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Abstract.  Debreu’s coefficient of resource utilization is freed from individual data

requirements.  The procedure is shown to be equivalent to the imposition of Leontief

preferences.   The rate of growth of the modified Debreu coefficient and the Solow

residual are shown to add up to TFP growth.  This decomposition is the neoclassical

counterpart  to  the  frontier  analytic  decomposition  of  productivity  growth  into

technical change and efficiency change.  The terms can now be broken down by sector

as well as by factor input.
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1. Introduction

Total factor productivity (TFP) may grow by more efficient utilization of resources or

by  technical  change.   Debreu  measured  the  utilization  of  resources  and  Solow

measured technical change, but  their  models are remote [3,16].   Solow’s model  is

macro-economic and assumes perfect competition, while  Debreu’s model is micro-

economic and assumes no technical change.  In this paper I show how the measures of

Debreu and Solow can be commingled into TFP.  I take Debreu’s model as point of

departure, because it is quite general and, therefore, accommodating.  The drawback

of Debreu’s coefficient of resource utilization, however, is that it hinges on individual

preferences data.  I will free his coefficient from this prohibitive data requirement, by

making Debreu’s concept of a ‘better’ commodity set independent of the specifics of

individual preferences.  The procedure will be shown to be equivalent to the adoption

of  Leontief  preferences,  confirming  Diewert’s  idea  that  such  preferences  remove

misallocations between consumers as a source of inefficiency [4].  The consequent

coefficient of resource utilization yields a more conservative estimate of inefficiency

than Debreu’s coefficient resource of utilization.  As a bonus, the procedure makes the

measure  of  inefficiency  a  function  of  total  consumption  only,  not  the  individual

breakdown.  This paves the way for macro-economic applications and Solow residual

analysis.  The Solow residual is generalized to Debreu’s setting.  

Neoclassical  economics  encounters  some  refreshing  competition  from  frontier

analysis; see [6,7] and the references given there.  This literature pays little attention

to  the  marginal  productivities  of  inputs,  a  noteworthy  exception  being  [13],  but

provides  a useful  decomposition  of productivity growth into technical  change and

efficiency change.   I take the idea into the neoclassical  general equilibrium realm.

The connection is  at  a rather abstract  level,  for the mechanisms behind efficiency

change are different in frontier analysis and neoclassical economics.  Frontier analysis

captures technological catch-up with the leader and the choice of inputs in terms of

costs.   Neoclassical  analysis  captures  potential  reallocations  of  resources  between

sectors.   This  type  of  efficiency  change  is  harder  to  detect.   Frontier  analytic

inefficiency  is  exposed  by  the  gap  with  the  best  practice,  a  conceptually

straightforward concept.  Neoclassical inefficiency, however, not only comprises gaps

with  production  possibility  frontiers,  but  also  hidden  misallocations.   A  nice
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exposition is given by Debreu and Diewert discusses the reduction of TFP [3,5].  A

contribution  of  my  paper  is  that  it  shows  how  the  tools  of  frontier  analysis,

particularly  the  input-  and  output-distance  functions,  can  be  applied  to  the

measurement of allocative efficiency.

The pieces of the puzzle fit pleasingly well.  More precisely, in this paper I show that

total factor productivity growth is the sum of technical change and efficiency change,

where  the  former is  the  (generalized)  Solow residual  and  the  latter  is  the  rate  of

growth of the modified coefficient of resource utilization.        

2. The Debreu coefficient of resource utilization

Debreu measures the inefficiency of the allocation of resources in  an economy by

calculating how much less resources could attain the same level of satisfaction to the

consumers [3].  I will review his so-called coefficient of resource utilization.  

The economy comprises m consumers with preference relationships ≿i and observed

consumption vectors x0
i   ℝl (i = 1, ..., m), where l is the number of commodities.  Y

 ℝl is the set of possible input vectors (net quantities of commodities consumed by

the whole production sector during the period considered),  including the observed

one, y0.  A combination of consumption vectors and an input vector is feasible if the

total  sum—the  economy-wide  net consumption—does  not  exceed  the  vector  of

utilizable physical resources, z0.2  Vector z0 is assumed to be at least equal to the sum

of the observed consumption and input vectors, ensuring the feasibility of the latter.

The set of net consumption vectors that are at least as good as the observed ones is 

ℬ =  {∑xi xi ≿i  x0
i, i=1,...,m} + Y  

(1)

2 For example, if the last commodity, l, represents labor, and this is the only nonproduced commodity,
then z0 = Nel, where N is the labor force and el the l-th unit vector.
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The symbol  ℬ stands for ‘better’ set.  The minimal resources required to attain the

same levels of satisfaction that come with x0
i belong to ℬmin, the South-western edge

or subset of elements that are minimal with respect to  ≧.3  Assume that preferences

are convex and continuous, and that production possibilities form a convex and closed

set,  then the separating hyperplane theorem yields for  z   ℬmin a  supporting price

vector p(z) ≥ 0 such that z’  ℬ implies p(z)ּz’ ≧ p(z)ּz.4  The Debreu coefficient of

resource utilization is defined by 

ρ = Max p(z)ּz/p(z)ּz0 subject to z  ℬmin

(2)  

Coefficient  ρ measures  the  distance  from  the  set  of  minimally  required  physical

resources,  z   ℬmin,  to  the  utilizable  physical  resources,  z0,  in  the  metric  of  the

supporting prices (which indicate welfare indeed).  Debreu shows that the distance or

the Max in (2) is attained by [3, p. 284]5

 

z = ρz0  ℬmin

(3)

3 By convention, this vector inequality holds if it holds for all components.
4 p ≥ 0 means that all components are nonnegative and at least one positive.  In [3] Debreu claims that
all prices can be taken positive.  However, a counterexample is z = 2e - el  ℬ = {x ǁx - 2eǁ2 = 1} +
{0}, where e is the unit vector with all components one and  ǁּǁ2 is the Euclidian norm.  Of course,
there are conditions under which the prices will be positive, such as strong monotonicity of one of the
preferences.  
5 There are two, related caveats in [3]:  z =  ρz0  ℬmin need not exist and  ρ may not be unique if the
separating price vector is not unique.  Consider an economy with two commodities, one consumer, and
no production (or Y = {0}).  x ≿ x’ if min(x1,x2) ≧ min(x’1,x’2).  x0 = (1 1) and z0 = (1 2).  Then ℬmin =
{x x ≿ x0}min = {x x ≧ (1 1)}min = {(1 1)} contains no ρz0 = ρ(1 2).  What is the coefficient of resource
utilization?  In this case, any p > 0 separates ℬ = {x x ≧ (1 1)} and {z’z’ ≦ (1 1)}; hence (2) yields ρ
= pּ(1 1)/pּ(1 2) = (p1 + p2)/(p1 + 2p2), a number between 0.5 and 1.  To resolve the multiplicity, we
may address the efficiency problem in primal space.   The preference relationship is represented by
utility min(x1,x2).  Subject to feasibility constraint  x  ≦ z0 = (1 2), the maximum utility is 1.  This is
attained by x0 = (1 1).  Hence the allocation is optimal.  Following the introduction in [3, p. 275], ρ = 1.
This implies that p = (1 0).  Indeed, this is the supporting price system of the second welfare theorem.
However, it is not positive, confirming footnote 4.
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In other words, the Debreu coefficient of resource utilization is the smallest fraction of

the actually available resources that would permit the achievement of the levels of

satisfaction that come with x0
i.  Coefficient ρ is a number between zero and one, the

latter indicating full efficiency.  In modern terminology, this result means that ρ is the

input-distance function, determined by the program

Min ρ subject to ∑xi + y ≦ ρz0, xi ≿i x0
i, y  Y

(4)

There is also an output-distance function, but that one is opaque.  The measurement of

satisfaction  is  in  terms  of  utility,  an  ordinal  concept  that  generally  admits  no

aggregation over consumers.

3. The Farrell efficiency measure

Farrell decomposes efficiency in technical efficiency and allocative efficiency [9].  He

notes the similarity between his  technical  efficiency and the Debreu coefficient of

resource utilization.   Indeed, both the Farrell  technical  efficiency measure and the

Debreu  coefficient  of  resource  utilization  are  defined  through  proportionate  input

contractions.  The analogy is sheer formality, but confusing at a conceptual level.  It

suggests that Farrell takes the Debreu coefficient, augments it, and thus constructs a

more  encompassing  overall  measure.   It  is  the  other  way round;  the  sway of  the

Debreu coefficient is far greater than that of Farrell’s measure.  Particularly Farrell’s

allocative  efficiency measure  is  a  partial  (dis)equilibrium concept,  conditioned on

prices.  It takes into account the cost reduction attainable by changing the mix of the

inputs, given the prices of the latter.  The Debreu coefficient, however, is a general

(dis)equilibrium concept.  It measures the technical and allocative inefficiency in the

economy given only its fundamentals: resources, technology, and preferences.  Prices

are derived and enter the definition of the Debreu coefficient, see (2).  In [3] Debreu

proves that the coefficient can be freed from these prices, by Eq. (3) or non-linear

program (4).  Prices remain implicit, however.  They support the better set in the point

of minimally required physical resources.  The Debreu coefficient measures technical

and  allocative  inefficiency,  both  in  production  and  consumption,  solving  the
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formidable difficulty involved in assessing prices, referred to by Charnes, Cooper, and

Rhodes  [1,  p.  438].   Farrell  refrains  from  this,  restricting  himself  to  technical

efficiency and price-conditioned allocative efficiency.  

The  formal  analogy  between  the  Debreu  coefficient  and  the  Farrell  measure  of

technical  efficiency prompted  Färe  and  Lovell  to  coin  the  phrase  “Debreu-Farrell

measures of efficiency,” in [8].  This is confusing.  Debreu’s coefficient of resource

allocation encompasses both Farrell’s technical efficiency and his allocative efficiency

measures,  and  frees  the  latter  from  prices.   On  top  of  this,  Debreu’s  coefficient

captures consumers’ inefficiencies.  The confusion persists.  In a very recent review of

Farrell’s contribution Førsund and Sarafoglou state 

“(Debreu) worked only from the resource cost  side, defining his coefficient as the

ratio between minimised resource costs of obtaining a given consumption bundle and

actual  costs,  for  given  prices  and  a  proportional  contraction  of  resources.”   [10,

footnote 4].

Debreu calculates the resource costs  not of a given consumption bundle, but of an

(intelligently chosen) Pareto equivalent allocation.  (And the prices are not given, but

support the allocation; see [3].)  It is true, however, that the Debreu measure would

become applicable  if  the aggregated consumption bundle can be considered given.

The next section shows that this pragmatic approach is doable.  The approach is exact

if preferences are Leontief, as the subsequent section will prove. 

4. Absent  individual  data:  the  Debreu-Diewert  coefficient  of  resource

utilization 

Following [3] a simple symbol ℬ has been used to denote the ‘better set.’  Definition

(1) reveals, however, that the set depends on the observed consumption vectors and on

preferences.  The informational requirements involved are prohibitive.  To overcome

this problem, I will define a version of the Debreu coefficient, namely the  Debreu-

Diewert  coefficient  of  resource  utilization,  ρ*.   Only  in  the  next  section  it  will

transpire why I choose this name.
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I want that the notion of ‘better’ set is independent of the specifics of preferences.  For

this purpose, all I assume is that preferences are weakly monotonic in the sense that

they belong to

ℳ = {≿(x’ ≧ x) implies (x’ ≿ x)}

(5)

I now define the tight better set as the intersection of all better sets over ℳ:

ℬ* = {∑xi xi ≿ x0
i, i=1,...,m} + Y

(6)

The replacement of the better set, ℬ, by the tight better set, ℬ*, implies that definition

(2) produces the Debreu-Diewert coefficient ρ* instead of the Debreu coefficient ρ.  A

comparison between these two coefficients is obtained by rewriting program (4):

Min ρ* subject to ∑xi + y ≦ ρ*z0, xi ≿ x0
i for all ≿  ℳ, y  Y (7)

The constraint set of (7) is contained in the one of (4); hence the solution to program

(4) must be sharper:

ρ ≦ ρ*         

(8)

In other words,  use of the Debreu-Diewert  coefficient  will  overestimate  efficiency

hence underestimate inefficiency.  Debreu’s measure of inefficiency reflects scope for

reallocation of resources between consumers with different tastes and, therefore, is
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quite high; the flipside of this observation is that the Debreu coefficient is relatively

low.  The Figure illustrates.
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commodity 2

      resources z0

ℬ*, the tight better set

ℬ, the better set 

commodity 1

Figure.  Half the resources suffice to make consumers at least as well off.  Two-thirds
of the resources are needed to produce the total consumption vector.  The Debreu
coefficient of resource utilization is ½ and the Debreu-Diewert coefficient is 2/3.

5. The Debreu-Diewert coefficient and Leontief preferences

I  can  be  a  bit  more  specific  about  the  Debreu-Diewert  coefficient  of  resource

utilization.  I will show that it is generated by Leontief preferences.  As I noted in the

introduction,  Diewert first had the idea that such preferences remove misallocations

between consumers as a source of inefficiency [4].  This explains the name giving.  

Leontief  preferences  ≿(a) with  nonnegative  bliss  point  a  ℝl are  defined  for

nonnegative consumption vectors by  x’  ≿(a) x  if min xk’/ak ≧ min  xk/ak where the

minimum is taken over commodities  k = 1,...,l.  The minima exist  if  a is nonzero,

which I assume.6  The following lemma shows that the tight better set is obtained by

imposing  Leontief  preferences  on  all  individuals.   Notice,  however,  that  the

preferences feature the observed individual consumption baskets as bliss points and,

therefore, differ.   

Lemma.  ℬ* = {∑xi xi ≿(x0
i) x0

i, i=1,...,m} + Y = {x x ≧ ∑x0
i} + Y.

6 Situations like labor supply are covered by letting the commodity be leisure time.  Division by zero is
assumed to yield infinity.  
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Proof.  I show that the first term of  ℬ* in (6) is contained in the first term of the

second set, that the latter is contained in the first of the third set, and that last one in

the first term of ℬ*.  Using the fact ≿(x0
i)  ℳ, I have {∑xi xi ≿i  x0

i, i=1,...,m} 

{∑xi xi ≿(x0
i) x0

i,  i=1,...,m} = {∑xi xi ≧ x0
i} = {x x ≧ ∑x0

i}   {∑xi xi ≿i  x0
i,

i=1,...,m}, where the last inclusion is shown as follows.  For  x ≧ ∑x0
i, allocate the

surplus in any nonnegative way, for example by putting x1 = x0
1 + x - ∑x0

i, x2 = x0
2, ...,

xm = x0
m, then xi ≿i x0

i for all ≿i  ℳ.

Q.E.D.

The  first  equality  in  the  Lemma  implies  that  if  the  consumers  have  Leontief

preferences, then the Debreu coefficient reduces to the Debreu-Diewert coefficient.

The second equality in  the Lemma,  {∑xi xi ≧ x0
i} = {x  x ≧ ∑x0

i},  is  a perfect

aggregation result.  Aggregated consumption is monotonic if and only if individual

consumptions are.  One might say that if preferences are Leontief with varying bliss

points  (according  to  the  observed  consumption  baskets),  there  is  a  social  welfare

function.  The better set, ℬ, is freed from preferences, ≿i, as well as from individual

consumption  baskets,  x0
i.   The  tight  better  set,  ℬ*,  depends  only  on  the  total

consumption  vector,  ∑x0
i.   This  modification  facilitates  measurement  of  the

coefficient  of  resource  utilization.   In  fact,  the  tightening  creates  the  option  to

determine the degree of efficiency in terms of outputs, resurrecting the output-distance

function.  

Corollary.  Assume  that  the  total  consumption  vector  ∑x0
i is  nonnegative  and

nonzero.   Assume that  the  production  set  Y features  the  impossibility  to  produce

something from nothing (“no free lunch”) and constant returns to scale.  Then c = 1/ρ*

transforms the input-distance function program (7) into the  output-distance function

program  

Max c subject to c∑x0
i + y ≦ z0, y  Y

Proof.  By the Lemma, program (7) can be rewritten as

Min ρ* subject to ∑xi + y ≦ ρ*z0, xi ≿(x0
i) x0

i, i=1,...,m, y  Y

10



or 

Min ρ* subject to x + y ≦ ρ*z0, x ≧ ∑x0
i, y  Y

This can be simplified further to

Min ρ* subject to ∑x0
i + y ≦ ρ*z0, y  Y

The solution is positive.  (Otherwise input vector y ≦ -∑x0
i ≦ 0, but not equal to zero,

would  produce  something  from  nothing.)   The  transformation  is  completed  by

multiplication by c = 1/ρ* and a change of variable (cy to y), using constant returns to

scale.

Q.E.D.

The  output-distance  function  program  informs  us  by  which  factor  the  total

consumption vector can be expanded, given the resources.

6. Application to national accounts

The Corollary shows that under constant returns to scale the inverse of the Debreu-

Diewert coefficient of resource utilization is the expansion factor of the economy, c.

In [14] ten Raa calculates c for the Canadian economy, defines 1 – 1/c as inefficiency,

and decomposes the latter  into productive inefficiency, allocative inefficiency, and

trade inefficiency.  It follows that ten Raa’s measure of inefficiency is 1 – ρ*.  In view

of  inequality  (8),  this  measure  of  inefficiency underestimates  Debreu’s  degree  of

inefficiency, 1 – ρ.  Debreu finds more scope for efficiency gains as marginal rates of

substitution  may be  equalized  across  consumers.   The  Debreu-Diewert  coefficient

does not take into account this source of inefficiency.

In [14,15] ten Raa and Mohnen divide the commodities between produced goods and

factor inputs, respectively.  U is a table depicting the use of goods by sectors and V is
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a table depicting the outputs of the sectors in terms of goods.  U - V⊤ is the net input

table;  its  dimension  is  that  of  goods  by sectors.7  L is  the  factor  input  table;  its

dimension is factor inputs by sectors.  An element of y  Y has components (U - V⊤)s

and  Ls, and  Y  is defined by letting the allocation vector  s ≧ 0.  Similarly, ∑x0
i
 has

components  f and  0, where  f  is the vector of final goods consumption, while  z0 has

components  0 and  N,  where  N is  the  vector  of  factor  endowments,  and  z has

components  0 and  Ls.   The  output-distance  function  program  of  the  Corollary

becomes

Maxc,s c subject to cf + (U - V⊤)s ≦ 0, Ls ≦ N, s ≧ 0

(9)       

The solution to this program yields the potential standard of living, relative to the

observed  one.8  The  shadow  prices  of  the  second  constraint  yield  the  factor

productivities.

7. Relationship with the Solow Residual 

This  section  is  the  centerpiece  of  the  paper.   The  Debreu-Diewert  coefficient  of

resources and a generalized Solow residual are tied up into total factor productivity

growth.  What is productivity? 

An  economy  transforms  physical  resources  into  final  consumption  by  means  of

production.  The ratio of consumption to the resources is called the productivity of the

economy.  A multi-input and output measure is  the Malmquist  index proposed by

Caves,  Christensen,  and  Diewert  in  [2].   Productivity  may  grow  because  the

7 Superscript ⊤ denotes transposition.
8 Of course, any positive coefficient may be entered in the objective function and this is commendable,
to scale the price level.  As is, by the main theorem of linear programming, the factor input shadow
prices fulfill wּN = c.  Since c is of the order one but N of the order millions, w will be tiny.  A handy
objective function is eּf c, where e is the unit vector with all components one.  The dual constraints then
show that pּf = eּf and wּN = pּcf.  In other words, the product prices are normalized at unity and the
factor input prices fulfill the potential national income identity.  The proof is as follows.  Multiplication
of the dual constraint associated with variable s, by s, yields pּ(U - V⊤)s + wּLs = 0.  Replace the two
terms using the two respective constraints of program (14): -pּcf + wּN = 0, where (priced) inequalities
are  binding  according  to  the  phenomenon  of  complementary  slackness.   The  product  price
normalization follows by the main theorem of linear programming or wּN = eּf c.           
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production  possibility  set  increases  or  because  resources  are  better  utilized.

Productivity  growth  equals  the  sum  of  technical  change  and  efficiency  change.

Technical  change  is  the  shift  of  the  production  possibility  frontier  and  efficiency

change is  the  increase  in  the  coefficient  of  resource  utilization.   The  two add  to

productivity growth [7,13,15].   I will  now uncover the relationship  at  the level  of

generality of the Debreu model.

The point of departure is the Debreu-Diewert coefficient of resource utilization (ρ*),

determined by program (7) or, using the Lemma,9

Min ρ* subject to ∑x0
i + y ≦ ρ*z0, y  Y

(10)

.  Assuming free disposal, input may be added to y  Y until the constraint is binding:

∑x0
i + y = ρ*z0

(11)

This is the material balance.  

Let  p support the tight better set defined in (5),  ℬ*, in the sense introduced before

(2).10  According to the phenomenon of complementary slackness, non-linear program

(10) yields11

pּ∑x0
i = ρ* pּz0 - pּy     

(12)

9 See the proof of the Corollary.
10 Footnotes 4 and 5 show that the supporting prices are not necessarily positive.
11 The nonlinearity is due to production set Y.
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This is the identity between national product and national income; it holds even when

there is no free disposal and, therefore, the material balance, (11), is not fulfilled.  The

national product is on the left hand side and on the right hand side is factor income

plus profit.   (Remember,  y  is net input, hence -y is net output.)  All this is at the

optimum allocation (∑x0
i,  y,  ρ*z0) and supporting (or competitive) prices  p, not the

actual allocation (∑x0
i, y0, z0) and prices.  

The economy transforms resources z0 into consumption ∑x0
i.  The ratio of the latter to

the former constitutes the level  of total  factor productivity.  Since the objects  are

vectors, they must weighed by prices, for which  p  is employed.  The  level of total

factor productivity is thus pּ∑x0
i/pּz0.  If there are constant returns to scale, profit is

zero, and, by Eq. (12):

pּ∑x0
i/pּz0 = ρ*

(13)

This equation shows that the level of total factor productivity is equal to the Debreu-

Diewert coefficient of resource utilization.  

Another interesting connection is the following.  Let all variables vary with time and

let d denote a time derivative.  Total factor productivity growth is the rate of growth

of the level of total factor productivity at fixed price weights:12

TFP = pּd∑x0
i/pּ∑x0

i – pּdz0/pּz0

 (14)

The  following  proposition  shows  that  TFP is  the  sum  of  the  Solow  residual,

generalized to Debreu’s framework, and the rate of growth of the Debreu-Diewert

coefficient.  The generalized Solow residual is defined by

12 Warning: I use TFP for TFP growth.  No symbol is needed for the level of TFP.
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SR =  -pּdy/pּ∑x0
i

(15)

This expression features the change in optimal net output, -y, and will be shown to be

a generalized Solow residual indeed, evaluated at the frontier.  The demonstration is

in the  next  section,  where the residual  will  be shown to measure the shift  of  the

production possibility function.

Proposition.  Under constant returns to scale, TFP = SR + dρ*/ρ*.

Proof.  Under constant returns to scale Eq. (13) holds.  Substitution in Eq. (14) yields

TFP = [pּd∑x0
i – ρ*pּdz0]/pּ∑x0

i.  Substitution of the material balance, (11), and the

product rule yield TFP = [-pּdy + pּz0dρ*]/pּ∑x0
i.  Substitution of Eq.s (13) and (15)

yields the posted formula.

Q.E.D.

The first TFP term, SR, reflects technical change.  The second TFP term, dρ*/ρ*, is the

rate of growth of the Debreu-Diewert coefficient of resource utilization and, therefore,

represents efficiency change.  The decomposition of productivity growth in technical

and efficiency changes is inspired by frontier analysis.  That literature, however, does

not relate total factor productivity with the marginal productivities of factor inputs.

The neoclassical growth accounting literature accomplishes this, but at the price of

assuming efficiency, ignoring the efficiency change term.        

8. The Solow residual

Solow divides commodities between a single output and factor inputs [16].  Denoting

the  latter  by a  vector  l,  the  producible output  is  F(l,  t)  -  s,  where  F(ּ,  t)  is  the
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production function at time t (presumed quasi-concave) and s is slack.13  A net input

vector  y  Y  has  components  -F(l,  t)  +  s and  l,  respectively.   The  production

possibility set  Y  is  obtained by letting  l ≧ 0 and  s ≧ 0.   The vector of available

resources,  z0, has components 0 and  l0, respectively.  Let  ρ* be the Debreu-Diewert

coefficient of resource utilization and y be the optimal net input vector, which solve

efficiency program (10), then  y has components -F(l,  t) and  l =  ρ* l0.  The first or

product component of the material balance, (11), reads

(∑x0
i)1 – F(l, t) = ρ*0 = 0 

(16)

The other or factor components read

0 + l = ρ* l0

(17)

An intuitive interpretation of the Debreu-Diewert coefficient of resource utilization,

ρ*, is in terms of actual output, F(l0, t) – s0, where F(l0, t) is potential output and s0 is

observed slack.  Actual output could also be generated by optimal factor input l (with

no slack).  It follows that the actual/potential output ratio is  F(l,  t)/F(l0,  t).  By Eq.

(17), this is  ρ* if the production has constant returns to scale.  The Debreu-Diewert

coefficient is the ratio of actual to potential output.    

As is well known, the solution  y  is supported by price vector (1  w) = (1  lF(l,  t))

where   denotes  partial  derivatives  (with  respect  to  l in  this  case)  or  marginal

13 Slack scalar s should not be confused with allocation vector s of section 5. 
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productivities.14  I will  now evaluate  SR  =  -pּdy/pּ∑x0
i of  definition (15) for this

special setting.  The numerator reduces to

-pּdy = dF(l, t) – wdl

(18)  

and the denominator is, in view of the first terms of (16) and (17),

pּ∑x0
i = (∑x0

i)1 + 0 = F(l, t)

(19)

using (16).  Hence the quotient is

SR = -pּdy/pּ∑x0
i = dF(l, t)/F(l, t) – ∑k[wklk/F(l, t)]dlk/lk

(20)

The expression on the right  hand side is,  indeed,  the residual  between the output

growth rate and the input growth rates,  where value shares weight the latter.  The

shares  add up if  the production  function has  constant  returns  to  scale,  by Euler’s

theorem.  The input prices are competitive marginal productivities, which are high in

the sense that they leave no room for profit.  The use of lower, observed prices, will

bias upward expression (20).
14 If F(ּ, t) is not differentiable, a subgradient will do, recalling this function is assumed quasi-concave.

A slight rescaling is in order when the price vector is generated by the dual of the efficiency program.

More precisely, if we rescale the price vector by scalar  p: (p w) = (p plF(l,  t)), then the zero profit

condition (assuming constant returns to scale) yields pF(l, t) = plF(l, t)ρ* l0, while the main theorem of

linear programming equates the value of the output distance function with the value of the available

factor inputs: (1/ ρ*) =  plF(l,  t) l0.  It follows that  p = 1/F(l,  t) and, therefore,  w =  lF(l,  t)/F(l,  t).

Alternatively, the objective function in the efficiency program may be rescaled to have  p = 1, as in

footnote 8.  Anyway, the rescaling is a wash in the Solow residual that follows.      
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The main point  of Solow [16]  was that  the residual  measures technical  change, a

result that is easily verified.   By Eq. (18),  -pּdy = dF(l, t) – lF(l, t)dl.  But by total

differentiation, dF(l, t) = lF(l, t) dl + tF(l, t).  Hence SR = -pּdy/pּ∑x0
i of definition

(15) has a numerator tF and we obtain, using Eq. (19),

SR = -pּdy/pּ∑x0
i = tF(l, t)/F(l, t)

           

(21)

The Solow residual measures the relative shift of the production function indeed.

Residual  expression  (20)  can  be  generalized  to  multi-products.   Then  the  output

growth term is an output-value share weighted expression.  Intermediate products can

also be accommodated; this will be detailed in the next section.  All are encompassed

by definition (15): SR = -pּdy/pּ∑x0
i, where -y is resource minimizing net output and

∑x0
i is observed total consumption.  

For  constant  returns  to  scale,  the  minimization  of  resources  subject  to  total

consumption—see program (10)—amounts to a maximization of consumption subject

to available resources—program (9).   As was shown there,  this  merely involves a

change of variable from y to cy and a replacement of ∑x0
i by c∑x0

i.  The expansion

factors c in the numerator and in the denominator of the generalized Solow residual,

SR = -pּdy/pּ∑x0
i, cancel and its expression may therefore be reinterpreted in terms

maximal consumption and sustaining optimal net output.  The maximum consumption

vector has the same proportions as the observed consumption vector.  The prices in

the generalized Solow residual are not affected at all, because of the constant returns

to scale.  

9. Productivity and efficiency decompositions
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There  are  two  further  decompositions  of  total  factor  productivity  growth  than  in

technical  change  and  efficiency  change.   The  first  decomposition  is  in  factor

productivity growth rates; it sounds dull, but is not achieved in frontier analysis.  The

second decomposition is by input-output sector.    

The decomposition by factor is standard neoclassical analysis, at least for the Solow

residual.  Assume constant returns to scale, then pּy = 0 and the generalized Solow

residual becomes 

SR = -pּdy/pּ∑x0
i = dpּy/pּ∑x0

i

(22)

Remember, y is the vector of net inputs.  p is the vector of shadow prices or marginal

productivities.  Eq. (22) imputes the technical change term of total factor productivity

to the various inputs.  It is very general.  It reduces to the more familiar Jorgenson and

Griliches [12] form in the Solow world with a macro-economic production function,

introduced in the previous section.  There y has components -F(l, t) and l, and p = (1

w) = (1 lF(l, t)).  Hence the numerator of the generalized Solow residual (22) reduces

to dpּy = dwּl, while the denominator is F(l, t) by Eq. (19).

It follows that the Solow residual becomes 

SR = -pּdy/pּ∑x0
i = ∑k[wklk/F(l, t)]dwk/wk

           

(23)

The expression on the right hand side is the growth rate of the factor productivity,

with components weighted by their value shares.  The input prices are competitive

marginal productivities, which are high in the sense that they leave no room for profit.

The  use  of  lower,  observed  prices,  will  bias  downward  expression  (23),  unlike

expression (20), which was biased upward in this case.  The (primal) expression (20)

and  the  (dual)  expression  (23)  thus  provide  inconsistent  estimates  when  no

competitive prices are used. 
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The inclusion of efficiency change amounts to proportional increases of the factor

productivity  growth  rates.   By Debreu’s  Eq.  (3),  the  minimally  required  physical

resources,  z, are proportional to the utilizable physical resources,  z0.15  In the world

Solow this proportionality is  between minimal  factor  inputs  l and observed factor

inputs  l0, see Eq. (16), or  ρ* = lk/l0
k, all  k.  Hence the efficiency change term of TFP

reads, assuming constant returns to scale,

dρ*/ρ* = ∑k[wklk/F(l, t)] dρ*/ρ* = ∑k[wklk/F(l, t)](dlk/lk – dl0
k/l0

k) (24)

Substituting expressions (23) and (24) into the Proposition (section 7), all TFP-growth

 is now decomposed in terms of factor contributions:

TFP = ∑k[wklk/F(l, t)](dwk/wk + dlk/lk – dl0
k/l0

k)

(25)

The leading term measures factor productivity growth and the remainder the factor

utilization growth.  For each factor, the value share of the factor weights the sum of

the two growth measures.

The generalized Solow residual is decomposed by sector by adding the structure of

section 6.  What follows is an activity variant of Hulten’s analysis in [11].  In section

6, the net input vector y sustaining maximal consumption has components (U - V⊤)s

and Ls, where U is a table depicting the use of goods by sectors, V a table depicting

the outputs of the sectors in terms of goods,  L the factor input table, and allocation

vector  s ≧ 0.  Similarly, ∑x0
i
 has components  f and 0, where f  is the vector of final

goods  consumption.   The  maximal  consumption  is  cf,  which  we  enter  in  the

denominator, as discussed at the end of the last section.   The respective prices are

denoted  p and  w,  respectively; these are  the  shadow prices  of  program (9).   The

generalized Solow residual thus becomes

SR = -{pּd[(U - V⊤)s] + wּd(Ls)}/pּ(cf)

(26)
15 See the disclaimer in footnote 5 though.
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The shadow prices fulfill the dual constraint, 

p⊤(U - V⊤) + wּL – σ⊤ = 0

(27)

 where σ is the shadow price of s ≧ 0.  The product rule and substitution of Eq. (27)

into expression (26) reduce the generalized Solow residual to 

SR = -[p⊤d(U - V⊤)ּs + w⊤dLּs + σ⊤ds]/pּ(cf)

(28)

By the phenomenon of complementary slackness, 

σּs = 0 

(29)

expression (28) becomes

SR = (p⊤dV⊤ - p⊤dU - w⊤dL + dσ)(diag Vp)-1(diag Vp)s/pּ(cf) (30)

Here (p⊤dV⊤  - p⊤dU -  w⊤dL +  dσ)(diag Vp)-1 is the row vector of sectoral Solow

residuals, while (diag Vp)s/pּ(cf) is the vector of Domar weights, which add to the

gross output/net output ratio of the economy, a number greater than one.16  

To  include  sectoral  efficiency  changes,  recall  from  section  6  that  the  optimal

(sustaining  maximal  consumption)  and  utilizable  resources  have  only  factor

components,  namely  Ls and  N,  respectively.   Application  of  the  phenomenon  of

16 This number is also called the Domar ratio.  For any vector x, diag x denotes the diagonal matrix with
x on the diagonal. 
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complementary slackness and the main theorem of linear programming to (9) yields

w⊤Ls = wּN = c.  According to the Corollary, ρ* is the inverse of this expression.  It

follows that  the  efficiency term of  TFP becomes,  substituting in  the denominator

w⊤Ls = p⊤(V⊤ - U)s = pּ(cf) by Eq.s (27), (29), and material balance (9),17  

dρ*/ρ* =  -d(w⊤Ls)/(w⊤Ls) = -∑j[d(wּlּjsj)/(pּvjּsj)]ּ(pּvjּsj)/pּ(cf) (31)

where the summation is over sectors.  The efficiency growth is a Domar weighted

average of optimal factor input reduction growth rates.     

A further specification is that  of  input-output  analysis,  where  U  and  V  are square

matrices, V⊤s is denoted q, the vector of (optimal) gross outputs, and A = U(V⊤)-1 and

F =  L(V⊤)-1 are  the  matrices  of  (intermediate  and  factor)  input  coefficients.

Expression (26) for the generalized Solow residual becomes

SR = -{pּd[(A - I)q] + wּd(Fq)}/pּ(cf)

(32)

and price Eq. (27) reads

p⊤(A - I) + w⊤F – (V-1σ)⊤ = 0

(33)

Assume s > 0.18  As shadow prices are nonnegative, Eq. (29) sets the last term of Eq.

(33) zero:

p⊤(A - I) + w⊤F = 0

17 According to program (9), the material balance is an inequality.  However, the premultiplication by
the price vector eliminates the slack, by the phenomenon of complementary slackness.  Alternatively,
the material balance may be transformed to an equality in the same way that Eq. (11) was derived from
program (10), assuming free disposal.  Vectors lּj (vj) denotes the j-th column (row) of matrix L (V).   
18 Well known sufficient conditions are f > 0 and A has nonnegative Leontief inverse.  For details see
[14, Chapter 2].  
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(34)

This permits the following rewrite of the generalized Solow residual, (32):

 

SR = -(p⊤dA + w⊤dF)(diag p)-1(diag p)q/pּ(cf)

(35)

This is essentially Wolff’s formula [17, (12)].19  The first half of this expression, -

(p⊤dA +  w⊤dF)(diag p)-1,  is  the  row vector  of  sectoral  Solow  residuals  and  the

remainder, (diag p)q/pּ(cf), is the vector of Domar weights, which add to the gross

output/net output ratio of the economy, a number greater than one.20  Expression (35)

details the right hand side of Eq. (21):  The generalized Solow residual measures the

shift  of the production function by means of reductions in intermediate and factor

input coefficients.

The inclusion of sectoral  efficiency changes is  analogous to Eq. (31),  obtained by

substitution of Ls = Fq, Eq. (34), and material balance (I – A)q = cf:21

dρ*/ρ* =  -d(w⊤Fq)/(w⊤Fq) = -d[p⊤(I – A)q)]/pּ(cf)

= -∑k{d[(pk - pּaּk)qk]/pkqk}ּ(pk qk)/pּ(cf)

(36)

where  the  summation  is  over  commodities.   The  efficiency  growth  is  a  Domar

weighted average of optimal factor input or value-added reduction growth rates.

19 Wolff substitutes observed values for  gross output  q and final goods consumption  cf,  which are
optimal  [17].   However,  since  gross  output  and  final  goods  consumption  are  linked  by the  same
Leontief inverse, q is obtained by inflating observed gross output by c.  As this factor cancels against
the one in the denominator, the difference is immaterial.       
20 The input-output disaggregation,  (35),  is  slightly different than the activity analytic one,  (30),  as
sectors are now defined in terms of products, but the totals are the same.  This wedge disappears when
secondary products are absent (in the sense that output table V is diagonal).  
21 See footnote 17.
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10. Conclusion

In this  paper  I have interrelated the Debreu coefficient  of resource utilization,  the

Solow residual,  and  total  factor  productivity growth.   Freed  from individual  data

requirements, the Debreu coefficient’s growth rate and the Solow residual sum to TFP

growth.  The procedure is equivalent to the imposition of Leontief preferences.  The

decomposition is  the neoclassical  counterpart  to the decomposition of productivity

growth  into  technical  change and efficiency change made in  frontier  analysis and

admits breakdowns by factor input as well as by sector.
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