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Abstract

We consider a model of (spatial) voting with endogenous timing. In line with what is observed
in actual political campaigns, candidates can decide endogenously when and where to locate.
More specifically, we analyze endogenous timing in a two-period n-candidate spatial-voting
game on the unit interval. We show that this game possesses a pure strategy equilibrium®.
The equilibrium™® concept is a simplified version of subgame perfection defined by Osborne
(1993) for use in games that possess no—or only very complex—subgame perfect equilibria. We
demonstrate the latter point by also analyzing the subgame perfect equilibria in three-candidate
spatial voting with endogenous timing. Our results show that accounting for endogenous timing

can eliminate some of the more unappealing equilibrium characteristics of the standard model.

1 Introduction

Among the many simplifying assumptions of the Downsian voting model the, perhaps, most serious
is that candidates select their positions simultaneously. In fact, assuming any specific exogenous

order in which candidates select their platforms appears in conflict with the evidence. Typically,
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political campaigns last for several weeks, if not months, and candidates decide endogenously
on when to take which stance in important matters. With the exception of Osborne’s (1993,
2000) pioneering work, which analyzes endogenous timing with three candidates, the literature has
remained remarkably quiet on this issue. In particular, we are not aware of general results for
more than three candidates.! This paper attempts to move a step forward in modeling endogenous
timing in voting with an arbitrary number of candidates.

Remarkably, introducing endogenous timing eliminates some of the less attractive properties
of the standard model. The standard model predicts, for example, that with n > 4 parties,
both most extreme positions, the extreme left and the extreme right, are taken by two candidates
each. Given that we are not aware of any countries with two extreme left- and two extreme right-
wing parties this appears to be a particularly unappealing feature of the standard model. With
endogenous timing we can reconcile theory and empirics in that respect since we find equilibria in
which the most extreme positions are not taken by two candidates. Rather, candidates are more
equally distributed over the political spectrum.

We model endogenous timing in very much the same way as it has been employed in the
industrial organization literature (see, e.g., Saloner 1987, Hamilton and Slutsky 1990, or Robson
1990). The general idea is the following. Suppose G is a normal form game with n players whose
strategy sets are S1, S, ..., S,. Let G’ be a two-period game in which all players act simultaneously
in the first period. In the first period each player i chooses an action from S; or chooses to wait. In
period 2, all period 1 actions become common knowledge, and then all players who chose to wait
in period 1 choose their actions simultaneously. Payoffs are assigned using the payoff matrix of the
game GG. Then G’ is a game with endogenous timing.

In this paper we investigate the equilibrium structure of a spatial voting election game with
endogenous timing. More particularly, we start with a standard spatial voting election game in
which n candidates simultaneously choose positions on the political spectrum [0,1] along which
voters are uniformly distributed. Each voter supports the nearest candidate. Each candidate’s
payoff is the length of the set of voters supporting her. Then we introduce endogenous timing as
above. We first consider subgame perfect equilibria. Due to the complexity of the problem, we
only analyze the special case with n = 3. We show that in this case the game has no subgame

perfect equilibrium (SPE) in pure strategies. However, there is a rather complex SPE in mixed

'One notable exception is Osborne (1993) who also provides a result for n = 4 and n = 5 (after strengthening

some of his assumptions).



strategies. On the equilibrium path of this mixed SPE, two candidates locate in period 1 at 1/4 and
3/4, respectively, whereas the third candidate locates somewhere in between these two positions in
period 2.

Due to the difficulties we encounter to find a SPE in this special case, we next consider an
alternative equilibrium concept—the equilibrium* notion introduced by Osborne (1993). Unlike a
SPE, an equilibrium* is not required to be a Nash equilibrium on, or even to be defined on, every
subgame. In particular, an equilibrium®* is required to be a Nash equilibrium on any subgame that
is reached by a history in the course of which no two players deviate in the same period from the
play prescribed by the equilibrium®*. It can be argued that an equilibrium* possesses the same
stability that is the defining characteristic of subgame perfection. We show that in the general
n-player case, our voting model with endogenous timing has an equilibrium* in which any n — 1
candidates locate at equidistant locations in period 1 whereas the n-th candidate waits until period
2 and then locates somewhere in-between the outermost positions occupied in the first period.

While employing this procedure resolves the unintuive features of the standard model, it
also demonstrates, on a more technical level, the advantage and usefulness of the equilibrium*
concept: An easy to proof equilibrium* may exist for a game that has no SPE and there may be a
simple equilibrium* for a game that has only complex or hard-to-find SPE.

Related Literature: The model we study is related to the ones in Palfrey (1984), Osborne
(1993) and Osborne (2000). Palfrey studies a three-candidate two-period model with exogenous
timing in which two candidates locate in the first period and the third locates in the second
period after observing the other two candidates’ choices. Candidates are assumed to be vote-
maximizers. Palfrey shows that in this setup there exists a limit-equilibrium in which the first-
period candidates locate at different positions and the third candidate locates in between the two
in the second period. Palfrey’s and our model share the features of two location periods and vote-
maximizing candidates. However, whereas Palfrey only considers the case of n = 3, we consider the
n-player setup. Moreover, whereas timing decisions are imposed exogenously in Palfrey’s model, we
endogenize this decision. Interestingly, restricting our result to the 3-player case, Palfrey’s timing
and location pattern emerges endogenously in our model.

Osborne (1993) studies two versions of a 3-candidate many-period model. If candidates
move in a fixed order, as it is assumed in one version, then there is a unique pure SPE outcome,
in which the first candidate enters at the median voter’s favorite position, the second candidate

stays out, and the third candidate enters at the median. In another version of the model there is



an infinite sequence of periods 1,2, ... In each period every player who has not already chosen a
position either chooses a position now or chooses to wait until the next period.? Given a strategy
profile of the candidates, there is a date after which no new entry into the competition occurs. At
this date an election is held. The winner is the candidate receiving most votes. Osborne shows that
in every SPE of this model only one candidate enters and the other two stay out of the competition.

Osborne (2000) again uses the setup in which each of three candidates may move whenever
she wishes. But this time candidates are uncertain about the distribution of the voters’ favorite
positions. Moreover, each candidate wishes to maximize the probability of winning, has a (symmet-
ric) minimal acceptable probability of winning, pg, and prefers to stay out of the competition than
to enter and win with probability less than pg. As Osborne shows, if there is sufficient uncertainty,
“the game has an equilibrium (essentially a SPE) in which two players enter at distinct positions
simultaneously in the first period and the third player either stays out, or, if there is enough un-
certainty, enters in the second period at a position between those of the other candidates.” (p.
42).

There are two main differences between Osborne’s models and our approach. First, we
allow for only two periods in which candidates may choose platforms whereas Osborne allows for
infinitely many. Second, and more importantly, we are not modeling a winner-take-all election,
in which a payoff of, say, 1 for one candidate and 0 for all others would be appropriate, but a
proportional representation election in which, for example, our candidates can be thought of as
political parties, and each party is awarded a number of seats in parliament proportional to the
number of votes it receives.3

The paper is organized as follows. In Section 2 we define spatial voting with endogenous
timing. In Section 3.1 we consider SPE in the three-player case. Then, in Section 3.2, we discuss the
equilibrium™* concept and show that the n-candidate spatial-voting model with endogenous timing
has a pure strategy equilibrium®*. Section 4 offers a short discussion of our findings and concludes

with a short list of open problems.

2Note that by always choosing to wait, a candidate can stay out of the competition.
3In an Hotelling-oligopoly model our assumption of vote-maximizing candidates naturally and realistically trans-

lates into demand-maximizing (and thus payoff-maximizing) firms when prices are fixed.



2 The model

For simplicity of exposition? we assume voters to be uniformly distributed along [0, 1] with density
1. There are n(> 3) candidates labeled 1,2,...,n. The voting game consists of two periods. In
period 1 all n candidates act simultaneously. For each ¢, candidate ¢ chooses a position z; € [0, 1]
or chooses to wait until period 2. The choices then become common knowledge. In period 2
those candidates who chose to wait in period 1 simultaneously choose positions. After period 2,
candidates located at x share all the voters nearer to x than to any other occupied position. Thus,
the payoff 7; to candidate ¢ = 1,2, ..., n is the length of the voter set won by position x; divided by
the number of candidates located at x;. We assume that a candidate who locates at time t = 2 at
an already occupied location x may specify + or —. Without this standard assumption there is
no hope for a Nash equilibrium even for many of the 1-player subgames of the location game with

endogenous timing. The following example shows how payoffs are assigned under the assumption:
m3(4/5,2/5,(2/5)") = 1/5,75(4/5,(4/5) ", (4/5)") = 2/5.

The assumption says that a candidate can adopt an opponent’s political position, yet some-
how signal that she is slightly to the left or to the right of that opponent. The assumption provides
a nice compromise between the continuous voter distribution of our model and the fact that real

elections have only finitely many voters.

3 Analysis

As mentioned in the Introduction, our analysis comes in two parts. We will first consider SPE.
However, in doing so, we will confine ourselves to the special case of n = 3. The reason is that the
general case appears to be intractable. As it turns out, in the special case of n = 3 there is no pure
SPE and finding a SPE in mized strategies is already extremely cumbersome even for this special
case. It thus seems elusive to find a SPE for the general case of n players. In the second part
of the analysis we therefore consider the notion of an equilibrium* as defined in Osborne (1993).
Using this concept we will prove much more easily that there are equilibria® in pure strategies in

the general n-player case.

4Tt is easy to see that our main results (Propositions 1 and 3) can be proved in the very much the same way for

the case of any continuous, atomless distribution of voters.



3.1 Subgame perfect equilibrium

Note that a strategy in an extensive-form game is a complete plan of behavior in the sense that
it assigns an action to a player at each of his information sets. Thus, in the above voting game a
strategy of a candidate is a tuple (z}, fi(z!,)) where x} either specifies a position for period 1 or
indicates that the candidate waits, i.e. z} € [0,1]U{w} with w indicating the decision to wait. The
function f;(z!,) is a mapping x;;([0,1]U{w}) — [0, 1] specifying the candidates’s position choice
in period 2 in response to what the other candidates did in the first period in case she has decided
to wait. So, a strategy in the voting game is a rather complicated mathematical object. But to
fully specify a player’s strategy is necessary if one wants to apply the notion of a SPE in order to

solve the game.

3.1.1 A Mixed Strategy Subgame Perfect Equilibrium for the 3-player game

In this subsection we will consider the case n = 3. We will begin by studying a game called Two
Entrants and an Incumbent. Two Entrants and an Incumbent is a 2-person game. Voters are
uniformly distributed on [0, 1] with density 1 and an incumbent is located at a € [0,1]. Then two

entering candidates (the two players) locate simultaneously on [0,a ] U [a™,1].

Proposition 1 Two Entrants and an Incumbent has a pure strategy Nash equilibrium if and only

ifa€0,7]U (31U {3}

Proof Suppose a € [%, 1]. Let both entrants locate at a/3. Suppose candidate 1 relocates to x. If
0 <z <a/3,thenmi(x,a/3) <a/3 =m1(a/3,a/3). Ifa/3 <z <a",thenm(z,a/3)=a/3 =
m1(a/3,a/3). If at <z <1, then m1(z,a/3) <1—a<1-3/4=1/4<a/3 =mi(a/3,a/3).
If © = a, then m1(z,a/3) =1/2 —a/3 < 1/4 < 7i(a/3,a/3). Therefore, (a/3,a/3) is a Nash
equilibrium if a € [3/4, 1].

Similarly, if @ € [0,1/4] the strategy combination (1 — (1 —a)/3,1 — (1 — a)/3) is a Nash
equilibrium and if @ = 1/2, then (a~,a™) is a Nash equilibrium.

Next suppose a € (1/2,3/4) and candidates 1 and 2 locate at x1 and x5 respectively. (Case 1.)
x1 € [a™,1)U{a} and 29 # a~. Then ma(z1,a~) = a > ma(x1,22). (Case 2.) z1 € [aT,1]U{a}
and z2 = a~. Then m(1 —a,z2) = (a+1—-a)/2=1/2>1—a > m(z1,22). (Case 3.) z2 €
[a™,1JU{a}. Proceed as in cases 1 and 2. (Case 4.) x1,z2 € [0,a” | and 1 # x2. Without loss

of generality, z1 < x3. Then m1((x1 + 2)/2,22) > m1(x1,22). (Case 5.) 0 <z = x2 < a/3.



Then mi(a™,22) =1 —a > 1/4 > a/3 > m1(z1,22). (Case 6.) a/3 < 1 = 29 < a~. Then

0< (1 +a)/d <x1 =129 s0 that m((x1 + a)/4,x2) > (1 + a)/4 = w1 (21, 22).

Therefore, there is no pure strategy Nash equilibrium if @ € (1/2,3/4) or symmetrically, if
a€(1/4,1/2).0

Proposition 2 Two Entrants and an Incumbent has a symmetric, continuous mized strateqy Nash

equilibrium when a € (1/4,3/4).

Proof Fix a € (1/4,3/4). Let

0 for 0<z<b
14+cla—3z)" 13 for b<ax<a
E(2+a—3x)"3 for at <z <B

1 for B<zx<l1

\
where 0 < ¢ < (2a)'/3, b= (a+¢*)/3,0 < k < (2—2a)"/? and B = (2 4+ a — k*)/3. Note
that F', b and B depend on ¢ and k. We begin to show that for the proper choice of ¢ and k
(F,F) is a mixed strategy Nash equilibrium by establishing some facts about F. Using the
definitions of ¢, b, k, and B,

a/3<b<a<B<l—(1-a)/3 (2)

By (2), F is well defined. By (1), F is increasing on [b,a™] U [a*, B] and continuous on
[0,a"]U[at,1]. To insure that F(a~) = F(a%t), set 1+ ¢(—2a) /3 = k(2 — 2a) /3. Solving,

k=(2-2a)"%+c(1—1/a)'/? (3)

As ¢ varies between its bounds 0 and (2a)'/3, k varies between its bounds (2 — 2a)'/3 and 0.

Next, for ¢ fixed, 71(y, F) is a constant function of y on (b,a™) since

dmy (yv F)

dy =0 fory € (bya ),

as will now be shown:

dmy (y, F)

) (/b la=)/2)P s+ [ () DF @+ (1= Fla o+ y>/2> Jdy

= ((a=y/2)F'(y) = (/2D F'(y) + d((y/2)(F(a”) = F(y)))/dy + (1 = F(a"))/2
= F'(y)(a/2 = 3y/2) - F(y)/2+1/2



By (1), F(y) = 14 c¢(a — 3y)~"/3 for y € (b,a™) so that

d F
% = c(a —3y)~3(a/2 - 3y/2) — (1 + cla—3y)"/3)/2+1/2 = 0.
This completes the proof that for ¢ fixed, 71 (y, F') is a constant function of y on (b,a™ ). In

fact, the definition (1) was derived by solving the differential equation %??jf) =0.

Since F' is continuous on [0,a |, 71 (y, F') is a continuous function of y for y € [b,a"] so that

71(y, F') is a constant function of y for y € [b,a™].

Also, it is clear that for y € [0,b), m1(y, F) < m1(b, F) since with probability 1 candidate 2
locates in [b,a™] U [at, B] so that candidate 1 increases his voter set by moving from y to b.
In summary, if candidate 1 is limited to playing y € [0,a~], candidate 1 maximizes his payoff

against F' by choosing any y € [b,a " |.
To show that candidate 1 limited to playing y € [a*, 1] maximizes his payoff against F' by
choosing any y € [a™, B], it is necessary to show %Z’F) =0 for y € (a™, B).

Llfg[ B _q <F(a)(1 —(a+y)/2) + /;(1 —(z+y)/2)F (z)dz + /y ((z — a)/g)pl(m)dJ;) Jdy
=—F(a")/2+ (1 -y/2)F(y) — d((y/2)(F(y) — F(a")))/dy — ((y — a)/2)F'(y)

=F'(y)2+a—3y)/2—-F(y)/2

By (1), F(y) = k(2 +a — 3y)~'/3 for y € (a*, B) so that

d F

% —k(2+a—3y) P2 +a—3y)/2—k(2+a—3y)"/3/2=0
For y € (B,1]. mi(y, F) < m(B, F'), since with probability 1 candidate 1 increases his market
share by moving from y to B. If candidate 1 is limited to y € [a™,1], then candidate 1

maximizes his payoff by choosing any y € [a™, B].

To show that (F,F') is a Nash equilibrium for some choice of ¢, it is sufficient to show
that for the proper choice of ¢, candidate 1 maximizes his payoff against F' by locating in
[b,a”] U [at, B]. By our work above it is enough to show that for the proper choice of c,
mi(a , F)=m(a™, F).

It is now convenient to introduce ¢ into our notation and write F.(x) in place of F(z). Fix
xg € (a/3,a”]. As ¢ — 0, b — a/3. Therefore lim,_g Fo(20) = lim._o(14c(a—3z0) 1/3) = 1.

In other words, for small ¢ player 2 playing F, almost certainly locates near a/3. Then for



small ¢
m(a , F)~a/3<1l—a=m(at, F) (4)

Next fix 29 € [at,1 —(1—a)/3). Asc— (2a)/3, k - 0and B — (2+a)/3=1—-(1—a)/3.

Therefore lim,_, 54y1/s Fe(20) = lim,_, (94y1/3 k(2 + a — 3zo) = 0. For c near (2a)/3, player 2
playing F, almost certainly locates near 1 — (1 — a)/3. For ¢ near (2a)'/?
mi(a ,F.)~a>(1—-a)/3~m(a",F,) (5)

Since 1 (a™, F)—m1(a™, F.) is a continuous function of ¢, by (4) and (5) and the Intermediate
Value Theorem there must be a ¢ € (0, (2a)'/3) such that m1(a~, F5) = m(at, F5). For this
¢, (F%, F;) is a Nash equilibrium.O]

We can now establish the claim made at the beginning of this section.

Proposition 3 The 3-player location game with endogenous timing played on [0, 1] with consumers
distributed uniformly has a mized strategy subgame perfect equilibrium, but no pure strategy subgame

perfect equilibrium.

Proof By Proposition 1, if two players wait in period 1 and the third player locates at a €
(1/4,1/2) U (1/2,3/4) in period 1, the resulting subgame has no pure strategy Nash equi-
librium. Therefore the 3-player location game with endogenous timing has no pure strategy

SPE.

Since the 3-player location game with endogenous timing possesses an equilibrium* (s* of
Proposition 4) to show that it possesses a mixed strategy SPE, it is enough to show that

every proper subgame possesses a SPE.

Shaked (1982) showed that the subgame that results when all three players wait in period one
has a mixed strategy Nash equilibrium. Each subgame that results when exactly two players
wait in period 1 has a pure or mixed strategy Nash equilibrium by Propositions 1 and 2. It
is quite easy to see that every subgame that results when exactly one player waits in period
1 has a pure strategy Nash equilibrium: if players 1 and 2 locate at x; and x5 respectively in
period 1, then xl_,mf, Ty Or x;' is a Nash equilibrium of the 1-player period 2 game. Since
all the subgames in this paragraph are simultaneous play games, all these Nash equilibria are

trivially subgame perfect.[]



Remark 1 Note that on the equilibrium path of the mized strategy subgame perfect equilibrium
in Proposition 3 two candidates locate at 1/4 and 3/4, respectively in period 1 whereas the third

candidate locates at 1/4% in period 2.

3.2 Equilibrium*

To circumvent the difficulties of fully specifying strategies for each of the players and of showing
that these strategies constitute a (mixed) Nash equilibrium in each subgame, we proceed as in
Osborne (1993, 2000) by applying the notion of an equilibrium™*. This notion requires only a partial
specification of the players’ strategies. The general idea of an equilibrium™* is “that no player
should be able to increase her payoff by changing her action in any period, given that the behavior
of the players in the subgame to which the deviation leads is optimal” (Osborne 1993, p. 142).
As Osborne (1993, p. 142) argues, “[tJo check that a strategy profile o meets this condition, no
information is needed about the behavior that ¢ prescribes in subgames that are reached when
more than one player deviates from ¢ in some period.” More precisely, an equilibrium* is defined
as follows (adapted from Osborne 1993, p. 142):

A substrategy o; of player i for a game G is a subset H(o;) of the set of histories of G together
with a function that assigns an action of player ¢ to every history in H(o;). More accurately, the
function must assign an action of player i to h € H(o;) unless player i is not required to act in the
period following h (in other words, unless player i has no information set in the game tree in the
period following h). A profile o of substrategies is an equilibrium* if (1) for every player i, H(o;)
includes all histories that result when at most one player deviates from ¢ in any given period and
(2) after any such history, no player can increase her payoff by a unilateral change of strategy, given
that the other players continue to adhere to o.

Clearly, including condition (1) in the definition of an equilibrium* makes sure that the
substrategies contain enough information to determine whether condition (2) is satisfied. Note
that it is much easier to work with this notion of equilibrium rather than SPE since one does not
have to worry about the existence of an equilibrium in subgames that can only be reached by a
deviation of two or more players in a given period.

We now use two examples to illustrate the definition of equilibrium®*. In Figure 1 subgame K
begins at node ¢. Suppose K is a simultaneous play game with no mixed strategy Nash equilibrium
(for example, suppose players 1 and 2 simultaneously choose a positive integer and the player who

chooses the larger integer wins 10 while the other player wins 4. In case of a tie each wins 7. Then

10



D
N

%CK b2 {\)\

2
2
Figure 1: An example

G possesses no mixed strategy SPE and consequently no pure strategy SPE; however, s* defined by

1
1

the bold lines in Figure 1 is a pure strategy equilibrium*. Notice that s* satisfies condition (1) of
the definition of equilibrium* since the history of G leading to K requires that two players deviate
from s* in the first period of the game.

On the other hand, consider the game of Figure 1 altered slightly by making the information
set labeled b into two information sets. Then s* is not an equilibrium* since K is the result of a
history in which player 1 deviates in period 1 and player 2 then deviates in period 2 (note that
by turning b into two information sets, we no longer have both players playing in period 1, but
we now have player 1 playing in period 1 and player 2 playing in period 2). In fact the new game
possesses no equilibrium®.

Concerning the relation between an equilibrium* and a SPE, note that a SPE is an equilibrium®,
and that if every proper subgame has a SPE then any equilibrium®* can be used as a starting point
in the construction of a SPE.

As was stated above, the strengths of the equilibrium™* concept are first that an equilibrium*
strategy profile possesses the same stability that is the defining characteristic of a SPE; and second
that a simple equilibrium* may exist for a game with no SPE or for a game which possesses only
complicated, or hard-to-find SPE. We think this will become clear when comparing the results in

the preceding subsection with the ones that will be derived in the following subsection.

11



3.2.1 A pure equilibrium* for the n-player game

Consider the following substrategy profile s*:°

andidates 1,2,...,n — 1 locate at £, 3k,9k,...,1 — k wit = 57—, respectively, in the first
i) Candidates 1,2 11 k, 3k, 5k, ..., 1 — k with k = 5015 ively, in the fi
period. After a history in which only candidate i € {1,2,...,n — 1} deviates by choosing to

wait until period 2, candidate ¢ locates at the point he deviated from, (2i — 1)k.

(i4) Candidate n chooses to wait in the first period and

e locates at k after a history in which the other candidates chose to locate as described in the

first sentence of (i);

e locates at x+ after a history in which the set of occupied positions is {z, 3k, 5k, ..., 1 —k} with

x < k;

e locates at z— after a history in which the set of occupied positions is {z, 3k, 5k, ..., 1 —k} with

k <z <3k

e locates at 3k— after a history in which the set of occupied positions is {z, 3k, 5k, ...,1 — k}

with z > 3k;

e similarly for a deviation in which locations {k, 3k, 5k, ..., 1 —3k} were chosen in the first period

but location 1 — k was not.

e locates at (2¢ — 1)k after a history in which the set of occupied positions is {z,k, ..., (2i —

3)k, (2 + Dk, ..., 1 — k} with 2 # (2i — D)k, i € {2,3,...,n — 2}.

e locates at (2¢ — 1)k after a history in which only candidate i € {1,2,...,n — 1} deviated by

choosing to wait.

The next proposition will show that s* is an equilibrium* of the voting game. The impor-
tance of this result is that it describes behavior that is much more in line with what we can observe
in the field than the equilibria of the standard model. The most extreme positions, £ and 1 — k,
are only occupied by one candidate each, i.e., there is just one candidate on the extreme left and

one on the extreme right. The standard model predicts that these positions are occupied by two

SOf course, there is no loss of generality letting candidates 1,2,...,n — 1 be the ones who commit in period 1

according to s* and letting candidate n be the one who waits until period 2.

12



parties each. The difference is particularly striking for n = 4, a case not uncommon in European
elections. The standard model with simultaneous moves predicts two left-wing parties at 1/4 and
two right-wing parties at 3/4 while the center of the political spectrum is unoccupied. In contrast,
s* predicts one left-wing candidate who locates himself early at 1/6, one right-wing candidate who
chooses at 5/6, a centristic candidate at 1/2 and a fourth candidate who waits initially. In the
case of s* the fourth candidate also chooses an extreme left position; but, as the proof of the next
proposition will reveal, it is easy to construct other equilibria where he chooses either a right-wing
or a centristic platform. In any case, s* predicts a wider variety of political platforms than one
would expect in the standard model. And, perhaps most importantly, it predicts that there will be

centristic parties with more than two candidates.

Proposition 4 The substrategy profile s* is an equilibrium® of the voting game with endogenous

timing.

Proof To see that s* is an equilibrium* we have to show that none of the candidates has an
incentive to deviate from the behavior prescribed by s*. Let us first consider candidate n.
It is easy to see that s* prescribes optimal behavior for candidate n in each of the classes
of subgames treated in (ii). For example, if no one deviates, candidate n locates at k, earns
payoff k, and can do no better; if candidate i € {1,2,...,n — 1} deviates by waiting, then
both n and ¢ locate at (2¢ — 1)k, n earns payoff k& and can do no better; if candidate n — 1
deviates by locating at 1 — 2k in period 1, then n locates at (1 — 2k)™", earns payoff 2k and

can do no better; etc.

Next consider candidate 1: If no one deviates both 1 and n locate at k and 1 earns payoff
k. Candidate 1 can do no better as is seen by checking candidates n’s reaction to all of 1’s
possible deviations. For example, if 1 waits, n locates at k and 1 earns at most k. If 1 locates

at 2k in period 1, n locates at (2k)~ in period 2 and 1 earns k/2.

Concerning candidate n — 1, if no one deviates from s*, n — 1 earns 2k and can do no better.
For example, if n — 1 waits, n locates at 1 — k and n — 1 can earn at most k. If n — 1 locates

at 1 — 2k in period 1, n locates at (1 — 2k)™ and n — 1 earns k/2.

Finally consider candidate i € {1,2,...,n — 1}. If no one deviates i wins 2k and can do no

better which can be seen without even considering n.U
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3.2.2 Comparing other equilibria*

As indicated above, there are other equilibria* where one candidates waits and positions himself
at a different location in period 2. Moreover, it is easy to see that there are also equilibria*
where all candidates move in the first period—choosing the equilibrium locations of the standard
simultaneous-move game. The reader may, thus, ask what we have really gained by introducing
endogenous timing. We would like to offer several points: The model as such is more plausible. Its
equilibrium structure is richer and there exist some equilibriax that appear much more in line with
evidence than the equilibria of the standard model. Moreover, comparing the different equilibria*
we find that the ones where one candidate waits in the first period do not only yield a more
realistic distribution of platforms but are also more stable. In particular, in an equilibrium* where
all candidates move simultaneously, all candidates have alternative best responses (like choosing
a location somewhere between other candidates or waiting and then choosing a location). In
contrast, in the equilibrium* identified above only players 1 and n have alternative best replies
while all candidates would be strictly worse off by changing their action. For n = 3 there is a
pure equilibrium* where one candidates waits but no pure equilibrium* where all candidates move
simultaneously which lets the equilibrium* identified above appear more parsimonious. Finally, let
us reinterpret our model as one of firm behavior in an oligopoly market with product differentiation.
When n > 3, we see that the equilibrium* in which one firm waits to locate is more efficient than

the equilibria in the one-period model as firms are spread out more evenly.

4 Conclusion

We have investigated a two-period spatial-voting game with endogenous timing. Our main result,
is that in the general n-player case, this game has an equilibrium* in which any n — 1 candidates
evenly spread out in period 1 whereas the n-th candidate waits until period 2 and then chooses a
platform.

On a purely game-theoretic level we have demonstrated the usefulness of the equilibrium*
concept for sequential games as put forward by Osborne (1993). Unlike a subgame perfect equilib-
rium, an equilibrium* only requires a strategy vector to be a Nash equilibrium on any subgame that
is reached by a history in the course of which no two players deviate in the same period from the
play prescribed by the equilibrium®*. This makes it much more easy to work with. In fact, according

to our analysis in Section 3.1, there is little hope of finding a (mixed) subgame perfect equilibrium
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in the general n-player case of our spatial-voting model, whereas we showed with comparative ease
that the general model does possess an equilibrium* in pure strategies.

On a substantive level, we consider our analysis another step toward more realistic voting
models that allow for political campaigning during which candidates decide when and where to
locate on the political spectrum. As we have shown here, making the assumptions more realistic
can also make the equilibrium predictions more appealing. In particular, we have seen that with
endogenous timing there are equilibria with more political variety and fewer extremist parties than
the standard model predicts.

Obvious avenues for future work are to allow for more periods or the analysis of continuous-
time models. Also, it might be interesting to relax the assumption of perfect commitment by
allowing candidates to relocate (at some cost) or analyzing reputation formation in repeated voting

games.
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