

Tilburg University

Sequencing Games with Controllable Processing Time

van Velzen, S.

Publication date:
2003

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
van Velzen, S. (2003). Sequencing Games with Controllable Processing Time. (CentER Discussion Paper; Vol.
2003-105). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Oct. 2022

https://research.tilburguniversity.edu/en/publications/11af3da0-1a01-4be4-bed7-166b3943fc8d

No. 2003–105

SEQUENCING GAMES WITH CONTROLLABLE
PROCESSING TIMES

By S. van Velzen

 November 2003

ISSN 0924-7815

Sequencing games with controllable processing times

Bas van Velzen

CentER and Department of Econometrics and Operations Research,

Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.

E-mail: S.vanVelzen@uvt.nl

Abstract

In this paper we study a class of cooperative sequencing games that arise from sequencing
situations in which the processing times are not fixed. We show that these games are balanced by
obtaining two core elements that depend only on the optimal schedule for the grand coalition.
Furthermore we show that, although these games are not convex in general, many marginal
vectors are core elements. We also consider convexity for special instances of the sequencing
situation.

Keywords: Cooperative games, sequencing situations, controllable processing times

1 Introduction

In one-machine sequencing situations each agent has one job that has to be processed on a single
machine. Each job is specified by a processing time, and costs are assumed to be linear in the
completion time. Furthermore, an initial order on the jobs is given. The objective is to find a
processing order that minimizes total cost. Once this optimal order is obtained, the question arises
how to allocate the total cost savings to the agents. Curiel et al. [4] consider this problem by
introducing cooperative sequencing games. They show that these games are convex, and hence
possess core allocations. Furthermore they characterize an allocation rule that divides the cost
savings obtained by complete cooperation.

Nowadays, a variety of sequencing games exist in cooperative game theory. Many of these
sequencing games arise from extended classes of one-machine sequencing situations. Hamers et
al. [7] study balancedness of sequencing games that arise from situations in which ready times
are imposed on the jobs. Similarly, Borm et al. [2] investigate balancedness in case due dates are
included and Hamers et al. [9] show that if chain precedences are imposed on the jobs, and the
initial order is a concatenation of these chains, then the corresponding sequencing game is convex.

A different approach in extending the class of sequencing situations of Curiel et al. [4] is taken
by Van den Nouweland et al. [14], Hamers et al. [8] and Calleja et al. [3]. They investigate
balancedness of sequencing games arising from situations with multiple machines.

In this paper we treat sequencing situations in which the processing times are not fixed, so called
sequencing situations with controllable processing times. In reality processing jobs does not only
require a machine, but also additional resources such as manpower, funds, etc. This implies that
jobs can be processed in shorter or longer durations by increasing or decreasing these additional
resources. Of course, deploying these additional resources entails extra costs, but these extra costs
might be compensated by the gains from job completion at an earlier time. Sequencing situations
with controllable processing times are investigated in, among others, Vickson [16; 17], and Alidaee
and Ahmadian [1]. An overview of literature on sequencing situations with controllable processing
times is given in Nowicki and Zdrzalka [11].

1

In this paper we consider cooperative games arising from sequencing situations with controllable
processing times. We show that these games are balanced by obtaining two core elements that
depend only on the optimal schedule for the grand coalition. Furthermore we show that many
marginal vectors are core elements, in spite of the fact that these games are not convex in general.
We also consider convexity for some special cases.

In Section 2 we recall notions from cooperative game theory. Furthermore we formally introduce
sequencing situations with controllable processing times and the cooperative games that arise from
these situations. In Section 3 we focus on the core of these sequencing games and in Section 4 we
consider convexity for some special cases.

2 Preliminaries

In this section we will recall some basic notions of cooperative game theory. Then we formally
introduce sequencing situations and games with controllable processing times.

2.1 Cooperative game theory

A cooperative game is a pair (N, v) where N is a finite (player-)set and v, the characteristic function,
is a map v : 2N → R with v(∅) = 0. The map v assigns to each subset S ⊆ N , called a coalition, a
real number v(S) called the worth of S. The core of a game (N, v) is the set

C(v) = {x ∈ RN |x(S) ≥ v(S) for every S ⊆ N, x(N) = v(N)},

where x(S) =
∑

i∈S xi. Intuitively the core is the set of payoff vectors for which no coalition has
an incentive to split off from the grand coalition. The core can be empty. If the core of a game is
nonempty, the game is called balanced. A cooperative game (N, v) is called superadditive if

v(S) + v(T) ≤ v(S ∪ T) for all S, T ⊆ N with S ∩ T = ∅,

and convex if for all i, j ∈ N and S ⊆ N\{i, j} it holds

v(S ∪ {i}) + v(S ∪ {j}) ≤ v(S ∪ {i, j}) + v(S). (1)

For convex games the marginal contribution of a player to a coalition exceeds its marginal contri-
bution to a smaller coalition. Note that convex games are balanced ([12]). Now we will introduce
marginal vectors. Consider σ : {1, . . . , n} → N , which describes an order on the player set. Define
[σ(i), σ] = {σ(j) : j ≤ i} for each i ∈ {1, . . . , n}. That is, [σ(i), σ] is the set of players predecessing
player σ(i) with respect to σ. The marginal vector mσ(v) is defined by

mσ
σ(i)(v) = v([σ(i), σ]) − v([σ(i), σ]\{σ(i)}) for each i ∈ {1, . . . , n}.

That is, each player receives his marginal contribution to the coalition this player joins. We note
that a game is convex if and only if all marginal vectors are core elements (cf. [12] and [10]).

A concept that is closely related to convexity and to marginal vectors is permutationally con-
vexity (cf. [6]). An order σ : {1, . . . , n} → N is a permutationally convex order if for all 0 ≤ i ≤ k

and S ⊆ N\[σ(k), σ] it holds that

v([σ(i), σ] ∪ S) + v([σ(k), σ]) ≤ v([σ(k), σ] ∪ S) + v([σ(i), σ]). (2)

Here we abuse our notation by defining [σ(0), σ] = ∅. Granot and Huberman [6] show that if
σ : {1, . . . , n} → N is a permutationally convex order, then the corresponding marginal vector
mσ(v) is a core element. The converse of this statement is not true in general.

2

We end this subsection with the definition of connected coalitions. Let σ : {1, . . . , n} → N be
an order on the player set. A coalition S ⊆ N is called connected with respect to σ if for every
i, j ∈ S with σ−1(i) < σ−1(j) it holds that k ∈ S for every k ∈ N with σ−1(i) ≤ σ−1(k) ≤ σ−1(j).
We use the notation σ−1 to denote the inverse of σ, i.e. σ−1(k) = l if and only if σ(l) = k. If
a coalition is not connected, then it consists of several connected components. For T ⊆ N , the
connected components with respect to σ are denoted by T\σ.

2.2 Sequencing situations with controllable processing times

In a sequencing situation with controllable processing times, or cps situation for short, there is a
queue of agents, each with one job, in front of the machine. Each agent has to process his job on the
machine. The set of agents is denoted by N = {1, . . . , n}. We assume there is an initial processing
order on the jobs denoted by σ0 : {1, . . . , n} → N . For notational simplicity we assume throughout
the paper that σ0(i) = i for all i ∈ {1, . . . , n}. The job of agent i, i ∈ N , has an initial processing

time pi ≥ 0. This initial processing time can be reduced to at most p̄i, the crashed processing time

of job i. The amount of time by which the initial processing time is reduced is the crash time. We
assume that 0 ≤ p̄i ≤ pi for all i ∈ N . The cost of each job is linear in the completion time as well
as in the crash time. That is, if t is the completion time and x the crash time of job i, then

ci(t, x) = αit + βix

where αi and βi are positive constants expressing the cost of one time unit waiting in the queue
and one time unit crashing job i, respectively. Since crashing a job requires additional resources,
we assume that αi ≤ βi for all i ∈ N . That is, the reduction of the processing time of a job by
one time unit costs more than the processing of that job by one time unit. A cps situation is now
formally defined by the 6-tuple (N, σ0, α, β, p, p̄).

Since the processing times are not fixed, a processing schedule consists of a pair (σ, x) where
σ : {1, . . . , n} → N denotes the processing order, and x the vector of processing times. The cost of
agent i ∈ N at processing schedule (σ, x) is now equal to

Ci((σ, x)) = αi(
∑

j∈{1,...,n}:j≤σ−1(i)

xσ(j)) + βi(pi − xi),

since
∑

j∈{1,...,n}:j≤σ−1(i) xσ(j) is the completion time of job i with respect to the schedule (σ, x),
and pi − xi equals the crash time of job i.

Finding an optimal schedule for a cps situation falls into the class of NP-hard problems. The
difficulty of this problem lies in finding the optimal processing times. Once the optimal processing
times are known, then it is straightforward to find the optimal processing order by using the Smith-
rule ([13]). The Smith-rule states that the jobs should be processed in order of decreasing urgency
index, where the urgency index ui of a job i ∈ N is the quotient between the the completion time
cost coefficient and the processing time xi, i.e. ui = αi

xi
.

Although finding the optimal processing schedule is difficult, the following lemma, due to Vick-
son [16], makes the problem a little easier. This lemma states that there is an optimal schedule
such that the processing time of each job is either equal to its initial processing time, or its crashed
processing time. We note that this result easily follows from the linearity of the cost function.

Lemma 2.1 ([16]) Let (N, σ0, α, β, p, p̄) be a cps situation. There exists an optimal schedule
(σ, x) such that xi ∈ {pi, p̄i} for all i ∈ N .

From Lemma 2.1 it follows that the optimal processing schedule can be found be considering all
2n possibilities for the processing times and applying the Smith-rule for each of these possibilities.
Without loss of generality we will assume throughout the paper that optimal schedules satisfy the
property of Lemma 2.1, i.e. if (σ, x) is an optimal schedule, then it holds that xi ∈ {pi, p̄i} for all
i ∈ N .

3

2.3 Sequencing games with controllable processing times

In this subsection we define sequencing games arising from cps situations, or cps-games for short.
Let (N, σ0, α, β, p, p̄) be a cps situation. The characteristic function of our game will express the
cost savings that each coalition can obtain. For this we have to agree upon which schedules
are admissible for a coalition. We will call a processing schedule admissible for a coalition if it
satisfies three properties. First, the processing times of players outside the coalition should remain
unchanged. Second, the processing times of the players belonging to the coalition should be feasible,
i.e. in between the crashed processing time and the initial processing time. And finally, the schedule
should be such that the jobs outside the coalition remain in their initial position and no jumps take
place over players outside the coalition. Let AS denote the set of admissible schedules for coalition
S ⊆ N . Mathematically, (σ, x) ∈ AS if it holds that

(A1) xi = pi for all i ∈ N\S,

(A2) xi ∈ [p̄i, pi] for all i ∈ S,

(A3) {j ∈ N : σ−1(j) ≤ σ−1(i)} = {j ∈ N : σ−1
0 (j) ≤ σ−1

0 (i)} for all i ∈ N\S.

Note that (A3) is the admissibility requirement from Curiel et al. [4]. For almost all sequencing
games this admissibility requirement is used. Now we define the cps game (N, v) by

v(S) =
∑

i∈S

Ci((σ0, p)) − min
(σ,x)∈AS

∑

i∈S

Ci((σ, x)).

That is, the worth of each coalition is the maximum cost savings they can obtain by means of an
admissible processing schedule. It can easily be seen that cps games are superadditive.

Similarly to Lemma 2.1 it is straightforward to see that for each coalition S ⊆ N , there is an
optimal schedule such that the processing time of each job is either equal to its initial processing
time, or to its crashed processing time. Therefore we assume throughout the paper that optimal
schedules satisfy this property. We now give an example of a cps game.

Example 2.1 Let (N, σ0, α, β, p, p̄) be given by N = {1, 2, 3, 4}, α = (1, 1, 1, 1), β = (2, 2, 2, 2),
p = (10, 4, 3, 15), p̄ = (4, 3, 2, 5). Now consider for instance coalition {1, 2, 3}. The optimal schedule
for this coalition is given by (σ, x) with σ = 3214 and x = (10, 4, 2, 15). This yields cost savings
v({1, 2, 3}) = 41 − 26 = 15. The cps game (N, v) is given by v({i}) = 0 for all i ∈ N and

S {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

v(S) 6 0 0 1 0 0 15 7 6 2 17

Table 1: A cps game.

From Example 2.1 it immediately follows that cps games are in general not σ0-component additive
games (cf. Curiel et al. [5]). A game is called σ0-component additive if it is superadditive, and if
the worth of each disconnected coalition with respect to σ0 is equal to the sum of the worths of
its connected components. In the cps game of Example 2.1 it holds that {1, 3, 4} is a disconnected
coalition with respect to σ0. It consists of connected components {1} and {3, 4}. Since it holds
that v({1}) + v({3, 4}) < v({1, 3, 4}) we conclude that the worth of {1, 3, 4} is larger than the
sum of the worths of its connected components. Therefore the game is not σ0-component additive.
So in spite of the fact that we use a similar admissibility requirement as Curiel et al. [4] we lose

4

σ0-component additivity. Note that many sequencing games are proven to be balanced by means
of σ0-component additivity (e.g. Borm et al. [2] and Hamers et al. [7]). Example 2.1 also shows
that cps games need not be convex, contrary to the sequencing games of Curiel et al. [4].

Example 2.2 Consider the cps situation from Example 2.1, and the corresponding game. Consider
coalition S = {1, 3}, i = 2 and j = 4. Since it holds that v({1, 2, 3}) + v({1, 3, 4}) = 21 > 17 =
v(N) + v({1, 3}) we conclude that (N, v) is not convex.

3 The core of cps games

In this section we prove balancedness of cps games by showing the existence of core elements. In
particular, we provide two core elements that depend only on the optimal schedule for the grand
coalition. Furthermore we show that many marginal vectors are core elements.

In the first part of this section we will provide two core elements that depend on the optimal
schedule for the grand coalition. For the perception of these two core elements it is important to
note that the optimal processing schedule for the grand coalition can be reached from the initial
processing schedule in several ways. For example one could first crash the jobs and then rearrange
them. But one could also first rearrange the jobs and then crash them. We emphasize these two
possibilities since the construction of our two core elements depends on them.

Let (N, σ0, α, β, p, p̄) be a cps situation. Let (σ, x) ∈ AN be an optimal processing schedule for
the grand coalition. For our first core element, denoted by γ((σ, x)), we will reach this optimal
processing schedule by first crashing jobs, and then rearranging them. Let γ((σ, x)) be obtained
as follows. First give the cost savings (or costs) obtained by the crashing of a job to the job that
crashes and secondly give the cost savings obtained by interchanging two jobs to the back job. Or
to put it in a formula:

γi((σ, x)) = ((
∑

j∈N :j≥i

αj) − βi)(pi − xi) +
∑

j∈N :j<i

(αixj − αjxi)+ for all i ∈ N

where ((
∑

j∈N :j≥i αj) − βi)(pi − xi) are the cost savings obtained by crashing job i by (pi − xi)
time. Also observe that if agent j is directly in front of agent i, then the cost savings obtainable
for j and i by switching their order equal (αixj − αjxi)+ = max{(αixj − αjxi), 0}.

For our second core element, denoted by δ((σ, x)), we reach the optimal schedule (σ, x) by first
interchanging jobs to the optimal order, and then crashing them. Let δ((σ, x)) be the following
allocation. First give the possibly negative profit of each neighbourswitch to the back job, and
secondly give the profit of each crashing to the job that crashes. That is,

δi((σ, x)) =
∑

j∈N :j<i and σ−1(j)>σ−1(i)

(αipj−αjpi)+((
∑

k∈N :σ−1(k)≥σ−1(i)

αk)−βi)(pi−xi) for all i ∈ N.

Because of notational convenience we will write γ and δ instead of γ((σ, x)) and δ((σ, x)) if there
can be no confusion about the optimal order that is used. We now give an illustration of γ and δ.

Example 3.1 Let N = {1, 2, 3}, α = (2, 2, 2), β = (3, 3, 3), p = (4, 4, 8) and p̄ = (2, 1, 6). The
optimal order for the grand coalition is now given by σ = 213 and the optimal processing times are
x = (2, 1, 8). Observe that γ3 = δ3 = 0. Also it holds that γ1 = (α1 + α2 + α3 − β1)(p1 − x1) =
(6− 3)(4− 2) = 6 and γ2 = (α2 +α3 −β2)(p2 −x2)+ (α2x1 −α1x2)+ = (4− 3)(4− 1)+ (4− 2) = 5.
Furthermore, note that δ1 = (α1 + α3 − β1)(p1 − x1) = (4 − 3)(4 − 2) = 2 and that δ2 = (α2p1 −
α1p2) + (α2 + α1 + α3 − β2)(p2 − x2) = (8 − 8) + (6 − 3)(4 − 1) = 9.

5

Before we show that γ and δ are core elements, we need two lemmas. In the first we obtain another
expression for δ which we will use in the proof of Theorem 3.1. The proof of this lemma can be
found in the Appendix. The second lemma is a technical but straightforward lemma which we will
use throughout the paper.

Lemma 3.1 Let (N, σ0, α, β, p, p̄) be a cps situation and let (σ, x) ∈ AN be an optimal processing
schedule. For all i ∈ N it holds that

δi = γi −
∑

j∈N :j>i and σ−1(j)<σ−1(i)

αj(pi − xi) +
∑

j∈N :j<i and σ−1(j)>σ−1(i)

αi(pj − xj).

Lemma 3.2 Let a1, a2, q1, q̄1, q2 ≥ 0 with q1 ≥ q̄1. It holds that a2(q1 − q̄1) + (a2q̄1 − a1q2)+ ≥
(a2q1 − a1q2)+.

Proof: If (a2q1 − a1q2)+ = 0 then the inequality is trivially satisfied, so suppose that
(a2q1 − a1q2)+ > 0. This implies that a2q1 − a1q2 > 0. Straightforwardly it follows that

a2(q1 − q̄1) + (a2q̄1 − a1q2)+ ≥ a2(q1 − q̄1) + (a2q̄1 − a1q2)

= a2q1−a1q2 = (a2q1−a1q2)+. 2

Now we are ready to prove that γ ∈ C(v) and δ ∈ C(v).

Theorem 3.1 Let (N, σ0, α, β, p, p̄) be a cps situation and let (N, v) be the corresponding game.
Let (σ, x) ∈ AN be an optimal processing schedule. It holds that γ ∈ C(v) and δ ∈ C(v).

Proof: It is obvious that γ and δ are efficient, since both γ and δ divide the total cost savings
of the grand coalition. Let T ⊆ N . We need to show that

∑

i∈T γi ≥ v(T) and
∑

i∈T δi ≥ v(T).
We will equivalently show that

∑

i∈N\T γi + v(T) ≤ v(N) and
∑

i∈N\T δi + v(T) ≤ v(N) by

constructing a suboptimal schedule (σsubopt, psubopt) ∈ AN that depends on an optimal processing
schedule of T . We show that the total cost savings obtained in this suboptimal schedule exceed both
∑

i∈N\T γi + v(T) and
∑

i∈N\T δi + v(T). Obviously the cost savings in the suboptimal schedule
are at most v(N).

We first find expressions for
∑

i∈N\T γi and
∑

i∈N\T δi. Note that
∑

i∈N\T

γi

=
∑

i∈N\T

((
∑

j∈N :j≥i

αj) − βi)(pi − xi) (3)

+
∑

i,j∈N\T :j<i

(αixj − αjxi)+ (4)

+
∑

j∈T,i∈N\T :j<i

(αixj − αjxi)+ (5)

and that
∑

i∈N\T

δi

=
∑

i∈N\T

γi

−
∑

i∈N\T

∑

j∈N :j>i and σ−1(j)<σ−1(i)

αj(pi − xi) (6)

+
∑

i∈N\T

∑

j∈N :j<i and σ−1(j)>σ−1(i)

αi(pj − xj), (7)

6

=
∑

i∈N\T

γi (8)

−
∑

i∈N\T

∑

j∈T :j>i and σ−1(j)<σ−1(i)

αj(pi − xi) (9)

+
∑

i∈N\T

∑

j∈T :j<i and σ−1(j)>σ−1(i)

αi(pj − xj), (10)

where the first equality holds because of Lemma 3.1. The second equality is satisfied because for
each pair i, j ∈ N\T with j > i and σ−1(j) < σ−1(i) every term in (6) also appears in (7) but with
the opposite sign.

Let (σT , pT) ∈ AT be an optimal schedule for coalition T . Consider the suboptimal schedule

(σsubopt, psubopt) ∈ AN , where p
subopt
j = pT

j if j ∈ T , p
subopt
j = xj if j ∈ N\T , and σsubopt is the order

obtained by applying the Smith-rule using the suboptimal processing times. The total cost savings
for the grand coalition at this suboptimal schedule equal

P =
∑

j∈T

((
∑

i∈T :i≥j

αi) − βj)(pj − p
subopt
j) (11)

+
∑

j∈T

(
∑

i∈N\T :i>j

αi)(pj − p
subopt
j) (12)

+
∑

i∈N\T

((
∑

j∈N :j≥i

αj) − βi)(pi − p
subopt
i) (13)

+
∑

j,i∈N\T :j<i

(αip
subopt
j − αjp

subopt
i)+ (14)

+
∑

j∈N\T,i∈T :j<i

(αip
subopt
j − αjp

subopt
i)+ (15)

+
∑

j∈T,i∈N\T :j<i

(αip
subopt
j − αjp

subopt
i)+ (16)

+
∑

j,i∈T :j<i

(αip
subopt
j − αjp

subopt
i)+. (17)

Expressions (11) and (12) are the cost savings obtained by crashing the jobs of T , and expres-
sion (13) the cost savings obtained by crashing the jobs of N\T . The cost savings obtained by
rearranging the jobs are equal to the sum of expressions (14), (15), (16) and (17).

Now we will show that the sum of (3), (4), (5), (10) and v(T) is exceeded by P . Since (10)
is nonnegative, this shows that

∑

i∈N\T γi + v(T) is exceeded by P . Furthermore, since (9) is
nonpositive, it also shows that

∑

i∈N\T δi + v(T) is exceeded by P .

First note that the sum of expressions (11) and (17) exceeds v(T) because p
subopt
i = pT

i for
all i ∈ T . It also holds that (13) coincides with (3) as well as (14) coincides with (4) because

p
subopt
j = xj for all j ∈ N\T . Finally, note that expression (15) is nonnegative. Hence, for showing

that the sum of expressions (3), (4), (5), (10) and v(T) is exceeded by P it is sufficient to show
that the sum of (5) and (10) is exceeded by the sum of (12) and (16). We will show that this holds
by comparing the sums term by term.

So let j ∈ T , i ∈ N\T such that j < i. Note that it now holds that p
subopt
i = xi and that

p
subopt
j = pT

j . We distinguish between two cases.

Case 1: σ−1(j) ≤ σ−1(i).
In this case it holds that i and j do not have a corresponding term in (10). Therefore we only

need to compare the corresponding term in (5) with the corresponding terms in (12) and (16).

7

If it holds that p
subopt
j ≥ xj , then we have that (αip

subopt
j − αjp

subopt
i)+ = (αip

subopt
j − αjxi)+ ≥

(αixj − αjxi)+. Hence, the term in (5) is exceeded by the corresponding term in (16). Since the
corresponding term in (12) is nonnegative we conclude that the term in (5) is exceeded by the sum
of the corresponding terms in (12) and (16).

So assume that p
subopt
j < xj . Since optimal processing times only take two values by assumption

it holds that p
subopt
j = p̄j and xj = pj . Since j < i it follows that there is a term αi(pj − p

subopt
j)

in expression (12). Now according to Lemma 3.2 using a1 = αj , a2 = αi, q1 = pj , q̄1 = p
subopt
j and

q2 = pi, it holds that αi(pj−p
subopt
j)+(αip

subopt
j −αjp

subopt
i)+ ≥ (αipj−αjp

subopt
i)+ = (αixj−αjxi)+,

where the equality holds because pj = xj and p
subopt
i = xi.

So in this case it holds that the corresponding terms in (12) and (16) exceed the terms in (5).

Case 2: σ−1(j) > σ−1(i).
Since σ−1(j) > σ−1(i) it necessarily holds αi

xi
≥

αj

xj
and thus that αixj − αjxi ≥ 0. Straightfor-

wardly we obtain that

αi(pj − p
subopt
j) + (αip

subopt
j − αjp

subopt
i)+ ≥ αi(pj − p

subopt
j) + (αip

subopt
j − αjp

subopt
i)

= αipj − αjp
subopt
i = αi(pj − xj) + (αixj − αjp

subopt
i)

= αi(pj − xj) + (αixj − αjxi)+,

where the last equality holds since p
subopt
i = xi and αixj − αjxi ≥ 0. We conclude that the corre-

sponding terms of expressions (12) and (16) exceed the corresponding terms of expressions (5) and
(10). This completes the proof. 2

Note that if the optimal schedule is not unique, then γ and δ are not uniquely determined, since
γ and δ clearly depend on the optimal schedule that is used. This possibility is illustrated in the
following example.

Example 3.2 Let N = {1, 2}, α = (2, 2), β = (3, 3), p = (2, 2) and p̄ = (1, 1). Observe that
jobs 1 and 2 are completely symmetric. There are two optimal processing schedules: only crash
job 1 and keep the initial processing order, and only crash job 2 and interchange job 1 and 2.
Mathematically, (σ1, x1) is optimal with σ1 = 12 and x1 = (1, 2) and (σ2, x2) is optimal with
σ2 = 21 and x2 = (2, 1). It holds that γ1((σ

1, x1)) = δ1((σ
1, x1)) = v({1, 2}) = 1 and γ2((σ

1, x1)) =
δ2((σ

1, x1)) = 0. Furthermore it holds that γ1((σ
2, x2)) = δ1((σ

2, x2)) = 0 and γ2((σ
2, x2)) =

δ2((σ
2, x2)) = v({1, 2}) = 1. According to Theorem 3.1 all four allocations are core elements.

In the upcoming part of this section we study marginal vectors that provide core elements. In
the next theorem we show that many marginal vectors are core elements by showing that the
corresponding orders are permutationally convex orders. In particular we show that the orders
that put the jobs in reverse order, with respect to σ0, but have job 1 at an arbitrary position are
permutationally convex.

Theorem 3.2 Let (N, σ0, α, β, p, p̄) be a cps situation and let (N, v) be the corresponding game.
Let 1 ≤ j ≤ n and let σ : {1, . . . , n} → N be such that σ(i) = n + 1 − i for all 1 ≤ i < j,
σ(i) = n + 2 − i for all j < i ≤ n and σ(j) = 1. Then it holds that σ is a permutationally convex
order. In particular it holds that mσ(v) ∈ C(v).

Since the proof is rather cumbersome, we have put it in the Appendix. The following example
illustrates Theorem 3.2.

8

Example 3.3 Let (N, σ0, α, β, p, p̄) be as in Example 2.1 and let (N, v) be the corresponding game.
According to Theorem 3.2 the marginal vectors corresponding to the orders 4321, 4312, 4132 and
1432 are all core elements. In particular, m4321(v) = (15, 2, 0, 0), m4312(v) = (6, 11, 0, 0) and
m4132(v) = m1432(v) = (0, 11, 6, 0) ∈ C(v).

The orders in Theorem 3.2 are not the only permutationally convex orders of cps games. In Van
Velzen [15] it is shown that for any TU-game (N, v) it holds that if σ : {1, . . . , n} → N is a
permutationally convex order, then σn−1 is a permutationally convex order as well, where σn−1 is
obtained by interchanging the players in the (n − 1)-st and n-th position of σ. In the proceeding
we will show for cps games that if σ : {1, . . . , n} → N is a permutationally convex order, then σ1

is a permutationally convex order as well. That is, the order obtained from σ by interchanging the
first and second position is also permutationally convex. We first need the following lemma.

Lemma 3.3 Let (N, σ0, α, β, p, p̄) be a sequencing situation with controllable processing times
and let (N, v) be the corresponding game. Let S, T ⊆ N with |S ∩ T | = 1. Then it holds that
v(S) + v(T) ≤ v(S ∪ T).

The proof of this lemma is also recorded in the Appendix. Superadditivity of cps games together
with Lemma 3.3 implies the following corollary.

Corollary 3.1 Let (N, σ0, α, β, p, p̄) be a cps situation with |N | = 3. Let (N, v) be the correspond-
ing game. Then (N, v) is convex.

As promised, we now show that if σ : {1, . . . , n} → N is a permutationally convex order, then
the order obtained from σ by interchanging the players in the first and second position, σ1, is a
permutationally convex order as well.

Theorem 3.3 Let (N, σ0, α, β, p, p̄) be a cps situation and let (N, v) be the corresponding game.
If σ : {1, . . . , n} → N is a permutationally convex order, then σ1 is a permutationally convex order
as well. In particular it holds that mσ1 ∈ C(v).

Proof: Suppose that σ : {1, . . . , n} → N is a permutationally convex order. We need to show that
for all 0 ≤ i ≤ k and all S ⊆ N\[σ1(k), σ1] it holds that

v([σ1(i), σ1] ∪ S) + v([σ1(k), σ1]) ≤ v([σ1(k), σ1] ∪ S) + v([σ1(i), σ1]).

If i = 0, then the inequality is trivially satisfied because (N, v) satisfies superadditivity. If i ≥ 2,
then this inequality is satisfied since in that case [σ1(i), σ1] = [σ(i), σ], [σ1(k), σ1] = [σ(k), σ]
and our assumption that σ is a permutationally convex order. So let i = 1 and k > i. Since
([σ1(i), σ1] ∪ S) ∩ [σ1(k), σ1] = {σ1(1)}, the inequality holds by Lemma 3.3. 2

We now illustrate the result of Van Velzen [15] about the permutational convexity of σn−1 and
Theorem 3.3.

Example 3.4 Let (N, v) be as in Example 2.1. In Example 3.3 we showed that 4321, 4312, 4132
and 1432 are permutationally convex orders. From Van Velzen [15] and Theorem 3.3 it follows
that 3421, 3412, 4123 and 1423 are permutationally convex as well. Thus, m3421(v) = (15, 2, 0, 0),
m3412(v) = (6, 11, 0, 0) and m4123(v) = m1423(v) = (0, 7, 10, 0) are all core elements.

The final theorem of this section shows a way to alter a core element slightly, such that the new
allocation is still in the core.

9

Theorem 3.4 Let (N, σ0, α, β, p, p̄) be a cps situation and (N, v) be the corresponding game. Let
x ∈ C(v) and let j, k ∈ N . Furthermore let λ ≥ 0 be such that λ ≤ (v({j, k}) − xk)+ and let x̄ be
such that x̄i = xi for all i ∈ N\{j, k}, x̄j = xj − λ and x̄k = xk + λ. Then it holds that x̄ ∈ C(v).

Proof: If λ = 0, then it follows that x̄ = x, and trivially we have that x̄ ∈ C(v). So suppose that
λ > 0. It now follows by definition of λ that xk + λ ≤ v({j, k}).

Showing that x̄ ∈ C(v) boils down to showing that for each S ⊆ N\{k} with j ∈ S it holds
that x̄(S) ≥ v(S). Let S ⊆ N\{k} such that j ∈ S. Now note that

∑

i∈S∪{k}

xi ≥ v(S ∪ {k}) ≥ v(S) + v({j, k}), (18)

where the first inequality holds because x ∈ C(v) and the second follows by Lemma 3.3. Thus

∑

i∈S

x̄i =
∑

i∈S

xi − λ =
∑

i∈S∪{k}

xi − xk − λ ≥ v(S) + v({j, k}) − xk − λ ≥ v(S),

where the first inequality follows by expression (18), and the second because xk + λ ≤ v({j, k}). 2

Theorem 3.4 enables us to show a nice feature of cps games. Let (N, σ0, α, β, p, p̄) be a cps situation
and let (N, v) be the corresponding game. Let σ : {1, . . . , n} → N be such that mσ(v) ∈ C(v). If k

and j are the first and second player according to σ, respectively, then it holds that mσ
k(v) = 0 and

mσ
j (v) = v({j, k}). Let λ = v({j, k}). According to Theorem 3.4 it holds that x̄ ∈ C(v), where x̄ is

given by x̄k = mσ
k(v)+λ = v({j, k}), x̄j = mσ

j (v)−λ = 0 and x̄i = mσ
i (v) for all i ∈ N\{j, k}. Now

note that x̄ = mσ1(v), and thus that mσ1(v) ∈ C(v). Therefore we have the following proposition.

Proposition 3.1 Let (N, σ0, α, β, p, p̄) be a cps situation and let (N, v) be the corresponding game.
If σ : {1, . . . , n} → N is such that mσ(v) ∈ C(v), then mσ1(v) ∈ C(v). In particular, the number
of marginal vectors in the core is even.

4 Convexity of cps games

In this section we investigate convexity of cps games. In particular we show for situations where all
completion time cost coefficients, all crash time cost coefficients and all maximum crash times are
equal, then the corresponding game is convex. Furthermore we show that relaxing this condition
might lead to nonconvex cps games.

The next theorem shows that a specific class of cps situations has corresponding convex games.

Theorem 4.1 Let (N, σ0, α, β, p, p̄) be a cps situation and let (N, v) be the corresponding game.
If αi = αj , βi = βj and pi − p̄i = pj − p̄j for all i, j ∈ N , then (N, v) is convex.

Proof: Let (N, σ0, α, β, p, p̄) be a cps situation with αi = αj , βi = βj and pi − p̄i = pj − p̄j for all
i, j ∈ N and let (N, v) be the corresponding game. For notational convenience we say that αi = α,
βi = β and pi − p̄i = q for all i ∈ N , where α, β and q here denote scalars and not vectors. We
assume that q > 0. If q = 0 then no crashing is possible and the cps situation is nothing more than
a standard sequencing situation. The resulting game will be convex by Curiel et al. [4].

First we show that the optimal schedule is easy to determine in this case. Let S ⊆ N . We will
reach the optimal schedule for S by first rearranging the jobs according to the Smith-rule and then
crashing them. Note that, since αi = α and βi = β for all i ∈ S, it is easy to determine the position
of the jobs that are crashed in the optimal schedule. In particular, if k ∈ S is the l-th job of S in
the optimal processing order, then there are |S| − l jobs of S in the queue behind k. Hence, if job

10

k crashes, then this yields cost savings of ((|S| − l + 1)α − β)q. This term is nonnegative only if
(|S| − l + 1)α − β is nonnegative. Furthermore, observe that these cost savings do not depend on

k. We conclude that the cost savings due to crashing jobs will equal
∑|S|

k=1((|S| − k + 1)α − β)+q.
These cost savings only depend on the size of S and not on the jobs of S or on the order in which
the jobs are processed.

Because the cost savings obtained from optimally crashing jobs are independent of the order
in which the jobs are processed it follows that the total cost savings are maximized if the cost
savings obtained from interchanging the jobs are maximized. In particular, the total cost savings
are maximized if the jobs are lined up in order of decreasing urgencies. Therefore

v(S) =
∑

T∈S\σ0

∑

i,j∈T :i<j

(αjpi − αipj)+ +

|S|
∑

k=1

((|S| − k + 1)α − β)+q.

Since (N, z) with z(S) =
∑

T∈S\σ0

∑

i,j∈T :i<j(αjpi − αipj)+ is convex (Curiel et al. [4]), it is suf-

ficient for convexity of (N, v) to show that (N, w) with w(S) =
∑|S|

k=1((|S| − k + 1)α − β)+q is
convex. So let i, j ∈ N and S ⊆ N\{i, j}. We distinguish between three cases in order to show
that w(S ∪ {i}) + w(S ∪ {j}) ≤ w(S ∪ {i, j}) + w(S).

Case 1: w(S ∪ {i}) = w(S ∪ {j}) = 0.
Trivially it follows that w(S ∪ {i}) + w(S ∪ {j}) = 0 ≤ w(S ∪ {i, j}) + w(S).

Case 2: w(S ∪ {i}) = w(S ∪ {j}) > 0 and w(S) = 0.
Since w(S) = 0 and q > 0, it holds that |S|α − β ≤ 0. Therefore it holds that w(S ∪ {i}) =

w(S ∪ {j}) = ((|S| + 1)α − β)q. Hence,

w(S ∪ {i}) + w(S ∪ {j}) = 2((|S| + 1)α − β)q

≤ ((|S| + 1)α − β)q + ((|S| + 2)α − β)q = w(S ∪ {i, j}) = w(S ∪ {i, j}) + w(S).

Case 3: w(S) > 0.
Because w(S) > 0, it holds that w(S ∪ {i}) = w(S) + ((|S| + 1)α − β)q. Furthermore we have

that w(S ∪ {i, j}) = w(S ∪ {j}) + ((|S| + 2)α − β)q. Therefore,

w(S ∪ {i}) + w(S ∪ {j}) = w(S) + ((|S| + 1)α − β)q + w(S ∪ {j})

≤ w(S) + ((|S| + 2)α − β)q + w(S ∪ {j}) = w(S) + w(S ∪ {i, j}). 2

Let (N, σ0, α, β, p, p̄) be a cps situation with αi = αj , βi = βj and pi − p̄i = pj − p̄j for all i, j ∈ N .
Let (N, v) be the corresponding game. According to the proof of Theorem 4.1 it holds that (N, v)
is the sum of a symmetric game and a classical sequencing game à la Curiel et al. [4]. Hence, the
Shapley value of (N, v) is equal to the sum of the Shapley value of the symmetric game and the
Shapley value of the classical sequencing game. Since both can be computed easily it follows that
the Shapley value of cps games arising from these special cps situations can be computed easily.

The following examples show that by relaxing the condition of Theorem 4.1 convexity might be
lost.

Example 4.1 (αi = αj, βi = βj and p̄i = p̄j for all i, j ∈ N) Let (N, σ0, α, β, p, p̄) be given by
N = {1, 2, 3, 4}, αi = 2, βi = 5 and p̄i = 2 for all i ∈ N . Furthermore, let p = (7, 3, 3, 7). Let
(N, v) be the corresponding game. Since 2α < β, it follows for coalition {1, 3} no cost savings
can be obtained by crashing job 1. Since also no cost savings can be obtained by rearranging
the jobs, it follows that v({1, 3}) = 0. Because 2α < β and 3α > β it follows that for the
grand coalition it is optimal to crash exactly two jobs, namely the jobs that are in the first and

11

second position of the optimal processing order. By considering all possibilities of crashing two
of the four jobs, it is straightforward to see that the schedule (2314, (7, 2, 2, 7)) ∈ AN is optimal.
As a result we have that v(N) = 20. Now observe that (2314, (7, 2, 3, 7)) ∈ A{1,2,3} and that
(1234, (2, 3, 3, 7)) ∈ A{1,3,4}. These schedules yield cost savings of 17 and 5 for coalitions {1, 2, 3}
and {1, 3, 4} respectively. Therefore v({1, 2, 3}) ≥ 17 and v({1, 3, 4}) ≥ 5. We conclude that
v({1, 2, 3}) + v({1, 3, 4}) ≥ 22 > 20 = v(N) + v({1, 3}), and thus that (N, v) is not convex.

Example 4.2 (αi = αj, pi = pj and p̄i = p̄j for all i, j ∈ N) Let (N, σ0, α, β, p, p̄) be given by
N = {1, 2, 3, 4, 5}, αi = 2, pi = 2 and p̄i = 1 for all i ∈ N . Furthermore, let β = (6, 6, 3, 3, 6).
Let (N, v) be the corresponding game. For each coalition, the optimal order can be reached by
first interchanging jobs, and then crashing them. Since αi = 2 and pi = 2 for all i ∈ N it follows
that (αipj − αjpi) = 0 for all i, j ∈ N . That is, first rearranging jobs yields no cost savings and
no extra costs. Hence, the cost savings for each coalition consist of cost savings due to crashing
only. Because αi = 2 and pi − p̄i = 1 for all i ∈ N , it is optimal for each coalition to put the jobs
with lowest βi to the front as much as possible. In particular, for coalitions {1, 3, 4} and N the
optimal schedules are (12345, (2, 2, 1, 2, 2)) ∈ A{1,3,4} and (34125, (2, 2, 1, 1, 2)) ∈ AN respectively.
This yields cost savings of v({1, 3, 4}) = 1 and v(N) = 12. For coalitions {1, 2, 3, 4} and {1, 3, 4, 5}
the optimal schedules are given by (34125, (2, 2, 1, 1, 2)) ∈ A{1,2,3,4} and (12345, (1, 2, 1, 1, 2)) ∈
A{1,3,4,5}, respectively, with cost savings v({1, 2, 3, 4}) = 8 and v({1, 3, 4, 5}) = 6. We conclude
that v({1, 2, 3, 4}) + v({1, 3, 4, 5}) = 14 > 13 = v(N) + v({1, 3, 4}), and thus that (N, v) is not
convex.

Example 4.3 (βi = βj, pi = pj and p̄i = p̄j for all i, j ∈ N) Let (N, σ0, α, β, p, p̄) be given by N =
{1, 2, 3, 4}, βi = 5, pi = 2 and p̄i = 1 for all i ∈ N . Furthermore, let α = (1, 1, 5, 1). Let
(N, v) be the corresponding game. Since coalition {1, 3} is a disconnected coalition, the only
cost savings it can obtain is by crashing job 1. Hence, v({1, 3}) = 1. For the grand coalition
the schedule (3124, (2, 2, 1, 2)) ∈ AN is optimal, with cost savings v(N) = 19. Furthermore it
holds that (3124, (2, 2, 1, 2)) ∈ A{1,2,3} and that (1234, (1, 2, 1, 2)) ∈ A{1,3,4}. These schedule lead
to cost savings of 18 and 3 for coalitions {1, 2, 3} and {1, 3, 4} respectively. We conclude that
v({1, 2, 3}) + v({1, 3, 4}) ≥ 21 > 20 = v(N) + v({1, 3}), and thus that (N, v) is not convex.

As a final remark to this paper we conjecture that for a cps situation (N, σ0, α, β, p, p̄) the corre-
sponding game is convex if it holds that αi = αj , βi = βj and pi = pj for all i, j ∈ N .

References

[1] B. Alidaee and A. Ahmadian. Two parallel machine sequencing problems involving controllable job
processing times. European Journal of Operational Research, 70:335–341, 1993.

[2] P. Borm, G. Fiestras-Janeiro, H. Hamers, E. Sanchez, and M. Voorneveld. On the convexity of
sequencing games with due dates. European Journal of Operational Research, 136:616–634,
2002.

[3] P. Calleja, P. Borm, H. Hamers, F. Klijn, and M. Slikker. On a new class of parallel sequencing
situations and related games. Annals of Operations Research, 109:265–277, 2002.

[4] I. Curiel, G. Pederzoli, and S. Tijs. Sequencing games. European Journal of Operational Research,
40:344–351, 1989.

[5] I. Curiel, J. Potters, V. Rajendra Prasad, S. Tijs, and B. Veltman. Sequencing and cooperation.
Operations Research, 42:566–568, 1994.

[6] D. Granot and G. Huberman. The relationship between convex games and minimal cost spanning
tree games: A case for permutationally convex games. SIAM Journal of Algorithms and Discrete

Methods, 3:288–292, 1982.

12

[7] H. Hamers, P. Borm, and S. Tijs. On games corresponding to sequencing situations with ready
times. Mathematical Programming, 70:1–13, 1995.

[8] H. Hamers, F. Klijn, and J. Suijs. On the balancedness of multimachine sequencing games. European

Journal of Operational Research, 119:678–691, 1999.

[9] H. Hamers, F. Klijn, and B. van Velzen. On the convexity of precedence sequencing games. CentER
Discussion Paper 2002-112, Tilburg University, Tilburg, The Netherlands, 2002.

[10] T. Ichiishi. Supermodularity: applications to convex games and the greedy algorithm for lp. Journal

of Economic Theory, 25:283–286, 1981.

[11] E. Nowicki and S. Zdrzalka. A survey of results for sequencing problems with controllable processing
times. Discrete Applied Mathematics, 26:271–287, 1990.

[12] L. Shapley. Cores of convex games. International Journal of Game Theory, 1:11–26, 1971.

[13] W. Smith. Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3:59–
66, 1956.

[14] A. van den Nouweland, M. Krabbenborg, and J. Potters. Flowshops with a dominant machine.
European Journal of Operational Research, 62:38–46, 1992.

[15] B. van Velzen. A note on permutationally convex games. Mimeo, Tilburg University, Tilburg, The
Netherlands, 2003.

[16] R.G. Vickson. Choosing the job sequence and processing times to minimize total processing plus
flow cost on a single machine. Operations Research, 28(5):1155–1167, 1980.

[17] R.G. Vickson. Two single machine sequencing problems involving controllable processing times.
AIIE Transactions, 12(3):258–262, 1980.

Appendix

Proof of Lemma 3.1: Let (N, σ0, α, β, p, p̄) be a cps situation. Let (σ, x) ∈ AN be an optimal
schedule for the grand coalition. Let i ∈ N . Recall that

δi

=
∑

j∈N :j<i and σ−1(j)>σ−1(i)

(αipj − αjpi) (19)

+ ((
∑

k∈N :σ−1(k)≥σ−1(i)

αk) − βi)(pi − xi) (20)

First note for expression (19) that

∑

j∈N :j<i and σ−1(j)>σ−1(i)

(αipj − αjpi)

=
∑

j∈N :j<i and σ−1(j)>σ−1(i)

(αixj − αjpi) (21)

+
∑

j∈N :j<iand σ−1(j)>σ−1(i)

αi(pj − xj). (22)

13

Furthermore, note for expression (20) that

((
∑

k∈N :σ−1(k)≥σ−1(i)

αk) − βi)(pi − xi)

= ((
∑

k∈N :k≥i

αk) − βi)(pi − xi) (23)

−
∑

j∈N :j>i and σ−1(j)<σ−1(i)

αj(pi − xi) (24)

+
∑

j∈N :j<i and σ−1(j)>σ−1(i)

αj(pi − xi). (25)

Now adding expressions (21) and (25) yields

∑

j∈N :j<i and σ−1(j)>σ−1(i)

(αixj − αjpi)

+
∑

j∈N :j<iand σ−1(j)>σ−1(i)

αj(pi − xi)

=
∑

j∈N :j<i and σ−1(j)>σ−1(i)

(αixj − αjxi). (26)

Observe that the sum of expressions (23) and (26) coincides with γi, since in (26) we sum over all
neighbourswitches in which player i is involved as the back player that give rise to positive cost
savings. We conclude that

δi = γi −
∑

j∈N :j>i and σ−1(j)<σ−1(i)

αj(pi −xi)+
∑

j∈N :j<i and σ−1(j)>σ−1(i)

αi(pj −xj). 2

The following lemma states that if a coalition S ⊆ N consists of several components, then the
optimal schedule of S is also optimal for the last component. This result is logical since the jobs
from other components do not benefit from the crashing of a job of the last component.

Lemma A.1 Let (N, σ0, α, β, p, p̄) be a sequencing situation with controllable processing times.
Let S ⊆ N consist of t ≥ 2 components. Let St be the last component. Then every optimal
schedule for S restricted to St is optimal for St.

The proof is omitted since it is trivial.

Proof of Theorem 3.2: Let (N, σ0, α, β, p, p̄) be a cps situation and let (N, v) be the corre-
sponding game. Let 1 ≤ j ≤ n and let σ : {1, . . . , n} → N be such that σ(i) = n + 1 − i for all
1 ≤ i < j, σ(i) = n + 2 − i for all j < i ≤ n and σ(j) = 1. We need to show that for all 0 ≤ i ≤ k

and all S ⊆ N\[σ(k), σ] expression (2) holds.
So let 0 ≤ i ≤ k and let S ⊆ N\[σ(k), σ]. We assume that 1 ≤ i < k and that S 6= ∅, since for

i = 0 expression (2) trivially holds because of superadditivity. Note that since S 6= ∅, it holds that
k 6= n.

Because of the structure of σ, it holds that [σ(k), σ] and [σ(i), σ] both consist of at most two
connected components. In particular, they consist of possibly job 1 and a tail of σ0. If 1 ∈ [σ(k), σ],
then we will denote the first component by K1 = {1} and the second by K2 = [σ(k), σ]\{1}. If
1 6∈ [σ(k), σ], then there is one component which we will denote by K2 and we define K1 = ∅.
Similarly, if 1 ∈ [σ(i), σ], then I1 = {1} and I2 = [σ(i), σ]\{1}. If 1 6∈ [σ(i), σ], then there is one
component which we will denote by I2 and we define I1 = ∅.

14

Denote the optimal processing schedule of [σ(k), σ] by (τ [σ(k),σ], p[σ(k),σ]), and the optimal pro-
cessing schedule of [σ(i), σ] ∪ S by (τ [σ(i),σ]∪S , p[σ(i),σ]∪S). We will create suboptimal schedules for
coalitions [σ(k), σ] ∪ S and [σ(i), σ], depending on the optimal schedules of coalitions [σ(i), σ] ∪ S

and [σ(k), σ]. In particular we ”allocate” the processing times of coalitions [σ(i), σ]∪S and [σ(k), σ]
to coalitions [σ(i), σ] and [σ(k), σ]∪S. In this way we obtain suboptimal processing schedules. The
profit obtained at these suboptimal processing schedules give lowerbounds for v([σ(k), σ] ∪ S) and
v([σ(i), σ]). We will show that the sum of these lowerbounds exceeds the sum of v([σ(i), σ] ∪ S)
and v([σ(k), σ]). We distinguish between two cases.

Case 1: I2 (K2.
Before we will obtain our suboptimal schedules, we first derive expressions for v([σ(k), σ]) and

v([σ(i), σ] ∪ S). It holds that

v([σ(k), σ])

=
∑

l∈K1

((
∑

m∈[σ(k),σ]

αm) − βl)(pl − p
[σ(k),σ]
l) (27)

+ v(K2). (28)

The cost savings of [σ(k), σ] can be divided into two parts. The cost savings obtained by a possible
crash of job 1 equal (27). Note that if 1 6∈ [σ(k), σ], then K1 = ∅ and expression (27) is zero by
definition. The other cost savings that can be obtained by interchanging and crashing jobs of K2

equal (28) according to Lemma A.1.
Since I2 and K2 are both tails of σ0, I2 (K2 and S ∩ K2 = ∅, we conclude that S is not

connected to I2. Denote the components of [σ(i), σ] ∪ S by S1, . . . , St+1, for t ≥ 1. So St+1 = I2

and if 1 ∈ [σ(i), σ], then 1 ∈ S1. Therefore

v([σ(i), σ] ∪ S)

=
∑

l∈I1

((
∑

m∈[σ(i),σ]∪S

αm) − βl)(pl − p
[σ(i),σ]∪S

l) (29)

+
∑

l∈S

((
∑

m∈S∪I2:m≥l

αm) − βl)(pl − p
[σ(i),σ]∪S

l) (30)

+
∑

l,m∈S1:l<m

(αmp
[σ(i),σ]∪S

l − αlp
[σ(i),σ]∪S
m)+ (31)

+
t

∑

a=2

(
∑

l,m∈Sa:l<m

(αmp
[σ(i),σ]∪S

l − αlp
[σ(i),σ]∪S
m)+) (32)

+ v(I2). (33)

Expression (29) denotes the cost savings obtained by a possible crash of job 1, if 1 ∈ [σ(i), σ]. The
cost savings obtained by crashing the jobs in S equal (30). Expressions (31) and (32) are the cost
savings obtained by switching the jobs in S ∪ I1. Because of Lemma A.1 the cost savings obtained
by crashing and rearranging jobs in I2 can be expressed as (33).

Now we will create suboptimal schedules (π[σ(i),σ], p[σ(i),σ]) and (π[σ(k),σ]∪S , p[σ(k),σ]∪S) for coali-
tions [σ(i), σ] and [σ(k), σ] ∪ S respectively. Let

p
[σ(i),σ]
l =











p
[σ(i),σ]∪S

l , if l ∈ I2;

max{p
[σ(i),σ]∪S

l , p
[σ(k),σ]
l }, if l = 1;

pl, if l ∈ N\[σ(i), σ], l 6= 1.

Note that if 1 6∈ [σ(i), σ], then it necessarily holds that 1 6∈ [σ(k), σ] or that 1 6∈ [σ(i), σ]∪S, because

[σ(k), σ] ∩ S = ∅. This implies that if 1 6∈ [σ(i), σ], then p
[σ(k),σ]
1 = p1 or that p

[σ(i),σ]∪S
1 = p1, and

15

therefore that p
[σ(i),σ]
1 = p1. We conclude that the processing times p[σ(i),σ] satisfy the admissibility

constraints (A1) and (A2).
Furthermore let π[σ(i),σ] be obtained from σ0 by rearranging the jobs of [σ(i), σ] according to the

Smith-rule using processing times p[σ(i),σ], taking of course into account the admissibility constraint
(A3). Note that this schedule restricted to I2 is an optimal schedule for I2 according to Lemma
A.1. This yields

v([σ(i), σ]) ≥
∑

l∈I1

((
∑

m∈[σ(i),σ]

αm) − βl)(pl − p
[σ(i),σ]
l) (34)

+ v(I2). (35)

Similarly, let

p
[σ(k),σ]∪S

l =



















p
[σ(k),σ]
l , if l ∈ K2;

p
[σ(i),σ]∪S

l , if l ∈ S, l 6= 1;

min{p
[σ(i),σ]∪S

l , p
[σ(k),σ]
l }, if l = 1;

pl, if l ∈ N\([σ(k), σ] ∪ S), l 6= 1.

Observe that if 1 6∈ [σ(k), σ]∪S, then 1 6∈ [σ(i), σ]∪S and 1 6∈ [σ(k), σ]. Hence, if 1 6∈ [σ(k), σ]∪S,

then it holds that p
[σ(k),σ]
1 = p1 and p

[σ(i),σ]∪S
1 = p1, and therefore that p

[σ(k),σ]∪S
1 = p1. We conclude

that the processing times p[σ(k),σ]∪S satisfy the admissibility constraints (A1) and (A2).
Now using these processing times, let π[σ(k),σ]∪S be the order obtained from σ0 by interchanging

the jobs according to the Smith-rule, while of course taking into account the admissibility constraint
(A3). However, only interchange two jobs if both jobs are in K2, or both jobs are in S∪I1. This last
condition is a technical detail in order to keep the number of terms of our lowerbound for the cost
savings of coalition [σ(k), σ] ∪ S more manageable. Observe that this restriction only lowers our
lowerbound of v([σ(k), σ]∪S). Again note, by Lemma A.1, that this processing schedule restricted
to K2 is optimal for K2. This yields

v([σ(k), σ] ∪ S)

≥
∑

l∈K1

((
∑

m∈[σ(k),σ]∪S

αm) − βl)(pl − p
[σ(k),σ]∪S

l) (36)

+
∑

l∈S

((
∑

m∈S∪K2:m≥l

αm) − βl)(pl − p
[σ(k),σ]∪S

l) (37)

+
∑

l,m∈S1:l<m

(αmp
[σ(k),σ]∪S

l − αlp
[σ(k),σ]∪S
m)+ (38)

+

t
∑

a=2

(
∑

l,m∈Sa:l<m

(αmp
[σ(k),σ]∪S

l − αlp
[σ(k),σ]∪S
m)+) (39)

+ v(K2). (40)

Now first observe that expressions (35) and (33) coincide, as well as expressions (40) and (28).

Furthermore expression (37) exceeds expression (30) since I2 ⊂ K2 and p
[σ(k),σ]∪S

l = p
[σ(i),σ]∪S

l for

all l ∈ S. It also holds that expression (32) coincides with expression (39) because p
[σ(k),σ]∪S

l =

p
[σ(i),σ]∪S

l for all l ∈ S. We conclude that showing (2) boils down to showing that the sum of expres-
sions (34), (36) and (38) exceeds the sum of expressions (27), (29) and (31). We now distinguish
between three subcases.

Subcase 1a: 1 6∈ [σ(k), σ].

16

This implies that K1 = ∅, and thus that I1 = ∅. Therefore it holds that expressions (27),
(29), (34) and (36) all are equal to zero. Hence, it is sufficient to show that (38) exceeds (31)
in order to show that (2) holds. Because I1 = ∅ it follows that 1 6∈ S1. Therefore it holds that

p
[σ(i),σ]∪S
j = p

[σ(k),σ]∪S
j for all j ∈ S1. We conclude that (38) and (31) coincide.

Subcase 1b: 1 ∈ [σ(k), σ] and p
[σ(k),σ]∪S
1 = p

[σ(i),σ]∪S
1 .

Because p
[σ(k),σ]∪S
1 = p

[σ(i),σ]∪S
1 it follows from the definition of p

[σ(k),σ]∪S
1 that p

[σ(i),σ]∪S
1 ≤

p
[σ(k),σ]
1 . We conclude that it must hold that p

[σ(i),σ]
1 = p

[σ(k),σ]
1 . Note that it now holds that (38)

and (31) coincide, since p
[σ(i),σ]∪S
j = p

[σ(k),σ]∪S
j for all j ∈ S1. So showing that (2) is satisfied, boils

down to showing that the sum of expressions (34) and (36) exceeds the sum of expressions (27)
and (29).

Now first suppose that p
[σ(k),σ]
1 = p1. Then it holds that expressions (27) is equal to zero.

Since p
[σ(i),σ]
1 = p

[σ(k),σ]
1 it follows that expression (34) is equal to zero as well. Also we have that

expression (36) exceeds expression (29), since p
[σ(k),σ]∪S
1 = p

[σ(i),σ]∪S
1 and [σ(i), σ] ⊂ [σ(k), σ]. So

expression (2) is satisfied in this case.

Secondly, suppose that p
[σ(k),σ]
1 < p1. Since optimal processing times can only take two val-

ues it holds that p
[σ(k),σ]
1 = p̄1. Since by assumption of subcase 1b it holds that p

[σ(k),σ]∪S
1 =

min{p
[σ(k),σ]
1 , p

[σ(i),σ]∪S
1 } = p

[σ(i),σ]∪S
1 it follows that p

[σ(i),σ]∪S
1 = p̄1. We conclude that p

[σ(i),σ]
1 =

max{p
[σ(k),σ]
1 , p

[σ(i),σ]∪S
1 } = max{p̄1, p̄1} = p̄1.

Observe that because 1 ∈ [σ(k), σ], that 1 6∈ S. Since p
[σ(i),σ]∪S
1 < p1, this implies that

1 ∈ [σ(i), σ]. Thus, K1 = I1 = {1}. Hence it follows for the sum of expressions (27) and (29) that

∑

l∈K1

((
∑

m∈[σ(k),σ]

αm) − βl)(pl − p
[σ(k),σ]
l) +

∑

l∈I1

((
∑

m∈[σ(i),σ]∪S

αm) − βl)(pl − p
[σ(i),σ]∪S

l)

= ((
∑

m∈[σ(k),σ]

αm) − β1)(p1 − p̄1) + ((
∑

m∈[σ(i),σ]∪S

αm) − β1)(p1 − p̄1)

= ((
∑

m∈[σ(k),σ]∪S

αm) − β1)(p1 − p̄1) + ((
∑

m∈[σ(i),σ]

αm) − β1)(p1 − p̄1),

where the first equality is satisfied since K1 = I1 = {1} and p
[σ(k),σ]
1 = p

[σ(i),σ∪S]
1 = p̄1. Note that

this last expression is equal to the sum of expressions (34) and (36) since p
[σ(i),σ]
1 = p

[σ(k),σ]∪S
1 = p̄1

and K1 = I1 = {1}. We conclude that (2) is satisfied.

Subcase 1c: 1 ∈ [σ(k), σ] and p
[σ(k),σ]∪S
1 < p

[σ(i),σ]∪S
1 .

We now necessarily have that p
[σ(k),σ]∪S
1 = p

[σ(k),σ]
1 and that p

[σ(i),σ]
1 = p

[σ(i),σ]∪S
1 . Since optimal

processing times can only take two values it follows that p
[σ(k),σ]∪S
1 = p

[σ(k),σ]
1 = p̄1 and that

p
[σ(i),σ]
1 = p

[σ(i),σ]∪S
1 = p1. Therefore expressions (29) and (34) both are equal to zero. So showing

that (2) holds boils down to showing that the sum of expressions (36) and (38) exceeds the sum of
expressions (27) and (31). First observe for expression (36) that

∑

l∈K1

((
∑

m∈[σ(k),σ]∪S

αm) − βl)(pl − p
[σ(k),σ]∪S

l)

= ((
∑

m∈[σ(k),σ]∪S

αm) − β1)(p1 − p̄1)

17

≥ ((
∑

m∈[σ(k),σ]

αm) − β1)(p1 − p̄1) (41)

+ (
∑

m∈S1\{1}

αm)(p1 − p̄1), (42)

where the equality holds because K1 = {1} and because p
[σ(k),σ]∪S
1 = p̄1. The inequality holds since

(S1\{1}) ⊆ S. Also observe for expression (38) that
∑

l,m∈S1:l<m

(αmp
[σ(k),σ]∪S

l − αlp
[σ(k),σ]∪S
m)+

=
∑

l,m∈S1\{1}:l<m

(αmp
[σ(k),σ]∪S

l − αlp
[σ(k),σ]∪S
m)+ (43)

+
∑

m∈S1\{1}

(αmp̄1 − α1p
[σ(k),σ]∪S
m)+. (44)

For the equality we have used that p
[σ(k),σ]∪S
1 = p̄1. Since K1 = {1} and p

[σ(k),σ]
1 = p̄1, it follows

that expression (41) coincides with expression (27). Therefore it is now sufficient to show that the
sum of expressions (42), (43) and (44) exceeds expression (31). If it holds that 1 6∈ S1, then it holds

that expression (43) coincides with expression (31) since it holds that p
[σ(k),σ]∪S
m = p

[σ(i),σ]∪S
m for all

m ∈ S1\{1}. Therefore assume that 1 ∈ S1. For the sum of expressions (42) and (44) we have that

(
∑

m∈S1\{1}

αm)(p1 − p̄1) +
∑

m∈S1\{1}

(αmp̄1 − α1p
[σ(k),σ]∪S
m)+

≥
∑

m∈S1\{1}

(αmp1 − α1p
[σ(k),σ]∪S
m)+

=
∑

m∈S1\{1}

(αmp
[σ(i),σ]∪S
1 − α1p

[σ(i),σ]∪S
m)+, (45)

The inequality holds because of Lemma 3.2 by taking a1 = α1, a2 = αm, q1 = p1, q̄1 = p̄1 and

q2 = p
[σ(k),σ]∪S
m . The equality is satisfied because p

[σ(i),σ]∪S
1 = p1 and p

[σ(k),σ]∪S
m = p

[σ(i),σ]∪S
m for all

m ∈ S1\{1}. Now observe that the sum of expressions (43) and (45) coincides with expression (31)

since p
[σ(k),σ]∪S
m = p

[σ(i),σ]∪S
m for all m ∈ S1\{1} and our assumption that 1 ∈ S1. We conclude that

(2) is satisfied.

Case 2: I2 = K2.
Since we have assumed that i < k and hence that [σ(i), σ] 6= [σ(k), σ] we conclude, using the

structure of σ, that I1 = ∅ and K1 = {1}. Denote the components of [σ(i), σ] ∪ S by S1, . . . , St,
with t ≥ 1. Note that it might hold that I2 (St. We have that

v([σ(k), σ])

= ((
∑

m∈[σ(k),σ]

αm) − β1)(p1 − p
[σ(k),σ]
1) (46)

+ v(K2) (47)

and that

v([σ(i), σ] ∪ S)

=
∑

l∈[σ(i),σ]∪S

((
∑

m∈[σ(i),σ]∪S:m≥l

αm) − βl)(pl − p
[σ(i),σ]∪S

l) (48)

+
t

∑

a=1

(
∑

l,m∈Sa:l<m

(αmp
[σ(i),σ]∪S

l − αlp
[σ(i),σ]∪S
m)+). (49)

18

First we note, because I1 = ∅, that v([σ(i), σ]) = v(I2) = v(K2). So showing that (2) is satisfied
boils down to showing that the sum of expressions (46), (48) and (49) is exceeded by v([σ(k), σ]∪S).
We will obtain a lowerbound of v([σ(k), σ] ∪ S) by creating a suboptimal schedule for coalition
[σ(k), σ]∪S, which we will denote by (π[σ(k),σ]∪S , p[σ(k),σ]∪S). Let the processing times be given by

p
[σ(k),σ]∪S

l =











p
[σ(i),σ]∪S

l , if l ∈ [σ(i), σ] ∪ S;

p
[σ(k),σ]
l , if l = 1;

pl, if l ∈ N\([σ(k), σ] ∪ S).

Let π[σ(k),σ]∪S be constructed by rearranging the jobs of coalition [σ(k), σ]∪S using the Smith-rule
and our suboptimal processing times. However, only switch jobs if both are in [σ(i), σ] ∪ S. We
can conclude for the cost savings of [σ(k), σ] ∪ S that

v([σ(k), σ] ∪ S)

≥ ((
∑

m∈[σ(k),σ]∪S

αm) − β1)(p1 − p
[σ(k),σ]∪S
1) (50)

+
∑

l∈([σ(k),σ]∪S)\{1}

((
∑

m∈[σ(k),σ]∪S:m≥l

αm) − βl)(pl − p
[σ(k),σ]∪S

l) (51)

+
t

∑

a=1

(
∑

l,m∈Sa:l<m

(αmp
[σ(k),σ]∪S

l − αlp
[σ(k),σ]∪S
m)+). (52)

Expression (46) is exceeded by expression (50) since p
[σ(k),σ]∪S
1 = p

[σ(k),σ]
1 . Note that expres-

sion (51) coincides with expression (48) since ([σ(k), σ] ∪ S)\{1} = [σ(i), σ] ∪ S and because

p
[σ(k),σ]∪S

l = p
[σ(i),σ]∪S

l for all l ∈ [σ(i), σ] ∪ S. Furthermore we have that expressions (49) and

(52) coincide because p
[σ(i),σ]∪S

l = p
[σ(k),σ]∪S

l for all l ∈ [σ(i), σ] ∪ S. We conclude that the sum of
v([σ(k), σ] ∪ S) and v([σ(i), σ]) exceeds the sum of v([σ(i), σ] ∪ S) and v([σ(k), σ]). This ends the
proof. 2

Proof of Lemma 3.3: Let S, T ⊆ N with S ∩ T = {i} for some i ∈ N . We first introduce
some notation. Denote the connected components of S by Sk, k = 1, . . . , a and those of T by
Tl, l = 1, . . . , b. Let Sc, 1 ≤ c ≤ a be such that i ∈ Sc, and let Td, 1 ≤ d ≤ b be such that
i ∈ Td. Finally let S1

c = {m ∈ Sc : m < i}, S2
c = {m ∈ Sc : m > i}, T 1

d = {m ∈ Td : m < i}
and T 2

d = {m ∈ Td : m > i}. Note that since S ∩ T = {i} it holds that S1
c ∩ T 1

d = ∅ and that
S2

c ∩ T 2
d = ∅. Let the connected components of S ∪ T be denoted by Bk, k = 1, . . . , e. Now let

(σS , pS) ∈ AS be an optimal processing schedule for coalition S and (σT , pT) ∈ AT be an optimal
processing schedule of coalition T . It holds that

v(S) =
∑

j∈S

((
∑

k∈S:k≥j

αk) − βj)(pj − pS
j) (53)

+
a

∑

k=1

(
∑

l,m∈Sk:l<m

(αmpS
l − αlp

S
m)+. (54)

The cost savings for coalition S can be split into two components. The first component, (53), are
the (possibly negative) cost savings that are obtained by crashing some of the jobs. Expression
(54) contains the cost savings obtained by interchanging the jobs. Similarly it holds that

19

v(T) =
∑

j∈T

((
∑

k∈T :k≥j

αk) − βj)(pj − pT
j) (55)

+
b

∑

k=1

(
∑

l,m∈Tk:l<m

(αmpT
l − αlp

T
m)+. (56)

We will now construct a suboptimal schedule for coalition S∪T . We will show that the cost savings
obtained at this suboptimal schedule exceed the sum of v(S) and v(T).

Consider the suboptimal processing schedule (σS∪T , pS∪T) ∈ AS∪T for coalition S ∪ T , where

pS∪T
j =















pS
j , if j ∈ S\{i};

pT
j , if j ∈ T\{i};

min{pS
j , pT

j }, if j = i;

pj , if j ∈ N\(S ∪ T).

Furthermore, σS∪T is the order obtained by rearranging the jobs of S ∪ T according to the Smith-
rule using as processing times pS∪T and taking into account the admissibility constraint (A3). This
yields

v(S ∪ T) ≥
∑

j∈S∪T

((
∑

k∈S∪T :k≥j

αk) − βj)(pj − pS∪T
j)

+
e

∑

k=1

(
∑

l,m∈Bk:l<m

(αmpS∪T
l − αlp

S∪T
m)+)

=
∑

j∈S\{i}

((
∑

k∈S∪T :k≥j

αk) − βj)(pj − pS
j) (57)

+
∑

j∈T\{i}

((
∑

k∈S∪T :k≥j

αk) − βj)(pj − pT
j) (58)

+ ((
∑

k∈S∪T :k≥i

αk) − βi)(pi − pS∪T
i) (59)

+
e

∑

k=1

(
∑

l,m∈Bk:l<m

(αmpS∪T
l − αlp

S∪T
m)+). (60)

We will now distinguish between three cases in order to prove our inequality.

Case 1: pS
i = pT

i = pi.
First note that it holds that pS∪T

j = pS
j for all j ∈ S and that pS∪T

j = pT
j for all j ∈ T . It

holds that expression (59) is equal to zero because pS∪T
i = pi. Furthermore, expression (57) ex-

ceeds expression (53), as well as expression (58) exceeds expression (55), since pS
i = pT

i = pi. So
showing that v(S) + v(T) ≤ v(S ∪ T) boils down to showing that expression (60) exceeds the sum
of expressions (54) and (56). Let j, h ∈ Sk for some 1 ≤ k ≤ a, i.e. let j, h appear in a connected
component of S. It follows that they also appear in a connected component of S ∪T , i.e. there is a
1 ≤ g ≤ e with j, h ∈ Bg. We conclude that the term in (54) dealing with j and h also appears in
(60). Similarly, each pair j, h ∈ Tl, for some 1 ≤ l ≤ b, appears in a connected component of S ∪T .
Therefore we also have that the term in (56) dealing with j, h also appears in (60). Observe that
each pair in S is not in T , and that each pair in T is not in S, because |S ∩ T | = 1. Thus it holds,
since pS∪T

j = pS
j for all j ∈ S, pS∪T

j = pT
j for all j ∈ T and the nonnegativity of every term in (60),

20

that (60) exceeds the sum of (54) and (56).

Case 2: pS
i = pT

i = p̄i.
Note that it holds by definition of pS∪T

i that pS∪T
i = pS

i = pT
i . Observe that this implies that

pS∪T
j = pS

j for all j ∈ S and pS∪T
j = pT

j for all j ∈ T . First we will develop a lowerbound for (59):

((
∑

k∈S∪T :k≥i

αk) − βi)(pi − pS∪T
i)

= ((
∑

k∈S:k≥i

αk) − βi)(pi − pS∪T
i)

+ ((
∑

k∈T :k≥i

αk) − βi)(pi − pS∪T
i)

+ (βi − αi)(pi − pS∪T
i)

≥ ((
∑

k∈S:k≥i

αk) − βi)(pi − pS
i) (61)

+ ((
∑

k∈T :k≥i

αk) − βi)(pi − pT
i) (62)

where the inequality is satisfied since βi ≥ αi, and by assumption pS∪T
i = pS

i = pT
i . Observe that

the sum of expressions (57) and (61) exceeds expression (53) and that the sum of expressions (58)
and (62) exceeds expression (55). Hence, showing that v(S) + v(T) ≤ v(S ∪ T) boils down to
showing that expression (60) exceeds the sum of expressions (54) and (56). For this last statement
we refer to Case 1, where we already showed this inequality. Note that we can refer to Case 1,
since in both cases we have that pS∪T

j = pS
j for all j ∈ S and pS∪T

j = pT
j for all j ∈ T .

Case 3: pS
i 6= pT

i .
Without loss of generality assume that pS

i < pT
i , or equivalently that pS

i = p̄i and pT
i = pi.

Hence we have, by definition of pS∪T
i , that pS∪T

i = pS
i = p̄i. Observe that we can obtain the

following lowerbound for (59):

((
∑

k∈S∪T :k≥i

αk) − βi)(pi − pS∪T
i)

= ((
∑

k∈S:k≥i

αk) − βi)(pi − pS
i)

+ (
∑

k∈T :k>i

αk)(pi − pS
i)

≥ ((
∑

k∈S:k≥i

αk) − βi)(pi − pS
i) (63)

+ (
∑

m∈T 2

d

αm)(pi − pS
i), (64)

where the equality holds because pS∪T
i = pS

i and the inequality since T 2
d ⊂ T . Observe that it holds

that expression (58) exceeds expression (55), since pT
i = pi. Furthermore we have that the sum of

expressions (57) and (63) exceeds expression (53). Therefore, showing that v(S)+ v(T) ≤ v(S ∪T)

21

boils down to showing that the sum of expressions (60) and (64) exceeds the sum of expressions
(54) and (56). Note that because |S ∩ T | = 1 we have the following lowerbound for (60):

e
∑

k=1

(
∑

l,m∈Bk:l<m

(αmpS∪T
l − αlp

S∪T
m)+)

≥
a

∑

k=1

(
∑

l,m∈Sk:l<m

(αmpS∪T
l − αlp

S∪T
m)+) (65)

+
b

∑

k=1

(
∑

l,m∈Tk:l<m

(αmpS∪T
l − αlp

S∪T
m)+). (66)

Now it holds that (65) coincides with (54), since pS∪T
l = pS

l for all l ∈ S. So we only need to show
that the sum of expressions (66) and (64) exceeds expression (56). Observe that for (66) we have
that

b
∑

k=1

(
∑

l,m∈Tk:l<m

(αmpS∪T
l − αlp

S∪T
m)+)

=
b

∑

k=1

(
∑

l,m∈Tk\{i}:l<m

(αmpS∪T
l − αlp

S∪T
m)+) +

∑

l∈T 1

d

(αip
S∪T
l − αlp

S∪T
i)+

+
∑

m∈T 2

d

(αmpS∪T
i − αip

S∪T
m)+

≥
b

∑

k=1

(
∑

l,m∈Tk\{i}:l<m

(αmpT
l − αlp

T
m)+) +

∑

l∈T 1

d

(αip
T
l − αlp

T
i)+ (67)

+
∑

m∈T 2

d

(αmpS
i − αip

T
m)+, (68)

where the inequality holds since pS∪T
j = pT

j for all j ∈ T\{i}, pS∪T
i ≤ pT

i and pS∪T
i = pS

i . Now
adding (64) and (68) yields

(
∑

m∈T 2

d

αm)(pi − pS
i) +

∑

m∈T 2

d

(αmpS
i − αip

T
m)+

≥
∑

m∈T 2

d

(αmpi − αip
T
m)+

=
∑

m∈T 2

d

(αmpT
i − αip

T
m)+, (69)

where the inequality holds because of Lemma 3.2 by taking a1 = αi, a2 = αm, q1 = pi, q̄1 = pS
i

and q2 = pT
m. The equality is satisfied because pT

i = pi. Since the sum of expressions (67) and (69)
coincides with expression (56) we conclude that v(S) + v(T) ≤ v(S ∪ T). 2

22

