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Abstract

In this paper, we investigate the loss of asymptotic efficiency of semiparametric and quasi-
maximum likelihood estimators relative to maximum likelihood estimators in models with
Generalized Autoregressive Conditional Heteroscedasticity (GARCH). For a general time-
varying location-scale model, the factors that contribute to differences in efficiency among
the estimators can be divided in two categories. One pertains to the parametric specifica-
tions of the conditional mean and the conditional variance. The other corresponds to the
shape characteristics of the conditional density of the standardized errors, summarized in
the coefficients of skewness and kurtosis together with the Fisher information for location
and scale. The quantification of these factors has practical implications since it can help
to decide if the more complex semiparametric estimator provides sufficient efficiency gains
with respect to the simplest quasi-maximum likelihood estimator. We also prove that there
is no probability density function, with the exception of the normal, for which the asymp-
totic efficiency of the three estimators is the same. Particular models are also considered,
for which the efficiency comparisons are greatly simplified.
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1 Introduction

In this paper, we compare the efficiency properties of maximum-likelihood-based estima-
tors in the context of Generalized Autoregressive Conditionally Heteroscedastic (GARCH)
models. Asymptotically, consistency is both a desirable and required property of an esti-
mator, but the property of maximal efficiency, though desirable, is not always attainable.
Asymptotic efficiency is a function of the level of information available to the researcher.

We develop a strategy for evaluating efficiency gains when estimating several types of
GARCH and GARCH-in-mean models, but the methodology will be extended to other time-
varying location-scale models. The estimators we consider are all based on the likelihood
principle. A likelihood function is constructed based on an assumed conditional probability
density function. Depending on the amount of information available, we can estimate a
model with a maximum likelihood (ML) estimator where the conditional probability density
function is fully known, a semiparametric (SP) estimator where the density is estimated with
a data-based procedure, or a quasi-maximum likelihood (QML) estimator where conditional
normality is assumed, though this assumption is likely to be false. The efficiency gains are
directly proportional to the amount of information available; hence, ML is more efficient
than SP, which is more efficient than QML estimation.

The comparison of the asymptotic variance-covariance matrices of the ML, SP, and
QML estimators reveal that, in the general time-varying location-scale model, differences
in efficiency are the result of the interaction between the specified model and the shape
characteristics of the conditional probability density function, These interactions can be
disentangled when we focus on interesting specific location-scale models. Relevaut factors
that contribute to differences in efficiency among the three estimators are the Fisher in-
formation for location, the Fisher information for scale, the coefficient of kurtosis and the
coeficient of skewness of the conditional density. Our results have practical implications.
The empirical researcher can assess the 'closeness’ of the SP estimator to the ML and QML
estimators. When comparing a QML to an SP estimator, there is a practical trade-off be-
tween simplicity in implementation and potential gains in efficiency. If the SP estimator is
‘closer’ to the QML than to the ML, the potential efficiency gains would be weighed against
the costs of implementing the more complex SP estimator.

We distinguish among five types of models, depending on the relation between the
conditional mean and the conditional variance, The most general model consists of a time-
varying conditional mean and a time-varying conditional variance, where mean and variance
are mutually dependent upon each other. The GARCH-in-mean models are examples of this
class. This general model can be particularized to provide four interesting specific models,
First, we consider a pure time-varying location model with homoscedastic errors, where the
parameters of interest are only the mean parameters. In this group, we may include dy-
namic specifications as ARMA models and general regression models. The second model is
a pure time-varying scale model, where the parameters of interest are the conditional vari-
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ance parameters, In this group, we may include any type of conditional heteroscedasticity
specification, such as the classic ARCH and GARCH, Exponential GARCH, Non-linear
GARCH, Asymmetric GARCH. The third group of models consists of a conditional mean
and a conditional variance specification such that the conditional mean does not depend on
the parameters of the conditional variance, and the conditional variance does not depend
on the parameters of the conditional mean. In this group, we may include regression models
with heteroscedasticity other than GARCH, such as multiplicative heteroscedasticity, and
ARMA type models, where the conditional variance is a function of past observations. The
fourth group consists of a conditional variance that depends on the full set of mean and
variance parameters, but the conditional mean does not depend on the conditional variance
parameters, In this group, we restrict the conditional variance to be a symmetric function
of the errors as in the classical ARCH and GARCH models. In the third and fourth groups,
we also impose symmetry of the probability density function of the errors.

This paper proceeds as follows: In Section 2, we describe the general time-varying
location-scale model and the various estimation methodologies. In Section 3, we consider
efficiency comparisons among ML, QML, and SP estimators for the general location-model.
In Section 4, we examine the efficiency comparisons for four specific location-scale models.
Section 5 concludes the paper.

2 Location-Scale Models and Estimation Methodology
2.1 The General Location-Scale Model

Consider a discrete time stochastic process {y;} parameterized by a finite parameter vector
6. Conditioning on available information up to time ¢—1, the random variables y; have condi-
tional mean m;(6y) and conditional variance h(6g), where 6y denotes the true but unknown
parameter. The functions m,(#) and A,(#) may be function of past information, including
lagged exogenous variables x;,z)—1,Z;_3,..., and of the parameter vector 8, i.e. m;(8) =
m(zh Tp—1y Tt—2y oy Yt by Y=2y 00+ ;0)1 hl(o) = h($g,1‘¢_], T2y ooy Y- Yt-2y -+ ;0)~ Such
processes are known as regression models with Generalized Autoregressive Conditionally
Heteroscedasticity (GARCH), possibly including GARCH-in-mean bechavior. We assume
that the starting values of the process are taken from the stationary distribution and,
hence, the process, itself, is assumed stationary. This implies that the scores will be sta~
tionary too. Alternatively, if the starting values are observed, Drost and Klaassen (1997)
show that replacing the true non-stationary scores by the corresponding stationary ones has
no influence asymptotically, see also Koul and Schick (1995) for general conditions. Our
model will be

yr = my(Bo) + \/he(60) ue, V)



where {t} is an i.i.d. sequence with zero mean, unit variance, finite fourth moments,
and an absolutely continuous probability density function (pdf) g with derivative g/, such
that the Fisher information for location and the Fisher information for scale are finite.
In general, the pdf g can be defined by additional parameters, say 7, that are considered
nuisance parameters, but may contain relevant information for the estimation of the vector
of parameters of interest, 8.

This paper is concerned with the specification of the conditional density function g and
with the efficiency properties of maximum likelihood-based estimators of the parameter
vector §. We assume that the models for my(8) and hy(6) are correctly specified. We use
three estimation methods, maximum likelihood (ML), quasi-maximum likelihood (QML},
and semiparametric (SP) estimation, depending on how much information we have available
regarding the pdf. The issue of efficiency is directly related to knowledge surrounding g.

The assumption of i.i.d {u;} innovations may be too restrictive for parametric maxi-
mum likelihood methods; in fact, a weaker assumption as {,} being a martingale differ-
ence sequence suffices to render the QML estimator asymptotically normal (Bollerslev and
Wooldridge, 1992). The i.i.d. assumption facilitates the proofs of consistency and asymp-
totic normality. Moreover, most of the current parametric and semiparametric literature
adopt such an assumption. Therefore, we retain the i.i.d assumption in order to compare
the three estimation methods on equal grounds.

2.2 Notation

Let u,(8) = (ye—my(8))/ /he(B) denote calculated residuals. Inserting the true but unknown
value of the parameter 8y yields u;(f9) = u;. We define the vector function ¢ = (¢, ¥,)',
based upon the location-scale scores, by

)
¢l(1‘l) i g(u')

_ g'(w)
Yalug) = ~ (1 + "em) .

In the special case of a standard normal density the function 1 reduces to

F(u)=(u,“_1).

1 0m(6) 1 Bh(6)
\/’1110; 90 ,2’1;(9) 89 !

where [ and s stands for location and scale respectively.
Finally, we will use the notation <X,Y>= E(XY") and || X|?=<X, X>= E(XX').

and

Define the matrix W as

W= Wi, W] =
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2.3 Estimation Methodologies

First, we consider the case for which the pdf g is fully known to the researcher and the
object of interest is the estimation of §. Maximum likelihood estimation produces opti-
mal estimators under a set of regularity conditions. MLE estimators are consistent and
asymptotically efficient since they achieve the Cramér-Rao lower bound.

For a sample of length T, the averaged log-likelihood function is given by

£r(6) = ~g5 Tlog () + 7 T loo gl (0). @

The ML estimator is found by maximizing equation (2) with respect to the vector of
parameters 8. The score function is given by
acLr ()
o9

sple) =
_ 1 7 { 1 9m.(6) ¢'(u(8))
TS \Vh(8) 90 g(uw(0))

1 om(6) ¢ (ue(9))
@) 00 (14w FIOn0) ) }

1
= 25 W, 3
T; e (3)

where 1, i8 used as short-hand notation for ¥(1;). The ML estimator ém, solves the system
of equations SI() = 0. Since this system is nonlinear in 8, the solution is obtained via
numerical techniques, Note that the two factors in the score function, hy(8)~1/2(8m,(6)/56)
and 51:,(0)*‘(61»(9) /60), depend solely on past information, and they rely on the speci-
fication of the conditional mean and the conditional variance equations. The other two
factors, ¢'/g and (1 + ug'/g), are functions of u; and depend on the shape of the pdf g. It
is easy to show that the terms in (3) form a martingale difference sequence. The expecta-
tion of the score is zero for any pdf since integration by parts results in E(g'/g) = 0 and
E(ud'/g) = -1
Proving consistency and asymptotic normality of the ML estimator for (G)JARCH pro-
cesses is a non-trivial exercise, Basawa, Feigin, and Heyde (1976) provide a set of sufficient
conditions for consistency and asymptotic normality of estimators for dependent processes,
Results are only available under the assumption of conditional normality and only for a lim-
ited class of processes, mainly GARCH(1,1) and ARCH(p) (sce Weiss (1986), Lumsdaine
(1996), and Lee and Hansen (1994)). Under a correct specification of the variance equation
and of the pdf g, the ergodic theorem and a central limit theorem can be invoked to show
that )
V(G - 60) = N(0, Vi), @
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where V,,T,1 = B ig the expectation of the outer product of the score evaluated at the true
parameter vector §p and is given by

o[ (50 (5520

Under the assumption of a correctly-specified model, the information matrix equality holds;
that is, BJ* = A, where the matrix AP is (minus) the expectation of the Hessian matrix

given by
A =-F (%) : . ©

The second methodology that we consider for the estimation of the parameter vector
# is quasi-maximum likelihood estimation. In this case, the researcher does not have any
knowledge of the pdf that characterizes the standardized innovations u; and chooses the
normal pdf. The quasi-maximum likelihood estimator is the argument that maximizes the
likelihood function under the assumption of conditional normality, even though this may
be a false assumption. The score function corresponding to a quasi-maximum likelihood
function is

Sg'ml(g) = —% {_ﬁ@%—lﬂ@m(a)
3
1 Bh(0)
2’”(9) a’o (1—“;(0)2)}
= FZWA, ™

with F; = F(u;). The score function Sg""'(()) preserves the martingale difference property,
It is easy to see that the expectation of the score is equal to zero because u, is a standardized
innovation, for which E (u;) = 0 and E (u?) = 1. This property holds for any ¢ and is the
basis for proving consistency and asymptotic normality of the QML estimator under a set
of regularity conditions. These conditions arve discussed in Wooldridge (1995), Lee and
Hansen (1994), Lumsdaine (1996), and Weiss (1986). The limiting distribution of the QML
estimator is )

VT (Bomit = 60) = N (0, Vo) (8)

where Vo = Ay @™ gg™ A7) and where A9™ and B9™ are (minus) the expectation
of the Hessian and the expectation of the outer product of the score respectively calculated
under conditional normality. This estimator is less efficient than the ML estimator, reflecting
the lack of information about the pdf. The finite-sample properties of QML and efficiency
losses with respect to ML have been studied in several Monte Carlo simulations by Engle and
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Gonzélez-Rivera (1991) and by Bollerslev and Wooldridge (1992). Newey and Steigerwald
(1997) have shown that a quasi-maximum likelihood approach with t-distributions is also
feasible if an additional parameter is added. Although the derivations for this approach do
not differ essentially from the ones in ordinary (normal) QML, we will not include the exact
expressions for these estimators.

The third methodology that we consider is the semiparametric estimation of the pa-
rameter vector 8. In this situation, the researcher does not know the pdf of the standard-
ized innovations but assumes that it is sufficiently smooth (Hajek and Sid4k (1967)) to be
approximated by a nonparametric density estimator. Semiparametric ARCH models were
introduced by Engle and Gonz4lez-Rivera (1991), and their asymptotic properties were stud-
ied by Linton (1993), Steigerwald (1994), Drost and Klaassen (1997). The semiparametric
estimator is a two-step estimator. In the first step, consistent estimates of the parameters
of interest are obtained through, for example, quasi-maximum likelihood estimation and
are used to construct a nonparametric density of the standardized innovations. The second
step consists of using this nonparametric density to adapt the initial estimator by a one-step
Newton-Raphson improvement. The goal is to recapture the asymptotic efficiency losses
due to quasi-maximum likelihood estimation, which can be substantial when the departure
of the true pdf from normality is large. On efficiency grounds, the semiparametric esti-
mator is an intermediate estimator between the unattainable maximum likelihood and the
quasi-maximum likelihood estimators. The semiparametric estimator is termed adaptive if
it happens to have the same asymptotic cfficiency as the maximum likelihood estimator.
The semiparametric efficiency bound depends on how informative the nuisance parameters,
7, of the density are for the estimation of the parameters of interest 0. Let S(n) be the
population score vector for the nuisance parameters and S(6) be the population score vector
for the parameters of interest. The vector of parameters n is unknown and consequently the
semiparametric estimator of @ cannot exploit the information contained in 5. If  contains
any information about 8, the efficient score for ¢ is found by calculating the residual vector
R(6) from the projection of S(6) on the closure of the set of all linear combinations of
5(n), called the tangent set 7. The tangent set consists of linear combinations of S(n) aund,
because the ©'s are random variables with mean zero and variance one, the elements of the
tangent set are orthogonal to the function vector (uy,u} — 1)’. Through the projection, all
the variation of S(#) due to S(1) is removed (Newey (1990)). The residual vector R(8) is
the difference between S(8) and the projection and, by construction, is orthogonal to this.
Hence, R(8) is the efficient score for § and the semiparametric efficiency bound is

-1
Vip = (%;E [R:(ao)Rt(ao)']) : ®

We consider two cases: (i) the density g of the errors is completely unknown and (ii)
the density g is known to be symmetric. In (ii) the tangent set contains only symmetric
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functions. In the rest of this article, expectations are implicitly taken under 6y and g.
In the most general case (i), for a sample of length T', the sample average vector residual
is

Rr(8)

I

1

7 ZRO

= sp'0)

— BO¥) % 3 5 {[tw)= < P>II2 P}

~ BWa) x 35 3 { [bo(w)~ <t > IFI P}
¢

= sp')

— B x 3 3 { [Wlwd— <o, PRI Fw)]} (10)
t

where S¥(8) is given in (3). The derivation of equation (10} can be found along the lines
in Bickel et al. (1993), see Drost et al. (1997) for the present time series set up. Note that
it is quite easy to verify that Ry (@) is indeed the efficient score. In the first place, Rr(6)
is orthogonal to the tangent set 7" and, secondly, the difference between SpH(8) and Ry (8)
belongs to this tangent space.

In the case (ii) where the error densities are symmetric, the tangent space 7T consists of
sums of all symmetric functions orthogonal to F'(u;). In this case, the difference spl(6) -
Ry (6) needs to be a symmetric function. We need to remove the non-symmetric residual
of the projection of ¥ onto F. Hence, in the symmetric case the sample average vector
residual is given by

RY™(6) = SF'(6)
- E<w¢>(g ‘l’)x,}rz{[w(uo— < P> Fw)]}. (D)
¢

The conditions to show that RF¥™(6) is the required efficient score are easily verified.

3 Efficiency Comparisons Among ML,QML,SP Estimators

In this section we present the results concerning the most general time-varying location-
scale model, and in the next section we particularize them for specific models. To simplify
the exposition and because we work with stationary scores, we refer to one specific element
of the score such that W; becomes W, W}, becomes W}, W, becomes W,, and so on.



Observe that the expectations E(YF') and E(FF') can be explicitly calculated:

K=<¢,F>=(; 2)1 L=“F"2=(2‘ K.El)’

where ¢ = E(u%) and x = E(u?). Furthermore
M =[l

is the Fisher-information in the location scale model. Note that M — KL~!K is positive
semidefinite, since
M-KL'K =l — KL-'F||?.

We introduce some additional notation before stating our main results. Define
I =|W|% A=BW)EW), D=I-A
Moreover, define for some arbitrary symmetric positive semidefinite matrix A,
Iy =|WAY22, Aq=EW)AEWY, Ba=Ia-As

By construction these matrices are positive semidefinite,

To facilitate the comparison of asymptotic variance-covariance matrices we work with
the inverse of these matrices, V,;,‘, V,;,,l,, and V,;l. We focus in the absolute losses (gains).
The relative losses are straightforward to derive from the absolute ones, Furthermore,
the construction of the asymptotic variance-covariance matrices relies on certain regularity
conditions such as those in Bollerslev and Wooldridge (1992). Essentially, these conditions
require the satisfaction of uniform weak laws of large numbers and uniformly positive def-
initeness for (minus) the expectation of the hessian, as well as for the expectation of the
outer product of the score.

Using the acore function (3), and equations (4) and (5), for the maximum likelihood
estimator we can write

Vil =lIWl|?= . (12)
For the quasi maximum likelihood estimator, using (7) and (8), we obtain
Viri =I<WH,WF>|WF| 2 WF |’= 17791 '8 (13)

For general error distributions, using (9) and (10), the semiparametric information bound
can be written as

Vil = Wy - EW)[¢ - KL™'F] |*= Epy_gr-1k + Tgr-1k- (14)



The available information increases if the error distributions are known to be symmetric.
The efficient score is given in (11). Thus, the semiparametric information bound is

Vipleym = | Wi = EW)[¢s ~ KL™'F) + E(W)Z[y ~ KL\ F] ||

= Dy_ki-1k +Mri-1k + Az k-1 k20 (15)

where I is the indicator matrix T = [1 0]'[1 0].
Comparisons of expressions (12), (13), and (14) yield the following results.

Result 1. For a general error distribution, V3! ~ Vq‘,'nl, is a positive semidefinite matrix.
Proor: Comparing expressions (13) and (14), |
Vip! = Vot = Epegp-1 i + {1 ¢ = TRTIE IR ) (16)
To show that the second term on the right-hand side is positive semidefinite, observe that
Ogr-1gx - DN g =|WKL™ F - Ol W F|2 .
This completes the proof. O
Result 2. For a general error distribution, V7! — V5! 18 a positive semidefinite matrix.
PRrROOF: Comparing expressions (12) and (14),
i = Vep' = Ay-gr-ig. O (a7

The following Result 3 can be obtained directly from Results 1 and 2. For transparency
reasons, we also include a direct proof.

Result 3. For a general error distribution, V' — V7, is a positive semidefinite matrix.

ProoF: Using the expressions for the asymptotic information matrices (12) and (13),
we obtain by straightforward calculations

Vil = Voot = My g1 x¢ + {15 — T Mg} (18)
Both terms on the right-hand side are positive semidefinite, O
If the error probability density is known to be symmetric, the efficient score in the

semiparametric location-scale context is slightly different from the score for general error
distributions. Results 1 and 2 have to be modified to reflect the additional information.
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We need to include an additional term Azyys_gy-1417. The details are left to the reader.
Observe, however, that the symmetric case is not a subcase of Results 1 and 2. Knowing
that the densities are symmetric yields essentially different scores.

The joint implication of Results 1, 2, and 3 is that, with the exception of the nor-
mal density, there is not any other probability density function for which the asymptotic
variance-covariance matrices of the ML, QML, and SP estimators are equal. This is sum-
marized in the following result.

Result 4. For the general time-varying location-scale model, and assuming that i}
E(W) has full rank, ii) Ye € R? (W — E(W))c# 0, then
Vol =V = Vo (19)
if and only if the probability density function g(.) is normal. Furthermore, equality between
any two variance-covariance matrices implies the equality of the three matrices.

Proor: To prove sufficiency is straightforward. If the density is normal, then K = L = M,
and (19) follows. To prove necessity, consider the following, If (17) is equal to zero, and i)
holds, then M = KL-'K. If (16) is equal to zero and ii) holds, then M = KL~!K and
Hgr-1x = NI k. If (18) is equal to zero, then (16) and (17) are equal to zero. The
equality M = KL-1K yields a pair of differential equations for which the only solution
is the normal density. To find the solution to this system, proceed as in Gonzdlez-Rivera
(1997). O

4 Specific Models

In this section, we discuss four interesting submodels of the general time-varying location-
scale model presented in Section 3. Depending upon the relation between the parameters in
the mean and the parameters in the variance, we can have: i) A pure time-varying location
model, The parameters of intercst are only location parameters, In this group, we may
include dynamic specifications as ARMA models and general regression models, ii) A pure
time-varying scale model. There is no conditional mean and the parameters of interest
are only the variance parameters. In this group we may include any type of conditional
heteroscedasticity specification, such as the classic ARCH (Engle (1982)) and GARCH
(Bollerslev (1986)), Exponential GARCH (Nelson (1991)), Non-linear GARCH (Gonzélez-
Rivera (1998)), Asymmetric GARCH (Ding et al. (1993)). iii) Block-diagonal models,
where the parameter vector can be split in two groups. One group contains the parameters
in the conditional mean, and the other contains the parameters in the conditional variance,
such that the conditional variance does not depend upon the parameters in the conditional
mean and the conditional mean does not depend upon the parameters in the conditional
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variance, In this group, we may include regression models with heteroscedasticity other
than GARCH, such as multiplicative heteroscedasticity, and ARMA type models, where
the conditional variance is a function of past observations. iv) Block-triangular models,
where the conditional variance depends upon the full set of mean and variance parameters
but the conditional mean does not depend upon the conditional variance parameters. In
this group, we may include regression models and ARMA type models with conditional
heteroscedasticity, but we require the ARCH or GARCH process to be symmetric as defined
in Engle (1982), as well as symmetry of the pdf of the errors. For iii) and iv), we present
the simplified expressions only for symmetric error distributions, In case of general error
distributions, the resulting formulas are not essentially simpler than the general ones in
Section 3.

4.1 Location models

In the class of pure location models, Results 1, 2, and 3 of Section 3 are greatly simplified.
This i due to the fact that we do not have to differentiate the conditional variance with
respect to the parameter of interest. Thus the matrix W consists of only one column,
Wy = [W)]. The matrices II, A, and £ contain exclusively location information. The
function vector F simplifies to F = u because the variance of the error distribution is not
restricted to one in the location case. The matrices K, L, and M are reduced to numbers
k=1,£= Eu? = 0% and m = [(¢'/g)%g. This implies e.g. that expressions like I,
may be written as mIl. Under a general error distribution, Results 1, 2, and 3 for the pure
location model are

Vil =Vih = m—oE,

qml T
Vil =Vl = [m—o™2A,
b = Vo = [m—o YL

Under the assumption A # 0 and I # 0, the three estimators have the same asymptotic
distribution if and only if m = 0~2. This condition is only satisfied by the class of normal
distributions. The case of & = 0 is rather exceptional. It only happens when the derivative
of the conditional mean with respect to the mean parameters is nonrandom, i.e. the i.i.d.
location model. In this instance, the semiparametric estimator is as efficient as the quasi
maximum likelihood estimator. The equality A == 0 can happen in several models such
a8 ARMA models without a constant term and regression models where the regressors
have zero expectation. In these models, the semiparametric estimator is as efficient as
the maximum likelihood estimator for all error distributions. This property is known as
adaptivity of the mean parameters.

If the error distribution is restricted to the symmetric class of densities, we always have
adaptivity of the location parameters, independently of any restriction on the matrix A.
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Results 1, 2, and 3 for symmetric densities are

Vil =Vt = m—=c79n,

qmi
Val =Vy! =0
ml sp ¥
-1 __ V—l — [ - 0—2]1-[
ml gml = (M .

4.2 Scale models

Results 1, 2, and 3 for the pure time-varying scale models are also greatly simplified. The
matrix W consists of only one column, W, = [W,]. In contrast to the location model,
the vector function F remains unchanged because the error distribution has two moment
restrictions. The matrices K and M reduce to the row-vector k = (0 2) and to the real
number m = [(1 + ug’/g)%g respectively. The matrix L is not affected. For the quasi-
maximum likelihood estimator, we find that Ag"“ = K—EI-BS"'" and that its asymptotic
variance covariance matrix simplifies to V‘;,'nl, = n—é—[ﬂ. For general error distributions,
Results 1, 2, and 3 for the pure time-varying scale model are

oy 4 4¢®
v, m = [m ,;_1_(212'*'(&—1)(&—1—(2)“'

- - 4
Vol =Vig' = [m~ prymy pye 1 3

JIL.

i = Vo = [m=—

Similar to the puve location model, £ = 0 is only possible in the i.i.d. scale model. In
the pure scale models, A # 0 happens in all practical econometric situations. Under the
assumption I # 0 and A # 0, adaptivity is not possible in the scale mode! with general error
distributions, However, V! = V,‘,;l if and only if the following condition holds m = n—_f:?g.
Gonzalez-Rivera (1997) has shown that this condition is satisfied by a class of symmetrized
(¢ = 0) square root chi-squared distributions (among which the normatl density is a special
case) and for a class of nonsymmetric distributions with ¢ # 0.

If¢ =0, V! = V;! = V] for the set of distributions described in Gonzélez-Rivera
(1997). If ¢ % 0, the semiparametric estimator is always more efficient than the quasi-
maximum likelihood estimator. In other words, there is no density for which the asymptotic
distributions of the three estimators are the same.

Note that adding a symmetry condition to the set of error distributions does not increase
the information of the semiparametric estimator in the pure scale model. Consequently, the
previous conclusions remain for the symmetric case.

12



4.3 Block-diagonal models

In these models, the parameter vector is partitioned in two subsets, mean and variance
parameters, such that the conditional mean does not depend on the variance parameters
and the conditional variance does not depend on the mean parameters. The matrix W is

partitioned as follows
=W 0
v ]

where the superindexes 'm’ and 'v’ account for 'mean’ and ‘variance’ respectively. We
restrict our attention to symmetric error distributions. Denote the diagonal elements of the
diagonal matrix M by m; and m, (the off-diagonal clements are zero because of symmetry)
and let the block-diagonal matrix IT have a upper-left block IT; and a lower-right block I1,.
Results 1, 2, and 3 for block-diagonal models with symmetric error distributions are

v=l_y-l - - 11T, 0
2 mi 0 [m.'—"—“_-r]E. ’

-1 —yv-1 0 0

le VIP = ( 0 [m, _ 'K%[]A' )1
“l_y-t _ [ =1 0

le qul = ( 0 [m._’_“g:f]n' .

Note that the location parameters can be adaptively estimated, just as in the pure location
problem with symmetric error distributions. Adaptivity of the scale parameters will not
hold. The asymptotic efficiency of the three estimators will be identical, i.e. V,,T,l = V,;1 =
Vq‘,"},, if and only if m; = 1 and m, = 4/(x — 1). These two conditions are jointly satisfied
only by the normal distribution.

4.4 Block-triangular models

In these models, the conditional variance depends on the parameters of the conditional mean
but the conditional mean does not depend on the parameters of the conditional variance.
‘We restrict our attention to symmetric densities. The matrix W is of the following form
= | W W
W= [ o wy |
Furthermore, if the conditional variance is a symmetric process in the innovations of the

mean model, it can be shown that E(WMW') = 0 (Theorem 4 in Engle, 1982). Exam-
ples where this orthogonality condition is satisfied are the classical symmetric ARCH and
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GARCH models. In these cases, the matrices IT;; and I, are block-diagonal, but the equal-
ity Hgp~1g — II;\-IIZII’I;‘- = 0 does not hold anymore. Nevertheless, the lower-right block
of this matrix is zero, and only for the scale parameters do we obtain the same comparizons
as those of the block-diagonal models, i.e.

-1 - 4
Vsp(,) - mll(,) = [m, - sy 1120

-1 - 4
ly ~ VﬂP(l.) = [m,— e I]A"

~1 - 4
Vo = Vamigy = Ima = PR

4.5 Numerical Efficiency Losses

For the particular models of the previous sections we calculate the relative efficiency loss of
the QML estimator with respect to the ML estimator.

We consider a set of standardized probability density functions for which we compute the
coefficients of skewness and kurtosis, and the Fisher information of location and scale, Fora
standardized Student-t with v degrees of frecdom, we have that ¢ = 0, k = 3(v—2)/(v—4),
my = v{v +1)/((v — 2)(v + 3)), and m, = 2v/(v + 3). For a standardized Chi-square with
v degrees of freedom, we have that { = 2y/2[v, & = 3(v + 4)/v, my = v/(v - 4), and
m,e = 2v/(v — 4). With these expressions, the efficiency loss of the QML estimator with
respect to the ML estimator is straightforward to compute. In the following table we show
some examples where the efficiency loss is quantified for the above mentioned probability
density functions.

Table I
Standardized | Shape Characteristics Efficiency Loss
Density (Ve Vol = 1)%

m | ma | ¢ & | Mean Par, | Variance Par.
Normal 1 2 0 3 0 0
Student-t
v=>5 1.25 | 1.25 0| 9.00 25 150
v=_§ 1.09 | 1.45 0| 4.50 9 27
v=12 1.04 | 1.60 0|3.75 4 10
Laplace 2 1 0 6 100 26
Chi-Square
v=10 1.67 | 3.33 | 0.89 | 4.20 67 167
v =15 1.36 | 2.73 | 0.73 | 3.80 36 91
v =20 1.25 | 2.50 | 0.63 | 3.60 25 63
v =30 1.15 | 2.31 | 0.52 | 3.40 15 38
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With the exception of the Laplace distribution, it can be seen that the relative efficiency
loss is larger for the variance parameters than for the mean parameters. Consequently, the
implementation of a semiparametric estimator has a larger pay-off in those instances in
which the variance parameters are the parameters of interest.

5 Conclusions

In this paper we have quantified the asymptotic efficiency losses (gains) of the ML, QML,
and SP estimators in the context of GARCH models. We have obtained a set of results
for a general time-varying location-scale model. The factors that contribute to differences
in efficiency among the estimators can be divided in two categories. One pertains to the
parametric specifications of the conditional mean and the conditional variance. The other
corresponds to the shape characteristics of the conditional density of the standardized errors,
summarized in the coefficient of skewness and the coefficient of kurtosis together with the
Fisher information for location and scale. We have proven that there is no probability
density function, with the exception of the normal, for which the asymptotic efficiency of
the three estimators is the same.

Out of the general location-scale model, we have extracted four particular models. In a
pure time-varying location model, the coeficients of skewness and kurtosis, and the Fisher
information for scale do not play any role in explaining efficiency differences. In a pure
time-varying scale model, there is no need for the Fisher information for location, but the
coefficient of skewness is important in explaining differences between the SP and QML
estimators, and between the SP and the ML estimators. Surprisingly, however, skewness
is irrelevant in determining efficiency differences between the ML and QML estimators. In
the pure scale models with skewness equal to zero, the three estimators can have equal
asymptotic efficiency for other densities than the normal. Apart from pure location and
pure scale models, we have considered two more cases, block-diagonal models and block-
triangular models, with symmetric density functions, In the block-diagonal models, the
asymptotic variance-covariance matrices are block diagonal between the mean and variance
parameters. Essentially, in these models, the efficiency comparisons reduce to those of
the pure location and pure scale models together. In the block-triangular models, the
asymptotic variance-covariance matrices are still block diagonal between mean and variance
parameters, but it is only for the scale parameters where the efficiency comparisons reduce
to those of the pure scale models.

These results have practical implications for the empirical researcher. A potential strat-
egy may be to start the estimation process with a QML methodology. To recapture the
efficiency losses of the QML estimator, we need to evaluate the matrix M, the coefficient of
skewness and the coefficient of kurtosis of the standardized residuala. The matrix M can be
estimated by non-parametric methods. The matrices IT and A are already estimated in the
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QML estimation. Straightforward application of Results 1, 2, and 3 provides the efficiency
loss. This implies that even with the most inefficient estimator such as QML, the researcher
can estimate the maximal efficiency bound provided by the unattainable ML estimator.
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