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Cost Allocation as a Coordination Mechanism

Abstract

This paper shows that cost allocation can endogenously arise as a coordina-
tion mechanism in a decentralized firm. This result is derived in a setting with
multiple (internally supplied) resources shared by multiple users, which con-
stitutes a departure from previous literature. While standard cost allocation
procedures use one allocation base, the optimal cost allocation mechanism
derived here can select many allocation bases, therefore providing support for
the use of Activity Based Costing. Like the cost allocation itself, the selection
of allocation bases also arises endogenously.

Keywords: Coordination, Cost Allocation, Cost tracing, Transfer Pricing
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1 Introduction

Why allocate costs? And how? Although these questions have been debated in-
tensively in the literature (and in accounting textbooks), few formal models have
attempted to provide an answer to them. Papers analyzing this issue are Zimmer-
man 1979’s seminal paper (cost allocation can act as useful proxy variables for some
difficult-to-observe costs that arise from decentralization), Rajan 1992 (eliminating
non-truth-telling equilibria in multi-agents games), Magee (providing incentives for
efficient resource use), and lately Rogerson 1997 (providing incentives for efficient
investment).

In this paper, I argue that cost allocation can endogenously arise as an efficient
mechanism to coordinate several divisions of a decentralized firm on the use of inter-
nally supplied inputs which are difficult to measure, when communication is difficult
or costly. Communication problems is about division managers facing uncertainty,
and being unable to communicate the state of nature to the central management
once the uncertainty is resolved. Cost allocation then arises whenever there exists
common resources which are difficult to measure for the central management. It is
indeed necessary for the central management to ensure that, in absence of commu-
nication possibilities, divisions’ use of the common resource will be coordinated, in
that the common resource will be allocated to divisions with “more favorable” state
of nature.

If there were a direct measure for every resource used within a firm, then one
should never observe cost allocation. Therefore, cost allocation is a consequence of
measurability problems within the firm. Such problems can be illustrated by the
following statement by Atkinson and Kaplan (1994, 244)

Direct measures may not exist because the cost of obtaining such mea-
sures, for example by metering individual production departments or by
monitoring the amount of time the house-keeping staff spends in each
department, greatly exceeds any potential benefit from using these direct
measures.

In this paper, I focus on such measurability issues. In my model, there are two
kind of inputs. The use of the first kind of input can be easily measured both by the
users’ divisions and the top management. I call it the measurable input. The second
type of input is measurable by the user divisions, but not by the top management.
Put differently, at any time, the user’s division knows exactly how much of the
input it is using while the top management does not. I call this second type the
non measurable input. Therefore, there is a moral hazard problem, but I shall not
model it explicitly (I discuss this issue later). Since the measurability assumption
is critical to the paper, let me provide some examples.

Horngren Foster and Datar (ninth edition, 515) write that “For example, man-
agers often view the number of machine setups as a driver of indirect manufacturing
costs, but some companies do not systematically record this information.” Take the
case of a machine being commonly used by several departments. While the internal
system might not keep records of the machine use by each user, any particular divi-
sion knows exactly how much it used a given machine, and therefore the amount of
energy needed to run the machine.
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Although electricity seems a priori easy to meter, its cost is often described in
accounting textbooks (including in the above citation by Atkison and Kaplan) as
an indirect cost. For example in Horngren, Foster and Datar (p.472), an example of
indirect cost is “electricity used to run machine. Electricity metered to firm but not
to individual machines”. This is an example in which user divisions will know how
much electricity they used, but not top management. Indeed, most machines have
a clear and unambiguous technical relation between time of usage and electricity
consumed. Since each user knows how much it is using the machine (but not the
top management), it also knows how much electricity it uses.

Finally, some of the inputs can be interpreted as quality, which is costly. While
the quality of an input can be easily measured by the division using the input, it is
not always obvious for top management to measure quality.

To summarize the above examples, many inputs can actually be measured by top
management, but at some cost. However, as Horngren, Foster and Datar further
note (p. 515), “some firms place a low priority on investments in their internal
accounting systems, given that the benefits from such investments are frequently
difficult to quantify.”

I analyze a setting with a multidivisional firm in which several upstream de-
partments provide several intermediate goods (or service) to several downstream
departments. These departments can be cost or profit centers. To ensure that I get
the most general setting possible, I allow for the possibility that the inputs used by
a department be complements or substitutes, and also spillovers between upstream
divisions . The first relation represents the so-called “correlation” which is used to
select cost drivers or allocation bases for allocating costs. For example consider a de-
partment producing cell phones by using chips produced by an internal department,
labor, and machinery. These inputs are very likely to be complements 1. The second
relation (spillovers) just represent the synergies which can exist between production
supports departments (here the upstream divisions). My model therefore allows for
one cost center, one profit center and one intermediate good exchanged; one cost
center, one profit center and several intermediate goods; several cost centers, one
profit center and several intermediate goods etc.

The organization that I study is assumed to be decentralized, due to communica-
tion problems I mentioned earlier. I do not model these problems, but rather take it
as exogenous. All divisions of the firm face uncertainty, and, for a given division, the
realized state of nature is known by this division manager only. If communication
was possible or not costly, then the top management would wait until the realization
of the uncertainty, and ask all divisions to report their state of nature. Top man-
agement would then take centralized production decisions and communicate them
to the division managers. However, one problem which might arise then is related
to truthful reporting by the division managers. Together with communication prob-
lems, superior information at division’s level reinforce the necessity for the firm to
be decentralized.

In decentralized firms, top management needs to ensure that the divisions’ de-

1Labour and machinery can also be substitutes up to some point. However, I believe that there
is at least some degree of complementarity. If this is not the case, then the firm would be better
off by using the cheapest among the two alternatives.
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cisions are coordinated because individual profit maximization will often lead to an
outcome which does not maximize global profit. Coordinating managers’s decisions
regarding the use of the measurable input is a rather easy task. Indeed, assigning
a price to these inputs can induce the managers to behave in the desired way. The
problem, however, remains with the inputs the use of which is not measurable. It
is indeed not possible for the top management to assign a price to an input the
use of which it cannot physically measure. However, top management can take into
account the complementarity between measurable and non measurable inputs to
coordinate efficiently the use of the non measurable input2. What I show in this
paper is that if the top management charges a price (or equivalently traces the cost)
for measurable inputs, the optimal charge will endogenously allocate the cost of the
non measurable inputs through the complementarity relation that exists between
measurable and non measurable inputs. Moreover, I show that the cost allocation
procedure endogenously selects (many) allocation bases, which confirms the superi-
ority of Activity Based Costing over traditional cost allocation procedures.

This paper is organized as follows. Section 2 briefly relates the paper to existing
work. Section 3 introduces the model. Section 4 describes more extensively the
firm and the coordinating mechanism used. Moreover a benchmark in which all
inputs are measurable is analyzed. In section 5, I derive the endogenous cost alloca-
tion mechanism. Section 5 provides an illustration with two inputs being supplied.
Finally section 7 concludes.

2 Related literature

Although our paper shares a common goal with with most papers providing a ratio-
nale on cost allocation (see first paragraph of introduction), it is more closely related
to Zimmerman (1979). Zimmerman shows that “cost allocations appear to proxy
for certain hard-to-observe costs that arise when decision-making responsibilities are
assigned to and vested in various individuals (i.e., decentralized) within the firm.”
Cost allocation is then a tax that induces managers to behave in an appropriate
way. This is what happens in our paper, with the difference that cost allocation
arises endogenously here, allocation bases are endogenously selected. However, the
majority of the literature on cost allocation or transfer pricing (including Zimmer-
man’s paper) are limited to one resource user and one resource being shared 3 For
instance, in Magee (1988), there is one agent using one resource. Although his pa-
per provides a rationale for allocating the cost of the resource to an agent, Magee
recognizes himself the limitation of the single agent setting. A notable exception is
Rajan (1992), who models one resource, but several users. However, in Rajan, the
cost allocation scheme does not arise endogenously but is built. Our paper there-
fore constitute a departure from previous literature in that it uses the most general
model with n users, m resources, with possible spillovers between supplier divisions4,

2Efficiency is meant in the second-best sense.
3In this statement, I do not include the literature on mathematical programming.
4For instance, Abdel-khalik and Lusk (1974) found the Hirshleifer (1956)’s assumption-of tech-

nological independence between divisions-unrealistic. Although these papers focus on transfer
pricing (which, still is related to cost allocation), the criticism holds for organizations in general.
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and a possible relation (complementarity or substitutability) between the different
resources for the user divisions.

3 Model

Consider a vertically integrated firm composed of n + m divisions. m upstream
division (cost or profit centers) produce each an intermediate good (or service),
which are used by n downstream divisions (profit centers). The upstream divisions
are assumed to be production support departments5like a manufacturing division
producing auto engine for the use of assembling divisions, a service department
providing engineering/consulting services, a data processing department, or more
generally, any division which provides services or an intermediate good to other
divisions of the firm. The downstream divisions are all other divisions using the
intermediate goods or services to produce the final good and meet external demand,
i.e the profit centers.

Let z ≡ (z1, . . . , zm) denote the production vector of all intermediate goods.
Each of the profit centers uses the inputs and/or services provided by the upstream
divisions and turns it into a final good. Let zi ≡ (z1

i , . . . , z
m
i ) denote the vector of

inputs/services used by division i (if division i does not use input j, then zj
i = 0).

When it uses the vector of inputs zi, division i generates a profit πi(zi), by selling
the final good in the market. For the time being, let the profit functions be gross of
any charge (from the firm) related to the use of internal resources.

Following Crémer (1980), I assume that the production period is a year and
that before the beginning of the year, when making budgets, the cost and benefit
functions are not exactly known to the firm. The reason is that after budgeting is
made, all divisions need to buy goods (raw material, labor, capital etc..) outside
the firm and there is uncertainty related to the price of these goods. Moreover, on
the downstream division side, there is demand uncertainty for the final goods6. I
assume that the cost and profit functions can be approximated as follows:

πi(zi) = λi + ΓiBi(zi − zi)
′ − 1

2
(zi − zi)Bi(zi − zi)

′
(1)

C(z) = λ + ΓB(z − z)
′
+

1

2
(z − z)B(z − z)

′
(2)

where the symbol ′ denotes the transpose sign. The m-vectors Γi and Γ are random
vectors representing the uncertainty, and are assumed to be independent. The m×
m-matrices Bi and B are assumed to be symmetric positive definite in order to
ensure that the benefit and cost functions are well behaved7. The vectors zi and z

5In particular, they are not headquarters support, advertising, or any division which cost enters
the G&A overheads

6The firm can buy all these goods in advance, and avoid the uncertainty related to price fluc-
tuations. However, by doing so, it exposes itself to the risk of incurring losses either from over-
purchasing (when inputs are perishable, or storage is costly), or from under-purchasing (inability
to meet external demand and having to acquire inputs from the more expensive spot market)

7Positive definite implies that C is convex and πi concave. There is no loss of generality in
assuming symmetry, which ensures that B−1

i = (B−1
i )′. .
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are budgeted targets that I define more precisely in section 4. Finally, the λis and
λ are constants, equal to the budgeted profit of division i and budgeted cost of the
supplier division respectively (rather than fixed costs)8. Without loss of generality,
I set λi = λ = 0 ∀i = 1, . . . n.

The diagonal of Bi (respectively B) represents the curvature of division i’s benefit
function (respectively the upstream division’s total cost function). Using a less
abstract language, the jth diagonal element of Bi measures the loss that division i
would incur by deviating from the budgeted use of input j by 1 unit. The reason
is that by using one more unit of input j than expected, division i would need, for
example, to hire more labor in the (more costly) spot market. Therefore, for a given
division, the greater the curvature associated with an input j is (measured by the
jth diagonal element), the greater will be the loss from diverging from the budgeted
quantity of this input. The extra-diagonal elements of the Bi matrices measure
the degree of complementarity (when non positive) or substitutability (when non
negative) between two inputs. The extra-diagonal elements of the B matrix are
a measure of the positive spillovers between upstream divisions and are therefore
assumed to be non positive.

In a well-known paper, Weitzman (1974) proves that the functional forms πi(.)
and C(.) that I use9 can be rigorously defended as approximations to more general
functions, under a condition, which in our case is:

ASSUMPTION
E [ΓiBi] = E [ΓB] . (3)

I shall assume through all the paper that condition (3) holds. Therefore, the
qualitative results that will be derived in this paper are robust to the specification
of the cost and profit functions. The quadratic form simply makes the computations
easier.

The firm is assumed to be decentralized, for reasons that I do not model. Follow-
ing Baldenius and Reichelstein (2002), I assume that, for a given transfer payment
(charge) set by the firm, the upstream divisions are required to satisfy the input de-
mand of the downstream divisions. Downstream divisions are assumed to maximize
their own divisional profit, that is, the gross profit πi net of any payment imposed
by the firm, by choosing the appropriate combination of inputs. As Baldenius and
Reichelstein further note, ”this model specification seems reasonably descriptive of
most multidivisional firms”. The objective of this paper is not to look at optimal
mechanisms in general, but rather within the class of mechanisms observed in prac-
tice (e.g., cost tracing, transfer pricing). This means that I take the firm structure
as given, and see whether I can explain the existence of a phenomena, which is cost
allocation.

Because managers maximize divisional profit, I can abstract from moral hazard
considerations. The timing of events is as follows:

8By replacing zi and z by their budgeted levels zi and z, the last two terms of each function
equals zero and it remains only the λs. Stated differently, if divisions were to produce and use
exactly the budgeted amount of inputs, then there is no uncertainty about the profits and benefit
functions which are then equal to λi and λ respectively.

9These functional forms are borrowed from Crémer (1980).
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• Input charges are set at the budgeting stage by central management

• Realization of the state of nature. Only the division’s manager observes the
realization of his own environment, and not other managers or top manage-
ment.

• Downstream divisions choose simultaneously, and non cooperatively, the quan-
tity to produce, and hence the quantity of inputs/services to use.

4 Budgeting

4.1 Relevance of the “ideal point” model

In this subsection, I show how the vectors zi and z are obtained, and provide an
economic interpretation for them. I said that the cost and benefit functions are not
known in advance at the budgeting stage. Furthermore, I also assumed that the
organization is decentralized.

Now consider the ideal organization in which communication is not a problem.
The owners would wait until the uncertainty is resolved, and solve:

max
z1,...,zn

∑n
i=1 πi(zi)− C(z)

subject to∑n
i=1 zi = z,

where the πi(.) and C(.) are the real functions and not the approximations. Let
(z∗1 , ..., z

∗
n) denote the (random) solution of that program.

Lemma 1. The vectors zi are the expected values of the z∗i , and z =
∑n

i=1 zi.

Proof. See appendix A1

Therefore, (z1, ..., zn) can be simply interpreted as a budgeted target. Indeed,
budgets are made by top managements (the centralization aspect) based on forecasts
made by managers. If I interpret the expected values of the random variables as the
forecasts made by division managers10, then (z1, ..., zn) is simply the budget target
of the firm (this will become even more clear at the end of subsection 4.3). This
target is determined by top management by maximizing the total profit of the firm
based on forecasts of the cost and benefit functions given by managers.

Notice that the vector of budgeted marginal costs (MCB) is given by

MC = ΓB − (zB − z)B

where zB is the budgeted vector of total input produced, and Γ is the expected value
of Γ. Given that the budgeted target zi is such that

∑n
i=1 zi = z = zB, the vector

10Most budgets are based on expected (standard) values rather than any other values. Transfer
prices, cost tracing and cost allocations are also based on expected values.
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of budgeted marginal costs (MCB) therefore simplifies to

MCB = ΓB

This remark is important to keep in mind for what will follow.

4.2 The coordination mechanism

Since resources are allocated on a budgeted basis (the zi’s are based on Γi and Γ),
what happens if the realization of the Γi’s and that of Γ differ from Γi and Γ, or
simply put, if the forecasts are not correct. In that case, there is necessarily a need for
reallocating resources, especially when they are limited. The crucial question is then
the following: given that communication is not feasible, how can top management
ensure that ex-post (after the uncertainty is resolved), resources will be used by
the divisions having a more favorable state of nature? There are several ways of
achieving this and I shall discuss the two which seems the most relevant.

An obvious way is to organize a second round of budgeting after that the random
events are realized. However, Zimmerman (2003, p.603) notes that “most firms are
very reluctant to change standards during the year. Once a standard is set at the
beginning of the year, it is rarely revised during the year.”

A second way is simply to set ex-ante a mechanism that will reallocate resources
to their best use and hence ensure that individual maximization coincides with global
maximization. Obviously, this is a second-best solution.

In this paper, I choose the second coordination way. Moreover, since the firm is

decentralized, the owners, who seek to maximize E

(
n∑

i=1

πi − C(z)

)
, need to make

the divisions’ maximization consistent with global maximization. The owners’ in-
struments consist in a vector of transfer payments by each profit center, which I
assume to be linear in prices charged to the only measurable inputs. These linear
charges are set ex-ante (see footnote 10). The economic interpretation behind these
payments is transfer pricing, or cost tracing. Although the literature and most ac-
counting textbooks use these two terms in a way which suggests that they are not
related, tracing a cost to a department is usually equivalent to charging the depart-
ment a transfer price for the resources that caused the cost. There are however some
exceptions. Zimmerman (2003, p.211) notes that “most firms use cost allocations
as a method of charging internal users for goods or services received from another
part of the organization” and that “These cost allocations are nothing more than
transfer prices”. Lambert (2001, p.67) also views cost allocations as “a special case
of transfer pricing”.

Each profit center’s manager thus maximizes the gross benefit πi, net of the pay-
ment imposed by the owners. Note however that a direct per unit rate can be applied
only to an input for which top management has an accurate measure. Therefore, the
inputs which are not accurately measurable will not be directly charged. But I shall
show that the optimal charge for the measurable inputs does in fact endogenously
determine the optimal indirect rate for inputs which are not measurable.

The reason for which I have chosen linear transfers is not innocent. Firstly, it

9



can represent transfer prices which are often linear11. Secondly, given that our cost
functions are valid approximation to any cost function, including linear costs, cost
tracing at variable cost is equivalent to charging each input its variable cost, hence
the linear charge. Therefore my assumption of linear payments are fairly realistic.

At this point, it is worth noticing that the term “cost allocation” does not always
have the same meaning. Sometimes cost allocation refers only to the allocation of
indirect costs. It can also refer both to cost tracing of direct costs and allocation
of indirect costs. Finally, allocation can sometimes mean tracing, while the term
apportionment is then used to describe the allocation of indirect costs. In this
paper, I will use the term cost tracing or transfer pricing to refer to the charge of
measurable inputs (which cause direct costs), and use the term cost allocation to
refer to the (indirect) charge of the non measurable inputs (which cause indirect
costs). Moreover, I analyze only variable manufacturing overheads. My model
therefore does not explain the allocation General and Administrative costs, as well
as fixed costs allocations.

4.3 Decentralizing the budget target in a perfect world

The previous section described the budgeting process and the way top management
centrally determines budgeted targets. However, in decentralized firms (as it is the
case in our model), once budgets targets are set, some mechanisms are put in place
to achieve these targets. Indeed, managers of profit centers are usually not asked
to produce a given level of output, but rather, to maximize their profits at a given
internal charge (the coordination mechanism) determined optimally by the central
level12. These mechanisms can be designed in such a way that when decentralized
units maximize their profits, the (expected) resulting outcome coincides with the
budgeted target. In this subsection, I look into the optimal13 coordination mecha-
nism when the use of all inputs is perfectly measurable. Such setting will provide a
useful benchmark for the problem that I analyze.

The optimal input charges are obtained by solving backward:

1. given the vector of input charges set ex-ante, each division maximizes its ex-
post accounting profit by choosing the optimal level of inputs to purchase from
the supplier division.

2. Anticipating the reaction of the divisions to the input charges, the organization
sets them to maximize expected global profit.

11Baldenius, Edlin and Reichelstein (1999) report that, when the supplying division has also
access to external markets, intracompany transfers are often subject to discounts. However, the
authors use a constant discount which they describe as “the most common alternative”, therefore
keeping the linearity of transfer prices.

12If the charge is a transfer price, then my model focuses on centrally determined transfer prices.
In particular, it excludes negotiated transfer pricing. Charges that relate to cost allocation or cost
tracing are always centrally determined.

13Whenever I say optimal mechanism, it should be understood within the class of linear transfer
payments.
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Let p ≡ (p1, ..., pm) denote the vectors of input charges set by the firm at the
budgeting stage. Division i chooses zi by solving

max
zi

ΓiBi(zi − zi)
′ − 1

2
(zi − zi)Bi(zi − zi)

′ − pz
′

i.

The first order conditions of this program is

ΓiBi − (zi − zi)Bi = p, i = 1, . . . , n

or equivalently
zi = zi + Γi − pB−1

i , i = 1, . . . , n. (4)

Equation (4) describes division i’s ex-post reaction to the vector of input charges
set ex-ante. The top management takes it into account to set the optimal prices.
Given that the upstream divisions are required to satisfy the demand of the down-
stream divisions, I need not specify a reaction function for the supplier divisions to
the vector of input charges. The following result is obtained.

Proposition 1. If the use of all inputs were perfectly measurable, then the optimal
coordination mechanism would imply budgeted marginal cost pricing. There is no
cost allocation, but instead pure transfer pricing or cost tracing, as there are no
overheads.

Proof. If we set quantities before uncertainty is resolved, the first-best is obtained
by zi’s such that E[π′

i(zi)] = E[C ′(z)], where ′ represents the derivative. This implies

E(ΓiBi)− E(zi − zi)Bi − E(ΓB)− (
n∑

i=1

E(zi − zi))B = 0 i = 1, . . . , n,

which is a necessary and sufficient condition for optimality. Given condition (3), it
is satisfied if E(zi − zi) = 0. From Division i’s first order condition, i.e. equation
(4), it can be seen that if one sets p equal to the vector of budgeted marginal cost
ΓB (= ΓiBi by (3)), then division i will choose zi such that

zi − zi =Γi − p∗B−1
i

=Γi − ΓiBiB
−1
i

=Γi − Γi. (5)

By taking expectation on both sides, I get E(zi) = zi.

Again, to prove that the zi are to be interpreted as the budgeted target, assume
that the forecasts provided by managers at the budgeted stage are perfectly accu-
rate (or that there is no uncertainty), i.e. that Γi = Γi. Given that there are no
measurability issues, the budgeted plan and the actual realization should perfectly
coincide. From equality (5), it is clear that when Γi = Γi, then zi = zi, i.e. division i
produce the budgeted target. Refering to Hirshleifer (1956), there is no surprise that
the vector of optimal charges which best coordinate divisions is simply the vector
of budgeted marginal costs.

11



At this point, it is important to say something about contingent budgets. If
managers’ forecasts are inaccurate, then we are in a second-best situation. Indeed,
the optimal charge is calculated based on the budgeted plan which ultimately will
differ from actual realization. To avoid this situation, the firm could set contingent
targets, instead of the single target zi based on forecasts, and again first-best would
always obtain. However, to the best of my knowledge, contingent budgets is very
little (if not never) reported or discussed in any accounting textbook.

5 Cost allocation

I now get back to the central assumption that the use of some inputs is not easily
measurable. In the previous section, it is said that in absence of uncertainty, the
actual input use will coincide with the budgeted plan. Does this always hold? The
answer turns out to be that it does only in the case all inputs are easily measur-
able. When the use of some inputs is difficult to measure, variances will occur even
in absence of uncertainty, due to the moral hazard problem about the use of the
common non measurable inputs. What I shall prove in this section is that when
the measurable inputs are (exogenously) charged to the upstream divisions, then
allocation of the non measurable input’s cost endogenously arises.

I model the measurability problem by assuming that only the use of the k first
inputs (k < m) are measurable by top management. The (m − k) last inputs are
therefore assumed to be not measurable at all. Such assumption might seem a bit
extreme at first glance. However, it is not. Firstly, it reflects more the likelihood
that division managers can better measure their use of some inputs than does top
management. Secondly, since I use linear charges to coordinate (regulate) the use
of inputs, these charges can apply only if the input is perfectly and unambiguously
measurable. Therefore, when an input is imperfectly measurable, no matter if top
management can observe a partial signal or not about its use, linear charges (such
as a price) cannot apply to that input. More complex mechanisms can be used to
take into account the signal, if exists. However, such complex mechanisms are little
observed within firms, and this is the reason for which I look at simpler and more
widely observed mechanisms such as transfer pricing, cost tracing or, as I shall prove
soon, cost allocation.

The objective is now to search for the k-vector of prices p∗∗, for the only measur-
able inputs, which maximize total expected profit. The prices of all non-measurable
goods are set equal to zero since they are freely available inputs. The vector of
prices take here the following form

p ≡ (p1, p2, ..., pk, 0, .., 0)

≡ p1(1, 0, ...0) + p2(0, 1, 0...0) + ..... + pk(0, ...1, 0, ...0)

≡
k∑

j=1

pjej

where ej is the vector of length m which jth component is equal to 1, all other
components being equal to zero.

12



The first-order condition of division i ’s program can be expressed as

ΓiBi − (zi − zi)Bi =
k∑

j=1

pjej, i = 1, . . . , n

and its optimal level of input given by

(zi − zi) = Γi −
k∑

j=1

pjejB
−1
i , i = 1, . . . , n. (6)

As said in the previous subsection, the organization takes into account equation
(6) into the total profit function, and maximize its expected value with respect to
p∗∗. The following lemma provides the central result of this paper.

Lemma 2. The optimal charge for the measurable is given by p∗∗ = p∗o + p∗uH,
where p∗o is the k-vector of budgeted marginal costs for the measurable inputs, p∗u is
the (m− k)-vector of budgeted marginal cost for the non measurable inputs, and H
is an (m− k)× k matrix.

Proof. See appendix A2

Lemma 2 states that the optimal charge for each measurable can be expressed as
its budgeted marginal cost plus a linear combination of the budgeted marginal cost
of all non measurables. For instance, assume that there are five upstream divisions
providing five inputs/services to n downstream divisions. Assume that only inputs
1 and 2 are measurable. According to lemma 2, the optimal charge for these inputs
is given by

p1 = c1 + αc3 + βc4 + εc5

and
p2 = c2 + νc3 + σc4 + ζc5

where ci is the budgeted marginal cost of input i and is given by the ith element of
the vector ΓB. The coefficients α, β, ε, ν, σ and ζ are the elements of the H matrix,
and are functions of the parameters of all the Bi’s and B matrices. In general, it is
very hard to determine the sign of these coefficients. However, in the next section,
I prove in a two-inputs case that they are positive (negative) whenever all inputs
are complements (substitutes), and provide the intuition for the conjecture that this
result holds with more than two inputs. When some inputs are complements and
others are substitute, then the overhead rates can be either positive or negative.

One could argue that, given the fact that some inputs are not measurable, the
optimal charges derived in lemma 2 are the true budgeted marginal costs (adjusted
for the non measurable inputs). However, they are not, because the budgeted alloca-
tion (and hence the budgeted marginal costs) are centrally determined, based on the
forecasts given by division managers (see subsection 4.1). Therefore, the budgeted
marginal costs are calculated assuming that all inputs are measurable. However,
top management is not so naive, and anticipates the overuse of the non measurable
resources which it can regulate through an appropriate charge. I can now state the
following proposition, which is a consequence of lemma 2:

13



Proposition 2. The optimal coordination mechanism implies transfer pricing (or
cost tracing) for the measurable plus cost allocation for the non measurable.

The above proposition states that there is cost allocation, in the sense that an
element of the cost of non measurable inputs (marginal cost) is charged to divisions,
based on their use of the measurable inputs. Although this definition of cost allo-
cation is a priori different from standard definitions of cost allocation, the results
obtained here allow us to gain useful insights about the emergence and practice of
cost allocation. Moreover, in what follows, I will show that my definition of cost
allocation is consistent with variable cost allocation. Finally, notice that such a
definition of cost allocation does not stand alone in the literature. For instance, in
Magee (1988) the cost allocation consists in including the level of resource use in the
user’s compensation contract, instead of basing the contract on the outcome alone,
as is standard in moral hazard problems. Again, although Magee’s definition of cost
allocation is not the accounting textbooks’ standard definition, his paper provides
useful insights about the existence of cost allocation.

Now, returning to the example of 5 inputs being provided, the following points
can be emphasized

Firstly, despite the fact that the use of inputs 3 and 4 and 5 are not measurable
and cannot be directly charged, profit centers are nevertheless indirectly charged for
the cost of these inputs. At this point, it very difficult to say how much of that cost
divisions are charged. But I come back on this in my second point. The optimal
charge for the measurable inputs includes a direct charge for the use of these inputs
(transfer pricing or cost tracing at budgeted cost), and an indirect charge for the
non measurable use of inputs 3, 4 and 5 (cost allocation at budgeted cost). For each
unit of a measurable input, a profit center will therefore have to pay a rate for the
use of the non measurable input, equal to a constant times the budgeted marginal
cost of the non measurable input. This rate can be interpreted as the overhead
rate. However, notice that there is not one single overhead rate for the allocation
of a given non measurable resource. There should be as many overhead rates as
allocation bases. If for instance, input 1 and input 2 present the same degree of
complementarity with input 3, then this would mean that the proportion of input
3 to both inputs 1 and 2 is the same. In this case, a single overhead rate can be
defined, equal to (α + ν)c3. This rate can then be indifferently applied to input 1
or input 2.

My second point will now focus on how much cost is allocated. As said before,
it is difficult to say in general how much of the total cost of the non measurable
resource is allocated. However, there is one case in which this can be easily done.
This case corresponds to variable costing. In the section describing the model, I
said that the cost function is a general approximation to any cost function. Take
the case of a linear cost function. In this case, marginal cost equals variable costs.
For a level z1

i and z2
i of inputs 1 and 2 used by division i, the allocated cost of input

3 to division i is c3(z
1
i α + z2

i ν), and the total allocated cost is c3

∑n
i=1(z

1
i α + z2

i ν).
If the total amount of input 3 used14 is z3, then the common cost of input 3 is c3z

3.

14Remember that the total amount of a non measurable resource is assumed to be known. What
is unknown is the repartition of this resource across divisions which use them.
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Depending on whether z3 is greater, equal or smaller than
∑n

i=1(z
1
i α + z2

i ν), I can
conclude that there is under-allocation, full allocation or over-allocation.

Finally, our model endogenously select allocation bases. Indeed, our results show
that several allocation bases should be selected, instead of just one, as it is the case
with Activity Based Costing (ABC). Although ABC has been claimed to be superior
to traditional allocation systems, there is (to the best of my knowledge) no analytical
result supporting this claim. Our results provide such support. In our example, both
inputs 1 and inputs 2 should serve as an allocation base for allocating the cost of,
say, input 3 as long as α and ν are non nil. In the next section, I show in an example
with two inputs that α (respectively ν) are nil only if input 1 (respectively input 2)
has a zero degree of complementarity with input 3. On the other hand, if there is
perfect complementarity, then first-best would obviously be obtained15.

The reason for selecting many allocation bases is quite intuitive. Assume for
instance that both input 1 and input 2 have a positive relation with input 3, but with
different degrees of complementarity. If input 1 alone is selected as the allocation
base, then the overhead rate will not optimally take into account the relation between
these three inputs. It will be a compromise between regulating optimally the use of
input 3 by affecting the use of input 1, and regulating optimally the use of input 3
by affecting the use of input 2. This means that too much distortion will be imposed
on input 1. By selecting both variables as allocation bases, this distortion can be
distributed, in a balanced way, across the two allocation bases.

6 An illustration with two upstream divisions

So far, the generality of our model does not allow us to say something about the
“overhead rates”, i.e. the rates indirectly charged to the non measurable resources.
This section intends to fill this gap through an example with two upstream divisions
only. Much of the intuition derived here can be extended to the general setting.
Assume that the input provided by division 1 is measurable, while the input pro-
vided by division 2 is non measurable. For instance, division 1 can be the personnel
department supplying labor force to other departments, labour hours being mea-
surable, while division 2 is the power supply department. The parameters of the
benefit and cost functions are

Γi = (γ1
i , γ

2
i ) Γ = (γ1, γ2) Bi =

(
b1
i δi

δi b2
i

)
and B =

(
b1 δ
δ b2

)
.

I then have

B−1
i =

1

∆i

(
b2
i −δi

−δi b1
i

)
,

where ∆i = b1
i b

2
i − (δi)

2 is the determinant of the Bi matrix.

15In the case of perfect complementarity, the use of non measurable inputs can be accurately
inferred from the use of measurable inputs.
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The optimal overhead rate is given by (see Appendix A3)

−b1
∑n

i=1
δi

∆i

∑n
i=1

b2i
∆i

+ δ
∑n

i=1
b2i
∆i

∑n
i=1

b1i
∆i

+ δ
(∑n

i=1
δi

∆i

)2

− b2
∑n

i=1
δi

∆i

∑n
i=1

b1i
∆i
−
∑n

i=1
δi

∆i

b1
(∑n

i=1
b2i
∆i

)2

− 2δ
∑n

i=1
b2i
∆i

∑n
i=1

δi

∆i
+ b2

(∑n
i=1

δi

∆i

)2

+
∑n

i=1
b2i
∆i

(γ2b2)

Notice how lengthy is the formula of the overhead rate with only two upstream
divisions. If there are two downstream divisions, then each term is doubled. How-
ever, even in general (with n + m divisions), the overhead rate is easily computable
by any simple statistical program. All what is needed is some algebraic transfor-
mations on the Bis and B matrices. It is very difficult to say something about the
overhead rate in general. But there are some cases in which more can be said.

Absence of spillovers between upstream divisions

In this case, δ = 0 and the overhead rate simplifies to

OHR =
−
∑n

i=1
δi

∆i

(
b1
∑n

i=1
b2i
∆i

+ b2
∑n

i=1
b1i
∆i

+ 1
)

b1
(∑n

i=1
b2i
∆i

)2

+ b2
(∑n

i=1
δi

∆i

)2

+
∑n

i=1
b2i
∆i

(γ2b2)

Notice that the overhead rate is positive if inputs are complements (δi < 0) and
negative if inputs are substitutes (δi > 0). Indeed, given the assumption that the Bi

matrices are symmetric and positive definite, the following properties hold: ∆i > 0,
b1
i > 0, b2

i > 0. The denominator is then always positive, and the term in brackets
in the numerator is also positive.

Notice also that whenever there is no relation between input 1 and input 2 (i.e.
δi = 0), then the overhead rate is equal to zero, meaning that no cost should be
allocated16. Any cost allocation would simply be arbitrary.

Because overhead rates are positive in practice, I focus only on the case of com-
plementary inputs (δi < 0) for the rest of this subsection (see the next subsection for
an interpretation of negative overheads)17. To understand how cost allocation op-
erates, it is necessary to see what happens when no cost allocation occurs. Assume
therefore that there is only cost tracing, i.e. that input 1 is charged its budgeted
marginal cost c1 (denote also by c2 the budgeted marginal cost of input 2). Using
equation (6), I can determine the amount of inputs 1 and 2 to be used by division i(

z1
i − z1

i

z2
i − z2

i

)
=

(
γ1

i

γ2
i

)
− 1

∆i

(c1, 0)

(
b2
i −δi

−δi b1
i

)
16In the next subsection, I show that, surprisingly, this result relies on the fact that there are no

spillovers between upstream divisions, i.e., δ = 0.
17Notice that this is also the most realistic case. If only two inputs are internally provided, and

these inputs are substitutes, then it would make sense for the firm to produce the cheapest among
the two alternatives.
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From equation (3), I know that the vector of budgeted marginal cost is(
c1

c2

)
= ΓB = ΓiBi =

(
γ1

i b
1
i + γ2

i δi
γ1

i δ + γ2
i b

2
i .

)
Therefore,

z1
i − z1

i = γ1
i −

1

∆i

(
b2
i (γ

1
i b

1
i + γ2

i δi)
)

= γ1
i −

1

∆i

(
γ1

i b
1
i b

2
i − (γ1

i (δi)
2 − γ1

i (δi)
2) + γ2

i δib
2
i

)
= γ1

i −
1

∆i

(
γ1

i (b
1
i b

2
i − (δi)

2) + δi(γ
1
i δi + γ2

i b
2
i )
)

Putting both terms on the same denominator, and simplifying, I get

z1
i − z1

i = γ1
i − γ1

i −
δi

∆i

c2

and similarly,

z2
i − z2

i = γ2
i − γ2

i +
b1
i

∆i

c1

By taking expectation on both sides, I get

E(z1
i ) = z1

i −
δi

∆i

c2 (7)

E(z2
i ) = z2

i +
b1
i

∆i

c1 (8)

Therefore, E(z2
i ) > z2

i . Because I focus on the case δi < 0, I also have E(z1
i ) > z1

i .
This remark calls for the following proposition

Proposition 3. Assume that input 1 is selected as the basis for allocating the cost
of input 2. This will imply a decrease in the use of input 1 by profit centers. Such
a distortion is actually desirable for the firm.

Proposition 3 addresses an issue widely discussed in accounting textbooks: pro-
duction distortions created by selecting a particular allocation base. The most
common case occurs when machine hours is selected as an allocation base, leading
division’s managers to use less machine, or substitute machine with labor. Such
distortions are described as harmful to the organization. Our results say that such
downward distortion are actually desirable, and if there are some substitution pos-
sibilities, they actually do not matter.

Let me first examine the case in which there are no substitution possibilities for
the allocation base (input 1). Not allocating the cost of input 2 has only negative
consequences, in the sense that too much of input 2 will be used. This is one negative
consequence. Moreover, given that there is a positive relation between input 1 and
input 2, an overuse of input 2 will subsequently lead to too much of input 1 being
used. This is another negative consequence of not allocating the cost of input 2. For
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instance, in our example, if electricity cost is not allocated, then electricity will tend
to be overused. If, however, one assumes that whenever a machine is running, it is
because an employee is running the machine18, then a high use of the machine power
also means a high use of labor. Therefore, it is desirable to reduce the amount of
labor used by selecting labour hours as the variable to which, using Zimmerman’s
terminology, the “tax” should be applied. It is by taxing the allocation base that the
firm will discourage its overuse, and because of the complementarity, also discourage
the overuse of the non measurable resource.

Now, consider that there are possible substitutes for labour, for example machine
hours. One can then argue that labor will be reduced, but more cost are imposed on
the firm because more machine hours will then be used. Our general cost allocation
scheme says that this substitution will be costly to the division’s manager. Indeed,
if there exists a substitute, this means that our example is extended to three inputs:
machine, labor and energy, with energy still being the non measurable input. In this
case, machine hours and energy are still complements because labor and machine
hours are substitutes. Therefore, our general cost allocation rule calls for both
labour and machine hours to be selected as basis for allocating the cost of energy.
This means that because machine hours will also be taxed, it will not be overused.

Absence of complementarity or substitutability

This case is interesting only from a theoretical aspect, because it is not very relevant
empirically. Indeed, it is hard to imagine that all inputs used are independent. The
results that I will get will confirm this.

One should expect that whenever there is no relation between inputs (δi =
0 ∀i), then any cost allocation would be arbitrary. Surprisingly, this is not true in
general and holds only when there are no spillovers between upstream departments.
Indeed, substituting δi by zero yields the following overhead rate

δ
∑n

i=1
b2i
∆i

∑n
i=1

b1i
∆i

b1
(∑n

i=1
b2i
∆i

)2

+
∑n

i=1
b2i
∆i

(γ2b2)

which has the same sign as δ and is therefore non positive.
A negative overhead rate means that instead of being taxed, the allocation bases

are subsidized. The intuition for this result is the following. Given that there is no
relation between measurable and non measurable inputs, any cost allocation would
have a negative result. Indeed, taxing the allocation base will have no impact on the
use of the non measurable input, which in expectation will always be overused (see
equation (8)) and will only distort the allocation base itself away from its desired
level; Remember that not taxing input 1 results in the desired budgeted use (see
equation (7) in which δi = 0). This therefore rules out cost allocation (positive
overhead rate).

Now consider the case in which no cost allocation occur, but also no subsidy is
offered. In this case, If only cost tracing occur, then because (in expectation) the

18This excludes for instance the case in which a machine is running without performing any task.
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use of input 1 will be the budgeted level while the use of input 2 will be higher that
the budgeted level, the firm incurs a loss because of the positive spillovers. Indeed,
these spillovers are higher when both inputs are used (and therefore produced)
intensively. To gain on spillovers, the firm must encourage the use of the allocation
base, which it does by subsidizing it. Again, although interesting in theory, such
practice is however not observed in reality, and is due to the unrealistic assumption
of independence between inputs.

7 Conclusion

The mechanisms of cost tracing, transfer pricing and cost allocation are very much
related. Our results have several empirical implications. Firstly, whenever cost
tracing or transfer pricing occur, and that some resources are difficult to measure,
then cost allocation will endogenously occur. Secondly, while most cost allocation
procedures select one allocation base, our optimal mechanism can select several
allocation bases: all those that present some degree of complementarity with the
resource the cost of which has to be (endogenously) allocated. Since allocation
bases need to be measurable, the prevalence of single allocation bases suggest that
the cost of making many variables perfectly measurable outweighs the benefit from
having several allocation bases. This might explain why ABC has not been adopted
(or been dropped) by many firms. Finally, the (criticized) production distortions
that arise with the allocation base (decrease or substitution) is shown to be actually
desirable for the firm. All these reason can explain the still predominant use of cost
allocation, despite the criticisms related to this practice.
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8 Appendix

Appendix A1: proof of lemma 1
With slight adjustments, this proof is borrowed from Crémer (1980). The optimal

solution (z∗1 , ..., z
∗
n) satisfy the following first order conditions

ΓiBi − (z∗i − zi)Bi − ΓB − (
n∑

i=1

(z∗i − zi))B = 0 i = 1, . . . , n

Taking the expectation, I get

E(ΓiBi)−E(z∗i − zi)Bi −E(ΓB)− (
n∑

i=1

E(z∗i − zi))B = 0 i = 1, . . . , n (9)

Given that E [ΓiBi] = E [ΓB], by post multiplying by B−1
i , equation (9) becomes

E(z∗i − zi) + (
n∑

i=1

E(zi − z∗i ))BB−1
i = 0 i = 1, . . . , n (10)

Summing over i, it comes

(
n∑

i=1

E(z∗i − zi))(Im + BB−1
n ) = 0

where Im is the identity matrix of Rm, and B−1
n =

∑n
i=1 B−1

i . Given the assumed prop-
erties of B and Bi, the matrix (Im + BB−1

n ) is regular, and therefore invertible. It follows
that

(
n∑

i=1

E(z∗i − zi)) = 0

Substituting in (10), I get
E(zi − zi) = 0 i = 1, . . . , n

which ultimately means that zi = E(z∗i )
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Appendix A2: proof of lemma 2
For notational simplicity, denote by p ≡

∑k
j=1 pjej .

Π =
n∑

i=1

πi(zi)− C(z)

=
n∑

i=1

[
ΓiBi(Γi − pB−1

i )
′ − 1

2
(Γi − pB−1

i )Bi(Γi − pB−1
i )

′
]

− ΓB

(
n∑

i=1

(Γi − pB−1
i )

)′

− 1
2

(
n∑

i=1

(Γi − pB−1
i )

)
B

(
n∑

i=1

(Γi − pB−1
i )

)′

=
n∑

i=1

ΓiBiΓ′
i −

n∑
i=1

ΓiBiB
−1′

i p′ − 1
2

[
n∑

i=1

ΓiBiΓ′
i −

n∑
i=1

ΓiBiB
−1′

i p′ −
n∑

i=1

pB−1
i BiΓ′

i +
n∑

i=1

pB−1
i BiB

−1′

i p′

]

− ΓB

n∑
i=1

Γ′
i + ΓB

(
n∑

i=1

B−1′

i

)
p′

− 1
2

[
(

n∑
i=1

Γi)B(
n∑

i=1

Γi)′ − (
n∑

i=1

Γi)B(
n∑

i=1

B−1
i )′p′ − p(

n∑
i=1

B−1
i )B(

n∑
i=1

Γi)′ + p(
n∑

i=1

B−1
i )B(

n∑
i=1

B−1
i )′p′

]

Since Bi is symmetric positive definite, I have that B−1′

i = B−1
i . Notice that

(
∑n

i=1 Γi)B(
∑n

i=1 B−1
i )′p′ =

(
p(
∑n

i=1 B−1′

i )B′(
∑n

i=1 Γi)′
)′

=
(
p(
∑n

i=1 B−1
i )B(

∑n
i=1 Γi)′

)′
,

as B is also symmetric. Notice also that since each term of the profit function is a real
number, it is equal to its transpose. These remarks allow to write the profit in a simpler
way

Π =
n∑

i=1

ΓiBiΓ′
i −

n∑
i=1

Γip
′ − 1

2

[
n∑

i=1

ΓiBiΓ′
i − 2

n∑
i=1

Γip
′ +

n∑
i=1

pB−1
i p′

]
− ΓB

n∑
i=1

Γ′
i

+ ΓB

(
n∑

i=1

B−1
i

)
p′ − 1

2

[
(

n∑
i=1

Γi)B(
n∑

i=1

Γi)′ − 2(
n∑

i=1

Γi)B(
n∑

i=1

B−1
i )p′ + p(

n∑
i=1

B−1
i )B(

n∑
i=1

B−1
i )p′

]

=
1
2

n∑
i=1

ΓiBiΓ′
i −

1
2
p

(
n∑

i=1

B−1
i

)
p′ − ΓB

(
n∑

i=1

Γi

)′

+ ΓB

(
n∑

i=1

B−1
i

)
p′

− 1
2

[
(

n∑
i=1

Γi)B(
n∑

i=1

Γi)′ − 2(
n∑

i=1

Γi)B(
n∑

i=1

B−1
i )p′ + p(

n∑
i=1

B−1
i )B(

n∑
i=1

B−1
i )p′

]

Substituting p by its value, the expected value of the total firm’s profit is (recall that the
Γi and Γ are independent)

E(Π) =− 1
2
E

(
n∑

i=1

ΓiBiΓ
′
i

)
− 1

2

k∑
j=1

pjejB
−1
n

 k∑
j=1

pjej

′

− ΓBΓ
′

n + ΓBB−1
n

 k∑
j=1

pjej

′

− 1
2

E(ΓnBΓ
′
n)− 2ΓnBB−1

n

 k∑
j=1

pjej

′

+
k∑

j=1

pjejB
−1
n BB−1

n

 k∑
j=1

pjej

′
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where 
Γn =

∑n
i=1 Γi

Γn = E(Γn)
Γ = E(Γ)
B−1

n =
∑n

i=1 B−1
i

Notice that B−1
n is the harmonic mean of the Bi’s. Maximizing E(Π) with respect to pj

yields:
k∑

j=1

pjej(B−1
n + B−1

n BB−1
n )e

′
j = (Γ + Γn)BB−1

n e
′
j j = 1, . . . , k. (11)

In order to simplify the above equality, I shall use condition (3). Post-multiplying both
sides of equation (3) by B−1

i , I get

Γi = ΓBB−1
i i = 1, . . . , n.

Summing over i, I obtain
Γn = ΓBB−1

n . (12)

Using equation (12), I can rewrite (11) as

k∑
j=1

pjej(B−1
n + B−1

n BB−1
n )e

′
j = (Γ + ΓBB−1

n )BB−1
n e

′
j j = 1, . . . , k.

Re-arranging the terms, I get

k∑
j=1

pjej(B−1
n + B−1

n BB−1
n )e

′
j = ΓB(B−1

n + B−1
n BB−1

n )e
′
j j = 1, . . . , k.

Let M = B−1
n + B−1

n BB−1
n . The above equation becomes

k∑
j=1

pjejMe
′
j = ΓBMe

′
j j = 1, . . . , k. (13)

Denote by Mj the jth row of M . Denote also by p∗∗ the k-vector of prices I search for, by
p∗o the k-vector of first best prices of the observable inputs, by p∗u the (m − k)-vector of
first best prices of the unobservable inputs. The subscripts o and u refer to observable19

and unobservable respectively. I have

Me
′
j =Mj =

(
Mo

j |Mu
j

)
k∑

j=1

p∗∗j ej =(p∗∗|0m−k)

ΓB =p∗ = (p∗o|p∗u)

where the vertical line is used to cut the vector (or matrix) into two vectors (or matrices).
Mo

j is then a vector or length k, Mu
j is of length m − k and 0m−k is the zero vector of

19I use the word “observable” instead of “measurable” to avoid using the subscript m which
already denotes the number of inputs.
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length m− k. With these notations, equation (13) can be re-expressed as

(p∗∗|0m−k)
(
Mo

j |Mu
j

)′ =(p∗o|p∗u)
(
Mo

j |Mu
j

)′
j = 1, ..., k

⇔ p∗∗Mo′
j =p∗oM

o′
j + p∗uMo′

j j = 1, ..., k

Written in matricial form, those k equations become

p∗∗Mo = p∗oMo + p∗uMu

where Mo is therefore the matrix which components are the k first rows and columns of
M and Mu the matrix which components are the m − k last rows and k first columns of
M . Post-multiplying both sides by M−1

o yields

p∗∗ = p∗o + p∗uMuM−1
o

Appendix A3 I have

B−1
n =

( ∑n
i=1

b2i
∆i

−
∑n

i=1
δi
∆i

−
∑n

i=1
δi
∆i

∑n
i=1

b1i
∆i

)
,

and

B−1
n B =

(
b1
∑n

i=1
b2i
∆i

− δ
∑n

i=1
δi
∆i

δ
∑n

i=1
b2i
∆i

− b2
∑n

i=1
δi
∆i

−b1
∑n

i=1
δi
∆i

+ δ
∑n

i=1
b1i
∆i

−δ
∑n

i=1
δi
∆i

+ b2
∑n

i=1
b1i
∆i

)
.

B−1
n BB−1

n =

 b1
(∑n

i=1
b2i
∆i

)2
− 2δ

∑n
i=1

b2i
∆i

∑n
i=1

δi
∆i

+ b2
(∑n

i=1
δi
∆i

)2
ε

−b1
∑n

i=1
δi
∆i

∑n
i=1

b2i
∆i

+ δ
∑n

i=1
b2i
∆i

∑n
i=1

b1i
∆i

+ δ
(∑n

i=1
δi
∆i

)2
− b2

∑n
i=1

δi
∆i

∑n
i=1

b1i
∆i

σ


I denoted σ and ε the other elements of the M matrix, because I do not need those values.
In this particular case, I then have

Mo = b1

(
n∑

i=1

b2
i

∆i

)2

− 2δ
n∑

i=1

b2
i

∆i

n∑
i=1

δi

∆i
+ b2

(
n∑

i=1

δi

∆i

)2

+
n∑

i=1

b2
i

∆i

Mu = −b1
n∑

i=1

δi

∆i

n∑
i=1

b2
i

∆i
+ δ

n∑
i=1

b2
i

∆i

n∑
i=1

b1
i

∆i
+ δ

(
n∑

i=1

δi

∆i

)2

− b2
n∑

i=1

δi

∆i

n∑
i=1

b1
i

∆i
−

n∑
i=1

δi

∆i

Applying proposition 2 yields

p∗∗1 = p∗1 +
Mu

Mo
p∗2. (14)

Given the assumption that the Bi matrices are symmetric and positive definite, the follow-
ing properties hold: ∆i > 0, b1

i > 0, b2
i > 0. Therefore, Mo is always positive. Moreover,

since inputs are complements, δi > 0 and therefore Mu is also positive.
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