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Abstract

What’s the asymptotic null distribution of a rank-based serial autocorre-
lation test applied to residuals of an estimated GARCH model? What’s the
limiting distribution of estimated ACD parameters applied to the residuals of
some first-stage modelling procedure? This paper addresses the often occurring
situation in econometrics of applying standard statistics to residuals instead of
innovations. The paper provides a simple and unified way of calculating the
necessary adjustment in the limiting distribution, be it of tests or estimators.
On the technical side, we also provide a novel approach to this problem us-
ing Le Cam’s theory of convergence of experiments (in this paper restricted to
Gaussian shift experiments). The resulting formula is simple and the regularity
conditions required fairly minimal. Numerous examples show the strength and
wide applicability of our approach.
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1 Introduction

Residual-based tests represent an important area in econometrics generally used for
diagnostic checking of a proposed statistical model. Such tests mainly fall into three
categories that examine assumptions regarding the distribution, dependence, and/or
heterogeneity of the innovation process. These tests are covered in many econometrics
and statistics textbooks and represent the focus of ongoing research1. A large class
of residual-based tests and some recent references are revisited in Section 4. Simi-
larly, residual-based estimators (often referred to as two-stage estimators) are widely
applied in econometric work. Usually, the asymptotic distribution of residual-based
statistics (tests or estimators) is derived on a case-by-case basis, using a particu-
lar econometric model and some stringent assumptions about the statistic and/or
the first-stage estimators used. These assumptions may include smoothness (e.g.,
pointwise differentiability) of the statistic with respect to the data that is often not
satisfied or cannot be evaluated. Our approach derives the asymptotic distribution
of such statistics in a context that does not involve stringent conditions on the test
statistic or estimator and is not model specific.

The paper offers a novel approach to the above problem based on Le Cam’s third
lemma applied to Locally Asymptotically Normal (LAN) models. The proposed
method owns the following advantages: (i) It is based on the unifying and coherent
framework of Le Cam’s theory. (ii) It offers a simple yet general method for deriving
the asymptotic distribution of different test statistics and estimators using the same
techniques instead of alternative statistical theory methods. (iii) The method is
applicable to both cross-sectional and time series models as long as they satisfy the
LAN condition. (iv) It covers some existing residual-based tests (both classical and
recent) which are derived for more general dynamic models (such as residual-based
dependence tests) and presents some new results, e.g., in the area of rank-based tests
for temporal dependence or heterogeneity in location and scale time series models.
The main theorem (Theorem 2.1) of the paper shows that under the LAN condition
and the appropriate asymptotic normality condition for the statistic of interest, the
residual-based statistic is asymptotically normally distributed with a variance that
is a simple function of the variance of the innovation statistic2 and the estimator as
well as the covariances of the innovation-based statistic with the central sequence
and the estimator. Besides the wide applicability of this theorem, it also provides
insights in the general structure of the problem by indicating precisely when the
asymptotic variance of the residual-based static equals that of the innovation-based

1A non-exhaustive list of references: Andrews (1998), Bera and Jarque (1982), Godfrey (1988),
Hallin and Puri (1990), Koul and Stute (1999), Lundberg and Terasvirta (2002), McKean, Sheather,
and Hettmansperger (1990), MacKinnon (1992), Spanos (1986), Stute (1997), and the special Jour-
nal of Econometrics issue edited by Keuzenkamp and Magnus (1995).

2Throughout the paper, we use the term innovation-based statistic for the statistic applied to
the true innovations in the model, i.e., the residuals obtained if the true value of the parameter of
interest were known.
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one, exceeds it, or is smaller (which, contrary to widespread believe, often happens
as well). Moreover, the theorem can be used directly to assess the local power of
residual-based tests.

Based on Theorem 2.1, we address a number of applications for residual-based
statistics that cover tests from all three categories of assumptions of model innova-
tions - distributional, dependence, and heterogeneity. It is shown how our method
can be used as an alternative, simple technique to reach the same asymptotic dis-
tribution of some residual based tests in the (classical and recent) literature and as
a method for providing new results on the asymptotic distribution of residual-based
tests such as rank-statistics for serial dependence or structural breaks, that are often
quite complicated to evaluate using existing methods. The paper presents the fol-
lowing three categories of examples as applications of Theorem 2.1 for a large family
of both location and scale time series models that satisfy the LAN condition (such
as ARMA and GARCH models). The first category deals with temporal dependence
tests such as linear correlation residual tests (e.g., the Ljung and Box, 1978, test) and
second-order correlation tests (e.g., the McLeod and Li, 1983, test) and rank-based
residual correlation tests (see Hallin and Werker, 1999, for an overview). For a scale
model we obtain the result for residual squared correlation tests as recently derived
in Berkes, Horváth, and Kokoszka (2003) for a more specific GARCH model. The
asymptotic results for rank-based serial dependence tests are new in the econometric
literature. The second class of tests revisits goodness-of-fit statistics based on the
empirical distribution function. Applying our main result, we find for the residual-
based tests in location and scale time series models an asymptotic distribution which
is that originally in Durbin (1973) and recently extended, for instance, in Bai (2003).
The last category of tests considers structural break CUSUM tests based on the ranks
of the residuals and shows that these tests are asymptotically distribution free for
both location and scale time series models, a new complementary result found for the
case of regression models in Sen (1984) and for other empirical distribution function
statistics (Horvath et al., 2001, Koul, 2002) in the literature. As a final introductory
remark, note that we do not apply bootstrap techniques (which may or may not have
superior finite sample behavior, depending on the model at hand) or some trans-
formation in order to obtain distribution free statistics, such as Khmaladze’s (1981)
martingale transformation in the context of empirical distribution function based
tests (see for instance, Koul and Stute, 1999, or Bai, 2003).

The rest of the paper is organized as follows. In Section 2 we formulate the
basic idea for deriving the limiting distribution of a statistic when applied to some
model’s residuals. This section also introduces the running AR(1) example that we
use to illustrate the results. As we indicate, a technical complication arises when
making this idea rigorous. Section 3 deals with this complication by discretizing the
estimator of the model’s parameters and we provide a formal proof of the limiting
distribution of the residual-based statistic, for a discretization that becomes finer and
finer. Section 4 gives many other applications to illustrate that our approach is easily
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adapted to other models, other statistics, and other first-stage estimators. Section 5
concludes.

2 Main result: Intuition

The goal of the present paper is to give a widely applicable method to derive the
asymptotic distribution of statistics, when applied to residuals of some parametric
model. As mentioned in the introduction, this problem occurs in many specific ap-
plications (Section 4 discusses several of these). Generally, size-adjustments in tests
have been based on smoothness arguments of the test-statistic as a function of the
underlying variables. While this approach works for many interesting situations, it is
much more difficult to apply in situations such as rank and/or sign-based statistics,
due to the inherent non-smoothness of these kinds of statistics. We propose an ap-
proach that does not require any analytical (e.g., differentiablility) smoothness of the
statistic. Nor do we require any asymptotic linearity of the statistics. However, we do
require that the underlying model is “regular” in the appropriate Local Asymptotic
Normality sense and we resort to discretized estimators (see Section 3).

Our results are derived in the Hájek and Le Cam theory of Locally Asymptot-
ically Normal (LAN) models. “Most” of the common models in econometrics and
statistics are LAN. The LAN property has been considered in regression models
by, e.g., Bickel (1982) and Fabian and Hannan (1982). Autoregressive models are
LAN as shown by Kreiss (1987a), as well as ARMA models that are discussed in
Kreiss (1987b). Non-linear regression and autoregression models are LAN for regres-
sion functions that are smooth in the parameters as is shown in Drost, Klaassen,
and Werker (1997). ARCH-type models were shown to satisfy the LAN condition
by Linton (1993) and GARCH was treated in detail by Drost and Klaassen (1997).
Duration models like the Autoregressive Conditional Duration model of Engle and
Russell (1998) are discussed in Drost and Werker (2003). Two final references are
Bickel et al. (1993) that discusses other classes of LAN models with iid observations
and Taniguchi and Kakizawa (2000) that discusses several more general time-series
models. Applications of our results to the above time series models are given in Sec-
tion 4. It is illustrative to mention also some models where the LAN condition is not
satisfied. Two common phenomena may lead to non-LAN behavior: non-stationary
data and non-smooth functional dependence. To start with the first, models for non-
stationary (and possibly cointegrated) processes are generally not LAN. In a series
of papers this situation is discussed, Jegannathan (1995, 1997, 1999), and quadratic
likelihood approximations as in the LAN condition are derived. However, the limiting
distribution of the so-called central sequence is no longer normal in these models. The
situation of non-smooth functional dependence of a regression function, for instance,
occurs in Threshold AutoRegressive models. In such models, the regression function
is of the form m(x) = m1(x)I{x ≤ x0}+ m2(x)I{x > x0}. The fact that this regres-
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sion function is not-differentiable with respect to the threshold parameter x0 leads to
a situation where the limiting experiment is not Gaussian as in the LAN case, but
of a compound Poisson type. Inference for the threshold parameter is discussed in,
e.g., Qian (1998) and Hansen (2000). While these latter two cases present models
that are not LAN, the idea of our approach is likely to carry over to these situations
since Le Cam’s third lemma, on which our results are based, is not restricted to the
LAN situation. However, the details are sufficiently different from the LAN case to
warrant discussion elsewhere.

Before we introduce the LAN assumption, let us formalize the statistical model
we are interested in. Let E (n) denote a sequence of experiments E (n) defined on a
common parameter set Θ ⊂ IRk:

E (n) =
{
X(n),A(n),P(n) =

{
IP

(n)
θ : θ ∈ Θ

}}
,

where
(
X(n),A(n)

)
is a sequence of measurable spaces and, for each n and θ ∈ Θ,

IP
(n)
θ a probability measure on

(
X(n),A(n)

)
. We assume throughout this paper that

pertinent asymptotics in this sequence of experiments takes place at the usual
√

n
rate, although other rates can be adopted at the cost of adapted notation only. Let θ0

denote a fixed value of the parameter of interest θ and let θn and θ′n denote sequences
local (sometimes called contiguous) to θ0, i.e., δn =

√
n(θn−θ0) and δ′n =

√
n(θ′n−θ0)

are bounded in IRk. Write Λ(n)(θ′n|θn) = log
(
dIP

(n)
θ′n /dIP

(n)
θn

)
for the log-likelihood of

IP
(n)
θ′n with respect to IP

(n)
θn

. In case IP
(n)
θ′n is not dominated by IP

(n)
θn

, we mean the Radon-
Nikodym derivative of the absolute continuous part in the Lebesgue decomposition of
IP

(n)
θ′n with respect to IP

(n)
θn

(see Strasser, 1985, Definition 1.3). We impose throughout
the present paper a somewhat stronger condition than LAN. This version is usu-
ally referred to as Uniform Local Asymptotic Normality (ULAN) and is generally
indispensable for the construction of efficient inference procedures. Although not all
papers cited above discuss this uniform version, it is satisfied in all these models. As
a matter of fact, the authors of the present paper are not aware of any non-trivial
statistical model which is LAN but not ULAN.

Condition (ULAN): The sequence of experiments E (n) is Uniformly Locally Asymp-
totically Normal (ULAN) in the sense that there exists a sequence of random variables
∆(n)(θ) (the central sequence) such that for all sequences θn and θ′n local to θ0, we
have

Λ(n)(θ′n|θn) = (δ′n − δn)T ∆(n)(θ0 + δn/
√

n)− 1

2
(δ′n − δn)T IF (δ′n − δn) + oIP(1)

= (δ′n − δn)T ∆(n)(θ0 + δ′n/
√

n) +
1

2
(δ′n − δn)T IF (δ′n − δn) + oIP(1),

where, as before, θn = θ0 + δn/
√

n and θ′n = θ0 + δ′n/
√

n. Moreover, the central
sequence ∆(n)(θn) is asymptotically normally distributed with zero mean and variance
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IF , i.e., ∆(n)(θn)
L−→ N(0, IF ), as n → ∞, under IP

(n)
θn

. IF is the Fisher information
matrix. 2

Remark 2.1 The (U)LAN condition presents a prime example in the theory of con-
vergence of statistical experiments. The quadratic expansion of the log-likelihood
ratio in the local parameter δ′n − δn is equal to the log-likelihood ratio in the Gaus-
sian shift model {N(I−1

F δ, I−1
F ) : δ ∈ IRk}. This can be shown to imply that the

sequence of localized experiments {IP(n)
θn+δ : δ ∈ IRk} converges to the Gaussian shift

experiment. This in turn implies that asymptotic analysis in the original experiments
can be based on properties of the limiting Gaussian shift model. It also implies that
the sequences IP

(n)
θ′n and IP

(n)
θ′n are contiguous (see, e.g., Le Cam and Yang, 1990). As

a result, the oIP(1)-terms in the above definition converge in probability to zero both

under IP
(n)
θn

and IP
(n)
θ′n . 2

In order to illustrate our results, we consider the well-known example of testing
for residual autocorrelation in ARMA models. For expository simplicity, we focus
here on the AR(1) model, whereas the widely applied residual serial autocorrelation
test of Ljung and Box (1978) is examined in Section 4. The final result is, of course,
well-known and can be found in, e.g., Brockwell and Davis (1991). However, the
derivation is novel and easily extended to many other models and statistics as shown
in Section 4.

Example 2.1 Let the time-series (Yt) follow a stationary and invertible AR(1) model,
i.e.,

Yt = θYt−1 + εt,

where θ ∈ (−1, 1) and (εt) is a sequence of i.i.d. random variables from a distribution
with density f with expectation zero and finite variance σ2

ε . Kreiss (1987b)’s Theo-
rem 3.1 shows that the ARMA model satisfies the LAN condition if the innovation
density f is absolutely continuous (with respect to Lebesgue measure) with finite
Fisher information for location, i.e., Il :=

∫
(f ′/f)2f < ∞. Some weak conditions on

the starting values are needed as well, but that need not concern us here. For the
AR(1) model the central sequence is given by

∆(n)(θ) =
1√
n

n∑

t=1

−f ′

f
(εt)Yt−1,

with Fisher information

IF = IlVar {Yt−1} = Il
σ2

ε

1− θ2
.

For notational convenience we consider the stationary solution to the AR(1) equation.
The repercussions for the LAN condition are detailed in Koul and Schick (1997). 2
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The interest of the present paper lies in the asymptotic behavior of (test) statis-
tics applied to residuals in some model, calculated using a given estimator θ̂n for the
parameter θ. We define the localized version of this estimator as δ̂n =

√
n(θ̂n − θ0).

We are also given a test statistic of interest that depends on the unknown parameter
θ, say Tn(θ). In the above example Tn(θ) could be the l-th order autocorrelation of
residuals εt(θ) = Yt − θYt−1. We assume that we know the asymptotic behavior of

the test statistic Tn(θ) under IP
(n)
θ . Our goal is to derive the limiting distribution of

the statistic when applied to the estimator θ̂n, i.e., the limiting distribution of Tn(θ̂n)

under IP
(n)
θ . In order to achieve this goal, we impose a second and last condition.

Condition (AN): Consider a sequence θn local to θ0. The test statistic Tn(θn), the
central sequence ∆(n)(θn), and the estimation error

√
n(θ̂n− θn) = δ̂n− δn are jointly

asymptotically normally distributed, under IP
(n)
θn

, as n → ∞ and as δn → δ, more
precisely,



Tn(θn)
Λ(n)(θn|θ0)

δ̂n − δn


 L−→




T
1
2
δT IF δ + δT ∆

Z


 ∼ N







0
1
2
δT IF δ

0


 ;




τ 2 cT δ αT

δT c δT IF δ δT

α δ Γ





 .

2

Remark 2.2 Note that in the above condition, the distribution of Z does not depend
on the sequence (δn). This is to say that the estimator being used is regular in the
sense of Bickel et al. (1993), Page 18. This regularity also implies that the asymptotic
covariance between the estimator and the central sequence is the k×k identity matrix
Ik.

Example 2.2 In our AR(1) example, we may estimate θ using the standard least
squares estimator θ̂n. It is well-known that this estimator satisfies the asymptotic
linear representation

√
n

(
θ̂n − θ0

)
=

1− θ2

σ2
ε

1√
n

n∑

t=1

εtYt−1 + oIP(1)
L−→ N(0, 1− θ2),

as n →∞, under the imposed conditions on the AR(1) model, i.e., Γ = 1− θ2.
In this example, we are interested in testing for serial correlation in the residuals

of the AR(1) model. Based on the true innovations εt(θ), the standard l-th order
autocorrelation test statistic satisfies

Tn(θ) = ρ̂n(θ; l)

:=
√

n
(n− l + 1)−1 ∑n

t=l+1 εt(θ)εt−l(θ)− (n−1 ∑n
t=1 εt(θ))

2

n−1
∑n

t=1 εt(θ)2 − (n−1
∑n

t=1 εt(θ))
2

=
1√
n

n∑

t=l+1

εt(θ)εt−l(θ)

σ2
ε

+ oIP(1).
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In order to verify Condition (AN), the following moment results for the stationary
distribution of the AR(1) process are needed:

E
−f ′(εt)

f(εt)
Yt−1

εtεt−l

σ2
ε

= E
Yt−1εt−l

σ2
ε

= θl−1,

E
1− θ2

σ2
ε

εtYt−1
εtεt−l

σ2
ε

= (1− θ2)E
Yt−1εt−l

σ2
ε

= (1− θ2)θl−1,

E
1− θ2

σ2
ε

εtYt−1
−f ′(εt)

f(εt)
Yt−1 =

1− θ2

σ2
ε

EY 2
t−1 = 1,

since E[−f ′(εt)/f(εt)]εt = − ∫
xf ′(x)dx =

∫
f(x)dx = 1 using the finiteness of the

Fisher information for location. A standard application of the martingale central
limit theorem now shows that Condition (AN) is satisfied with




T
∆
Z


 ∼ N







0
0
0


 ;




τ 2 cT αT

c IF 1
α 1 Γ







= N







0
0
0


 ;




1 θl−1 θl−1(1− θ2)
θl−1 Ilσ

2
ε/(1− θ2) 1

θl−1(1− θ2) 1 1− θ2





 ,

Observe that none of the covariance terms in this limiting distribution depends on
the actual innovation density f . 2

We may now state the main result of the paper in an informal way. The statement
will be made precise in the next section, that also presents a formal proof. For a
better understanding of the result, we provide here an intuitive “proof”. Note that
we study the behavior of the residual statistic Tn(θ̂n) under local alternatives θn of
the parameter value θ0.

Theorem 2.1 Under the Conditions (ULAN) and (AN) and in a way that will be

made precise in the next section, we have for the residual statistic Tn(θ̂n), under IP
(n)
θn

,
approximately

Tn(θ̂n) ∼ N
(
0, τ 2 + (α− Γc)T Γ−1(α− Γc)− αT Γ−1α

)
(2.1)

= N
(
0, τ 2 + cT Γc− 2αT c

)
.

Proof (intuition): Introduce the distribution




T
∆
Z


 ∼ N


0,




τ 2 cT αT

c IF Ik

α Ik Γ





 . (2.2)
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where Ik denotes the k × k identity matrix. From Condition (AN), we have for all

δ ∈ IRk, under IP
(n)

θn+δ/
√

n and as n →∞,




Tn(θn + δ/
√

n)
Λ(n)(θn|θn + δ/

√
n)√

n(θ̂n − θn − δ/
√

n)


 L−→




T
−1

2
δT IF δ − δT ∆

Z


 ,

while, as a consequence of Le Cam’s third lemma (see, e.g., Le Cam and Yang, 1990,

Proposition 3.1.1), the same vector converges under IP
(n)
θn

in distribution to




T − cT δ
+1

2
δT IF δ − δT ∆

Z − δ


 .

The quantity of interest now can be written as, for t ∈ IR,

IP
(n)
θn

{
Tn(θ̂n) ≤ t

}

=
∫

δ∈IRk
IP

(n)
θn

{
Tn(θ̂n) ≤ t|θ̂n = θn + δ/

√
n

}
dIP

(n)
θn

{√
n(θ̂n − θn) ≤ δ

}

=
∫

δ∈IRk
IP

(n)
θn

{
Tn(θn + δ/

√
n) ≤ t|√n(θ̂n − θn) = δ

}
dIP

(n)
θn

{√
n(θ̂n − θn) ≤ δ

}

→
∫

δ∈IRk
IP

{
T − cT δ ≤ t|Z = δ

}
dIP {Z ≤ δ}

=
∫

δ∈IRk
Φ

(
t + (c− Γ−1α)T δ√

τ 2 − αT Γ−1α

)
dIP {Z ≤ δ} ,

where Φ denotes the cumulative distribution function of the standard normal distri-
bution and we used the result that, conditionally on Z = z, T has a N(αT Γ−1z, τ 2−
αT Γ−1α) distribution. Observe that, if we introduce the distribution

[
X
Z

]
∼ N

(
0,

[
τ 2 − αT Γ−1α + (α− Γc)T Γ−1(α− Γc) (α− Γc)T

(α− Γc) Γ

])
,

the distribution of X conditionally on Z = δ is N(−(c − Γ−1α)T δ, τ 2 − αT Γ−1α).

Consequently, the limit of IP
(n)
θn

{
Tn(θ̂n) ≤ t

}
can be written as

∫

δ∈IRk
IP {X ≤ t|Z = δ} dIP {Z ≤ δ} = IP {X ≤ t} ,

from which (2.1) follows. 2

Remark 2.3 In the above derivation, the convergence of the conditional distribu-
tion IP

(n)
θn

{
Tn(θn + δ/

√
n) ≤ t|√n(θ̂n − θn) = δ

}
to the limit IP

{
T − cT δ ≤ t|Z = δ

}

is the most delicate part, since the convergence takes place in the conditioning event
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as well. A formalization of such a convergence would require conditions under which
a conditional probability, or, for that matter, a conditional expectation, is continuous
with respect to the conditioning event. This question has been studied in the litera-
ture, by introducing various topologies on the space of conditioning σ-fields. A good
reference is the paper by Cotter (1986) that compares some topologies. From our
point of interest, Cotter (1986) essentially shows that the required continuity prop-
erty only holds for discrete probability distributions. Indeed, we solve the problem
by discretizing the estimator θ̂n appropriately. See Section 3 for details. 2

If we think of the canonical examples given in the introduction, Tn(θ) represents
a test statistic for distributional or dynamic properties of some innovations in the
model, while Tn(θ̂) denotes the same statistic applied to estimated residuals in the
model. Theorem 2.1 shows that replacing innovations by residuals may leave the
asymptotic variance of the test-statistic unchanged, increase it, or decrease it, de-
pending on the value of (α − Γc)T Γ−1(α − Γc) as compared to αT Γ−1α. Several
special cases may occur, that we discuss now.

First, if c = 0, the residual-based statistic has the same asymptotic variance as
the statistic based on the true innovations. In particular, no adaptation is necessary
in critical values in order to guarantee the appropriate asymptotic size of the test
when applied to estimated residuals. Recall that c = 0 implies that the test statistic
and the central sequence of the model are asymptotically independent. As a result,
the distribution of the test statistic is invariant to local changes in the parameter θ.
In particular, the asymptotic distribution of Tn(θ0) is the same under all probability

distributions IP
(n)
θn

, whatever the local parameter sequence θn. As estimated parameter

values θ̂ also differ from θ0 in the order of magnitude of
√

n, this property consequently
carries over to the residual-based statistic. As we will see, this situation occurs, for
example, when applying the McLeod and Li (1983) test for correlation in squared
residuals from least-squares estimation of ARMA or regression models (Example 4.2)
or when estimating a general scale model on such residuals. One may feel that these
two examples provide in fact manifestations of the same phenomenon, but, as we will
see, the arguments in both cases are actually quite different.

A second special case occurs if α = Γc. For instance, if the estimator used is
efficient we have Γ = I−1

f , α = I−1
F c, and, consequently, α = Γc and αT Γ−1α = cT I−1

F c.
However, we will see below that this situation also occurs, for instance, when applying
the Ljung and Box (1978) test to least-squares residuals in an ARMA or regression
model, also when the actual underlying distribution of the innovations is not Gaussian
and the least-squares estimator consequently is not parametrically efficient. In case
α = Γc, the limiting variance of the residual-based statistic is smaller than the limiting
variance of the statistic applied to the true innovations.

Finally, it might be that α = 0. In that case the limiting variance of the residual
statistic becomes τ 2 + cT Γc ≥ τ 2. This is the case where the test statistic Tn(θ)
is asymptotically independent from the estimator θ̂n and a test based on estimated
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residuals always has a larger asymptotic variance than the same test applied to the
actual innovations, unless c = 0.

Example 2.3 In our AR(1) running example, we can immediately apply the re-
sult (2.1). From the calculations above, we find that the asymptotic variance of the
l-th order autocorrelation of the residuals equals

τ 2 +
(α− Γc)2

Γ
− α2

Γ
= 1 + 0− [θl−1(1− θ2)]2

1− θ2

= 1− θ2(l−1)(1− θ2).

This result is, of course, well-known and can be found, e.g., in Example 9.4.1 in
Brockwell and Davis (1991). Observe that this result does not depend on the actual
underlying distribution of the innovations f . 2

Theorem 2.1 has been stated for univariate statistics Tn(θ), but can easily be ex-
tended to the multivariate case using the Cramér-Wold device. For multivariate Tn,
τ 2, c, and α in Condition (AN) become matrices. By taking arbitrary linear combi-
nations of the components of Tn and applying the univariate version of Theorem 2.1,
we find that the same limiting distribution 2.1 holds with τ 2 replaced by the limiting
variance matrix of Tn, c the limiting covariance matrix between the statistic and the
central sequence, and α the limiting covariance matrix between the statistic and the
estimator used. This result can be applied when deriving, for instance, the limiting
distribution of a two-stage estimator, i.e., where a model is estimated on residuals
from a first-stage estimation, as shown in Example 4.4.

2.1 Power considerations

A question that arises naturally at this point is the effect on the power of a test
when applying it to residuals instead of actual innovations. First of all, note that
the limiting distribution of the residual test statistic in (2.1) does not depend on the
local parameter sequence θn. This implies that the statistic’s distribution is invariant
with respect to local changes in the underlying parameter θ. The test, consequently,
has no local power against alternatives of this type, as should be.

Consider, however, the case where there is an additional parameter ψ in the model
and we are interested in the (local) power of the residual-based statistic Tn(θ̂n) with
respect to this parameter. The model now consists of a set of probability measures
{IP(n)

θ,ψ : θ ∈ Θ, ψ ∈ Ψ}. For ease of notation we assume that the original model is

obtained by setting ψ = 0, i.e., IP
(n)
θ,0 = IP

(n)
θ . As before, fix θ0 ∈ Θ and consider the

local parametrization (θn, ψn) = (θ0 + δ/
√

n, 0 + η/
√

n). Introduce the log-likelihood

Λ̃(ψn|0) = log
dIP

(n)
θ0,ψn

dIP
(n)
θ0,0

,

11



with respect to the parameter ψ. We are interested in the behavior of our test-statistic
Tn(θ̂n) under IP

(n)
θ0,ψn

. Assume that Condition (ULAN) is satisfied jointly in θ and ψ.

Moreover, assume the equivalent of Condition (AN) under ψ = 0, i.e., under IP
(n)
θn,0

and as n →∞,




Tn(θn)
Λ(n)(θn|θ0)

δ̂n − δn

Λ̃(n)(ψn|0)




L−→




T
1
2
δT IF δ + δT ∆

Z

−1
2
ηT IP η + δT IFP η + ηT ∆̃


 (2.3)

∼ N







0
1
2
δT IF δ

0
−1

2
ηT IP η + δT IFP η


 ;




τ 2 cT δ αT dT η
δT c δT IF δ δT δT IFP η
α δ Γ BT η

ηT d ηT IFP δ ηT B ηT IP η





 .

Here IP denotes the Fisher information for the parameter ψ with respect to which
we are interested in establishing the local power of the statistic Tn(θ̂n), while IFP

denotes the cross Fisher information between θ and ψ. The matrix B measures the
covariance between the log-likelihood ratio with respect to ψ and the estimator for
θn. Consequently, this matrix measures the bias in θ̂n that occurs due to possible
local changes in ψ. The special case B = 0 refers to the situation where θ̂n is
insensitive to local changes in ψ. This occurs, e.g., if θ̂n is an efficient estimator for
θ in a model where ψ is considered a nuisance parameter. The asymptotic mean of
Λ̃(n)(ψn|0) in (2.3) is a direct consequence of the fact that the limiting distribution
is studied under (θ, ψ) = (θn, 0). The derivations leading to Theorem 2.1 remain
valid and can be carried out while taking into account the joint behavior of Tn(θ̂n)

and Λ̃(n)(ψn|0). Under IP
(n)
θn,0, one easily verifies for (Tn(θ̂n), Λ̃(n)(ψn|0)) the following

limiting distribution:

N(

[
0

−1
2
ηT IP η + δT IFP η

]
,

[
τ 2 + (α− Γc)T Γ−1(α− Γc)− αT Γ−1α ηT (d−Bc)

(d−Bc)T η ηT IP η

]
).

Applying Le Cam’s third lemma once more, we see that the shift in the innovation-
based statistic Tn(θ) due to local changes in ψ is given by dT η, while the same local
change in ψ induces a shift of size (d−Bc)T η in the residual-based statistic Tn(θ̂). In
the special case that B = 0, we thus find that the power against local changes in ψ in
the residual-based statistic decreases, remains unchanged, or increases as the limiting
variance under ψ = 0 increases, remains unchanged, or decreases, respectively. It may
thus very well be the case that residual-based statistics have larger power against
certain local alternatives than the same statistic applied to actual innovations.
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3 Main result: Formalization

The problem with studying the asymptotic behavior of Tn(θ̂n) is that arbitrary esti-
mators (even if they are regular) θ̂n can pick out very special points of the parameter
space. Without strong uniformity conditions on the behavior of Tn(θ) as a function of
θ (such as, continuous differentiability in some way), the residual statistic Tn(θ̂n) can
behave in an erratic way. We solve this problem by discretizing the estimator θ̂n. This
is a well-known trick due to Le Cam, however, usually applied to the construction of
optimal tests and estimators in ULAN models. We introduce this approach now and
study the behavior of the statistic based on the discretized estimated parameter.

The discretized estimator θ̂n is obtained by rounding the original estimator θ̂n

to the nearest midpoint of a regular grid of cubes. To be precise, consider a grid
of cubes in IRk with sides of length d/

√
n. We call d the discretization constant.

Then θ̂n is the estimator obtained by taking the midpoint of the cube to which θ̂n

belongs. To formalize the above even further, introduce the function d : IRk →
ZZk which arithmetically rounds each of the components of the input vector to the
nearest integer. Then, we may write, with θ̂n our initial non-discretized estimator,

θ̂n = d(
√

nθ̂n)/
√

n. Our ultimate interest lies in the asymptotic behavior of Tn(θ̂n).

We first study the behavior of θ̂n in the following lemma.

Lemma 3.1 Let the discretization constant d > 0 be given. Define the “discretized

truth” θn = d(
√

nθ0)/
√

n. Then, the localized version δ̂n =
√

n(θ̂n − θn) of the

discretized estimator θ̂n is degenerated on {dj : j ∈ ZZk}. Moreover, for δn → δ as
n →∞, we have

IP
(n)

θn+δn/
√

n

{
δ̂n = dj

}
→ IP

{
N(δ − dj, Γ) ∈ (−d

2
ι,

d

2
ι]

}
, (3.1)

where ι = (1, 1, . . . , 1)T ∈ ZZk.

Proof: The fact that δ̂n is degenerated on {dj : j ∈ ZZk} follows easily from

δ̂n =
√

n(θ̂n− θn) = d(
√

nθ̂n)− d(
√

nθ0). To deduce its limiting distribution, observe
the following equalities of events, for fixed j ∈ ZZk,

{
δ̂n = dj

}
=

{
d(
√

nθ̂n)− d(
√

nθ0) = dj
}

=
{
d(
√

nθ0 + δ̂n) = d(
√

nθ0) + dj
}

=

{
d(
√

nθ0) + dj − d

2
ι <

√
nθ0 + δ̂n ≤ d(

√
nθ0) + dj +

d

2
ι

}

=

{
dj − d

2
ι < δ̂n +

√
nθ0 − d(

√
nθ0) ≤ dj +

d

2
ι

}

=

{
dj − d

2
ι <

√
n(θ̂n − θn) ≤ dj +

d

2
ι

}
.
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From the Conditions (ULAN) and (AN), we find, under IP
(n)

θn+dj/
√

n
, as δn → δ,

and as n →∞,
[

Λ(θn + δn/
√

n|θn + dj/
√

n)√
n(θ̂n − θ0 − dj/

√
n)

]
L−→

[
−1

2
(δ − dj)T IF (δ − dj) + (δ − dj)T ∆

Z

]
,

with [Z, ∆T ]T as in (2.2). From Le Cam’s third lemma, this implies, under IP
(n)

θn+δn/
√

n

and as n → ∞,
√

n(θ̂n − θn − dj/
√

n)
L−→ N(δ − dj, Γ). Together with the above

result on the event
{
δ̂n = dj

}
, the lemma now follows. 2

The above lemma is basic to our formal main result that now can be stated.

Theorem 3.2 With the notation introduced above and under Conditions (ULAN)
and (AN), we have for δn → δ and as n →∞,

lim
d↓0

lim
n→∞ IP

(n)

θn+δn/
√

n

{
Tn(θ̂n) ≤ t

}
= IP {X ≤ t} , (3.2)

where
X ∼ N

(
0, τ 2 + (α− Γc)T Γ−1(α− Γc)− αT Γ−1α

)
.

Proof: From the proof of Lemma 3.1, we know
{
δ̂n = dj

}
=

{
−d

2
ι <

√
n(θ̂n − θn)− dj ≤ d

2
ι

}
.

Moreover, applying Le Cam’s third lemma as in the proof of Lemma 3.1, we find
under IP

(n)

θn+δn/
√

n
and as n →∞,

[
Tn(θn + dj/

√
n)√

n(θ̂n − θn)− dj

]
L−→ N

([
(δ − dj)T c

δ − dj

]
,

[
τ 2 αT

α Γ

])
.

Taking these two results together, we get, for all j ∈ ZZk and with the distribu-
tion (2.2),

IP
(n)

θn+δn/
√

n

{
Tn(θn + dj/

√
n) ≤ t and δ̂n = dj

}

→ IP

{
T + (δ − dj)T c ≤ t and − d

2
ι < Z + (δ − dj) ≤ d

2
ι

}
.

The number of values that δ̂n takes in a bounded set, is finite. Consequently, we
may write for each M > 0,

IP
(n)

θn+δn/
√

n

{
Tn(θ̂n) ≤ t and

∣∣∣∣δ̂n

∣∣∣∣ ≤ M
}

=
∑

j∈ZZk, d|j|≤M

IP
(n)

θn+δn/
√

n

{
Tn(θn + dj) ≤ t and δ̂n = dj

}

→ ∑

j∈ZZk, d|j|≤M

IP

{
T + (δ − dj)T c ≤ t and− d

2
ι < Z + (δ − dj) ≤ d

2
ι

}
,
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as n →∞. Since lim supn→∞ IP
(n)

θn+δn/
√

n

{∣∣∣∣δ̂n

∣∣∣∣ > M
}
→ 0 as M →∞, we obtain

IP
(n)

θn+δn/
√

n

{
Tn(θ̂n) ≤ t

}

→ ∑

j∈ZZk

IP

{
T ≤ t− (δ − dj)T c and − d

2
ι < Z + (δ − dj) ≤ d

2
ι

}
,

as n →∞. Let ϕTZ denote the probability density function of [T, ZT ]T and ϕZ that
of Z. Observe again that, conditionally on Z = z, T has a N(αT Γ−1z, τ 2 − αT Γ−1α)
distribution. Consequently,

∑

j∈ZZk

IP

{
T ≤ t− (δ − dj)T c and − d

2
ι < Z + (δ − dj) ≤ d

2
ι

}

=
∑

j∈ZZk

∫ t−(δ−dj)T c

x=−∞

∫ −(δ−dj)+ d
2
ι

z=−(δ−dj)− d
2
ι
ϕTZ(x, z)dxdz

=
∑

j∈ZZk

∫ −(δ−dj)+ d
2
ι

z=−(δ−dj)− d
2
ι
Φ

(
t− (δ − dj)T c− αT Γ−1z√

τ 2 − αT Γ−1α

)
ϕZ(z)dz

=
∑

j∈ZZk

∫ −(δ−dj)+ d
2
ι

z=−(δ−dj)− d
2
ι
Φ

(
t− (α− Γc)T Γ−1z√

τ 2 − αT Γ−1α

)
ϕZ(z)dz + O(d)

=
∫

z∈IRk
Φ

(
t− (α− Γc)T Γ−1z√

τ 2 − αT Γ−1α

)
ϕZ(z)dz + O(d)

=
∫

z∈IRk
IP {X ≤ t|Z = z}ϕZ(z)dz + O(d)

ra IP {X ≤ t} ,

as d ↓ 0, with
[

X
Z

]
∼ N

(
0,

[
τ 2 + (α− Γc)T Γ−1(α− Γc)− αT Γ−1α α− Γc

(α− Γc)T Γ

])
.

This completes the proof. 2

Remark 3.1 As the informal derivations in Section 3, the above proof is strongly
based on a conditioning argument with respect to the value of the estimator θ̂n, or,
more precisely, that of the local estimation error δ̂n. This leads one to believe that it
is meaningfully possible to derive LAN conditions for conditional distributions, where
the conditioning event is the value of the estimation error. The authors of the present
paper have, however, not seen any results in this direction. 2

Theorem 3.2 utilizes the technique of discretization to avoid initial estimators θ̂n

to pick out very unfortunate points of the likelihood. The same technique is applied
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usually in the construction of efficient estimators in parametric and semiparametric
models. In practise, one would, of course, rarely implement it. We take the re-
sult (3.2) as an approximate limiting distribution for the residual-based statistic for
large number of observations n and small discretization constant d. The accuracy of
this approximation for finite samples is case specific. Many of the papers referenced
in Section 4 provide simulation studies to assess this accuracy in particular situations.

4 Applications

Our results are applicable to cases where the underlying model satisfies the LAN
condition. In the present section we work through several examples, showing the
scope of our results. We concentrate on time series models to gain coverage of tests
and conciseness of exposition while noting that cross-sectional models can be han-
dled as well. The first class of statistics addresses residual-based tests for temporal
dependence, both linear and non-linear (quadratic). In particular, we consider test-
ing for linear and second order serial correlation in ARMA and regression models in
Examples 4.1 and 4.2, respectively. After this, we extend these results to testing for
non-linear dependence in the form of autocorrelation in squared residuals and linear
dependence tests applied to residuals of an estimated scale model. Example 4.4 con-
siders the case of estimating a GARCH model based on ARMA residuals. For reasons
of robustness, applied work often uses rank-based statistics to test for serial correla-
tion in residuals or in their squares. The fifth example focuses on this situation. The
second class of examples considers goodness-of-fit tests for evaluating the innovations’
distributional assumptions. There is a large class of empirical distribution function
(EDF) goodness-of-fit tests (e.g., D’Agostino and Stephens, 1986) recently revisited
for residuals of regression and time series models (see, e.g., Andrews, 1997, Koul and
Stute, 1999, Koul, 2002, and Horváth et al., 2001). Examples 4.6 and 4.7 revisit
the asymptotic distribution of such residual EDF-based tests in location and scale
time series, when the null distribution is completely specified and when it contains
nuisance parameters. The approach followed in the paper yields asymptotic results
that match those of Durbin (1973) and Bai (2003), among others. The last example
(Example 4.8) considers CUSUM tests for structural breaks in the innovations’ dis-
tribution based on the ranks of residuals (compare Sen, 1984, for the linear model).
We present a new result on the asymptotic distribution of these statistics for scale
models.

Example 4.1 Ljung-Box in ARMA/regression models with OLS residuals
Consider a location model of the form

Yt = µt−1(θ) + εt, t = 1, . . . , n, (4.1)

where µt−1(θ) depends on past values Yt−1, Yt−2, . . . and εt is a sequence of i.i.d. mean
zero innovations with finite variance σ2

ε and finite Fisher information for location
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Il :=
∫
(f ′/f)2f < ∞. As mentioned in the introduction, such a model satisfies

the LAN property under the condition that µt−1(θ) depends smoothly on θ and the
process satisfies some regularity conditions (see Drost et al., 1997, for details). In
particular, stationary and invertible ARMA models and linear regression models are
allowed. In the latter case, µt−1(θ) depends on some observable exogenous variables
X1, . . . , Xn. The central sequence can generally be written as

∆(n)(θ) =
1√
n

n∑

t=1

−f ′

f
(εt)

∂µt−1(θ)

∂θ
,

where εt(θ) := Yt − µt−1(θ) and where the Fisher information becomes

If = IlE

[
∂µt−1(θ)

∂θ

∂µt−1(θ)

∂θT

]
.

For notational convenience we assume stationarity here .
We study in this example the Ljung and Box (1978) statistic which is based on

l-th order residual autocorrelations ρ̂(θ; l) that satisfy, as we have seen,

ρ̂(θ; l) =
1√
n

n∑

t=l+1

εt(θ)εt−l(θ)

σ2
ε

+ oIP(1), (4.2)

as n →∞, where εt(θ) = Yt − µt−1(θ).
The third and last ingredient that determines the behavior of the residual-based

Ljung and Box (1978) statistic is the actual estimator used. Consider, for example,
the standard least-squares estimator that satisfies

√
n

(
θ̂n − θ0

)
=

(
E

[
∂µt−1(θ)

∂θ

∂µt−1(θ)

∂θT

])−1
1√
n

n∑

t=1

εt
∂µt−1(θ)

∂θ
+ oIP(1),

as n →∞.
In order to apply Theorem 2.1, we calculate

τ 2 = 1,

α =

(
E

[
∂µt−1(θ)

∂θ

∂µt−1(θ)

∂θT

])−1

E

[
εt−l

∂µt−1(θ)

∂θ

]
,

Γ = σ2
ε

(
E

[
∂µt−1(θ)

∂θ

∂µt−1(θ)

∂θT

])−1

, (4.3)

c = σ−2
ε E

[
εt−l

∂µt−1(θ)

∂θ

]
.

Note that in the present example we have α = Γc. This implies that the asymptotic
distribution of the l-th order autocorrelation calculated on least-squares residuals is

N


0, 1− σ−2

ε E

[
εt−l

∂µt−1(θ)

∂θT

] (
E

[
∂µt−1(θ)

∂θ

∂µt−1(θ)

∂θT

])−1

E

[
∂µt−1(θ)

∂θ
εT

t−l

]
 .

(4.4)
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Note, once more, that decreased limiting variance does not depend on the density f
of the underlying innovations, but through some standard moments.

The Ljung and Box (1978) (or, for that matter, the Box and Pierce, 1970) statis-
tic is based on a simultaneous comparison of the empirical autocorrelation at various
lags. In order to derive the joint behavior of ρ̂(θ̂n; l) for l = 1, . . . , L, Theorem 2.1
can be utilized in its multivariate extension as discussed in Section 2. This leads to
the limiting distribution (4.4) above, with εt−l replaced by the L-dimensional vec-
tor (εt−1, . . . , εt−L)T . Restricting attention further to ARMA(p,q) model, we have
∂µt−1(θ)/∂θ = (Yt−1, . . . , Yt−p, εt−1, . . . , εt−q)

T , so that the limiting variance only
depends on the autocorrelation structure. Completing the calculation and taking
L →∞ as n →∞, one verifies readily that the limiting variance is approximately a
projection matrix with trace L− p− q, which leads to the classical result as in, e.g.,
Brockwell and Davis (1991). 2

Example 4.2 McLeod-Li in ARMA/regression models with OLS residuals
Following up on the previous example, we consider the situation where we want to
test for serial correlation in the squared innovations. The McLeod and Li (1983)
statistic is based on the empirical autocorrelation of squared innovations which are
given by

ρ̂2(θ; l) =
√

n
(n− l + 1)−1 ∑n

t=l+1 [ε2
t (θ)− n−1 ∑n

t=1 ε2
t (θ)]

[
ε2

t−l(θ)− n−1 ∑n
t=1 ε2

t (θ)
]

n−1
∑n

t=1 ε4
t (θ)− (n−1

∑n
t=1 ε2

t (θ))
2

=
1√
n

n∑

t=l+1

(ε2
t (θ)/σ

2
ε − 1)(ε2

t−l(θ)/σ
2
ε − 1)

κε − 1
+ oIP(1), (4.5)

as n →∞, assuming that the innovations have finite fourth moments κεσ
4
ε .

Compared to the previous example, Γ doesn’t change as it depends on the model
and the estimator only. One easily verifies τ 2 = 1 and finds c = 0, since, using
integration by parts and Eεt = 0, E[−f ′(εt)/f(εt)][ε

2
t /σ

2
ε − 1] = 2

∫
xf(x)dx/σ2

ε = 0.
The actual form of α is easily obtained as well, but that need not concern us here as
c = 0 implies that the limiting distribution of the residual-based statistic equals that
of the innovation-based statistic, i.e., N(0, τ 2) = N(0, 1). The McLeod and Li (1983)
statistic is based on

∑L
l=1 ρ̂2

2(θ̂n; l). Apparently, when applied to the residuals of a
regression of ARMA model, the limiting distribution remains χ2

L with no correction
for pre-estimated parameters. 2

Example 4.3 Ljung-Box/McLeod-Li in scale models with QMLE residuals
Tests for residual autocorrelation or squared residual autocorrelation are also often
applied to the residuals of scale models. This situation occurs in financial modelling
using ARCH-type processes or ACD-type models (Engle and Russell, 1998). In gen-
eral terms, the scale model can be written as

Yt = σt−1(θ)εt, t = 1, . . . , n, (4.6)

18



where σt−1(θ) depends on past values Yt−1, Yt−2, . . . and εt is a sequence of i.i.d. mean
zero, unit variance innovations with finite Fisher information for scale Is :=

∫
(1 +

xf ′(x)/f(x))2f(x)dx < ∞. As mentioned in the introduction, such a model satisfies
the LAN property under sufficient regularity conditions. The central sequence for θ
in these models reads

∆(n)(θ) =
1√
n

n∑

t=1

−1

2

(
1 + εt(θ)

f ′(εt(θ))

f(εt(θ))

)
∂

∂θ
log σ2

t−1(θ),

where εt(θ) := Yt/σt−1(θ), while the Fisher information is given by

IF =
1

4
IsE

[
∂

∂θ
log σ2

t−1(θ)
∂

∂θT
log σ2

t−1(θ)

]
.

The most often applied estimator in these models is the QMLE estimator θ̂n based
on a imposed Gaussian distribution for the innovations εt. In various more specific
cases, this QMLE estimator has been shown to satisfy the asymptotically linear
representation:

√
n(θ̂n − θn) = −

(
E

[
∂

∂θ
log σ2

t−1(θ)
∂

∂θT
log σ2

t−1(θ)

])−1

× (4.7)

1√
n

n∑

t=1

(
1− ε2

t

) ∂

∂θ
log σ2

t−1(θ) + oIP(1),

under IP
(n)
θn

and as n → ∞. From this representation one immediately finds the
asymptotic variance of the QMLE estimator as

Γ = (κε − 1)

(
E

[
∂

∂θ
log σ2

t−1(θ)
∂

∂θT
log σ2

t−1(θ)

])−1

, (4.8)

with, as before, κε = Eε4
t (recall that in this scale model we normalized Eε2

t = 1).
In order to find out the limiting distribution of the empirical l-th order autocor-

relation of the residuals, or the squared residuals, we may use (4.2) and (4.5), to get
the appropriate covariances in Condition (AN) for the Ljung and Box (1978) type
test (cLB and αLB) and the McLeod and Li (1983) type test (cML and αML). This
leads to

cLB = 0,

αLB =
Γ

κε − 1
Eε3

t E

[
εt−l

∂

∂θ
log σ2

t−1(θ)

]
,

cML =
1

κε − 1
E

[
(ε2

t−l − 1)
∂

∂θ
log σ2

t−1(θ)

]
,

αML =
Γ

κε − 1
E

[
(ε2

t−l − 1)
∂

∂θ
log σ2

t−1(θ)

]
,
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since E[1 + εtf
′(εt)/f(εt)]εt = −2

∫
xf(x)dx = 0 and E[1 + εtf

′(εt)/f(εt)][ε
2
t − 1] =∫

(x3 − x)f ′(x)dx = − ∫
(3x2 − 1)f(x)dx = −2, as Eεt = 0 and Eε2

t = 1.
From cLB = 0, we find that applying the Ljung and Box (1978) statistic to resid-

uals of a scale model estimated by Gaussian QMLE, does not lead to an adaptation
in the limiting distribution, in particular not to a reduction of the number of degrees
of freedom in the χ2 distribution as in the classical ARMA case. For the McLeod and
Li (1983) statistic the situation is quite different. No further simplification occurs and
the limiting distribution of the individual squared autocorrelations is given by (2.1)
as

N
(
0, 1− q

κε − 1

)
, (4.9)

with

q = E

[
(ε2

t−l − 1)
∂

∂θT
log σ2

t−1(θ)

]
×

(
E

[
∂

∂θ
log σ2

t−1(θ)
∂

∂θT
log σ2

t−1(θ)

])−1

×

E

[
(ε2

t−l − 1)
∂

∂θ
log σ2

t−1(θ)

]
.

The result (4.9) is also derived in Berkes et al. (2003) for residuals of the GARCH(p,q)
model (compare also Horváth and Kokoszka, 2001). They, however, pay much more
attention to the primitive conditions needed so that, in our terminology, Condi-
tion (AN) is satisfied. Their Theorem 2.2 is the counterpart of (4.9) with the nota-

tion d2
0 = κε − 1, ik = l, cik = E

[
(ε2

t−l − 1) ∂
∂θT log σ2

t−1(θ)
]
, A0 = 1

4
(κε − 1)2Γ−1, and

B0 = −1
2
(κε − 1)Γ−1. Note that their Theorem 2.2 gives the limiting distribution of

(κε − 1)ρ̂2(θ̂; l). 2

Example 4.4 Estimating GARCH on ARMA residuals
As we have seen in Section 2, our results can also be used to derive the limiting
distribution of a two-step estimator. To illustrate this, we assume that the Gaussian
QMLE as in (4.7) for the scale model (4.6) is calculated on residuals of an ARMA
model that has been estimated at the first stage using least-squares as in Example 4.1.
In order to apply Theorem 2.1, note that the statistic of interest now is the Gaussian
QMLE for the scale model, while the underlying model and estimator are as in
Example 4.1. Consequently, we have that Γ is as in (4.3), while

τ 2 = (κε − 1)

(
E

[
∂

∂θ
log σ2

t−1(θ)
∂

∂θT
log σ2

t−1(θ)

])−1

,

and c = 0 since E[−f ′(εt)/f(εt)][1 − ε2
t ] = − ∫

2xf(x)dx = 0. Note that τ 2 and c
are matrices in this case. Once more, the actual form of α, although it can be easily
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derived, is irrelevant as c = 0 implies that the limiting variance of the Gaussian QMLE
applied to the residuals is the same as that applied to the innovations, namely τ 2

above. The asymptotic distribution of Lagrange multiplier (LM) tests that are based
on such a two-stage approach, and examine, for instance, dependence and nonlinearity
in the residuals of ARMA models, can also be considered in the above context. 2

Example 4.5 Rank test for residual autocorrelation
One of the advantages of our approach is that we do not require differentiability of
our test-statistic with respect to the parameter θ. This is particularly helpful when
considering rank-based statistics since they are, by definition, not smooth in the
parameter θ for given observations. To introduce the statistic, write Rt(θ) for the
rank of the t-th innovation εt(θ) among all innovations ε1(θ), . . . , εn(θ). Consider a
rank-based test for l-th order autocorrelation

rn(θ; l; g) =
1

n− l

n∑

t=l+1

−g′

g

(
G−1

(
Rt(θ)

n + 1

))
G−1

(
Rt−l(θ)

n + 1

)
/
√

Ig, (4.10)

where g denotes some zero mean and unit variance reference density, with corre-
sponding cumulative distribution function G and Fisher information for location
Ig =

∫
(g′/g)2g < ∞. The so-called van der Waerden autocorrelations are obtained

by taking g the standard normal density, while the logistic density leads to the
Wilcoxon autocorrelations. Many more examples can be found in the overview of
Hallin and Werker (1999), which also gives the relevant asymptotically linear rep-
resentations used below. The prime advantage of using rank-based autocorrelations
is that they are insensitive to misspecification of the innovation distribution (since
they are distribution-free), while they still may lead to semiparametrically efficient
inference procedures (Hallin and Werker, 2003).

Our interest lies in the behavior of the rank-based autocorrelation (4.10), when
applied to residuals of some model estimated during a first-stage analysis. Let’s
consider the situation mentioned in the abstract of residuals of a scale model (like
GARCH(2,2)) estimated using Gaussian QMLE. The relevant model is thus described
in Example 4.3 and Γ is given by (4.8). In order to verify Condition (AN), an asymp-
totically linear representation is needed for the rank-based autocorrelation rn(θ; l; g).
These results are well-known in the statistics literature and, assuming that the density
g is strongly unimodal (i.e., −g′/g is monotone increasing), we find

rn(θ; l; g) =
1

n− l

n∑

t=l+1

−g′

g

(
G−1 (F (εt))

)
G−1 (F (εt−l)) /

√
Ig + oIP(n−1/2), (4.11)

as n →∞. Note that F denotes the true (unknown) distribution of the innovations,
while G is a reference distribution that need not equal F . The rank-based autocor-
relations are asymptotically normally distributed with unit variance even if G 6= F .
Their power for detecting l-th order autocorrelation, however, is maximal if G is close
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to F . Using the asymptotically linear representation (4.11), we find

c = − c̃

2
√

Ig

E

[
G−1(F (εt))

∂

∂θ
log σ2

t−1(θ)

]
,

α =
α̃

(κε − 1)
√

Ig

ΓE

[
G−1(F (εt))

∂

∂θ
log σ2

t−1(θ)

]
,

with

c̃ := E[1 + εtf
′(εt)/f(εt)][g

′(G−1(F (εt)))/g(G−1(F (εt)))]

=
∫ 1

u=0
F−1(u)(f ′/f)(F−1(u))(g′/g)(G−1(u))du,

and α̃ :=
∫ 1
u=0[1− F−1(u)2][(g′/g)(G−1(u))].

With the above expressions, Theorem 2.1 can be applied directly. Note that the
limiting distribution of the rank-based autocorrelations are not distribution free, i.e.,
depend on the underlying distribution F of the innovations. However, if both the true
distribution F and the reference distribution G are symmetric about zero, one finds
c̃ = α̃ = 0. In that case, c is zero and also the rank-based autocorrelation calculated
on the residuals is asymptotically standard normally distributed. 2

Example 4.6 Goodness-of-Fit tests
Next to testing for linear or non-linear dependence, one is often also interested in
testing a particular distribution for the innovations εt. Having standard Goodness-
of-Fit tests in mind, we are, therefore, interested in the limiting distribution of the
empirical distribution function of residuals. We consider the empirical distribution
at a fixed point z ∈ IR first, i.e., the statistic of interest can be written as

Tn(θ) =
√

n(Fn(z)− F (z)) =
1√
n

n∑

t=1

(I{εt(θ) ≤ z} − F (z)) .

For expository reasons, we consider residuals of an ARMA or regression model
as in Example 4.1 only. Once more, the calculations to verify Condition (AN) are
straightforward:

c = −f(z)E

[
∂µt−1(θ)

∂θ

]
,

α = m(z)

(
E

[
∂µt−1(θ)

∂θ

∂µt−1(θ)

∂θT

])−1

E

[
∂µt−1(θ)

∂θ

]
,

since E[f ′(εt)/f(εt)]I{εt ≤ z} =
∫

f ′(x)I{x ≤ z}dx = f(z) and with m(z) :=
EεtI{εt ≤ z} =

∫
xf(x)I{x ≤ z}dx. Since τ 2 = F (z)[1 − F (z)], the residual-based
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empirical distribution function at z has, according to Theorem 2.1, limiting variance

F (z)[1− F (z)]+

(
f(z)2σ2

ε + 2f(z)m(z)
)

E

[
∂µt−1(θ)

∂θT

] (
E

[
∂µt−1(θ)

∂θ

∂µt−1(θ)

∂θT

])−1

E

[
∂µt−1(θ)

∂θ

]
.

The above analysis is restricted in the sense that the empirical distribution func-
tion is evaluated at a fixed point z only. An extension to the multivariate situation
of the empirical distribution function evaluated in the points (z1, . . . , zm) is straight-
forward. More difficult, and beyond the scope of the present paper, would be to find
a functional limit theorem for the residual-based empirical distribution. The first to
study such a problem is Durbin (1973). His Theorem 1 is comparable to our Theo-
rem 2.1 with the notation t(t− 1) = F (z)[1− F (z)] = τ 2, h = α, g2 = c, and L = Γ,
under the null-hypothesis γ = 0. 2

Example 4.7 Goodness-of-Fit tests with nuisance parameters
The previous example considers the case where residuals are tested against a com-
pletely specified distribution F . Clearly, one often encounters the situation where
this distribution is not completely specified. For instance, consider the same setup as
in Example 4.6. Now, however, we want to test whether the residuals belong to the
normal scale family {N(0, σ2) : σ2 > 0}. To this extent, we use the test statistic

Tn(θ) =
√

n
(
Fn (z)− Φ

(
z

sn

))

=
1√
n

n∑

t=1

(
I{εt ≤ z} − Φ

(
z

σε

)
+

1

2
ϕ

(
z

σε

)
z

σε

(
s2

n

σ2
ε

− 1

))
+ oIP(1)

=
1√
n

n∑

t=1

(
I{εt ≤ z} − Φ

(
z

σε

)
+

1

2
ϕ

(
z

σε

)
z

σε

(
ε2

t

σ2
ε

− 1

))
+ oIP(1),

as n → ∞, and where the estimated variance of the innovations is s2
n =

∑n
t=1 ε2

t /n
and Φ denotes the standard normal distribution function; ϕ its density. Once more,
the derivations are straightforward and lead to

c = −f(z)E

[
∂µt−1(θ)

∂θ

]
,

α =
(
m(z) +

1

2
ϕ

(
z

σε

)
z

σε

Eε3
t

) (
E

[
∂µt−1(θ)

∂θ

∂µt−1(θ)

∂θT

])−1

E

[
∂µt−1(θ)

∂θ

]
.

The limiting distribution of the test-statistic applied to residual of the ARMA or
regression model, follows again immediately. Note that, in case Eε3

t = 0, the formulae
for c and α are the same as in Example 4.6. Consequently, the change in variance
due to applying the statistic on residuals instead of actual innovations is the same,
although the limiting distribution of the statistic applied to innovations clearly differs
in both cases. 2
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Example 4.8 Rank-based tests for structural breaks
As a final example we consider the problem of testing for a structural break in the
innovation’s distribution, using a rank-based CUSUM type test (see, for instance, Sen,
1984, for the linear regression model). We focus here on the case where the possible
break-point is known. The case with unknown break-point leads to non-normally
distributed test statistics (see, for instance, the sup of Brownian bridge asymptotic
results of historical or sequential rank- and EDF-based tests in Bhatacharyya and
Frierson, 1981, Picard, 1981, and Horváth et al., 2001). These non-normal limiting
distributions cannot be handled directly by our approach. For illustrative purposes,
we consider in this example the scale model as described in Example 4.3. Other
models can be handled in exactly the same way with adapted expressions for the
relevant variances and covariance c, α, and Γ. For a known change-point at the s-th
quantile of the sample, the test statistic of interest is

Tn(θ) =
1√
n

〈ns〉∑

t=1

(
Rt(θ)

n + 1
− 1

2

)
,

where Rt(θ) denotes the rank of the t-th innovation εt(θ) among all n innovations
ε1(θ), . . . , εn(θ) and 〈·〉 denotes the entier function. A standard theorem on the
asymptotically linear representation of rank-statistics (e.g., Hájek, Šidák, and Sen,
1999, Chapter 6) shows

Tn(θ) =
1√
n

n∑

t=1

(I{t ≤ 〈ns〉} − s)
(
F (εt)− 1

2

)
+ oIP(1),

as n →∞. One immediately verifies

c =

∫
xf 2(x)dx

2

1

n

n∑

t=1

[I{t ≤ 〈ns〉} − s]
∂

∂θ
log σ2

t−1(θ) + oIP(1)

→ 0,

since E[1+ εtf
′(εt)/f(εt)]F (εt) =

∫
(xf ′(x)+ f(x))F (x)dx = − ∫

xf 2(x)dx, assuming
that the process ∂

∂θ
log σ2

t−1(θ) satisfies a law-of-large numbers, so that

1

n

n∑

t=1

[I{t ≤ 〈ns〉} − s]
∂

∂θ
log σ2

t−1(θ) → {s(1− s)− (1− s)s}E ∂

∂θ
log σ2

t−1(θ)

= 0.

Such an assumption satisfied in the standard models described in the introduction.
From c = 0, we deduce that the rank-based CUSUM statistic when applied to resid-
uals of a GARCH-type model, does not require any size correction. 2
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5 Final remarks

The present paper considers the asymptotic analysis of residuals-based statistics in
a Gaussian limiting framework: The models under consideration are assumed to be
asymptotically Gaussian shift experiments (through the LAN condition), while the
statistics being studied have limiting Gaussian distributions. While this is an ap-
proach that has many applications for residual-based tests in the context of certain
classes of econometric models discussed in the paper, it also represents the founda-
tions for an alternative and simple approach of deriving the asymptotic distribution of
certain other statistics. Non-Gaussian limiting statistical experiments (like for non-
stationary time series) cannot be handled directly, nor can we directly apply Theo-
rem 2.1 to test statistics that have sup-of-Gaussian processes as limiting distribution
(like Kolmogorov-Smirnov type goodness-of-fit tests). However, the underlying idea
of applying Le Cam’s third lemma to experiments conditioned on the realization of
the first-stage estimator is likely to be extendible to these cases.
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