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Abstract

This paper examines the behavior of multivariate option prices in the
presence of association between the underlying assets. Parametric fam-
ilies of copulas offering various alternatives to the normal dependence
structure are used to model this association, which is explicitly as-
sumed to vary over time as a function of the volatilities of the assets.
These dynamic copula models are applied to better-of-two-markets and
worse-of-two-markets options on the S&P500 and Nasdaq indexes. Re-
sults show that option prices implied by dynamic copula models differ
substantially from prices implied by models that fix the dependence
between the underlyings, particularly in times of high volatilities. Fur-
thermore, the normal copula produces option prices that differ signif-
icantly from non-normal copula prices, irrespective of initial volatility
levels. Within the class of non-normal copula families considered, op-
tion prices are robust with respect to the copula choice.
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1 Introduction

In today’s economy, multivariate (or rainbow) options are viewed as excellent
tools for hedging the risk of multiple assets. These options, which are written
on two or more underlying securities or indexes, usually take the form of calls
(or puts) that give the right to buy (or sell) the best or worst performer of
a number of underlying assets. Other examples include forward contracts
whose payoff is equal to that of the best or worst performer of its underlyings,
and spread options on the difference between the prices of two assets.

One of the key determinants in the valuation of multivariate options
is the dependence between the underlying assets. Consider for instance a
bivariate call-on-max option, namely a contract that gives the holder the
right to purchase the more valuable of two underlying assets for a pre-
specified strike price. Intuitively, the value of such an option should be
smaller if the underlyings tend to move together than when they move in
opposite directions. More generally, the dependence between the underlyings
could change over time. Accounting for time variation in the dependence
structure between assets should prove helpful in providing a more realistic
valuation of multivariate options.

Over the years, various generalizations of the Black–Scholes (1973) Brow-
nian motion framework have been used to model multivariate option prices.
Examples include Margrabe (1978), Stulz (1982), Johnson (1987), Reiner
(1992), and Shimko (1994). In these papers, the dependence between as-
sets is modelled by their correlation. However, unless asset returns are well
represented by a multivariate normal distribution, correlation is often an
unsatisfactory measure of dependence; see, for instance, Embrechts, Mc-
Neil, and Straumann (2002). Furthermore, it is a stylized fact of financial
markets that correlations observed under ordinary market conditions differ
substantially from correlations observed in hectic periods. In particular,
asset prices have a greater tendency to move together in bad states of the
economy than in quiet periods; see, for instance, Boyer, Gibson, and Loretan
(1999) and Patton (2002a, 2002b) and references therein. These “correla-
tion breakdowns,” associated with economic downturns, suggest a dynamic
model of the dependence structure of asset returns.

In this paper, the relation between multivariate option prices and the
dependence structure of the underlying financial assets is modelled dynami-
cally through copulas. A copula is a multivariate distribution function each
of whose marginals is uniform on the unit interval. It has been known since
the work of Sklar (1959) that any multivariate continuous distribution func-
tion can be uniquely factored into its marginals and a copula. Thus while
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correlation measures dependence through a single number, the dependence
between multiple assets is fully captured by the copula. From a practical
point of view, the advantage of the copula-based approach to modelling is
that appropriate marginal distributions for the components of a multivari-
ate system can be selected by any desired method, and then linked through
a copula or family of copulas suitably chosen to represent the dependence
prevailing between the components.

The use of copulas to price multivariate options is not new. For example,
in Rosenberg (1999), univariate options data are used to estimate marginal
risk-neutral densities, which are linked with a Plackett copula to obtain a
bivariate risk-neutral density from which bivariate claims are valuated. This
semiparametric procedure uses a particular identifying assumption on the
risk-neutral correlation to fix the copula parameter. Cherubini and Luciano
(2002) extend Rosenberg’s work by considering other families of copulas.
In Rosenberg (2003), a risk-neutral bivariate distribution is estimated from
nonparametric estimates of the marginal distributions and a nonparametric
estimate of the copula.

An innovating feature of the present paper, however, is that, contrary
to earlier works on multivariate option pricing, the dependence structure of
the underlying assets is not treated as fixed, but rather as possibly varying
over time. Taking into account this time variation is important because it
may influence option prices. This paper proposes a model for the time vari-
ation of the dependence structure, in which a parametric copula is specified
whose dependence parameter is allowed to change with the volatilities of
the underlying assets. A distinct advantage of the parametric approach is
that while the model may be misspecified, the robustness of the conclusions
can easily be verified by repeating the analysis for as many different copula
families as desired.

A similar dynamic-copula approach has already been used in the foreign
exchange market literature by Patton (2002a), who found time variation
to be significant in a copula model for asymmetric dependence between
two exchange rates where the dependence parameter followed a ARMA-
type process. While Patton’s goal was to study the effect of asymmetric
dependence on portfolio returns, the objective of the present paper is very
different. The main focus here is on the effect of time variation in the
underlying dependence structure on the price of multivariate options.

In the empirical study presented herein, multivariate options on two im-
portant American equity index returns are considered: the S&P500 and the
Nasdaq. An analysis of the results suggests that allowing for time variation
in the dependence structure of the underlyings produces substantially dif-
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ferent option prices than under constant dependence, particularly in times
of increased volatility. Moreover, option prices implied by a normal dy-
namic dependence structure differ significantly from option prices implied
by non-normal dynamic dependence structures. These findings suggest that
unless the dependence between the S&P500 and Nasdaq stock indexes is well
described by a normal copula, alternative copula families should be consid-
ered. Option prices turned out to be robust among the alternative—i.e.,
non-normal—copula models considered in this study.

The remainder of this paper is organized as follows. Section 2 describes
the payoff structure of better-of-two-markets and worse-of-two-markets
claims, and explains in detail the proposed dynamic-dependence option val-
uation scheme. The empirical results are presented in Section 3, and con-
clusions are given in Section 4.

2 Option valuation with time-varying dependence

Multivariate options come in a wide variety of payoff schemes. The most
commonly traded options of this kind are basket options on a portfolio of
assets, such as index options. Other examples include spread options, some
of which are traded on commodity exchanges (see, for example, Rosenberg
(1998)), or dual-strike and multivariate-digital options.

This paper concentrates on European-type options on the best (worst)
performer of several assets, sometimes referred to as outperformance (un-
derperformance) options. As these are typically traded over the counter,
price data are not available. Therefore, valuation models cannot be tested
empirically. However, a robustness study comparing models with differ-
ent assumptions remains feasible, and this is the objective pursued herein.
While the study described in the sequel is restricted to options on better-
and worse-of-two-markets claims, the technique is sufficiently general to an-
alyze the aforementioned alternative multivariate options as well, and may
thus be of wider interest.

One can distinguish four types of better-of-two-markets or worse-of-two-
markets claims: call options on the better performer, put options on the
worse performer, call options on the worse performer, and put options on
the better performer. These may be referred to as call-on-max, put-on-min,
call-on-min, and put-on-max options, respectively. Their payoffs at maturity
are:
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call on max : max{max(R1, R2)−E, 0},
put on min : max{E −min(R1, R2), 0},
call on min : max{min(R1, R2)−E, 0},
put on max : max{E −max(R1, R2), 0},

where Ri is the return at maturity on index i ∈ {1, 2}, and E denotes the
exercise price of the option.

The proposed scheme for valuating these options is as follows. First,
each of the two objective marginal distributions of the daily index returns
underlying a type of claim is modelled, and their risk-neutral counterparts
are derived. Next, a parametric family of copulas is chosen to fix the joint
risk-neutral distribution of the index returns. The fair value of the option
is then determined by taking the discounted expected value of the option’s
payoff under the risk-neutral distribution.

The specification chosen for the objective marginal distributions is from
Duan (1995). It is general enough to capture volatility clustering, a stylized
fact of equity returns for which there is overwhelming empirical evidence at
the daily frequency, while still providing a relatively easy transformation to
risk-neutral distributions. Each of the objective marginal distributions of
the index returns is modelled by a GARCH(1,1) process. It is repeated here
for the sake of completeness; see Bollerslev (1986). For i ∈ {1, 2},

Ri,t+1 = µi + ηi,t+1 ,

ηi,t+1|It ∼ N (0, hi,t) ,

hi,t+1 = ωi + βihi,t + αiη
2
i,t+1,

where ωi > 0, βi > 0, and αi > 0. Here, It denotes the information
available at time t. However, it must be stressed that, in the light of Sklar’s
theorem, in principle any choice for the marginal distributions is consistent
with the copula approach. The vast collection of alternatives that have
been used by other authors to model univariate index return distributions
includes (variants of) continuous-time geometric Brownian motion of Black
and Scholes (1973), and the discrete-time binomial model of Cox, Ross, and
Rubinstein (1979). Again, the GARCH specification that is employed here
is appealing as it allows for an easy change of measure in addition to being
able to capture volatility clustering. In particular, Duan (1995) shows that,
under certain conditions, the change of measure comes down to a change in
the drift.

An alternative, nonparametric approach is to use univariate option price
data to obtain arbitrage-free estimates of the marginal risk-neutral densities,
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as in Ait-Sahalia and Lo (1998). This route is taken by Rosenberg (2003).
Clearly, an advantage of this approach is that it does not impose restrictions
on the asset return processes or on the functional form of the risk-neutral
densities. However, this flexibility comes at the cost of imprecise estimates,
especially if the distributions are time-varying.

The second step in the proposed valuation scheme is to fix the joint
risk-neutral distribution of the index returns by choosing a copula. A set
of well-known one-parameter copula families is considered for this purpose.
They are the Frank, Gumbel–Hougaard, Plackett, Galambos, and normal
families. Their cumulative distribution functions are given in Appendix A.
For all of these copulas, there is a one-to-one relation between the depen-
dence parameter—denoted θ—and Kendall’s nonparametric measure of as-
sociation. For any copula Cθ, Kendall’s tau is related to θ in the following
way:

τ(θ) = 4ECθ(U, V )− 1, (1)

where (U, V ) is distributed as Cθ, and E denotes the expectation operator
with respect to U and V . Appendix B displays closed-form formulas for
the population value of Kendall’s tau for some of the copula models under
consideration.

This relation suggests a natural way to estimate the copula. An esti-
mate of θ is readily obtained by computing the sample version of tau on
a (sub)sample of paired index-return observations, inverting Relation (1),
and plugging in the sample tau.1 This method-of-moment type procedure
yields a rank-based estimate of the association parameter which is consis-
tent, under the assumption that the selected family of copulas describes
accurately the dependence structure of the equity indexes. Other methods
could be used without fundamentally altering this approach, e.g., inversion
of Spearman’s rho, or the maximum pseudo-likelihood method.

The proposed technique assumes that the objective and risk-neutral
copulas are identical. Rosenberg (2003) makes this assumption as well.
If multivariate option price data were available, this assumption could be
tested or the appropriate risk-neutral copula could be estimated. Only data
on prices of multivariate claims would reveal information about the risk-
neutral dependence structure. Information about the risk-neutral depen-

1The sample version of Kendall’s tau is defined as follows. Let {(X1, Y1), . . . , (Xn, Yn)}
be a random sample of n observations from a vector (X, Y ) of continuous random variables.
Two distinct pairs (Xi, Yi) and (Xj , Yj) are said to be concordant if (Xi−Xj)(Yi−Yj) > 0,
and discordant if (Xi −Xj)(Yi − Yj) < 0. Kendall’s tau for the sample is then defined as
t = (c− d)/(c + d), where c denotes the number of concordant pairs, and d is the number
of discordant pairs.
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dence structure can never be extracted from univariate option prices—which
are available—as these only bear relevance to the risk-neutral marginal pro-
cesses, and not to the joint risk-neutral process. Identification of the mul-
tivariate density requires knowledge of both the marginal densities and the
dependence function that links them together.

Time variation in the copula is modelled by allowing the parameter of
dependence parameter to evolve through time according to a particular equa-
tion. The forcing variables in this equation are the conditional volatilities of
the underlying assets. These are also the forcing variables that are typically
chosen to model time-varying correlations; see, e.g., the BEKK model intro-
duced by Engle and Kroner (1995). Additional motivation is provided by
the evidence on correlation breakdowns, which suggests that financial mar-
kets exhibit high dependence in periods of high volatility. Patton (2002a)
proposes an ARMA-type process linking the dependence parameter to ab-
solute differences in return innovations, which is another way to capture the
same idea.

To be more specific, let τt be Kendall’s measure of association at time
t, and let hi,t be the objective conditional variance estimate at time t of
underlying index return i ∈ {1, 2} implied by Duan’s GARCH option pricing
model. It is assumed that

τt = γ(h1,t, h2,t) (2)

for some function γ(·, ·) to be specified later. This conditional measure of
association governs the degree of dependence for the risk-neutral copula
under consideration.

The proposed valuation scheme is implemented using Monte Carlo simu-
lations. Pairs of random variates are drawn from the copula implied by the
estimated conditional risk-neutral measure of association, which are then
transformed to return innovations using Duan’s GARCH model. Subse-
quently, the payoffs implied by these innovations are averaged and dis-
counted at the risk-free rate. The result then constitutes the fair value
of the option. Algorithms for random variable generation from the non-
normal copulas are given in Genest and MacKay (1986), Genest (1987),
Ghoudi, Khoudraji, and Rivest (1998), and Nelsen (1999). For the normal
copula, a straightforward Cholesky decomposition may be used.
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3 Pricing options on two equity indexes

The dynamic-dependence valuation scheme outlined in Section 2 is applied
to better-of-two-markets and worse-of-two-markets options on the S&P500
and Nasdaq indexes. A sample consisting of pairs of daily returns on the
S&P500 and Nasdaq from January 1, 1993 to August 30, 2002 was obtained
from Datastream. The sample size is T = 2422. The maximum likelihood
estimates of the GARCH parameters for the marginal index return processes
may be found in Table I. The values for α and β nearly add up to one. These
estimates are in line with previously reported values.

Figure 1 depicts the time series of the estimated standardized GARCH
innovations (η1,t+1/

√
h1,t, η2,t+1/

√
h2,t) for the last 250 trading days in the

sample. (For clarity, the picture is restricted to a subsample; other episodes
show a similar pattern.) Note that outliers typically occur simultaneously
and in the same direction. This positive dependence between the two se-
ries is even more apparent from Figure 2, which displays the support set
of the empirical copula of the standardized return innovations. This scat-
ter plot consists of the observed pairs of ranks (divided by T + 1) for the
estimated standardized GARCH innovations of the two markets. Under reg-
ularity conditions, the empirical copula function converges to the true (here,
objective) copula function; see Van der Vaart and Wellner (1996). Notice
the pronounced positive dependence, particularly in the tails. The sample
version of Kendall’s tau for the entire sample amounts to 0.60, confirming
positive dependence. Figure 3 gives an impression of how this dependence
measure of the standardized return innovations evolves over time. It shows
rolling-window estimates of Kendall’s tau using window sizes of two months,
i.e., Kendall’s tau at day t is computed using the 20 trading days prior to
day t, day t itself, and the 20 trading days after day t. While the estimates
show considerable variation, a slightly upward trend over the sample period
is discernable.

The time variation in the copula is governed by Equation (2). It models
the dependence measure as a function of the conditional volatilities of the
index returns. The following specification of this function is proposed:

γ(h1, h2) = γ0 + γ1 log max(h1, h2). (3)

To motivate this specification, recall that the evidence on correlation break-
downs suggests that increased dependence occurs in hectic periods. Hence,
theory predicts a positive value of γ1. The maximum operator reflects that
hectic periods in either market may cause dependence to go up. Since volatil-
ity in both markets is highly dependent, the actual specification is likely not
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to affect the results in the present section too much. The parameters γ0 and
γ1 were estimated by regressing the rolling-window estimates of Kendall’s
tau on the estimated log maximum conditional volatility. This is illustrated
in Figure 4. The slope coefficient, γ1, was estimated at 0.063; positive, as
expected. The estimated dependence measure implied by these parameter
estimates,

γ(h1,t, h2,t) = γ0 + γ1 log max(h1,t, h2,t),

was then used to fix the conditional risk-neutral copula at time t. Return
innovations were sampled from this conditional copula to compute the price
of the option. In total, the Monte Carlo study was based on 100, 000 repli-
cations, leading to simulation errors in the order of magnitude of 1 basis
point for one-month maturity claims.

Clearly, the option price depends on the initial levels of volatility of
the underlyings. Prices for three levels of initial volatility were computed:
low, medium, and high volatility, where medium volatility is defined as the
estimated unconditional variance ω/(1−β−α), and low and high volatility
are one-fourth of and four times this amount, respectively. Furthermore,
different maturities were considered, ranging from one day to one month
(i.e., 20 trading days). The strike price was set at levels between .98 and
1.02. Finally, the risk-free rate was assumed to be 4 percent per annum.

The results show that allowing for time varying dependence leads to
different option prices than under static dependence, in particular in times
of high volatility. This is illustrated in Figure 5 which displays, for various
copula parametrizations, the price (measured in basis points) of a one-month
put-on-max option as a function of the exercise price implied by dynamic
dependence, and compares it to the option price under three levels of static
dependence: low, medium, and high static dependence. The medium level
of dependence is equal to the average measure of dependence found in the
sample, 0.60; the low and high levels are 0.40 and 0.80, respectively. Note
that a static model for the dependence structure, which uses the sample
measure of dependence of 0.60, underestimates the option price generated by
the dynamic model considerably for all copula parametrizations and over the
entire range of strike prices considered. The difference is significant since the
95% confidence intervals of the price estimates do not overlap. In the interest
of clarity, confidence intervals are not displayed here, but available from the
authors upon request. Note that the prices implied by dynamic copulas are
between the high and the medium static-dependence prices, suggesting that
the dynamic model implies a dependence that is on average stronger than in
the medium static-dependence case. Interestingly, price differences between
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the dynamic and static model vanish as initial volatilities are at a medium
level; see Figure 6. The same holds for low initial volatilities (not shown),
again, across a broad range of copula families and strike prices.

It is also interesting to compare option prices produced by different dy-
namic copula families. It turns out that prices implied by the normal cop-
ula deviate substantially from prices implied by the other copula families.
Outside the normal class, the copula choice appears to be irrelevant. This
suggests that unless the dependence between index returns can be described
by a normal model, alternative specifications should be considered. These
findings are illustrated in Figures 7 and 8 which depict dynamic-dependence
one-month call-on-max and put-on-min option prices respectively, as a func-
tion of their strike under medium initial volatilities. The prices implied by
the normal copula are significantly lower than the prices implied by the other
copulas across the whole range of strike prices. The effect is there at other
maturities as well. The difference between normal and non-normal prices is
also found for high and low initial volatility levels. The differences are less
significant for call-on-min and put-on-max options.

4 Conclusions

This paper studies the relation between multivariate options prices and the
dependence structure of the underlying assets. A copula-based model was
proposed for the valuation of claims on multiple assets. A novel feature of
the proposed model is that, contrary to earlier works on multivariate option
pricing, the dependence structure is not taken as fixed, but rather as poten-
tially varying with time. The time variation in the dependence structure was
modelled using various parametric copulas by letting the copula parameter
depend on the conditional volatilities of the underlyings.

This dynamic copula model was applied to better- and worse-of-two-
markets options on the S&P500 and Nasdaq indexes for a variety of copula
parametrizations. Option prices implied by the dynamic model turned out
to differ substantially from prices implied by a model that fixes the depen-
dence between the underlying indexes, especially in high-volatility market
conditions. Hence, the application suggests that time variation in the de-
pendence between the S&P500 and the Nasdaq is important for the price
of options on these indexes. A comparison of option prices computed from
different copula families shows that the normal family produces prices that
differ significantly from the ones implied by the non-normal alternatives.
These findings suggests that if the dependence between the index returns
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is not well represented by a normal copula, alternative copulas need to be
considered. The empirical relevance of such alternatives is apparent given
the evidence of non-normality in financial markets.
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A One-Parameter Copula Families

The table below displays several one-parameter copula families.

Frank Cθ(u, v) = 1
θ log

{
1 + (eθu−1)(eθv−1)

eθ−1

}

Gumbel–Hougaard Cθ(u, v) = exp
{
−

(
| log u|θ + | log v|θ

) 1
θ

}

Plackett Cθ(u, v) = 1+(θ−1)(u+v)−
√

[1+(θ−1)(u+v)]2−4uvθ(θ−1)

2(θ−1)

Galambos Cθ(u, v) = uv exp
{(
| log u|θ + | log v|θ

)− 1
θ

}

Normal Cθ(u, v) = Nθ(Φ−1(u),Φ−1(v))

Note: Φ is the standard (univariate) normal distribution function, and Nθ denotes the

standard bivariate normal distribution function with correlation coefficient θ.

B Kendall’s tau

The table below provides expressions—closed-form if available—of the re-
lation between Kendall’s tau and the dependence parameter for the copula
families considered in Appendix A.

Frank τ(θ) = 1− 4 {D1(−θ)− 1} /θ

Gumbel-Hougaard τ(θ) = 1− 1/θ

Plackett τ(θ) = 4
∫ 1
0

∫ 1
0 Cθ(u, v)dCθ(u, v)− 1

Galambos τ(θ) = θ+1
θ

∫ 1
0

(
1

t1/θ + 1
(1−t)1/θ − 1

)−1
dt

Normal τ(θ) = 2
π arcsin θ

Note: D1 denote the first-order Debye function, D1(−θ) = 1
θ

∫ θ

0
t

et−1
dt + θ

2
.
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Table I: Maximum likelihood estimates of the GARCH parameters for the
marginal index return processes. Figures in brackets are robust quasi-
maximum likelihood standard errors.

Parameter S&P500 Nasdaq
µ× 102 0.0674 (0.0168) 0.0812 (0.0246)
ω × 105 0.0680 (0.0398) 0.1895 (0.0987)
β 0.9258 (0.0220) 0.8906 (0.0309)
α 0.0680 (0.0198) 0.1015 (0.0288)
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Figure 1: Daily standardized GARCH innovations for S&P500 and Nasdaq
for the last 250 trading days in the sample.
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Figure 2: Support set of the empirical copula of the standardized GARCH
innovations.
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Figure 3: Rolling-window estimates of Kendall’s tau for the standardized
return innovations using a window size of 41 trading days.
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Figure 4: Regression of rolling-window estimates of Kendall’s tau for the
standardized return innovations on the logarithm of the maximum return
volatility.
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Figure 5: One-month maturity put-on-max prices as a function of the strike
under high initial volatilities for dynamic dependence and for low, medium,
and high static dependence for various copulas.
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Figure 6: One-month maturity put-on-max prices as a function of the
strike under medium initial volatilities for dynamic dependence and for low,
medium, and high static dependence for various copulas.

19



0.98 0.99 1 1.01 1.02 1.03 1.04
150

200

250

300

350

400

450

500
normal
frank
gumhou
plackett
galambos

Figure 7: One-month call-on-max prices as a function of the strike under
dynamic dependence and medium initial volatilities for various copula mod-
els.
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Figure 8: One-month put-on-min prices as a function of the strike under dy-
namic dependence and medium initial volatilities for various copula models.
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