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On the Role of Chance Moves and Information

in Two-Person Games

Marcel Dreef
1,2

and Peter Borm
1

Abstract

The value of information has been the subject of many studies in a strategic context. The
central question in these studies is how valuable the information hidden in the chance moves
of a game is for one or more of the players. Generally speaking, only the extra possibilities
that are beneficial for the players have been considered so far. In this note we study the value
of information for a special class of two-person games. For these games we also investigate
how “badly” the players can do, both with and without knowing the result of the chance
move. In this way one can determine to what extent the players are restricted in their
possibilities by the fact that some information is hidden in the chance moves of the games.
This allows for a comparison of the influence of the chance move to the control that the
players have over the game result.

Keywords: games with almost perfect information; value of information; player control.
JEL code: C72, D82.

1 Introduction

Picture yourself sitting at a table, playing poker against one opponent. You play for money and

your objective is to make as much money as possible in this game. Of course, your opportunities

to make money depend on a few things: the dealing of the cards, the strategy of your opponent

and your own strategy. The first two factors are outside of your control; you can only influence

the third aspect, your own strategy. This strategy tells you, for each possible poker hand that

you can be dealt and for all possible actions taken by the opponent, what actions you will

take. The prescribed action depends on your hand, but it cannot depend on the hand of your

opponent, because you simply don’t know his cards. But what if there was a possibility to learn

your opponent’s hand, for example by paying someone to hold up a mirror behind his back? To

what extent would this increase your possibilities? Can you use this information to improve your

expected profits in the game? And if that is the case, with what amount does your expected

profit change? Or, in other words, how much are you willing to pay this person who holds up

the mirror?

1CentER and Department of Econometrics and Operations Research, Tilburg University.
2Corresponding author. P.O. Box 90153, 5000 LE Tilburg, The Netherlands. E-mail: dreef@uvt.nl.
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A one-sided cheating option such as this mirror leads to interesting questions already, but

things become even more interesting when your opponent can be active behind your back too.

What if he also knows your cards? Does this change the value that “your” man with the mirror

has for you?

In this note we will provide an answer to the questions above. We do this for the class of

two-person zero-sum games in which a chance move at the start of the game determines which

game exactly is to be played. We will discuss what will be the consequences when the outcome

of this chance move is revealed to one or both of the players before the players have to choose

their actions. Loosely formulated, the difference between what a player can do with and without

the information, is called the value of information. We take into account that this value may

depend on the kind of opponent this player faces. For example, it might be very useful to have

the information if the opponent does not, while it is less valuable to know the outcome of the

chance move if the opponent knows it too. Besides that, one may wonder if it is always valuable

to know the random outcome if the opponent has the irrational objective of trying to lose as

much as possible. We will formalize the various kinds of opponents later in this note.

The value of information has been a notion of interest for a long time. It has been studied

both in a non-strategic and a strategic setting. For the strategic setting, game theoretic analysis

has been applied to many classes of games. Ponssard (1975) called the class of games that we

will study, games with an initial chance move, games with “almost” perfect information. These

games were also subject of study in the papers of Ponssard and Sorin (1980, 1982). Value of

information in two-person zero-sum games has been studied by Ponssard and Zamir (1973) in

the context of sequential games. Ponssard (1976) considers the constant-sum case, while general

bimatrix games are the object of study in the articles of Levine and Ponssard (1977), Borm

(1988) and Kamien, Tauman and Zamir (1990).

In these papers, most of the definitions concerning the value of information in a strategic

conflict are based on the difference between two numbers. However, we think that more numbers

may be important if one wants to quantify the worth of information in a game to one or both

of the players. In computing the value of information, we will use the idea of an information

buying pre-game that Sakaguchi (1993) introduced. In such a pre-game, both players get the

opportunity to buy information about the outcome of the initial chance move before the start of

the game. The value of information is then determined by setting the “price of information” in

this pre-game at a reasonable level. The values of information that we compute, will be used to

determine how restrictive the chance move in the game is for the players. In fact, these values

will be used to quantify the extent to which the players have influence on the game result by

defining the (derived) notion of relative control. This notion will also be referred to as relative

influence.

An interesting aspect of our way of analysing information in two-person zero-sum games is

that it makes use of various game-theoretic concepts within a larger framework. Apart from the

2



zero-sum games themselves, coordination games and amalgamations of games play an important

role. Coordination games form a nice subclass of the (exact) potential games. For an extensive

overview of potential games we refer to Voorneveld (1999). Amalgamations of games were

introduced by Borm, Garćıa-Jurado, Potters and Tijs (1996).

The analysis of relative player influence is closely related to the analysis of the skill level of

a game. The skill level of a game plays a role in the consistent classification of specific (casino)

games as game of chance or as game of skill. In many countries, this classification is important

for the legally approved exploitation possibilities of the game. A complete overview of all aspects

that play a role in the analysis of skill can be found in Dreef, Borm and Van der Genugten (2004).

The main goal of that analysis is rather similar to our goal: with both methods one can draw

conclusions about the role of the chance moves in a game. Central in the skill analysis are

three types of players who can play the game: beginners, optimal players and fictive players.

The second and third category will also appear in our analysis of relative player influence. The

category of the beginners, however, which is, generally speaking, the most difficult to describe,

will not play a role here.

The paper is organized as follows. In the next section, we will give some preliminaries and

introduce the most important basic notions that are used in the text. Then, the sections 3 and 4

describe the way in which the value of information and the role of the chance moves are studied.

Section 5 illustrates the analysis with an example that is based on a simple poker game. To

conclude, section 6 contains a few remarks about our model.

2 Notation and definitions

In this section we will introduce the notation that we use throughout this paper. A (strategic)

two-person game is a tuple G = 〈X1, X2, u1, u2〉, where

• Xi denotes the finite, nonempty set of pure strategies of player i,

• each player i has a payoff function ui : X1 × X2 → R specifying for each strategy profile

x = (x1, x2) ∈ X1 × X2 player i’s payoff ui (x) ∈ R.

The set of pure strategy profiles will be denoted by X = X1 ×X2. A two-person game is called

zero-sum if u1(x) = −u2(x) for each strategy profile x ∈ X. The set of probability distributions

over a finite set S is denoted ∆ (S):

∆ (S) = {p : S → [0, 1] |
∑

s∈S

p(s) = 1}.

The mixed extension of the finite game G = 〈X1, X2, u1, u2〉 allows each player i to choose a

mixed strategy from ∆ (Xi); a mixed strategy for player 1 (2) is denoted by p (q). Payoffs are

extended to mixed strategies as follows:

ui (p, q) =
∑

x∈X

p(x1)q(x2)ui(x),

3



i.e., the payoff to a mixed strategy profile is simply the expected payoff. A pure strategy xi ∈ Xi

can be identified with the mixed strategy that assigns probability one to xi.

A mixed-strategy profile (p, q) ∈ ∆(X1) × ∆(X2) is a (mixed-strategy) Nash equilibrium of

the game G if

∀x1 ∈ X1 : u1(p, q) ≥ u1(x1, q) and (1)

∀x2 ∈ X2 : u2(p, q) ≥ u2(p, x2). (2)

Let A and B be two matrices of equal size. With slight abuse of notation, we define a

bimatrix game 〈A, B〉 as a strategic two-person game with payoff functions u1(p, q) = p>Aq and

u2(p, q) = p>Bq. Here, p is a column vector of which the i-th element gives the probability

with which player 1 plays his i-th pure strategy; q is defined analogously. The column vector

corresponding to the i-th pure strategy of a player is written as ei. A matrix game is a bimatrix

game with B = −A, written as 〈A〉. We will write matrix games and bimatrix games without

the brackets if they are used as the argument of a function.

A bimatrix game with almost perfect information is a bimatrix game in which the payoff

matrices A and B are formed in a special way. A chance move determines which of k possible

bimatrix games will be played. The game 〈Ai, Bi〉 is played with probability µi (1 ≤ i ≤ k). Of

course, the µi are such that each element is selected with positive probability (µi > 0) and the

sum of the probabilities equals one (
∑k

i=1 µi = 1). The payoff matrix A is formed by taking the

weighted sum of the k underlying payoff matrices: A =
∑k

i=1 µiAi. Similarly, B =
∑k

i=1 µiBi.

All matrices Ai and Bi must have the same size. In the naming of this type of games we follow

Ponssard (1975). A matrix game with almost perfect information is a matrix game 〈A〉 that is

based on the matrix games 〈Ai〉 in the sense that is described above.

3 The strategic possibilities of the players

In the remainder of this paper, the basic object of study will be a matrix game with almost

perfect information 〈A〉, based on the matrix games 〈A1〉, . . . , 〈Ak〉. 〈Ai〉 will be played with

probability µi (1 ≤ i ≤ k).

3.1 Player types and related games

For the investigation of the possibilities of the players and the role of the chance move in this

game, we distinguish four types of players. On the one side players can be either egoistic or

altruistic, whereas on the other side players can be clairvoyant or not. Egoistic players want

to maximize their own payoffs, while the aim of an altruistic player is to minimize his own

payoff. The naming stems from the fact that the latter type of player helps his opponent when

playing a zero-sum game. A similar distinction of behaviour patterns in non-cooperative games

is given by Szép and Forgó (1985); for zero-sum games our altruistic players coincide with both
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their mazochist and philantropic types. Also in evolutionary settings the distinction between

altruistic and selfish attitudes is made. A discussion on the context dependence of these types

of preferences can be found in Bester and Güth (1998). The clairvoyance relates to the outcome

of the chance move: clairvoyant players know beforehand which matrix game will be played.

However, they cannot influence the randomization procedure. Table 1 summarizes the terms we

will use when we refer to the resulting four possible player types as well as the corresponding

abbreviations.

Not clairvoyant Clairvoyant

Altruistic worst player (W) fictive worst player (FW)

Egoistic optimal player (O) fictive optimal player (FO)

Table 1: Four types of players.

For a given matrix game of the type that we discussed at the beginning of this section,

we want to know to what extent the players are in control. More precisely, we determine the

range of payoffs that can be reached by the players, given the rules of the game. For each

player we want to know how well he can do, but we are also interested in how badly he can do.

Moreover, we want to know if the uncertainty that is caused by the chance move really restricts

the possibilities of the players. To investigate these questions, we let each of the four player

types take both player roles in the matrix game and we let all combinations of player types play

the game. If we assume that players always know what type of opponent they are facing, this

idea gives rise to the 16 games that are given in Table 2.

Player 2 type

FW W O FO

P
la

y
er

1
ty

p
e

FW
〈−Ai〉

(1 ≤ i ≤ k)
〈−A1〉 〈−A1,−A1〉

〈−Ai,−Ai〉

(1 ≤ i ≤ k)

W 〈−A2〉 〈−A〉 〈−A,−A〉 〈−A2,−A2〉

O 〈A2, A2〉 〈A, A〉 〈A〉 〈A2〉

FO
〈Ai, Ai〉

(1 ≤ i ≤ k)
〈A1, A1〉 〈A1〉

〈Ai〉

(1 ≤ i ≤ k)

Table 2: All combinations of player types and the resulting games.

Let us explain the contents of table 2 in more detail. The basic situation is the case where two

optimal players face each other. These players both try to maximize their payoffs in the matrix

game 〈A〉. If player 2 acts as a worst player and thus tries to obtain the lowest possible payoff in

〈A〉, the resulting strategic situation can be modelled by the coordination game 〈A, A〉. In this
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game the payoff for player 1 is the same as in the original game, whereas player 2 now acts as if

he maximizes his payoff, pretending that his payoff matrix is A instead of −A. However, after

we have found an equilibrium in this game, we have to reverse the sign of player 2’s payoff again.

This reasoning explains the four cells in the middle, the situations where two non-clairvoyant

players meet.

The notations A1 and A2 require some explanation too. We will give the interpretation for

A1; the story for A2 goes analogously. The payoff matrix A1 is used in the cells where player 1

is fictive and player 2 is not. Such a situation can be modelled as an amalgamation of games,

following the definition of Borm, Garćıa-Jurado, Potters and Tijs (1996). In an amalgamation

of games the player set is partitioned into two parties and the game is an aggregation of the

conflicts between two players, one in each party. The payoff of a player is just the sum of the

payoffs in the separate conflicts. In the situation we study we have k “instances” of player 1

(all members of the first party) playing against one opponent (the only member of the second

party). Taking into account the fact that instance i of player 1 is called to play with probability

µi, the matrix µiAi is the payoff matrix that is used in the game between instance i of player j

and his opponent (1 ≤ i ≤ k). Borm et al. (1996, p. 574, Proposition 1) showed for the k + 1-

person game that models this situation that each equilibrium corresponds to an equilibrium in

the related two-person correlation game. In this correlation game the k instances of player 1 are

considered as one player and are allowed to pick correlated strategies. Together they choose a

strategy from ∆(
∏k

i=1 Xi
1), where Xi

1 is the set of pure strategies of player 1 in the matrix game

〈Ai〉. The payoff matrix of this correlation game, with player 1 as a fictive player, is represented

as A1. Together with the reasoning about the reversed sign as before, this explains the contents

of the eight cells where one player is clairvoyant and his opponent is not.

The remaining four cells, corresponding to the situations with two clairvoyant players, speak

more or less for themselves. Both players know which of the k matrix games they play, so they

can optimize their strategic behaviour for each of these games separately.

The following example will illustrate the types of games described above.

Example 3.1 Let 〈A〉 be a matrix game with almost complete information, based on the matrix

games 〈A1〉 and 〈A2〉 that are played with equal probability (µ1 = µ2 = 1
2). The payoff matrices

are given in Figure 1. Figure 2 gives the payoff matrices as well as the available strategies both

f1 f2

e1 5 0

e2 0 2

〈A1〉

f1 f2

e1 2 5

e2 4 0

〈A2〉

Figure 1: The matrix games underlying 〈A〉.

for the situation where player 1 is a fictive player and the situation where he is a normal player.
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With the strategy eaeb we denote the choice of player 1 to play ea if payoff matrix A1 is used

and play eb if A2 is used.

f1 f2

e1
7
2

5
2

e2 2 1

〈A〉

f1 f2

e1e1
7
2

5
2

e1e2
9
2 0

e2e1 1 7
2

e2e2 2 1

〈A1〉

Figure 2: The resulting games with player 2 as a normal player and player 1 as a normal player
(〈A〉) and as fictive player (〈A1〉) player.

/

3.2 Expected payoffs

We want to compare the equilibrium payoffs of the games that are played in each of the 16

cells of Table 2. Since the central game in this analysis is a zero-sum game, we can restrict our

attention to player 1’s payoff. Player 2’s payoff is the same number with opposite sign. Note

that it is possible to interchange the roles of the players. With player 2 as the row player the

basic game would be 〈−A>〉 and we could construct Table 2 in a similar way as we did for 〈A〉.

In half of the cases equilibrium payoffs are unambiguous. If the players are both egoistic,

the games we have to solve are matrix games and therefore they have a uniquely defined value.

The same holds if both players are altruistic. In the other eight cells, with one player being

altruistic while his opponent is egoistic, we have to make a selection out of the possibly many

Nash equilibria of bimatrix games. In fact, all bimatrix games we have to solve are coordination

games. This type of games forms a nice subclass of the (exact) potential games. For an extensive

overview of potential games we refer to Voorneveld (1999). An obvious Nash equilibrium re-

finement choice for these games is the potential maximizer. For coordination games, the logical

choice for a potential function is u1(x). We will denote the payoff for the players for any x that

maximizes u1(x) in the game G as uPM (G).

We give three reasons justifying the choice of the potential maximizer. First of all, we are

exploring the range of possibilities the players have in the game. Potential-maximizing strategies

certainly form an extremity of the strategic options of the players. It gives a theoretic bound

of the game. Secondly, the potential maximizer forms an attractive focal point for the players,

being a pure-strategy equilibrium with high payoffs. Finally, Reijnierse, Voorneveld and Borm

(2003) showed that the potential maximizer is in the set of informationally robust equilibria

of the game. This equilibrium refinement concept is closely related to our idea of leaking of

information to one (or both) of the players. Table 3 presents the expected payoffs for player 1
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in each of the 16 situations.

Player 2 type

FW W O FO

P
la

y
er

1
ty

p
e

FW −
k∑

i=1

µiv(−Ai) −v(−A1) −uPM (−A1,−A1) −
k∑

i=1

µiuPM (−Ai,−Ai)

W −v(−A2) −v(−A) −uPM (−A,−A) −uPM (−A2,−A2)

O uPM (A2, A2) uPM (A, A) v(A) v(A2)

FO
k∑

i=1

µiuPM (Ai, Ai) uPM (A1, A1) v(A1)
k∑

i=1

v(Ai)

Table 3: The expected payoffs of player 1 for all combinations of player types.

Example 3.2 We computed the numbers that are given in Table 3 for the game we introduced

in Example 3.1. The results are in Table 4. /

Player 2 type

FW W O FO

P
la

y
er

1
ty

p
e

FW 21
7 15

7 0 0

W 23
7 2 1 0

O 5 31
2 21

2 16
7

FO 5 41
2 211

14 21
7

Table 4: The expected payoffs of player 1 for each combination of player types.

The following lemma states two simple observations regarding the interchange of player roles

in a matrix game 〈A〉 and a coordination game 〈A, A〉.

Lemma 3.3

1. v(−A>) = −v(A);

2. uPM (A, A) = uPM (A>, A>).

The first part of the lemma states that equilibrium payoffs in a matrix game do not depend on

who is the row player and who is the column player. The second part formalizes the fact that

interchanging the player roles in a coordination game does not influence the potential maximizing

payoffs. We use the observations in Lemma 3.3 to explain some symmetry arguments in the

proof of Theorem 3.5.
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Lemma 3.4 Let 〈A, B〉 be a bimatrix game and let 〈A〉 be the (corresponding) matrix game.

Then

(p̂, q̂) ∈ NE(A, B) ⇒ p̂>Aq̂ ≥ v(A).

Proof. Let (p̂, q̂) ∈ NE(A, B). Then p̂>Aq̂ = max
p

p>Aq̂ ≥ min
q

max
p

p>Aq = v(A). �

Let us introduce some notation for the payoffs that are given in Table 3. We write the collection

of player types as T = {FW, W, O, FO} and we will use the notation uτ1,τ2 for the expected

payoff of player 1 in the game between player 1 of type τ1 and player 2 of type τ2 for all τ1, τ2 ∈ T .

Using these definitions, we can formulate Theorem 3.5. This theorem states that the payoffs in

Table 3 are higher for egoistic players than for altruistic players against any opponent type and

that clairvoyancy helps a player, independent of the type of opponent he faces.

Theorem 3.5

uτ1,FW ≥ uτ1,W ≥ uτ1,O ≥ uτ1,FO for all τ1 ∈ T , (3)

uFW,τ2 ≤ uW,τ2 ≤ uO,τ2 ≤ uFO,τ2 for all τ2 ∈ T . (4)

Proof. Since the potential maximizing strategies together form a Nash equilibrium, it follows

directly from Lemma 3.4 that uτ1,W ≥ uτ1,O for all τ1 ∈ T . By writing down the expression for

uFW,FW we see that

uFW,FW = −

k∑

i=1

µiv(−Ai) = −

k∑

i=1

µi min
qi∈∆(X2)

max
pi∈∆(X1)

p>i (−Ai)qi

≥ − min
q∈∆(X2)

k∑

i=1

max
pi∈∆(X1)

p>i (−µiAi)q = − min
q∈∆(X2)

max
p∈

∏
k

i=1
(∆X1)

p>(−A1)q

(∗)
= − min

q∈∆(X2)
max

p∈∆(
∏

k

i=1
X1)

p>(−A1)q = −v(−A1) = uFW,W ,

where (∗) was shown by Borm et al. (1996, p. 574, Proposition 1). Analogously, one can show

that uW,FW ≥ uW,W , uO,O ≥ uO,FO and uFO,O ≥ uFO,FO. In a similar way, one can show that

the inequality between uO,FW and uO,W :

uO,FW = uPM (A2, A2) = max
(p,q)∈∆(X1)×∆(

∏
k

i=1
X2)

p>A2q

= max
(p,q1,...,qk)∈∆(X1)×

∏
k

i=1
∆(X2)

k∑

i=1

p>(µiAi)qi ≥ max
(p,q)∈∆(X1)×∆(X2)

k∑

i=1

p>(µiAi)q

= max
(p,q)∈∆(X1)×∆(X2)

p>Aq = uPM (A, A) = uO,W ,
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where the third equality again is an application of the result of Borm et al. (1996). The validity

of the remaining three inequalities in (3) can be shown analogously.

Finally, the inequalities in (4) can be derived from (3) by writing down a table like Table 3

with player 2 as the row player and applying Lemma 3.3 to the inequalities that (3) gives for

the payoffs in this table. �

Theorem 3.5 states that the payoffs for player 1, as they were defined in Table 3, are (weakly)

decreasing in value if we go through the table from bottom-left to top-right. Therefore, we know

that differences like, for example, uFO,O − uO,O and uFW,W − uFW,O are nonnegative.

4 The role of information

In section 4.2 we will use the definitions and results of section 3.2 to present a well-defined

way to quantify the restrictive role of the chance moves in matrix games with almost perfect

information. But first, in section 4.1, we will see which different types of value of information

that are distinguished in the literature can be derived from Table 3.

4.1 The value of information

In this section we will see how the numbers from Table 3 are related to the various definitions

one finds in the literature on the value of information in a strategic context. For an overview

of various types of information and a discussion on relations between them, we refer to Borm

(1988).

The games between two egoistic players, one of the two being clairvoyant, are games with

private information for the clairvoyant player. The difference uFO,O − uO,O is often referred

to as the value of private information for player 1. According to Theorem 3.5, this value is

positive. This is a confirmation of a result of Ponssard (1976). Two egoistic players, both being

clairvoyant, play a game with public information. Therefore, the difference uFO,FO − uO,O is

called the value of public information for player 1. It is not possible to say anything about the

sign of the value of public information; all we can say is that the value of public information for

player 1 will be the opposite of the value of public information for player 2.

With each matrix game with almost perfect information, we want to associate eight values of

information, one for each player in each possible combination of attitudes (egoistic or altruistic).

We will do this using the payoffs in Table 3. As the two definitions in the previous paragraph

illustrate, most definitions concerning the value of information in a strategic conflict are based on

the difference between two numbers. However, we think that at least four numbers are important

if one wants to quantify the worth of information in a game to one or both of the players. If

both players are egoistic, then the four numbers in the lower right part of Table 3 should be

taken into account: uO,O, uFO,O, uO,FO and uFO,FO. To do this, we follow the approach of
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Sakaguchi (1993), who defined an information buying pre-game. In this game both players have

to decide whether to buy information or not. Player i has to pay an amount ci to his opponent

if he wants to be informed about the outcome of the chance move. These prices are set by an

external person, someone like the “maven” from Kamien, Tauman and Zamir (1990). Figure 3

shows the payoffs of the information buying pre-game. The prices are set in such a way that for

Player 2

Don’t buy Buy

Player 1
Don’t buy uO,O uO,FO + c2

Buy uFO,O − c1 uFO,FO − c1 + c2

Figure 3: The information buying pre-game when both players are egoistic.

both players the pre-game is interesting in the sense that information is neither too cheap nor

too expensive. They both really have to think about buying or not buying it. More formally, c1

and c2 are set such that neither player has a strongly dominant strategy in the pre-game.

Buy is strongly dominant for player 1 if c1 < c1 = min{uFO,O − uO,O, uFO,FO − uO,FO}. In

other words, it should be profitable to buy the information against an optimal player, but also

against a fictive optimal player. Similarly, Buy is strongly dominant for player 2 if c2 < c2 =

min{uO,O−uO,FO, uFO,O−uFO,FO}. Analogously, Don’t buy is a strongly dominant strategy for

player 1 if c1 > c1 = max{uFO,O − uO,O, uFO,FO − uO,FO}. Buying is neither profitable against

an optimal player nor against a fictive optimal player. For player 2 Don’t buy is a strongly

dominant strategy if c2 > c2 = max{uO,O − uO,FO, uFO,O − uFO,FO}.

Only between the boundaries ci and ci it is possible for player i to be made indifferent

between buying and not buying by his opponent. Therefore, the price of information for player

i, ci, should definitely lie between these boundaries. We follow the approach of Sakaguchi

(1993) and set the prices at a level that ensures that buying the information with probability
1
2 is an equilibrium strategy for both players. The prices for which the pre-game has this nice

characteristic, are ci = 1
2(ci + ci)(i ∈ {1, 2}). To make clear that these prices are the values of

information for the players in the game when they both act egoistically, we will write them as

cO,O
1 and cO,O

2 .

For the games in which altruistic players are involved, we can define the prices of information

in a similar way. Consider the situation where player 1 is egoistic and player 2 is altruistic.

The four payoffs of interest can then be found in the bottom-left part of Table 3: uO,FW ,

uO,W , uFO−,FW and uFO,W . Figure 4 shows the payoffs of the information buying pre-game

for this situation. It is clear that the “fair” price of information for player 1 can be set in

the way that we described for the game between two optimal players. Does this method also

work for player 2, who has altruistic motives? Yes, it does. We know from Theorem 3.5 that

uO,W ≤ uO,FW and uFO,W ≤ uFO,FW . The altruistic player 2 is better off if more money in

the game is transferred to his opponent. Since the game is zero-sum, we already implicitly
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Player 2

Don’t buy Buy

Player 1
Don’t buy uO,W uO,FW + c2

Buy uFO,W − c1 uFO,FW − c1 + c2

Figure 4: The information buying pre-game when player 1 is egoistic and player 2 is altruistic.

assumed that an altruistic player was willing to pay one unit for each unit that the opponent

gets extra. Therefore, consistent reasoning leads to the conclusion that player 2 is willing to

pay at least c2 = min{uO,FW − uO,W , uFO,FW − uFO,W }. Using similar reasoning, we can

also define the upperbound c2. In order to give the game the property that that buying the

information with probability 1
2 is an equilibrium strategy for both players, we have to define

ci = 1
2(ci + ci)(i ∈ {1, 2}) here too.

For the other two combinations of attitudes, with only player one or both players being

altruistic, we can do similar computations. In this way we can associate with each matrix game

eight values of information, four for each player. We will give the numbers for our example.

Example 4.1 For the game that was discussed in examples 3.1 and 3.2, the value of information

for player 1, in the situation where he is egoistic and his opponent is altruistic, should lie between

cO,W
1 = min{5 − 5, 41

2 − 31
2} = 0 and cO,W

1 = max{0, 1} = 1. Taking the average, we get

cO,W
1 = 1

2 . This number is given in the list below, together with the other seven relevant values

of information.

cO,O
1 = 2

7 cO,O
2 = 9

14

cO,W
1 = 1

2 cO,W
2 = 1

cW,O
1 = 1

2 cW,O
2 = 1

2

cW,W
1 = 2

7 cW,W
2 = 3

7

/

We will use these values of information in the next section to quantify the relative influence of

the players on the game result, compared to the influence of the initial chance move.

4.2 Player control and influence of the chance move

In this section we will use the payoffs from Table 3, together with the corresponding values of

information, to quantify the restrictive role of the chance moves. By Theorem 3.5 we know that

the highest possible equilibrium payoff for player 1 occurs in the situation with two clairvoyant

players, with player 1 being egoistic and player 2 being altruistic. In terms of Theorem 3.5,

this payoff is written as uFO,FW . Similarly, the minimal payoff for player 1 is uFW,FO. These

numbers represent the maximum and minimum payoff for player 1, given that the information on

the chance moves can be used by the players. The difference between these numbers, uFO,FW −

uFW,FO, indicates the size of the fictive range of the game’s payoffs.

12



We want to compare numbers within this fictive range with the payoffs that can be attained

by non-clairvoyant players, as displayed in the four central cells in Table 3. The payoff informa-

tion in these four cells can be summarized in a logical way by considering four differences: for

the two players, we compute the difference between the maximum and minimum payoff, both

against a worst opponent and against an optimal opponent. These differences give the payoff

variation that can be caused by the players themselves. We are interested in the relative size of

these numbers, compared to the restrictions caused by the chance move. The restriction can be

quantified by two numbers: the value of information in the case a player tries to minimize his

payoff and the value that this information has to him when he tries to maximize his payoff.

We define γO
i (γW

i ) to be the relative control level of player i against an optimal (worst)

opponent. Formally,

γO
1 =

(uO,O − uW,O)

cO,O
1 + (uO,O − uW,O) + cW,O

1

,

γW
1 =

(uO,W − uW,W )

cO,W
1 + (uO,W − uW,W ) + cW,W

1

,

γO
2 =

(uO,W − uO,O)

cO,W
2 + (uO,W − uO,O) + cO,O

2

,

γW
2 =

(uW,W − uW,O)

cW,W
2 + (uW,W − uW,O) + cW,O

2

.

From these definitions and the result of Theorem 3.5, it is clear that the numbers 0 ≤ γO
i ≤ 1

and 0 ≤ γW
i ≤ 1 for i ∈ {1, 2}. If γO

i = 1, then the chance move is not restrictive at all for

player i against an optimally playing opponent.

It is interesting to note that the opponents against whom the relative controls γO
2 and γW

1

are computed have the same objective. These opponents both try to maximize the expected

payoff of player 1, but they have to operate from different role perspectives. In the first case,

the opponent has to play from the “row position”, whereas the opponent against whom γW
1 is

computed uses the “column position”. If γW
1 < γO

2 , then player 2’s control against a rational

opponent, who is maximizing his own payoff, is higher if he can operate from the row position

than if he can act as the column player. Similar comparisons can be made between γO
1 and γW

2

to say something about the relative control of player 1 against a payoff-maximizing opponent.

5 An example: minipoker

In this section we will illustrate the analysis with a more lively example than the ones we used

so far to explain our definitions. We will study a two-person game called minipoker. This is

a game of cards played by two players, player 1 and player 2, and with three cards, namely

Q(ueen), K(ing) and A(ce). As usual, A is higher than K and Q is the lowest card of these

three. Before play starts, both players donate 1 unit to the stakes. After (re)shuffling the deck
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of cards each player is dealt one card. Each player knows his own card, but not the card of his

opponent. Thus, the card which remains in the deck is not shown to either of the players. Player

1 starts the play and has to decide between P (assing) and B(etting). If he decides to pass, a

showdown follows immediately. In the showdown both cards are compared and the player with

the highest card gets the stakes. If player 1 decides to bet, he has to add one extra unit to the

stakes. Subsequently, player 2 has to decide between F (olding) and C(alling). If he decides to

fold, player 1 gets the stakes. If player 2 decides to call, he also has to add one extra unit to the

stakes and a showdown follows.

We can model this game as a matrix game with almost perfect information in the way that

is shown in Figure 5: after the initial chance move, the players play one of the six 2 × 2 matrix

games (all with equal probability). However, if we model minipoker this way, there is a differ-

ence between the normal players in this game and the normal players we have studied so far.

So far, the normal players were not able to make any distinction between the k matrix games

they could possibly face. In minipoker, both players can exclude outcomes of the chance move

by looking at their own card. In fact, we can say that the outcome space of the chance move

is the set {(Q, K), (Q, A), (K, Q), (K, A), (A, Q), (A, K)} and that player 1 faces can distinguish

between elements of the partition {{(Q, K), (Q, A)}, {(K, Q), (K, A)}, {(A, Q), (A, K)}}. Sim-

ilarly, player 2 faces the partition {{(Q, K), (A, K)}, {(Q, A), (K, A)}, {(K, Q), (A, Q)}}. The

fact that the non-fictive players, together with this formulation of the game as a matrix game

with almost perfect information, do not completely fit into the framework of this paper is not

a problem. It is not difficult to see that the proof of Theorem 3.5 only uses the fact that the

information partition of the fictive players is a refinement of the partition of the normal players.

The payoffs in all 16 games that are relevant for determining the relative influence of the players

r chance������������������
1
6

(Q, K)

F C

P −1 −1

B 1 −2

�����������
1
6

(Q, A)

F C

P −1 −1

B 1 −2
















1
6

(K, Q)

F C

P 1 1

B 1 2

J
J
J
J
J
J

1
6

(K, A)

F C

P −1 −1

B 1 −2

HHHHHHHHHHH
1
6

(A, Q)

F C

P 1 1

B 1 2

PPPPPPPPPPPPPPPPPP
1
6

(A, K)

F C

P 1 1

B 1 2

Figure 5: Minipoker as a matrix game with “almost” perfect information.

on their game result, are given in Figure 6. We learn from the table that the value of the game

is 1
18 . And, as we can see, the numbers in this table satisfy the order that we need to make all

definitions regarding information and control sensible. Using the numbers in Figure 6, we can

determine the values of information and relative control levels for both players in minipoker.

We find that three of the eight prices of information are unequal to zero: cO,O
1 = 1

36 , cO,O
2 = 1

12
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player 2 type

FW W O FO

p
la

y
er

1
ty

p
e

FW 0 0 −1
2 −1

2

W 0 0 −1
2 −1

2

O 3
2

4
3

1
18 0

FO 3
2

4
3

1
9 0

Figure 6: Expected payoffs for player 1 in minipoker, all combinations of player types.

and cO,W
2 = 1

6 . Using these numbers, we find γO
1 = 20

21 , γW
1 = 1, γO

2 = 46
55 and γW

2 = 1. For both

players, it turns out that playing against a player who minimizes his own payoff is better from

a control point of view.

What’s the explanation for this extremely high level of relative control against a worst

opponent? Well, let us consider the case of player 1 facing an opponent who tries to minimize

his own payoff. If neither player is fictive and player 1 acts as an optimal player, then in the

unique equilibrium player 1 always bets, while player 2 calls with a queen and folds with a king

or with an ace. The expected payoff for player 1 is then 4
3 . If player 1 acts as a worst player

against his worst opponent, the best thing he can do with any card is passing (or he can bet with

a queen, but this will not be useful since player 2 will not risk winning by calling with a king or

an ace). His expected payoff will then be 0. Since cO,W
1 = cW,W

1 = 0, revealing player 2’s card

to player 1 does not give player 1 additional strategic possibilities. The fact that uO,W > uW,W

is therefore sufficient to obtain a relative control level equal to 1.

From the numbers γO
i and γW

i (i = 1, 2), we want to draw two conclusions. In the first

place, since both γO
1 and γO

2 are smaller than 1, we know that the dealing of the cards really

leads to restrictions in the possibilities of rational players. In the second place, since γO
1 < γW

2

and γO
2 < γW

1 , we can conclude that both players in minipoker would prefer the position of the

opponent from a control point of view. In the “column position” of player 2 one has more control

about the expected payoff of player 1 when one is trying to maximize this payoff. Similarly, the

“row position” of player 1 gives more control over the maximization of player 2’s payoff.

6 Concluding remarks

In this paper we have presented a way to analyse the role of chance moves for a specific class

games. We have given a method that enables us to determine the value of information about

those chance moves for the players. Using this valuation of the information, we quantified the

restrictive role of the chance moves with respect to the influence of the players on their own

payoffs. To conclude, we wish to make a few remarks about our analysis.
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6.1 Extension to other classes of games

The starting point in this paper was a matrix game with almost perfect information. We used

the zero-sum property in the proof of Theorem 3.5. Of course, it is interesting to check whether

our analysis can be carried out for a broader class of bimatrix games. Example 6.1 supports

the conjecture that this is possible. Before we give the example, we have to think for a moment

about the definition of the altruistic players. Although we prefer this positive terminology over

the term masochistic in the zero-sum context, we want to stress here that the original idea was

that these players try to minimize their own payoffs. Thus, the interpretation that we give to

the worst player in a bimatrix game, really is a masochistic player.

Example 6.1 Consider the following duopoly situation. Two firms produce some good and

they can choose to use grey or green energy for the production process. The second type is

better for the environment, but it is also more expensive. Therefore, the selling price of the

product should be higher. This leads to a decrease in demand. However, the government is

discussing the possibility of giving subsidy to consumers who buy products that have been

produced in an ecologically sound way. This subsidy is expected to stimulate the consumers so

much that the demand for the product will increase, even if the price is higher. The probability

that the government will decide to give this subsidy, is estimated by the firms to be 50%. We

model this situation as a bimatrix game with almost perfect information. This game is shown

in Figure 7. Figure 8 contains the payoffs corresponding to the 16 games from which we wish to

s government’s decision
�

�
�

�
�

�

1
2

(no subsidy)

grey green

grey 4, 4 4, 3

green 3, 4 3, 3

〈Ans, Bns〉

@
@

@
@

@
@

1
2

(subsidy)

grey green

grey 4, 4 3, 7

green 7, 3 5, 5

〈As, Bs〉

〈A, B〉 = 1
2〈Ans, Bns〉 + 1

2〈As, Bs〉

?
(compound game)

grey green

grey 4, 4 31
2 , 5

green 5, 31
2 4, 4

〈A, B〉

Figure 7: Duopoly with possible consumer subsidy for ecologically sound products.

draw conclusions about relative control. The bimatrix game corresponding to the situation where

firm 1 knows in advance if the government will give subsidy or not, is given in this figure too, since

it helps in quickly checking the 16 payoffs. The presence of a strongly dominant strategy in each

bimatrix game that we have to consider simplifies the computations. Using the information in

Figure 8, we find that the price of information is 1
2 for each combination of attitudes. These prices

are computed in the same way as for the zero-sum case: we construct the information buying
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grey green

(grey, grey) 4, 4 31
2 , 5

(grey, green) 51
2 , 31

2 41
2 , 4

(green, grey) 31
2 , 4 3, 5

(green, green) 5, 31
2 4, 4

〈A1, B1〉

firm 2 type

FW W O FO

fi
rm

1
ty

p
e FW 31

2 , 31
2 31

2 , 4 3, 5 3, 51
2

W 4, 31
2 4, 4 31

2 , 5 31
2 , 51

2

O 5, 3 5, 31
2 4, 4 4, 41

2

FO 51
2 , 3 51

2 , 31
2 41

2 , 4 41
2 , 41

2

Figure 8: Information about the duopoly needed for analysing the relative influence of the firms
on their profits.

pre-game and we set the prices such that the situation in which both players buy information

with probability 1
2 is an equilibrium. These numbers lead to γO

1 = (4−31
2)/(1

2 +(4−31
2)+ 1

2) = 1
3 .

Similarly, we find γW
1 = 1

2 and, by the symmetry of the game, γO
2 = 1

3 and γW
2 = 1

2 . For both

firms, relative control is smaller against an optimal opponent than against a worst opponent.

Phrased differently, for both firms the uncertainty about the subsidy being given or not has

more influence on the firm’s profits when its competitor acts as a profit maximizer.

In non-zero sum games, an egoistic player and his masochistic opponent do not necessarily

have the same objective. Minimizing one’s own payoff is not the same as maximizing the payoff

of the opponent anymore. As a result, a comparison between the relative control numbers γO
2

and γW
1 does not make sense anymore. /

In the example above we have a wisely structured bimatrix game (with an underlying story)

with almost perfect information for which we can carry out our analysis. The following example

shows that our analysis in general does not work for bimatrix games, not even if the game is

such that each of the underlying bimatrix games, as well as the compound bimatrix game itself,

has an equilibrium in strongly dominating strategies.

Example 6.2 This example is based on an example given by Bassan, Scarsini and Zamir (1997).

It is a bimatrix game with almost perfect information in which each of the underlying bimatrix

games has a unique Nash equilibrium, consisting of strongly dominant strategies. The numbers

that we need for determining relative influence of the players in this game, are given in Figure 10.

We see that player 1’s payoffs in Figure 10 are not decreasing from bottom-left to top-right,

which is a necessary condition to enable computation of the value of information in a way that

is analogous to the approach presented in this paper. /

6.2 Relation with the analysis of skill

As stated in the introduction, the analysis of relative player control is related to the skill analysis

of a game. The goal of that analysis, of which Dreef, Borm and Van der Genugten (2004) give

a detailed description, is similar: with both methods one can draw conclusions about the role

of the chance moves in a game. The methods even share two “building blocks”: the expected
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s chance
�

�
�

�
�

�

1
2

L R

T 0, 0 6,−3

B −3, 6 5, 5

〈A1, B1〉

@
@

@
@

@
@

1
2

L R

T −20,−20 −7,−16

B −16,−7 −5,−5

〈A2, B2〉

〈A, B〉 = 1
2〈A1, B1〉 + 1

2〈A2, B2〉

?

L R

T −10,−10 −1
2 ,−91

2

B −91
2 ,−1

2 0, 0

〈A, B〉

Figure 9: The bimatrix game with almost perfect information from Bassan, Scarsini and Zamir
(1997).

L R

(T, T ) −10,−10 −1
2 ,−91

2

(T, B) −8,−31
2

1
2 ,−4

(B, T ) −111
2 ,−7 −1,−51

2

(B, B) −91
2 ,−1

2 0, 0

〈A1, B1〉

player 2 type

FW W O FO

p
la

y
er

1
ty

p
e

FW −71
2 ,−71

2 −111
2 ,−7 −1,−51

2 −5,−5

W −7,−111
2 −10,−10 −1

2 ,−91
2 −4, 1

2

O −51
2 ,−1 −91

2 ,−1
2 0, 0 −31

2 ,−8

FO −5,−5 1
2 ,−4 −8,−31

2 −21
2 ,−21

2

Figure 10: Information needed for analysing the relative player control in the game of Bassan,
Scarsini and Zamir (1997).
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payoffs of the optimal player and the fictive optimal player. The way the skill analysis defines

an optimal player is exactly the same as the definition we used, but for the fictive optimal

player two different definitions have been used in the skill analysis. In the analysis of Borm

and Van der Genugten (2001) the fictive optimal player is assumed to have the same kind of

information about the chance moves of the game as our clairvoyant, egoistic player. In the

alternative approach, that was described in Dreef, Borm and Van der Genugten (2003), the

clairvoyancy of the player is assumed to be even stronger: the fictive optimal player also knows

in advance the outcome of possible randomization by his opponent. This type of uncertainty,

caused by the players themselves, is sometimes called an internal chance move. To indicate the

contrast, the chance moves of the game itself are called external chance moves. As stated, our

fictive optimal player, whose clairvoyance only helps him as far as the external chance moves

are concerned, is like the fictive player in Borm and Van der Genugten (2001).
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