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Redesign of a recycling system for LPG-tanks 

 

H.M. le Blanc*, H.A. Fleuren, H.R. Krikke 

CentER Applied Research, Section Operations Research 

P.O. Box 90153, 5000 LE, Tilburg, The Netherlands 

 

Abstract 

This paper presents a case study of a typical reverse logistics problem: the redesign of a recycling system for 

LPG-tanks. Uncertainty in systems behavior and the difficulty in gathering reliable data are common in reverse 

logistics network design questions. Especially while the total costs consist for almost 50% of transportation 

costs, reliable transportation costs estimations are crucial. We used a vehicle routing model to solve this data 

problem and fed the estimations to a mathematical programming model. The system uncertainty was tackled 

with sensitivity analysis. 

 

Keywords: Reverse logistics; Network design; Facility location 

 

1. Introduction 

Discarded products cause an enormous flow of waste. Policy driven producer responsibility 

forced industry in many EU countries to set up collection and recycling systems in order to 

significantly reduce waste (directive 2000/53/EC). In the Netherlands, the producer 

responsibility is often transferred to sector wide organizations, setting up a collective 

collection and recycling system because many OEMs are foreign. Auto Recycling Nederland 

(ARN) is such a branch organization for the collection and recycling of end-of-life vehicles 

(ELV) in the Netherlands. ARN is the organizer, controller and financer of the system. ARN 
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makes use of existing ELV-dismantlers, collection and recycling companies for achieving 

high-grade recycling of the ELV. Everyone buying a new car in the Netherlands pays a waste 

disposal fee, currently 45 euro. This disposal fee funds the collection and recycling activities 

that are not economically self-supporting. Consumers can hand in their end-of-life 

automobile, regardless of the brand, at one of the 266 ELV-dismantlers affiliated with ARN. 

Currently about 86% of the weight of the car is recycled. ELV-dismantlers can claim 

premiums based on the actual number of kilograms, liters or pieces of material dismantled and 

submitted to the ARN recycling system. An administrative system controls the ELV-

dismantlers in the amount of material they can provide, based on the number of wrecks 

deregistered by the company in the Dutch car register. 

The system is operative since 1995 and has recycled almost 1.8 million cars since that time. In 

2001 about 285,000 wrecks, which is about 88% of the total number of wrecks that came 

available in the Netherlands, were collected and recycled by the ARN system for 85% of the 

average vehicle weight. Van Burik (1998) explains in detail how the concept of ARN was 

originated. De Koster et al. (2000) describe a system for consumer electronics recycling, very 

similar to ARN. 

 

1.1 The ARN reverse chain in more detail 

Let us now describe the ARN reverse chain in more detail. The recycling process starts with 

the dismantling of the ELV. 19 Material fractions are separated from the car and are stored for 

recovery. The remaining body is shredded and separated into different material clusters (e.g. 

various metals), while the shredder waste is processed thermally. The separate treatment for 

the 19 materials mentioned earlier is either because they contain hazardous substances, which 

have a negative environmental impact, or because they possess good opportunities for high-

grade recycling. After dismantling, the 19 materials are stored in storage equipment provided 
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by ARN and dedicated for that specific material. Once the ELV-dismantler has a minimal 

number of filled storage units, the collection company is contacted for collecting the 

materials. After collection, the materials are bulked up in containers for transport and 

transferred to the selected recycler for the material in consideration (figure 1). These recyclers 

are selected by ARN for their quality of recycling, so that the environmental impact is 

minimized. For example, used oil is recycled into lubricating oil, while tires are recycled to 

granulated rubber which is used in the production of sport floors and tiles for playgrounds 

(environmental report 2001, Auto Recycling Nederland B.V.). 

 

figure 1 about here 

 

The ELV-dismantlers are not obliged to hand in all materials to the collection companies. 

They are free to take out some parts of the wreck for trading. The trade in secondhand parts is 

a lucrative business for ELV-dismantlers. Demand is created by insurance companies in the 

Netherlands that offer “green car insurance”; damaged cars are repaired with used parts. The 

ELV-dismantlers are the main providers of these secondhand parts. However if the parts 

cannot be sold, the premium offered by ARN makes it attractive to recycle at material level.  

This paper deals with a case in which the trade-off between secondary trade (economics) and 

material recycling (safety) plays a key role. The paper is built up as follows, section 2 

describes the problem, section 3 presents the proposed alternatives, section 4 links our 

research to the literature on reverse logistics, section 5 discusses the methodology, section 6 

works out the data collection, implementation, validation and verifications, section 7 presents 

the results of our analysis, while section 8 presents the final conclusions. 
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2. Problem description 

Although the ARN system is overall considered a success (targets are met within budget), 

there are concerns about the recycling of LPG-tanks. LPG-tanks are one of the 19 separate 

materials to be recovered from the ELV before shredding. Approximately six percent of the 

cars in the Netherlands uses this fuel. The LPG-tank in an ELV has to be degassed, because 

the remaining gas in the tank can turn the ELV into a small bomb. Degassing of LPG-tanks is 

obliged before reuse or material recovery can take place. Degassing is a process in which the 

tank is put under pressure, so that the gas can escape through valve, which is connected into a 

storage tank. This process guarantees that the LPG-tank is absolutely safe and contains no 

trace of gas. 

In the Netherlands there is only one degassing facility for LPG-tanks, which is part of the 

ARN-system since 1999. ELV-dismantlers can store dismantled LPG-tanks in a rack with a 

capacity of 12 tanks, which are collected on call if the rack contains at least 10 LPG-tanks. 

The collected LPG-tanks are brought to the degassing facility for degassing. The regained gas 

is reused as fuel; the bad LPG-tanks are traded as scrap, while the good LPG-tanks are traded 

as secondhand by the degassing company. Hence, degassed tanks are not returned to ELV-

dismantlers. The lucrative trade opportunities for LPG-tanks cause the ELV-dismantlers not 

to hand in their LPG-tanks for degassing. Instead they sell the used tanks, still filled with gas, 

right away on the market, thereby causing a high safety risk. As a result, a small fraction of 

the LPG-tanks is degassed and recycled through the ARN-system. Based on data of the Dutch 

vehicle register one can determine how many LPG-tanks should be degassed. In 2001 there 

were 17,120 vehicles with LPG-tanks signed off in the register for dismantling by ARN 

affiliated ELV-dismantlers, while only 6,734 LPG-tanks were handed in for degassing (see 

figure 2). Although there is some gap in this registration (not all signed off vehicles are 

dismantled immediately), this gap cannot be of this size and should smoothen out over the 
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years. This means that a large part of the LPG-tanks is traded without degassing, which is 

likely to result in environmentally unfriendly recycling. 

 

figure 2 about here 

 

ARN wants to solve this by making the system more attractive for ELV-dismantlers. In the 

new system the degassed LPG-tanks should be returned to the ELV-dismantlers so that they 

can trade the tanks themselves.  The lucrative business for ELV-dismantlers is sustained, 

while the safety can be guaranteed and the degassing company is compensated for the higher 

costs. To implement such a system, a few alternative concepts have been worked out. The 

management of ARN did not wish to make a decision before a thorough quantitative analysis 

was conducted on alternative solutions and possible strategies. Our analysis will show that 

solutions can be found that are both safe and economically sound using mathematical 

optimization. 

 

 

3. The proposed alternative systems 

The new system should be a system with returns of degassed LPG-tanks. However, if the 

lead-time between degassing and return becomes too long, there is a risk that ELV-

dismantlers will not use the degassing service and simply continue trading non-degassed 

LPG-tanks. The idea is therefore to use a carrousel system: ELV-dismantlers are visited 

periodically, where in every period a rack with non-degassed LPG-tanks is exchanged for the 

rack with degassed LPG-tanks from the previous period. From service point of view a period 

of 3 or 4 weeks is considered to be acceptable by ARN management. 



6 

In the current situation the storage racks each have a capacity of 12 LPG-tanks. A typical 

ELV-dismantler should process more than 2,000 wrecks a year for an acceptable fill-rate of 

the storage rack, which is not realistic. Hence: underutilization of rack capacity and trucks 

with fixed collection intervals. A smaller rack with only 6 storage positions might help to 

improve the efficiency of the operations. Other sizes are not applicable and ARN will only 

use one type of storage rack, because of handling purposes. 

A periodic system is expected to result in transports with a relative low fill-rate, therefore one 

would like to consider whether it is possible to have a mobile degassing facility built up on a 

small truck. An engineering company worked this out, and based on a slightly different 

degassing technique, this turned out to be possible (Auto Recycling Nederland, 2001). 

Combining the above two basic strategies are considered: 

1. Central strategy. LPG-tanks are collected periodically at the ELV-dismantlers and 

brought to the current centrally located degassing facility. After degassing the LPG-

tanks are redistributed. Degassing takes place at one location. 

2. Regional strategy. LPG-tanks are collected to a number of depots located in the 

Netherlands that are periodically visited by the mobile degassing facility that degas the 

present LPG-tanks at the depots. Degassing takes place on a (small) number of 

locations. 

In the central strategy the degassing location is known, the current degassing facility. For the 

regional strategy the number of depots and their geographic location need to be determined. 

Originally, a third alternative strategy was considered, where every ELV-dismantler was 

visited periodically by the mobile degassing facility. This option, however, soon turned out to 

be infeasible, because the Dutch government would not grant licenses for LPG-tank degassing 

at every ELV-dismantler’s site. 
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Summarizing, the following questions were posed by the management of ARN and need to be 

analyzed: 

§ What is the best strategy (central or regional) and in case of the regional strategy what 

is the optimal number of depots and their geographic location? 

§ What are the effects on costs for a 3- or 4-week periodic system? 

§ What are the effects on costs for a storage rack with 6 or 12 positions? 

In the next section we relate our work to literature on reverse logistics. 

 

 

4. Overview of literature in reverse logistics 

Reverse logistics is the management of good flows in the opposite direction of the traditional 

supply chain, with the purpose of value recovery or proper disposal (Rogers and Tibben-

Lembke, 1998). Quantitative analyses have proven to be useful in the supply chain 

management. It is therefore not surprising that operations research is applied frequently in 

reverse logistics. Fleischmann et al. (1997) give a survey of quantitative models in reverse 

logistics and distinguish three application areas: distribution planning, inventory management 

and production planning. Our research is part of distribution planning, with an emphasis on 

network design for the collecting of LPG-tanks for degassing and redistributing to the ELV-

dismantlers for the selection of the appropriate recovery option. Network design models 

described in literature on reverse logistics are not essentially different from traditional 

location allocation and facility location models used in forward logistic network design 

studies. Fleischmann et al. (2000) give an excellent overview on a number of case studies that 

used mathematical models and derive a characterization of networks. The use of mixed-

integer linear programming has been proven to be the dominant technology in nearly all case 

studies reported on network design. Shih (2001) applies an MILP model for determining the 
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network design for the recycling electrical home appliances. Louwers et al. (1999) and Reallf 

et al. (2000) address the network design for carpet recycling using a MILP model. Barros et 

al. (1998) apply a MILP model for the design of a recycling system for polluted sand. Krikke 

et al. (1999) report on the use of a MILP model for the network redesign for discarded 

copiers. Spengler et al. (1997) develop a generic MILP model and report on the application in 

the iron and steel industry. De Brito et al. (2002) give an extensive overview on reverse 

logistics indicating the critical factors. 

Uncertainty is inherent to most reverse logistics systems. In general there are two sources of 

uncertainty in reverse logistic. First, uncertainty in the behavior of the system caused by the 

lack of control mechanisms; this includes for example volume, timing, and product 

compositions of the returns. Second, uncertainty in estimations caused by a lack of data. 

Many systems have to be setup without having any reference or information of comparable 

systems: estimated data is used. Errors in input data can have significant impact to the 

resulting network design. Realff et al. (2000) use a robust optimization framework taking 

several scenarios into account in the mathematical optimization, other authors often suffice 

with extensive sensitivity analysis. 

In our research we apply a combination of two models for formulating appropriate answers to 

the questions posed by ARN. A mixed integer linear programming is used to select the depot 

locations in the regional strategy and the allocation of the ELV-dismantlers to the depots. As 

an input we needed good estimations for the transportation costs to the different depots. These 

data are not available at ARN. By modeling the operational transportation activities in a 

transport model we are able to make reliable estimations and to solve our data problem. The 

system uncertainty is tackled with sensitivity analysis. The application of a combination of 

models distinguishes our research from other cases described in literature. 
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5. The methodology 

Our methodology consists of two steps. In the first step, a vehicle routing model is used for 

estimating the transportation costs for each scenario. Second, an optimization model is 

performed to minimize the total costs for each scenario and to determine the optimal number 

of depots and their geographic location in case of the regional strategy. 

 

figure 3 about here 

 

 

5.1 Vehicle routing model 

To evaluate and analyze the influence of the length of the collection period and the size of the 

storage rack, some additional calculations are made. A collection period is defined as the time 

between two consecutive visits of the collection truck for collecting and returning storage 

racks. For each setting of the collection period and the size of the storage rack we need to 

calculate the volume in number of racks and LPG-tanks per ELV-dismantler.  These data are 

crucial inputs for the vehicle routing model determining the transportation costs for allocating 

an ELV-dismantler to a certain depot. 

A vehicle routing model determines the minimum cost routing of trucks visiting certain 

locations for delivery and pick-up of load, taking into account practical restrictions. More 

mathematical: consider a complete undirected graph G = (V, E), where the set V consist of 

one depot and a number of ELV-dismantlers. The set of edges E, are the connections between 

the locations, traveling along an edge e incurs a certain costs ce and a certain traveltime te. 

Find a set of routes starting and ending at the depot visiting all the ELV-dismantlers against 
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minimal costs such that the maximal workday length T and the vehicle capacity C are not 

exceeded. In fact this is a standard VRP problem. 

In total there are 30 locations to which an ELV-dismantler can be allocated for degassing, for 

all combinations we applied this vehicle routing model in order to estimate the transportation 

costs accurately. The vertex set V consists of only one depot at a time. To estimate the costs 

for all depots, the process is repeated. 

The complexity of the problem, which is not solvable to optimality in a reasonable amount of 

time, let us decide to use a heuristic procedure for finding a good instead of optimal solution.  

The number of storage racks to be picked up is the same as the number of storage racks to be 

delivered, so we could apply standard vehicle routing heuristics instead of the more complex 

pick-up and delivery heuristics, which are more common in reverse logistics (Beullens, 2001). 

Our heuristic procedure is constructed by combining some simple heuristics described in 

literature. We first apply the nearest neighbor heuristic for finding a starting solution and then 

use local search techniques for improvement of the starting solution. We apply this heuristic 

for estimating the total transportation costs for the collection truck and the mobile degassing 

installation for all potential locations: 29 in regional strategy and 1 in the central strategy. The 

application of more advanced heuristics resulted in might have resulted in lower costs 

solutions and therefore lower costs estimations, however we aimed at making a realistic 

estimation and not at finding optimal solutions. The slightly overestimated costs are 

comparable to practice. 

 

5.2 Optimization model 

For minimizing the total costs of the system and determining the optimal locations we used a 

standard location-allocation model with some additional constraints. We will briefly discuss 
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the mathematical model here, for mathematical details the reader is referred to the appendix. 

The following decision variables are included: 

§ Binary variable indicating whether a depot is selected. 

§ Binary variable indicating whether an ELV-dismantler is allocation to a depot. 

§ Integer variable representing the number of mobile degassing facilities needed. 

Depending on the strategy, there is a binary parameter indicating whether a depot is allowed 

in the strategy under consideration. Assigning an ELV-dismantler to a certain location occurs 

with a certain cost and a capacity consummation. The model minimizes the total relevant 

costs for the system under consideration. The sum of the following cost components 

determine the total yearly costs of the system under consideration and are therefore the 

objective function (equation 1) of the model: 

§ Degassing costs per tank; mobile degassing uses another procedure in which variable 

costs per LPG-tank are involved. 

§ Collection costs, the costs for collecting and returning the storage racks with LPG-

tanks. 

§ Storage costs of LPG-tanks, the variable costs of storing one LPG-tank at a certain 

location. 

§ Depot costs, the fixed costs for selecting a certain depot for degassing represents the 

cost of investments needed for suiting the location for LPG-tank degassing. The 

central degassing facility is also considered as a depot involving fixed costs. 

§ The costs of storage racks including depreciation and maintenance. The costs of 

storage racks vary with the size.  The number of racks needed varies with the length of 

the collection period and the size of the storage racks. 

§ Costs of the mobile degassing installation(s) including depreciation, insurance, 

maintenance and personal costs. 
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The objective function is subjected to the following sets of constraints: 

§ All ELV-dismantlers are allocated to exactly one degassing facility (equation 2). 

§ ELV-dismantlers only are allocated to degassing locations that are open (equation 3). 

§ The degassing locations are feasible within the chosen strategy (equation 4). 

§ The capacity (measured in time) of the mobile degassing installations is not exceeded 

or extended with an addition installation (equation 5). A mobile degassing installation 

is available for a limited number of hours in a collection period; the available time is 

consumed by traveling to the selected degassing locations, setups at a location, the 

time needed for handling of the storage racks and the actual time needed for 

degassing. 

In case of the central strategy there is no optimization of the number and the geographic 

location for depots and the allocation of the ELV-dismantlers to the depots. In this case the 

number of variables reduces to zero and the model suffices with calculating the total costs. 

 

 

6. Data collection, implementation, validation and verification 

Every theoretically good model fails in practice with bad data, incorrect implementation or no 

proper validation and verification process (Fleuren, 2001). The success in these processes 

determine the success of the project. 

 

6.1 Data collection 

The ARN database provides us with all necessary historical data on the number of wrecks and 

LPG-tanks dismantled by ELV-dismantlers needed for both the vehicle routing and the 

location-allocation model. The vehicle routing model makes extensive use of a table with 

distances and driving times based on zip codes. A specialized company provides us with these 
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tables. In this way we could assure the reasonable estimate of the transportation costs between 

the possible locations. For the optimization model we need, besides the transportation costs, 

also data on the potential locations and on the degassing facilities (fixed and mobile). The 

potential locations for the depots in the regional strategy were obtained by contacting 

collection companies with a depot certified for storage of hazardous waste. The collection 

companies provided us a list of 29 potential locations together with an estimation of the rent. 

Both the engineering company that designed the mobile degassing installation and the 

company operating the degassing plant provided us with data on the degassing processes 

required in the location-allocation model. 

 

6.2 Implementation 

The models were implemented in AIMMS (Advanced Integrated Multi-dimensional Modeling 

Software) from Paragon Decision Technology (Bisschop and Roelofs, 2001). AIMMS is an 

algebraic modeling system with the possibility to easily implement advanced mathematical 

models, data connections with databases and graphical user interfaces. We used a business 

version of AIMMS with CPLEX 7.0 as solver for our programming model. While AIMMS is 

a mathematical programming environment, the implementation of the vehicle routing model 

in AIMMS was not so obvious, but the integration in the total system made it beneficial. 

 

6.3 Verification and validation  

In the verification process we questioned the internal correctness of the models. We made 

some test runs and did some sensitivity analysis to both the vehicle routing and the 

mathematical programming model. We varied parameters to explore the extremes of the 

spectrum to check whether the behavior of the models is in line with our expectations and 

whether the outcomes were correct. 
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In the validation process we questioned the external correctness of the models. Does the 

models give representative descriptions of the real world system. Historical comparison was 

impossible because of the novelty of the system. Transportation costs coming from the 

vehicle routing model where validated by comparison with data from collection companies 

for other materials and whether they met with the expectations of the logistic specialists of 

ARN. The implementation with a graphical user interface enabled us to provide a simple tool 

to the ARN management to play around and to get an intuition, which we used in the 

validation process.  

 

 

7. Results 

In this section we will discuss the results of our analysis. We first discuss the basis scenario, 

which is based on data of 2000. In the base scenario we vary the parameters for the length of 

the collection period (3 or 4 weeks) and the size of the storage rack (6 or 12 LPG-tanks). 

Actually we have 4 base scenarios, representing the alternatives proposed by management, in 

other words the evaluated parameters settings are controllable for ARN. 

Next, to deal with system uncertainty we do some sensitivity analysis on the number of LPG-

tanks in the most favorable base scenario. The system’s redesign is a strategic decision for 

several years; the number of LPG-tanks varies over the years. Beside this, it allows us to 

account for the limit control on the number of LPG-tanks. Yearly volume of LPG-tanks is 

exogenous. 

Finally we perform sensitivity analysis on the collection costs in the most favorable base 

scenario, because of the potential impact of variations on collection costs. Collections costs 

account in some situations for almost 50% of the total yearly costs of the system. Besides this, 

it shows effects of reductions in the collection costs on the systems. The collection costs are 
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exogenous for ARN. Figure 4 illustrates the base scenarios and the resulting cases for 

sensitivity analysis. 

 

Figure 4 about here 

 

7.1 Base scenario 

In table 1, we give an overview of the costs for the central and regional strategy. 

 

Table 1 about here 

 

Comparing both strategies with each other, the central strategy is significantly cheaper for all 

relevant parameter settings. If a collection period of three weeks is chosen, one mobile 

degassing installation has got too little capacity and a second installation is needed. This 

causes a cost jump of about 200,000 euro. This makes the regional strategy 48% and 8% more 

expensive than the central strategy for respectively collection periods of 3 and 4 weeks.  If a 

collection period of 4 weeks instead of 3 weeks is chosen, only 13 instead of 17 collection 

rounds will take place, which causes another reduction of the total costs. The effects of using 

a storage rack of 6 instead of 12 LPG- tanks are small. For a collection period of 3 weeks the 

storage rack of 6 is about 1% cheaper, while for a collection period of 4 weeks the storage 

rack of 12 positions is significantly cheaper. This can be explained by the fact that expanding 

the collection period causes the number of storage racks needed to increase more rapidly 

when racks with capacity 6 are used instead of racks with capacity 12. For the regional 

strategy there is a tie whether to select two or three depots. The lowering in collection costs, 

because of the shorter distances by opening a new depot, compensates the fixed costs 

involved. The two or three locations selected by the model are nicely spread, covering the 
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Netherlands. The number of locations to be selected depends on the weight of the collection 

costs in the total yearly costs. When the frequency of collection (collection period of 3 weeks 

instead of 4 weeks) is raised, the weight of the collection costs in the total costs increases and 

are three locations selected to trade the collection costs against higher fixed costs. 

 

7.2 The effects of changes in the yearly volume of LPG-tanks 

The calculations in the base scenario are based on volumes of the year 2000 when all LPG-

tanks dismantled by ELV-dismantlers affiliated to ARN were handed in. In the new, more 

attractive system, the number of tanks to be degassed is likely to be close this number. 

However, there remain some fluctuations in the number of LPG-tanks. Therefore, sensitivity 

analysis is performed on the yearly number of LPG-tanks in car wrecks assuming ARN to 

continue the use of storage racks with 12 positions with a collection period of 4 weeks, see 

figure 5 and table 2. 

 

Table 2 and figure 5 about here 

 

In performing the sensitivity analysis we were confronted with the changes in the number and 

geographic location of the depots, therefore we decided to analyze both, fixing the optimal 

locations from the base scenario and keeping it open to the model. Increasing the volume with 

10% causes the need for a second mobile degassing installation in the regional strategy. A 

phenomenon we already have seen in case of a collection period of 3 weeks. In all cases 

considered, the central strategy seems to be the most attractive solution. A yearly maximum 

of about 20,000 LPG-tanks is possible with the current facility. If the number of LPG-tanks is 

below the numbers in the base case, the central strategy is definitely better, without any 

doubts on the capacity. 
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7.3 The effects of changes in the collection costs 

In some situations the collection costs are close to 50% of the total costs of the system, hence 

the right estimation of the collection costs is critical. To analyze the influence, we perform 

sensitivity analysis on the collection costs. Again we were confronted with the changes in the 

number and geographic location of the depots, therefore we decided to analyze both, fixing 

the optimal locations from the base scenario and keeping it open to the model. Figure 6 and 

table 3 represent the change in costs for the case of storage rack with 12 positions and a 

collection period of 4 weeks.  

 

Table 3 and figure 6 about here 

 

The central strategy is in all situations the most attractive one, however the difference 

between the central and regional strategy becomes smaller as the collection costs increase. 

This can intuitively be explained by the fact that one saves on collection costs by adopting the 

regional strategy with more locations and thereby reducing the total collection costs. 

Fortunately, the differences between the regional strategy with fixed and free locations are 

small even when the costs are varied by 30%. This underlines the robustness of the solution 

found by the model. At the same time, the resulting change in total costs caused by changing 

the collection costs is significant and thereby justifies the application of a special vehicle 

routing model for estimating the collection costs accurately. 
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8. Conclusions & recommendations 

Reverse logistics is an area of growing importance. Complex planning and uncertainty are 

typical. Sources of uncertainty are data estimations and lack of control. We describe an 

optimization problem for a typical reverse logistic case: LPG-tank degassing. 

We applied a special model for estimating the collection costs as accurately as possible. Next 

we applied an integer-programming model to minimize the total costs and to determine the 

optimal number and their geographic location of the degassing locations. Although our results 

are quite robust, the effects of small estimation errors in the collection costs can be large at an 

absolute level. We have seen this in the case study in the number and the geographic location 

of the depots in the regional strategy when the volume and collection costs change. But also 

the uncertainties in other parameter estimations deserve special attention and ways to handle. 

Research on robust stochastic location models is therefore desirable. 

We presented our findings in February 2002 to the management of ARN. Our quantitative 

analysis played a crucial role in the decision process. The choice for the central strategy could 

be justified based on quantitative reasons. A few years ago ARN invested in storage racks 

with a capacity of 12 LPG-tanks. While there is no significant cost benefit for a storage rack 

with a capacity of 6, the use of storage racks with 12 positions is maintained. A mixed 

strategy (racks of 6 and 12 LPG-tanks, depending on the ELV-dismantler) is probably a 

source for potential savings, but more research is recommended. The length of the collection 

period is unclear yet, but management is inclined towards 4 weeks for all ELV-dismantlers. 

Further research on the operational aspects is conducted. In July 2002 ARN took the first 

steps for implementing the new system for the recycling of LPG-tanks, which is expected to 

be operational finalized at the end of 2002. 
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Appendix 

The following optimization model is used for determining: 

§ The costs of the different strategies. 

§ The number and geographic locations of the depots in case of the regional strategy. 

§ The number of mobile degassing installation needed. 

We first describe the sets, indices, parameters and variables used in the model, before we 

present the programming model. 

 

Sets and indices 

LOC = set of degassing locations 

  {central, depot A, depot B, …, depot Z}. 

loc = index referring to the set LOC. 

ED =  set of ELV-dismantlers affiliated to ARN 

  {ED-1, …, ED-266}. 

ed = index referring to the set ED. 

 

Decision variables 

Xed,loc = 1 if ELV-dismantler ed is allocated to degassing locations loc, 

  0 else. 

Yloc = 1 if degassing location loc is in use, 0 else. 

#MOBILE = number of mobile degassing installations needed 

  (nonnegative integer). 

Cost parameters 

degascosttankloc = costs of degassing process per tank if it takes place at location loc. 

degascostrackloc = costs of degassing process per rack independent on the fill-rate of   
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  the  rack, if the degassing takes place at location loc. 

colcosted,loc = yearly collection costs for ELV-dismantler ed to location loc. 

storcostloc = yearly storage costs of storage racks at location loc. 

depotcostloc = yearly cost of rent of space on depot in location loc for degassing. 

transmobilecostloc = yearly transportation costs of the mobile degassing installation for  

  visiting location loc. 

deprerackcost = yearly deprecation costs of one complete set of storage racks. 

mobilecost = yearly total costs of one mobile degassing installation (deprecation,  

  personel, insurance, maintenance). 

 

Other parameters 

#tanked = the average number of LPG-tanks of ELV-dismantler ed in a year. 

#racked = the average number of storage racks supplied by ELV-dismantler ed  

  in a year. 

strategyloc = 1 if location loc is feasible in the strategy under consideration,  

  0 else. 

roadtimeed,loc = time to travel from location loc (or in strategy loc) to visit  

  ELV-dismantler ed. 

setuptimerackloc = setup time per storage rack for degassing at the mobile installation  

  in location loc. 

degastime = degassing time for a LPG-tank for degassing at the mobile  

  facility in location loc. 

setuptimeloc = time needed for set up the mobile installation at location loc. 

minutescp = time mobile installation is available in a collection period. 
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The integer programming model 

minimize 

 ( )∑ ∑
∈ ∈

⋅⋅+⋅
EDed LOCloc

loced,locedloced Xackdegascostrrack#ankdegascostttank#  

 ( )∑ ∑
∈ ∈

⋅⋅++
EDed LOCloc

loced,locedloc,ed Xstorcostrack#colcost  

 ( )∑
∈

⋅++
LOCloc

loclocloc Yecosttransmobildepotcost  

 + MOBILE#mobilecostostdeprerackc2 ⋅+⋅  (1) 

such that 

 ∑
∈

=
LOCloc

loc,ed 1X  EDed∈∀  (2) 

 locloc,ed YX ≤  LOCloc,EDed ∈∈∀  (3) 

 locloc strategyY ≤  LOCloc ∈∀  (4) 

 ( ) loc,ed
EDed LOCloc

ededlocloc,ed Xtank#degastimerack#acksetuptimerroadtime ⋅⋅+⋅+∑ ∑
∈ ∈

 

 timecpMOBILE#Yesetuptim
LOCloc

locloc ⋅≤⋅+ ∑
∈

  (5) 

 }1,0{X loc,ed ∈  LOCloc,EDed ∈∈∀  (6) 

 }1,0{Yloc ∈  LOCloc ∈∀  (7) 

 }{0,1,2,...MOBILE# ∈   (8) 

 

Equation (1) is the mathematical representation of the objective function of the optimization 

model representing the total yearly costs of the system. Note that there are two sets of storage 

racks needed. Equation (2) represents the constraints assuring that every ELV-dismantler is 

allocated to exactly one degassing location. Equation (3) represents the constraints assuring 

that an ELV-dismantler can only be allocated to a degassing location that is opened. Equation  

(4) represents the constraints for the user selection of the strategy. The optimization model is 
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used to analyze both strategies. If the user selects the strategy in the developed tool, the 

parameter strategyloc is automatically adapted to the strategy under consideration; all other 

parameters keep their value. This could only be realized by taking into account the possible 

strategies explicitly in the set of degassing locations. Constraint (5) represents the capacity 

constraint of the mobile degassing installation, expressed in time. The left side of the equation 

represents all time needed to perform all activities: degassing of LPG-tanks, handling of 

storage racks, setup of degassing installation at a location and the estimated travel time 

between location, while the right side of the equation represents the time available per 

collection period per mobile degassing facility multiplied with the number of mobile 

degassing facilities needed. Equations (6), (7) and (8) represent simple technical constraints 

defining the decision variables of the model. 
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Figure 1. An overview of the ARN chain for the recycling of end-of-life vehicles. 
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Figure 2: The number of LPG-tanks dismantled by ARN affiliated ELV-dismantlers according 

to the Dutch car register and the number of collected and processed LPG-tanks by the degassing 

facility. 
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OUTPUT:

- Calculation of total yearly transportation costs 
for each ELV-dismantler and each potential 
degassing location.

CONTROL PARAMETERS :
- Size storage rack.

- Length of period between
collections.

Initialization

INPUT PARAMETERS:
- Number of storage racks required.

-Supply of LPG-tanks and storage racks 
in a collection period.

Vehicle Routing Model

Optimization Model

OUTPUT:

- Total costs of the selected strategy.

- Number and geographic location in case of the regional strategy.

- Allocation of ELV-dismantlers to the depots in case of regional strategy.

- Number of mobile degassing facilities needed in case of the regional and 
local strategy.

CONTROL PARAMETERS :

- Strategy: local, regional or central.

Transportation costs

STEP 2

STEP 1

 

Figure 3: The methodology followed in the research consisted of three steps. The basic 

calculations and vehicle routing model served as input to the  optimization model. 
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Base scenario’s (7.1)
all combinations in: 
• Length collection period: 3 or 4 weeks
• Size of storage rack: 6 or 12 positions
• Strategy: regional or central

Volume cases (7.2)
Vary the volume between –30% and
+30% of the volume in the base scenario
given the choice for the collection period
of 4 weeks and a storage rack with
12 positions.

Collection cost cases (7.3)
Vary the collection costs between –30%
and +30% of the collection costs in the
base scenario given the choice for the
collection period of 4 weeks and a
storage rack with positions.

Most favorable scenario:
collection period: 4 weeks 
storage rack: 12 positions

Sensitivity analysis on 
yearly volume and collection 
costs for both strategies 
(regional and central)

 

Figure 4: Overview of the base scenarios and the resulting cases for sensitivity analysis. 
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CENTAL STRATEGY     
Length collection period in weeks) 3 3 4 4 
Capacity storage rack in LPG-tanks 6 12 6 12 
Yearly cost of storage racks  €    40,000   €    41,000   €    45,000   €    42,000  
Yearly collection costs  €  219,000   €  224,000   €  176,000   €  172,000  
Yearly depot costs  €  200,000   €  200,000   €  200,000   €  200,000  

TOTAL COSTS  €  459,000   €  465,000   €  421,000   €  414,000  
     
REGIONAL STRATEGY     
Length collection period in weeks) 3 3 4 4 
Capacity storage rack in LPG-tanks 6 12 6 12 
Yearly cost of storage racks  €    40,000   €    41,000   €    45,000   €    42,000  
Yearly collection costs  €  167,000   €  163,000   €  134,000   €  136,000  
Yearly depot costs  €    28,000   €    42,000   €    28,000   €    28,000  
Yearly costs of mobile degassing facility  €  399,000   €  399,000   €  200,000   €  200,000  
Yearly degassing costs  €    29,000   €    29,000   €    29,000   €    29,000  
Yearly storage costs  €    16,000   €    14,000   €    18,000   €    14,000  
TOTAL COSTS  €  679,000   €  688,000   €  454,000   €  449,000  

Table 1: Total cost and composition for the central and regional strategy in the base scenario. 

 

 

 



31 

Influence of volume on total costs
(period = 4, rack = 12)
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Figure 5: The influence of variations in the yearly volume of LPG-tanks on the total costs for a 

collection period of 4 weeks and a storage rack of 12 LPG-tanks. 
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Strategy Indexed volume Total costs 
Central 70  €          408,583  
Regional locations free 70  €          435,087  
Regional locations fixed 70  €          435,556  
Central 80  €          408,700  
Regional locations free 80  €          439,227  
Regional locations fixed 80  €          439,227  
Central 90  €          414,575  
Regional locations free 90  €          443,392  
Regional locations fixed 90  €          443,415  
Central 100  €          414,869  
Regional locations free 100  €          448,639  
Regional locations fixed 100  €          448,639  
Central 110  €          418,298  
Regional locations free 110  €          652,924  
Regional locations fixed 110  €          653,901  
Central 120  €          422,579  
Regional locations free 120  €          660,784  
Regional locations fixed 120  €          661,216  
Central 130  €          423,891  
Regional locations free 130  €          667,786  
Regional locations fixed 130  €          670,925  

Table 2: The influence of variations in the yearly volume of LPG-tanks on the total costs for a 

collection period of 4 weeks and a storage rack with 12 LPG-tanks. 
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Influence of collection costs on total costs
(period = 4, rack = 12)
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Figure 6: The influence of variations in the collection costs on the total costs for a collection 

period of 4 weeks and a storage rack of 12 LPG-tanks. 
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Strategy Indexed collection costs Total costs 
Central 70  €          363,145  
Regional locations free 70  €          404,583  
Regional locations fixed 70  €          407,793  
Central 80  €          380,386  
Regional locations free 80  €          419,740  
Regional locations fixed 80  €          421,409  
Central 90  €          397,627  
Regional locations free 90  €          434,897  
Regional locations fixed 90  €          435,024  
Central 100  €          414,869  
Regional locations free 100  €          448,639  
Regional locations fixed 100  €          448,639  
Central 110  €          432,110  
Regional locations free 110  €          462,255  
Regional locations fixed 110  €          462,255  
Central 120  €          449,351  
Regional locations free 120  €          475,870  
Regional locations fixed 120  €          475,870  
Central 130  €          466,592  
Regional locations free 130  €          488,386  
Regional locations fixed 130  €          489,486  

Table 3: The influence of variations in the collection costs on the total costs for a collection 

period of 4 weeks and a storage rack with 12 LPG-tanks. 

 

 


