial time t for state xi

end for
for initial states of interest xi do

Estimate the solution as v̂i = 1
J

∑

j v̂i,j

Estimate the standard error as ε̂i =
(

1
J−1

∑

j(v̂i,j − v̂i)
2
)1/2

.

end for

and r is the risk-free rate, 11 is the d-vector of ones, δ = (δ1, . . . , δd) is the vector
of dividend rates, Σ = (ρijσiσj) is the covariance matrix of the Brownian motions
and R′R is its Cholesky decomposition. The operator L in this setting is just the
multidimensional Black-Scholes operator given by

L = 1
2

d
∑

i,j=1

ρijσiσj
∂2

∂xi∂xj
+

d
∑

i=1

(r − δi −
1
2σ

2
i )

∂

∂xi
− r. (4.2)

4.2 Elimination of drift

In order to facilitate reuse of the matrix roots, we first reformulate the problem so
that the process has zero drift. We introduce the change of variables

X0(s) = X(s) − (s− t)µ, (4.3)

where µ is the risk-neutral drift; for example in (4.1) we have µ = r11 − δ −
1
2diag(Σ). The new process X0 has zero drift and the covariance Σ is unchanged:

dX0(s) = RdW (s). (4.4)

The payoff under the reformulation is

ψ0(xi, s) = ψ (xi + (s− t)µ) . (4.5)

One may also eliminate a deterministic, time-dependent risk-neutral drift by sub-
tracting

∫ s
t µ(u)du in (4.3).
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4.3 Grid specification

We consider normal RQMC grids as suggested in Section 3.4; thus the grid density
is multivariate normal. We now discuss parameter selection for the grid density.

Importance sampling considerations tell us that the most efficient sampling is
given by the density of the process itself; thus using a constant grid we cannot
provide the most efficient importance sampling at all times. However, given the
restriction to a constant grid, we can still provide an acceptable importance sam-
pling.

As outlined in Evans and Swartz [10], the rate of convergence for importance
sampling of normal densities using normal importance sampling functions is most
damaged when the variance of the importance sampling function is less than that
of the true density. Conversely, convergence rates are not greatly affected when
the variance of the importance sampling function is greater than that of the true
density.

The situation we should try to avoid is that the process has a significant prob-
ability of lying in the “tails” of the grid density. A further consideration is the
minimisation of boundary effects on the solution. This suggests that the grid co-
variance should be larger than the covariance of the process.

These considerations lead us to set the grid mean to the initial state xt and the
grid covariance to be a multiple α of the grid density at expiry for some trial values
α = 1.0, 1.5, 2.0. Owing to the reformulation (4.3), this ensures that the grids are
centered at the process mean for all times. We further ensure that the initial state is
included in the grid.

Summarising, we suggest the parameters

µg = xt (4.6)

Σg = αΣ(T − t). (4.7)

The first grid point in the jth RQMC experiment is x1 = µg and the (i+ 1)th grid
point is generated as

xi+1 = µg +R′

g

(

Ψ−1(sj,i,1) · · ·Ψ
−1(sj,i,d)

)′

(4.8)

where Ψ−1 is the standard normal inverse function, R′

gRg is the Cholesky decom-
position of Σg and sj,i,k is the kth component of sj,i.

An example of a normal Sobol’ grid in two dimensions is shown in Figure 4.1.
It should be noted however that the advantage of using an irregular grid is realised
in dimensions of at least three.
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Figure 4.1: Example of normal QMC grid in 2 dimensions with 500 points.

4.4 Reuse of roots for similar processes

Given that generating matrix roots is an expensive operation compared to the final
time stepping procedure, it is of interest to know under which conditions these ma-
trix roots can be reused for related problems; for example, problems with different
parameters.

Clearly a single matrix root can be reused for as many different payoff func-
tions as required, but we also show how it can be reused for processes with different
risk-neutral drifts and covariances. To answer this question for diffusion processes
with zero drift we provide the following result.

Lemma 4.1 Suppose that P (T−t) is the transition matrix corresponding, through
(3.2) and (3.3), to the grid X = {x1, . . . , xn}, respective importance sampling
weights g1, . . . , gn, horizon T − t and an d-dimensional Brownian motion with
covariance Id. Suppose further that P̃ (T−t) is the transition matrix corresponding
to the grid

Y = {y1, . . . , yn} = {R′x1, . . . , R
′xn}, (4.9)

importance sampling weights g1, . . . , gn, horizon T − t and an d-dimensional
Brownian motion with positive definite covariance Σ = R′R.

Then
P̃ (T−t) = P (T−t). (4.10)

Proof. Let fx,T−t and hx,T−t be the densities at expiry from starting point x,
expiry T − t and corresponding to covariance I and Σ respectively. The densities
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from xi to xj in grid X and from yi = R′xi to yj = R′xj in grid Y are respectively

fxi,T−t(xj) = |2π(T − t)Id|
−1/2 exp

{

− 1
2(T−t) (xj − xi)

′(xj − xi)
}

hyi,T−t(yj) = |2π(T − t)Σ|−1/2 exp
{

− 1
2(T−t) (xj − xi)

′RΣ−1R′(xj − xi)
}

= |2π(T − t)Σ|−1/2 exp
{

− 1
2(T−t) (xj − xi)

′(xj − xi)
}

,

which are equal up to the constant factor |Σ|1/2. Given the latter observation and
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that the weights are equal in both cases, we conclude that the normalised entries
p
(T−t)
ij and p̃(T−t)

ij obtained through (3.2) and (3.3) are also equal.

�

Remark 4.1 One may ask whether the weights gi specified in Lemma 4.1 are in-
deed appropriate for the grid Y . That is, whether (3.3) leads to a standard impor-
tance sampling procedure for Y with these weights. We answer this question by
comparing the grid densities.

Suppose that the density gX was used to generate the grid X using random
sampling. So that for every S ⊂ R

d,

P (x ∈ S) =

∫

S
gX(x)dx.

Applying the transformation x 7→ y = R′x leads us to conclude that the grid Y
consists of points generated randomly from some density gY satisfying, for each
S ⊂ R

d,

P (y ∈ R′S) =

∫

R′S
gY (y)dy

=

∫

S
gY (R′x)

∣

∣|R|
∣

∣dx (4.11)

by the multivariate substitution formula where R′S = {R′x : x ∈ S} and
∣

∣|R|
∣

∣ =
abs(detR). But since y = R′x, P (y ∈ R′S) = P (x ∈ S), and since (4.11) holds
for all S ⊂ R

d, we conclude that

gX(x) =
∣

∣|R|
∣

∣gY (R′x). (4.12)

Finally, note that the averaging taking place in (3.3) implies that the weights gX(x),
being proportional to gY (R′x), are appropriate for importance sampling with re-
spect to the grid Y .

Remark 4.2 A time-dependent scaling of the covariance can also be incorporated
by using the matrix logarithm, and constructing the time stepping matrices through
(3.7) and (3.8) rather than (3.10) and (3.11).

4.5 Low-biased estimate

As is common practise in the American option pricing literature, a low biased
estimate may be obtained by taking an exercise rule implied by the pricing method
and determining the expected value of using this rule using out-of-sample paths.
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A natural approximation to the optimal exercise rule using the pricing results
of the irregular grid method is to take the implied rule of the nearest neighbour in
the grid at the closest time. Specifically one may define the exercise rule for grid
points to be

τ(xi, tk) ,

{

1 if v(k)
i = ψi

0 otherwise
(4.13)

and for general points x ∈ R
d

τ(x, t) ,

{

1 if v(k)
i = ψi

0 otherwise
(4.14)

where k = argminj |t− tj| and i = argminj {||x− xj|| : xj ∈ Xk}.
This rule is easily implemented and can also be adapted to the case where we

have several different grids. In this case one could base the exercise rule on a vote
between grids. One could also implement weighted schemes with respect to x and
t rather than using nearest neighbour rules.

4.6 High-biased estimate

Whereas applying an exercise rule to out-of-sample paths leads to a low-biased
estimate of the option value, simulating the cost of a hedging strategy leads to
a high-biased estimate. The latter may be seen as follows: the optimal hedging
strategy enables the seller of the option, given a cash amount equal to the value
of the option at the initial time t, to perfectly reproduce the payoff. A suboptimal
strategy however will on average require a larger initial cash amount, thus the cost
of a suboptimal hedging strategy is on average higher than the true option value.

A formal demonstration can be given in terms of the dual formulation for
American option pricing (see Rogers [24], Haugh and Kogan [16]) in which one
minimises the cost of hedging by minimising an objective function over martin-
gales. Since the value of our hedging strategy is a martingale, it corresponds in
general to a suboptimal martingale, and thus a high-biased estimate.

In practise, obtaining an upper bound in the way we suggest requires knowl-
edge of the optimal exercise rule. Since we only have an estimate of this, the cost
of the hedging strategy may not be purely upward biased. We find however that one
can approximate the optimal exercise strategy far more accurately than one can ap-
proximate the optimal hedging strategy. We shall see in Section 5 that experimental
results support this statement.

In the literature on American options there is little said about the practicalities
of hedging in a high dimensional setting. The difficulty with using an approach
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such as LSM is that the method does not naturally form approximations to the
value function from which derivatives can be estimated. One can form a hedging
strategy by evaluating prices at states perturbed in each underlying; this demands
the calculation of many additional option prices at each time step, each calcula-
tion being expensive in a high-dimensional setting. Furthermore one must be very
careful with partial derivative estimates obtained from differencing stochastic point
estimates; in particular the point estimates must be sufficiently accurate and the
perturbations must be well-chosen with respect to the (unknown) curvature of the
value function.

A solution provided by the irregular grid method involves estimates of the price
not only at the current state, but at all states in the grid. This allows one to extract
derivative estimates using value information from nearby points in the grid; for
example using partial derivatives implied by a local linear regression. Indeed the
irregular grid method provides derivative information as a by-product.

4.7 Benchmarks

There are few benchmark results for high-dimensional American options. Broadie
and Glasserman [6] provide 90% confidence intervals for American call options
on the maximum of five assets with nine exercise opportunities and the geometric
average of five and seven assets with ten exercise opportunities using their stochas-
tic mesh method. Longstaff and Schwartz [21] price the Broadie and Glasserman
maximum options using the LSM method.

Stentoft [25] uses the binomial method of Boyle et al. [3] and the LSM method
to price put options on the arithmetic average, geometric average, maximum and
minimum of three and five assets. Broadie and Glasserman [5] and Fu et al. [11]
provide benchmark results for options over five assets with three exercise opportu-
nities. Finally, Rogers [24] and Haugh and Kogan [16] use the dual formulation to
price a number of different American options.

A useful result involving options on the geometric average of several assets
is that this problem can be easily reduced to an option pricing problem in one
dimension. Suppose that the risk-neutral dynamics in the log domain are given by
(4.1), and the payoff function

ψ(s) =

(

K −
(

∏

si

)1/d
)+

(4.15)

where K is the strike price and d is the number of assets. Then using Itô’s lemma
one finds that the price is the same as that of a vanilla put on the asset with log
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price Y where Y (t) = 1
d

∑d
i=1Xi(t) and

dY (s) =
1

d

d
∑

i=1

dXi(s) (4.16)

= µ̃ds+ σ̃dW (s). (4.17)

The parameters of the diffusion are given by

µ̃ = r −
1

2d

d
∑

i=1

σ2
i (4.18)

σ̃2 =
1

d2

d
∑

i=1





d
∑

j=1

Rij





2

. (4.19)

Using this we find that an accurate price for the geometric average European
option in the Stentoft setting is 1.159, and the Bermudan and American prices are
1.342 and 1.355 respectively. Note that the difference in early exercise premium
between the Bermudan, which allows ten exercise opportunities, and American
prices is about 6%.

5 Experimental results

Our experiments are conducted in a Matlab environment and are based on the five-
dimensional examples of Stentoft [25]. Specifically we consider five stock pro-
cesses driven by correlated Brownian motions for put options with four different
payoff functions. The method we use for valuation is that of Section 3. Our pro-
grams are mostly script-based but some computationally intensive routines, for
example the PSOR code, have been implemented in C.

We are given initial stock prices Si(0) = 40 for each i, the correlations between
log stock prices are ρij = 0.25, i 6= j, and volatilities are σi = 0.2 for all i, the
risk-free interest rate is fixed at r = 0.06, the expiry is T = 1 and we use K = 10
time-steps.

We generate 50 RQMC normal grids as detailed in Section 3.4 using the pa-
rameter values α = 1, 1.5, 2 respectively (these were found to give the best rates
of convergence). The number of grids need not be so high in practise, depending
on the accuracy required. The vector of initial stock prices x0 was always included
in the grid.
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The payoff functions considered correspond to put options on the arithmetic
mean, geometric mean, maximum and minimum respectively,

ψ1(s) =
(

K − 1
d

∑

si

)+
ψ2(s) =

(

K − (
∏

si)
1/d
)+

ψ3(s) =
(

K − max(si)
)+

ψ4(s) =
(

K − min(si)
)+

(5.1)

where x+ denotes the positive part of x.
Figures 5.1–5.3 show the convergence behaviour of the irregular grid method

where the implicitness parameter is θ = 0, 1
2 , 1 respectively, and for grid sizes up

to 1000. For the constrained solutions, we see that convergence is usually fastest
for α = 1.5, the algorithm reaching a fairly stable value for n = 1000 for all but
the maximum option.

The solutions for the arithmetic and geometric average options appear to con-
verge to Stentoft’s solutions for Bermudan options with ten exercise opportunities
in the explicit case. For the Crank-Nicolson and implicit cases, the solutions appear
to converge to a higher value.

The previous observation may be explained as follows. In the explicit case, our
method calculates the price of a Bermudan option with ten exercise opportunities,
just as in the case of Stentoft (provided we use ten equal time steps). This is because
the explicit formulation takes the maximum of the intrinsic and continuation values
at each exercise opportunity, and because we use exactly ten time steps. One can
still see this Bermudan price as an approximation to the true American price, which
we calculated previously to have an early exercise premium approximately 6%
higher than the Bermudan price in the case of the geometric average put option
over five assets.

In the Crank-Nicolson and implicit cases however, we cannot interpret the so-
lution as approximating a Bermudan option due to the implicitness of the formula-
tion. We can only say that as δt→ 0, the solution should converge to the American
price. In the Crank-Nicolson case we suspect that the convergence is faster than
in the implicit case (drawing a parallel with the unconstrained problem), and so
we can think of our Crank-Nicolson solution as being close to our best possible
approximation to the true American option value, given that we use ten equal time
steps. We thus stress that the convergence of the Bermudan price does not require
δt→ 0, but the convergence of the American price does.

The fastest convergence rate in Figures 5.1–5.3 is achieved with α (the ratio
of grid density to process density) being 1.5. We thus present in Tables 5.1 and
5.2 some results and comparisons for Bermudan and American option prices re-
spectively using the irregular grid method with a normal grid and α = 1.5. Given
the previous discussion, we take our explicit solutions to be approximations to the
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Figure 5.1: Average QMC grid valuation over 50 normal grids with α = 1.0 (cir-
cles), α = 1.5 (squares), α = 2.0 (diamonds) of European (solid lines) and Amer-
ican (dotted lines) put options over five assets using the explicit method (θ = 0.0)
and ten time steps. Stentoft’s Bermudan LSM solutions are drawn as horizontal
lines.
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Figure 5.2: Average QMC grid valuation over 50 normal grids with α = 1.0 (cir-
cles), α = 1.5 (squares), α = 2.0 (diamonds) of European (solid lines) and Amer-
ican (dotted lines) put options over five assets using the Crank-Nicolson method
(θ = 0.5) and ten time steps. Stentoft’s Bermudan LSM solutions are drawn as
horizontal lines.
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Figure 5.3: Average QMC grid valuation over 50 normal grids with α = 1.0 (cir-
cles), α = 1.5 (squares), α = 2.0 (diamonds) of European (solid lines) and Amer-
ican (dotted lines) put options over five assets using the implicit method (θ = 1.0)
and ten time steps. Stentoft’s Bermudan LSM solutions are drawn as horizontal
lines.
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Option Exact Binomial LSM LSM OS Normal Normal
type (low- grid grid OS

biased) (low-biased)
Arith. - 1.235 1.241 1.231 1.246 1.238
Average (0.0006) (0.0006) (0.004) (0.005)

Geom. 1.342 1.340 1.348 1.335 1.350 1.345
Average (0.0006) (0.0007) (0.004) (0.005)

Maximum - 0.230 0.275 0.268 0.276 0.233
(0.0004) (0.0004) (0.008) (0.002)

Minimum - 5.841 5.815 5.816 5.847 5.821
(0.0012) (0.0014) (0.009) (0.013)

Table 5.1: Comparison of Bermudan price estimates (θ = 0) with ten exercise
opportunities. The grid estimates are the average price taken over 50 normal
RQMC grids with size 1000, with α = 1.5 and using ten time steps. The bino-
mial method of Boyle et al. [3] was used with Richardson extrapolation. The OS
(out-of-sample) columns give the value of the exercise strategy implied by the 50
grid solutions, calculated by taking the mean value over 100,000 simulated paths.
The binomial and LSM prices are given in [25] and the OS prices for LSM are
computed by running the LSM method 20 times each with 100,000 out-of-sample
paths. The exact price given in the first column is the numerical solution to the
equivalent one-dimensional problem. Standard errors are shown in brackets.

Bermudan problem, and the Crank-Nicolson solutions to be approximations for the
American problem.

Tables 5.1 and 5.2 also show out-of-sample results for LSM and the irregular
grid methods. These are estimates of the expected value, under the risk-neutral
measure, of using the implied exercise strategy. We implement the LSM method
ourselves, as specified in Stentoft [25], to obtain out-of-sample values for the LSM
algorithm (these results are not given in [25]). Our LSM implementation also re-
produced (up to a statistically insignificant difference) the in-sample LSM results
given in [25]. For details of how out-of-sample paths are used in the LSM method
to obtain low-biased estimators, we refer the reader to Longstaff and Schwartz [21].

We remark that the values obtained from the irregular grid method are higher
than those produced by the LSM algorithm, although this is not statistically signif-
icant except in the case of the minimum option. The OS results are also higher for
all but the maximum option.
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Option Exact Normal grid Normal grid Hedged
type American American American OS American OS

(low-biased) (high-biased)
Arith. - 1.257 1.243 1.363
Average (0.004) (0.004) (0.004)

Geom. 1.355 1.360 1.348 1.462
Average (0.004) (0.005) (0.004)

Maximum - 0.295 0.267 0.504
(0.009) (0.002) (0.006)

Minimum - 5.862 5.789 6.355
(0.009) (0.012) (0.010)

Table 5.2: Comparison of American price estimates (θ = 0.5). The grid esti-
mates in the third and fourth columns are the average price taken over 50 normal
RQMC grids with size 1000, with α = 1.5 and using ten time steps. The OS
(out-of-sample) column gives the estimated value of the implied exercise strategy,
calculated by taking the mean value over 100,000 simulated paths and using 50
time steps. The hedged column gives the average cost of the hedging strategy ob-
tained as a by-product of a single price computation; it is implemented using the
results of a single grid solution, 50 time steps and computes the hedge as detailed
in Section 4.6. In particular note that we have used a different time step in the
OS exercise and hedging simulations than in computing the grid solutions. The
exact price given in the first column is the numerical solution to the equivalent
one-dimensional problem. Standard errors are shown in brackets.
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For the more problematic cases of the maximum and minimum options, we see
that convergence is slower. In the case of the maximum it is not clear with 1000
grid points what an appropriate estimate should be. It is also not clear whether the
convergence in our case for the explicit method agrees with the value obtained by
Stentoft. These are cases where the grid could be adapted to the payoff function as
well as to the process itself; such extensions are left for future investigation.

In Table 5.1 it is encouraging to see that the irregular grid prediction for the
geometric average option is very accurate as compared to the benchmark. The
exercise strategy performs well for the arithmetic and geometric average options,
but not for the more problematic maximum and minimum payoffs.

As detailed in Section 4.6, our method yields a hedging strategy as a by-
product; thus simulation of a hedging strategy can be done quickly and efficiently.
Using the implied hedging strategy of a single grid, and taking 20 nearest neigh-
bours for the delta estimation, we obtain the results shown in the last column of
Table 5.2. It is clear that the hedging errors are much larger than the exercise er-
rors; this may be expected given that the exercise rule is a function having only two
possible values, whereas the hedging rule takes values in R

d. The hedging strategy
used is naive in that the results of only a single grid solution are used. It could
probably be improved by using information from different grid solutions.

The most time-consuming operation in the irregular grid method is the compu-
tation of the matrix root. Some timings for computing matrix roots in Matlab 6.1
on a PIII 866MHz machine are presented in Table 5.3. It should be noted that the
time does not depend strongly on the order of the root, so that square root and tenth
root operations for example take about the same amount of time. The time taken
for the construction of the matrix P (T−t) is seen to be small compared to the root
operation.

Although the matrix root operation is time-consuming for large values of n,
it should be noted that once a root has been computed for a single normally dis-
tributed grid, it can subsequently be used for valuing options on a large class of
diffusion processes with arbitrary payoff functions without the need for recompu-
tation.

6 Conclusions

We have proposed a new method for finding the value of American and Bermu-
dan options in a high-dimensional setting. Central to this method is the use of an
irregular grid over the state space and an approximation of the partial differential
operator on this grid.

In our analysis we allow any grid which is generated using MC or QMC trials
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Size
P
(n)

Memory
full

(MB)

Memory
sparse
(MB)

Time
for P
(sec)

Time
for P 1/10

(sec)

Prop
P 1/10

nonzero

Time-
stepping

(sec)
500 2.0 0.6 1 22 0.190 0.5

1000 8.0 1.8 5 200 0.147 1.3
1500 16.0 3.3 12 750 0.123 2.0
2000 32.0 5.1 22 2000 0.106 2.9
2500 50.0 7.1 37 4000 0.094 3.8
3000 72.0 9.1 55 7200 0.084 4.9

Table 5.3: Timings and storage requirements for the irregular grid method using
Matlab 6.1 with a PIII 866MHz processor with 512 MB RAM, matrix entries stored
in double precision (8 bytes per entry). The sparse matrices are formed by elim-
inating all entries smaller than 5 × 10−4 and renormalising. The time stepping
column gives the total time to complete 10 time steps, using the sparse matrix and
the explicit method. Note that sparse matrices were not used for any experiments in
this paper, the information provided rather serves to illustrate the complexity of the
method as n increases. The second-to-last column gives the proportion of nonzero
entries in the sparse matrices, an important consideration for computational com-
plexity. Note that MB denotes 106 bytes in this context.
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with respect to a known density function. Once the Markov chain approximation
has been obtained, we use the transition probability matrix to form a semidiscrete
approximation to the partial differential operator corresponding to this Markov
chain. This is done through taking a logarithm of the transition probability ma-
trix; however solving the fully discrete problem only requires computing a certain
root of the matrix related to the time step and implicitness parameters, at the cost
of an extra approximation error.

An important aspect of the proposed method is the absence of any requirement
to specify basis functions for approximating the value function or exercise strategy.
Indeed the only specification needed is a grid density, although asymptotically even
this choice is not critical. Furthermore, convergence in the Bermudan case should
require asymptotics in only one parameter, namely the number of grid points. In the
American case one also requires δt → 0. These aspects set the root method aside
from the LSM method where the specification of basis functions plays a critical
role in the success of the method, and convergence involves asymptotics in two
parameters in the Bermudan case, namely the number of basis functions and the
number of paths, these two parameters producing opposite biases.

The irregular grid solution gives price estimates at all points in the grid. This
is useful if one requires partial derivative information, for example when hedging.
Partial derivatives can be easily estimated from the solution by preforming a linear
regression using values from neighbouring points.

Our experiments suggest that the irregular grid method has very good conver-
gence properties, especially when the grid density is related to the density of the
process itself. In particular, the grid density should have a larger variance than
the process; for a geometric Brownian motion process in five dimensions it was
found that a ratio of 1.5 gave a good rate of convergence, although (slower) con-
vergence was also observed for ratios of 1.0 and 2.0. Convergence of estimates for
the maximum option was not clear with grids of up to 1000 points.

The numerical results obtained largely agree with those of Stentoft [25]. We
find that the early exercise premium is increased by about 6% for the examples
he considers when allowing a continuum of exercise opportunities rather than only
ten. We also find that the exercise strategies implied by the LSM method produce
significantly lower values (statistically) than the LSM price implies, except in the
case of the minimum option; this is an indication that out-of-sample paths should
be used in simulation methods — in this way the price obtained corresponds di-
rectly to the average value of the implied exercise strategy. This suggests that
one should be careful in higher dimensions when applying the recommendation of
Longstaff and Schwartz [21] to save time by only using in-sample paths.

A possible variance reduction technique is to adjust the transition probabilities
according to the empirical density of the grid points rather than the density used for
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generation of the grid. Adjustment may be done after constructing the transition
matrix for example using quadratic programming to improve local consistency in
the sense of Kushner and Dupuis [20], but may also take inspiration from the liter-
ature on nonparametric analysis. These and other possible refinements are reserved
for future investigation.
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