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Chapter 1

General Introduction to Simulation

Optimization

1.1 Introduction

The term “simulation optimization” has become widespread in both academical and

practical studies. From the academical point of view, simulation optimization has be-

come one of the new entries in the updated second edition of the “Encyclopedia of Op-

erations Research and Management Science” (Gass and Harris (2000)). Furthermore,

many surveys and panel discussions about the future of simulation optimization, and its

methodologies and applications have been published; see Fu (2002), Andradóttir et al.

(2000), Azadivar (1999), and Andradóttir (1998) (also all the Winter Simulation Con-

ference proceedings, which are available online at the website: www.wintersim.org).

From the practical point of view, optimization modules have been recently imple-

mented in many commercial discrete-event simulation packages; Table 1.1 - taken from

Fu (2002, p. 3) - shows simulation packages and optimization methods incorporated

into these packages.

We can explain one of the many reasons for the interest in simulation optimiza-

tion, as follows. For problems that arise in practical applications, explicit mathematical

formulations may be too restrictive; that is where simulation is relevant. Therefore, for

many practical cases one cannot obtain an analytical solution through methods that

require explicit mathematical formulations. Indeed, simulation optimization has led

to the numerical solution of large-scale, real-world decision-making problems; see, for

example, Azadivar and Truong (2003), April, Glover, and Kelly (2003), and Martin

and Schouwenaar (2003).

1
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Table 1.1: An overview of simulation optimization in practice (source: Fu (2002, p. 3))

Optimization package

(Simulation platform)

Vendor

(URL)

Primary search

strategies

AutoStat

(AutoMod)

Auto Simulations, Inc.

(www.autosim.com)
Genetic algorithms

OptQuest

(Arena, CrystalBall)

Optimization Technologies, Inc.

(www.opttek.com)

Scatter search,

tabu search

SimRunner

(ProModel)

PROMODEL Corp.

(www.promodel.com)
Genetic algorithms

Optimizer

(WITNESS)

Lanner Group, Inc.

(www.lanner.com/corporate)

Simulated annealing,

tabu search
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In this thesis, we mainly consider stochastic simulation. Moreover, we focus on

black box simulation optimization methods - which we will detail later in this chapter

- because of their generality, and their ease of use and implementation. To illustrate

their generality, we give the following references that apply black box simulation op-

timization methods to either deterministically or stochastically simulated systems in

very diverse fields, such as engineering design (den Hertog and Stehouwer (2002)) and

ergonomic design of workstations (Ben-Gal and Bukchin (2002)) - where both papers

use deterministic simulation -, and air traffic control (Hutchison and Hill (2001)), pro-

duction planning (Kleijnen (1993)), and design of manufacturing cells (Irizarry, Wilson,

and Trevino (2001)) - where all three papers use stochastic simulation.

In the rest of this thesis, we do not consider screening, which can be considered

as stage zero (pre-processing phase) of any black box simulation optimization meth-

ods. For screening, we give the following brief description and references. Screening is

the process of searching for the few truly important input variables among the great

many potentially important input variables that affect a system’s performance; for a

recent reference, see Dean and Lewis (2004). Trocine and Malone (2000) compares and

contrasts screening methods in terms of efficiency, effectiveness, and robustness. As

screening methods, Trocine and Malone (2000) considers classical factorial designs (My-

ers and Montgomery (2002)), two-stage group screening (Kleijnen (1987)), sequential

bifurcation (Bettonvil and Kleijnen (1996), and Cheng (1997)), and iterated fractional

factorial designs (Campolongo, Kleijnen, and Andres (2000)).

More specifically, we focus on the black box method called Response Surface

Methodology (RSM). RSM originated in Box and Wilson (1951). Myers and Mont-

gomery (2002), which is a classic textbook on RSM, gives the following general descrip-

tion, for a minimization problem. In the first stage of RSM, an experimental design

is used to locally fit a first-order polynomial to the observed values of the random

response; this fit uses linear regression. Then, a steepest descent search direction is

estimated from the fitted first-order polynomial, and a number of steps are taken along

this direction - until no additional decrease in objective is evident. This procedure is re-

peated until a first-order polynomial becomes an inadequate model, which is indicated

when the gradient is not significantly different than a zero vector. In the second stage

of RSM, a second-order polynomial is fitted locally, and this polynomial is minimized.

Furthermore, canonical and ridge analyses are performed to determine the nature of

the fitted objective function (i.e., convex, concave, or indefinite) and the nature of the

estimated optimum (i.e., single optimum or multiple optima).

Some disciplines interpret RSM in a completely different way: RSM becomes



4 1. General Introduction to Simulation Optimization

a one-shot approach that fits a single response surface, which is either a second-order

polynomial or a kriging model, to the random response over the whole experimental

area. Next, this nonlinear fitted model is optimized using a global optimization proce-

dure; see Sacks et al. (1989), Jones, Schonlau, and Welch (1998), and Simpson et al.

(2001). In this thesis, we do not consider the one-shot RSM, but we concentrate on

the sequential version as recently described in Myers and Montgomery (2002).

RSM is broadly applicable in the sense that it can be easily integrated into both

stochastic and deterministic simulations, since RSM does not necessarily exploit the

stochastic structure of the simulated system. Not exploiting the stochastic structure

has the advantage of being very flexible. However, a disadvantage is that RSM may be

computationally more expensive than the other methods that do take the stochastic

structure into account.

RSM has the two important features of black box approaches, namely general-

ity and simplicity. Furthermore, unlike genetic algorithms that have a family of solution

points at each iteration, RSM has a single solution point at each iteration along the

search path. RSM has the following disadvantages compared to metaheuristics (i.e.,

genetic algorithms, tabu search, and simulated annealing): (i) RSM is assumed to be

a continuous optimization method, since RSM is similar to gradient-based approaches.

Hence, unlike metaheuristics, RSM is not suitable for discrete optimization; (ii) RSM

may find a local optimum, as opposed to metaheuristics that search for a global one.

In this study, we aim at solving several methodological problems of RSM that

have not been considered intensively yet. In particular, we deal with inefficiency and

scale dependence of RSM’s search direction, and inefficiency in step size selection along

the search direction for both unconstrained and stochastically constrained optimization

problems. Furthermore, we provide a well-established search procedure for computa-

tionally expensive problems. Notice that in classic RSM, one switches from the first

stage to the second stage - where we described both stages in the previous paragraph

- since the estimated gradient of the fitted objective - which is classic RSM’s search

direction - is not significantly different than a zero vector in a neighborhood of the

true optimum. Then, the second stage completes the whole procedure. However, when

there are (possibly stochastic) constraints, the estimated gradient of the fitted objec-

tive may be significantly different than a zero vector in a neighborhood of the true

optimum. Hence, the search direction, which is a function of the estimated gradient,

will be also significantly different than a zero vector. For such cases, our conjecture is

that we may not need to switch to the second stage of classic RSM. Hence, we provide

an asymptotic stopping rule for the whole procedure, without switching to the second
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stage. It is worth mentioning that to the best of our knowledge, there has been no

study done so far to compare RSM with other black box methods. We expect that

once the methodological problems in RSM are solved, such comparisons will receive

more attention.

Originally, RSM was derived for problems with a single, random response to

be optimized; see Myers and Montgomery (2002). We call this version of RSM classic

RSM. In general, however, optimization problems have multiple random responses; see,

for example, Law and Kelton (2000). We will consider all but one of these responses as

constraints, in addition to deterministic box constraints on the input variables. There

have been several approaches to generalize RSM to cope with (possibly) stochastic

constraints, such as the desirability function (Harrington (1965), and Derringer and

Suich (1980)), the generalized distance (Khuri and Conlon (1981)), the dual response

(Myers and Carter (1973), Vining and Myers (1990), Del Castillo and Montgomery

(1993), and Fan and Del Castillo (1999)), and the prediction-interval constrained goal

programming (Wei, Olson, and White (1990)). A brief description of these approaches

will be given in Chapter 3. Notice that when there are multiple responses, it is possible

to consider all of them as objectives - which gives a multi-criteria optimization problem.

In this study, we do not deal with this approach. Yet, this is one of the recent advances

in the classic RSM literature; see Yang and Tseng (2002), and Koksoy (2003).

As we mentioned previously, in the rest of this thesis we do not consider the

second stage of RSM; we refer to Irizarry, Wilson, and Trevino (2001), and Draper and

Pukelsheim (2000).

The remainder of this chapter is organized as follows. §1.2 distinguishes be-

tween black box and white box approaches to gradient estimation through simulation,

with the emphasis on black box approaches. §1.3 gives an overview of black box simu-

lation optimization methods. Finally, §1.4 summarizes the main contributions of this

thesis per chapter.

1.2 Black box approaches to gradient estimation

In this section, we differentiate between black box and white box approaches to gradient

estimation through simulation. We emphasize black box approaches, since RSM - the

focus of this thesis - is a black box method. By definition, simulation is treated as

a black box if the gradient estimates (and possibly higher order derivative estimates)

through simulation are not available using either perturbation analysis (PA) - see Ho

and Cao (1991), Glasserman (1991), and Fu and Hu (1997) - or likelihood ratio score
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function (LR/SF) - see Rubinstein and Shapiro (1993).

Before presenting the common approaches to obtain black box gradient esti-

mates through simulation, we introduce a general problem formulation for simulation

optimization, as follows:

minimize
d ∈ Θ

Eω [F (d, ω)] (1.1)

where Eω is the expectation operator with respect to the simulation’s seed vector ω,

F (d, ω) is a random response estimated through simulation, d is k× 1 vector of input

variables, and Θ is the (explicitly or implicitly defined) feasible search space.

The most straightforward way for obtaining gradient estimates uses finite dif-

ferences. Forward finite differencing (FFD) needs k + 1 simulation runs to obtain a

single gradient estimate; i.e., the ith (i = 1, ..., k) component of the gradient estimate,

say ĝi, at d is

ĝi (d) =
F̂ (d+ ciei) − F̂ (d)

ci
(1.2)

where F̂ (d+ ciei) and F̂ (d) are estimates of F in (1.1) at the two input vectors d+ciei

and d with ei the unit vector in the ith direction and ci a scalar.

Central finite differencing (CFD) conducts 2k simulation runs to obtain a single

gradient estimate:

ĝi (d) =
F̂ (d+ ciei) − F̂ (d− ciei)

2ci
(1.3)

where F̂ (d− ciei) is an estimate of F in (1.1) at the input vector d− ciei. Obviously,

CFD is computationally more expensive than FFD. On the other hand, the CFD

estimators are less biased than the FFD estimators. In either case, however, a single

gradient estimate requires O (k) simulation replicates.

In the following chapters, we will use resolution-3 designs to obtain gradient

estimates. By definition, this design type gives unbiased estimators of the gradients

of the random responses, provided that first-order polynomial approximations are ad-

equate for these responses; see Kleijnen (1998). To obtain a single gradient estimate,

resolution-3 designs need only k + 1 simulation runs, rounded upwards to a multiple

of four. Therefore, resolution-3 designs are computationally more efficient than CFD;

they require the same number of runs as FFD, but give smaller variances (standard

errors) than FFD. For further comparisons of design of experiments schemes - including

resolution-3 designs - with FFD and CFD, we refer to Brekelmans et al. (2004).

The method of simultaneous perturbation (SP) of Spall (2000) avoids these

O (k) simulation replicates, and estimates a single gradient by perturbing in all direc-
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tions simultaneously. To obtain a single gradient estimate, SP needs only two simula-

tion runs, independent of k, as follows:

ĝi (d) =
F̂
(
d+ ci∆̂

)
− F̂

(
d− ci∆̂

)

2∆̂i

(1.4)

where F̂
(
d+ ci∆̂

)
and F̂

(
d− ci∆̂

)
are estimates of F in (1.1) at the two input

vectors d+ ci∆̂ and d− ci∆̂, and ∆̂ =
(
∆̂1, ..., ∆̂i, ..., ∆̂k

)T
represents a realization of

a vector, say ∆, of independent, identically distributed random perturbations satisfying

certain conditions given in Spall (1992). In practice, the simplest and most popular

distribution for ∆ is the symmetric (scaled) Bernoulli distribution. The difference

between the FFD/CFD estimators and the SP estimators is that the numerator, which

involves the expensive simulation replicates, varies in the FFD/CFD estimates (see

(1.2) and (1.3)), whereas the numerator is constant in the SP estimates, and it is the

denominator involving the random perturbations that varies (see (1.4)). A difficulty

encountered in implementing FFD, CFD, and SP is that the choice of the scalar ci

must balance between too much noise and too much bias; that is, in order for the bias

to be small, it is necessary to let the scalar ci be small. However, when ci is small,

the FFD, CFD, and SP estimators usually have large variances; see Spall (1998) for

practical guidelines for choosing ci in SP.

In Table 1.2 - again taken from Fu (2002, p. 29) - we compare white box

approaches to gradient estimation such as infinitesimal perturbation analysis (IPA),

which is the simplest form of PA, and LR/SF, as well as FFD, CFD, and SP. IPA and

LR/SF require more knowledge about the simulated system than FFD, CFD, and SP.

For example, LR/SF assumes the knowledge of a distribution that dominates the input

distribution; see L’Ecuyer (1991). Under certain conditions, IPA and LR/SF provide

gradient (and possibly higher order derivatives) estimators with desirable statistical

properties such as unbiasedness and strong consistency through a single simulation

run; for these conditions, see, for example, Glasserman (1991) for PA, and Rubinstein

and Shapiro (1993) for LR/SF. LR/SF applies more generally than IPA; see L’Ecuyer

(1991). However, Glynn (1989) proves that when both IPA and LR/SF yield unbiased

and strongly consistent estimators, LR/SF’s estimators have larger variances. For

further comparison of finite differences, IPA, and LR/SF, we refer to L’Ecuyer (1991).
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Table 1.2: Gradient estimation through simulation (source: Fu (2002, p. 29))

Approach
Number of

simulations
Key feature(s) Disadvantage

IPA 1 highly efficient, easy to implement limited applicability

LR/SF 1
assumes the knowledge of a distribution

that dominates the input distribution
possibly high variance

SP 2 widely applicable generally noisy

FFD k + 1 widely applicable generally noisy

CFD 2k widely applicable generally noisy
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1.3 Black box simulation optimization methods

In this section, we present several black box simulation optimization methods that we

consider as alternatives to RSM. We do not claim to give an exhaustive literature survey

on black box simulation optimization. We focus on methods that we think to be most

widely used; also see Andradóttir et al. (2000) and Boesel et al. (2001), which are the

panel discussions at the Winter Simulation Conferences in 2000 and 2001, respectively,

and also Table 1.1, which shows the most popular optimization approaches among

practitioners.

In the following, we do not consider statistical ranking, selection, and multi-

ple comparison methods; see, for example, Goldsman et al. (1999), or a more recent

reference Boesel, Nelson, and Kim (2003). The primary difference between statistical

ranking, selection, and multiple comparison methods and the methods described below

is that the former methods evaluate exhaustively all members of a fixed and finite set

of alternatives. However, the latter methods attempt to search efficiently through the

feasible search space to find better solutions, because exhaustive search is impractical

or impossible (i.e., the feasible search space can be unbounded or uncountable). Fur-

thermore, we do not consider sample path optimization of Gürkan, Özge, and Robinson

(1999, 1994), and random search methods (see, for example, Andradóttir (1998)). The

sample path methods use IPA to estimate gradients through simulation (hence, it is

a white box approach). To the best of our knowledge, random search methods have

been applied solely to discrete optimization problems.

In the following subsections, we shall summarize black box methods, namely

the stochastic approximation method, genetic algorithms, tabu search, simulated an-

nealing, and ordinal optimization.

1.3.1 The stochastic approximation method

The stochastic approximation method attempts to mimic the gradient search method

in deterministic optimization, while taking into account the stochastic setting. Given

the problem in (1.1), the general form of stochastic approximation is:

dn+1 = ΠΘ (dn − anĝ (dn)) (1.5)

where Θ is closed and convex, ΠΘ denotes some projection back into Θ when the it-

eration leads to a point outside Θ (e.g., the simplest projection would be to return to

the previous point (Fu (2002, p. 25)), n denotes the iteration number, and {an} is a



10 1. General Introduction to Simulation Optimization

sequence of step size multipliers such that
∞∑
n=1

an = ∞ and
∞∑
n=1

a2
n < ∞. If the finite

differences ((1.2) or (1.3)) are used to obtain ĝ in (1.5), then the procedure in (1.5) is

called Kiefer-Wolfowitz’s algorithm; see Kiefer and Wolfowitz (1952). If simultaneous

perturbation in (1.4) is used to obtain ĝ in (1.5), then it is called simultaneous pertur-

bation stochastic approximation (SPSA); see Spall (2003, 2000, 1999), and Kleinman,

Spall, and Naiman (1999).

Under appropriate conditions, one can prove the convergence of the sequence

{dn} to the local minimum with probability one, as n goes to infinity; for these con-

ditions in case of SPSA, see Spall (1992). In practice, however, the performance of

stochastic approximation is very much sensitive to the sequence {an}; see, for exam-

ple, Fu (2002, p. 28). Theoretically, a constant step size results in weak convergence

- that is, convergence in distribution - which means that the iterates may oscillate

around the local minimum. Yet, in practice, a constant step size results in much

quicker convergence in the early stages of the method - unlike a step size decreasing at

each step.

Some of the (recent) advances on stochastic approximation are as follows. Since

stochastic approximation is a gradient search method, it generally finds a local opti-

mum. Therefore, Maryak and Chin (2001) enhances SPSA to find the global optimum.

Furthermore, Gerencsér, Hill, and Vágó (1999), and Whitney, Solomon, and Hill (2001)

apply stochastic approximation to discrete optimization, although it has been usually

used for continuous optimization.

1.3.2 Genetic algorithms

Unlike stochastic approximation and RSM, evolutionary search strategies such as ge-

netic algorithms work with a family of solution points - namely the population - rather

than a single solution point. More importantly, the solution points in the current

population interact to form the next population - also called the next generation. Im-

portant factors that affect the success of genetic algorithms are the selection procedure

and the types of genetic operators. Selection can be done either deterministically or

probabilistically - and is based on the fitness of a solution point, where the fitness of a

solution point corresponds to its objective function value. Two of the simplest (deter-

ministic) selection procedures include keeping each generation at a constant number

of the fittest solution points (survival of the fittest), or keeping only the offspring from

reproduction (complete generational turnover). Genetic operators operate on a genetic

representation (code) of a solution point, and are generally classified as crossover oper-
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ators and mutation operators. The crossover operators take two solution points from

the population that have relatively good fitnesses, and combine them to make two new

solution points. The mutation operators take a single, well-performing solution point,

and alter it slightly. Notice that the crossover operators distinguish genetic algorithms

from other metaheuristics, such as simulated annealing and tabu search. For more de-

tails and references, see Michalewicz and Schoenauer (2001), and Fouskakis and Draper

(2002).

1.3.3 Tabu search

Tabu search (Glover and Laguna (1997)) can be thought of as a variation on local

search that incorporates two main strategies, namely adaptive memory and responsive

exploration. The features of these strategies modify the neighborhood of a solution

point as the search progresses, and thus determine the effectiveness of the algorithm.

In particular, the modification from which the method derives its name may forbid

certain points (classifying them tabu); i.e., these tabu points do not belong to the

current neighborhood of a solution point. Thus, for example, short-term memory can

prevent the search from revisiting recently visited points, whereas long-term memory

can encourage moves that have historically led to improvements (intensification) and

moves into previously unexplored regions of the search space (diversification). For

details and more references, see Glover (2001), and Fouskakis and Draper (2002).

1.3.4 Simulated annealing

Simulated annealing (Kirkpatrick, Gelatt, and Vwecchi (1981)) may be thought of as

a variation on local search, in which the main idea for a minimization problem is to

accept all downhill improving moves, but sometimes accept also uphill moves, where

the acceptance probability of uphill moves decreases to zero at an appropriate rate

(this is the cooling schedule from which the method derives its name, in analogy with

the physical annealing process, where the system seeks the lowest energy state). By

accepting uphill moves, simulated annealing tries to avoid local minima. An attractive

property of this algorithm is that - unlike genetic algorithms and tabu search - conver-

gence can be rigorously proved in many settings; see, for example, Gutjahr and Pflug

(1996), and Alrefaei and Andradóttir (1999). On the other hand, the procedure has

been found to converge relatively slow to a good solution point, compared to genetic

algorithms and tabu search. For more details and references, we refer to Anandalingam

(2001), and Fouskakis and Draper (2002).
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1.3.5 Ordinal optimization

In this section, we present the ordinal approach to simulation optimization - as opposed

to the cardinal approach; see Ho, Sreenivas, and Vakili (1992), and Ho et al. (2000).

Note that RSM is a cardinal approach. Furthermore, it will become clear in this section

that ordinal optimization is not meant to replace traditional cardinal optimization, but

supplements it.

Ordinal optimization differs from cardinal optimization in two important ways:

(i) the aim of ordinal optimization is not to look for the best but to find a solution

that is good enough (goal softening), which has to be statistically defined; (ii) ordinal

optimization focuses on approximating the order among the outputs of the given input

vectors rather than accurately estimating the values of these outputs (and possibly

their gradients and higher-order derivatives) at these input vectors.

Before detailing these two properties, we explain a general weakness related to

simulation optimization problems, following Ho, Sreenivas, and Vakili (1992). Suppose

that in (1.1), Θ is a huge, arbitrary, but finite search space. The standard approach to

estimate Eω [F (d, ω)] is

F̂N (d) =
1

N

N∑

j=1

F̂
(
d, ω̂j

)
(1.6)

where ω̂j is the jth sampled value of the random vector ω and N is the number of

simulation replicates (or the length of the simulation run). Now, the problem is that

the confidence interval of (1.6) cannot improve faster than 1/
√
N .

Ordinal optimization is based on two tenets:

• Order converges exponentially fast, whereas (1.6) converges at the rate 1/
√
N ;

see Dai (1996), and Dai and Chen (1997). This is intuitively reasonable: think

of the problem of holding identically looking packages in each hand and trying to

determine which package weighs more versus estimating the difference in weight

between the two packages.

• Goal softening eases the computational burden of finding the optimum. In ordinal

optimization, one settles for the set of good enough input vectors with high

probability (e.g., any of the top r of the input vectors, 95% of the time).

Ordinal optimization has some common features with statistical ranking, se-

lection, and multiple comparison methods: for example, relative ordering in ordinal

optimization is in the same spirit as multiple comparisons; goal softening is in the
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same spirit as statistical ranking and selection. The primary difference is the scale;

the former method deals with a very large search space, whereas Goldsman and Nel-

son (1994) suggests two to twenty input vectors for the latter methods. Furthermore,

ordinal optimization does not address questions such as the distance between the best

and the rest, which is a cardinal notion in multiple comparison methods, or whether

or not the observed order is a maximum likelihood estimate of the actual order.

Some advantages of ordinal optimization are simplicity (the procedure is easy

to state and implement), generality (applicable to a very large class of problems),

and efficiency (it is possible to select good input vectors with high probability in the

presence of significant estimation errors). In some cases, however, obtaining a good

enough subset of input vectors may not be very satisfactory. Then, ordinal optimization

can be considered as an approach complementary to cardinal optimization (for example,

as a pre-processing step that narrows the search space). Moreover, once a statistically

good solution is obtained through the ordinal approach, the final fine tuning to reach

the true optimum can be accomplished via cardinal optimization.

Finally, there have been many applications of ordinal optimization to differ-

ent problems such as communication networks (Patsis, Chen, and Larson (1997)),

rare event simulation (Ho and Larson (1995)), resource allocation problems (Ho et

al. (2000), and robot motion planning problem (Chen, Kumar, and Luo (1998)).

Additional applications and an interactive online demo can be found at the website:

hrl.harvard.edu/˜ho/DEDS.

1.4 Summary of thesis

In this section, we summarize the contributions of each chapter of this thesis to the

classic RSM literature. Each chapter has its own terminology and notation, and can

be read independently of the other chapters. Chapter 2, Chapter 3, and Chapter 4

correspond to Kleijnen, den Hertog, and Angün (2004), Angün et al. (2003), and

Angün and Kleijnen (2004), respectively. Furthermore, a summary of the main results

of Chapter 2 and Chapter 3 can be found in Angün et al. (2002).

In Chapter 2, we consider a classic RSM problem with a single random re-

sponse. Unlike the classical approach that maximizes the estimated random response,

we maximize the lower bound on the estimated random response; that is, we have a

more robust (pessimistic) approach. We focus on the first stage, in which RSM fits a

first-order polynomial to the observed values of the random response through linear

regression, per local area.
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Myers and Montgomery (2002) states the following two problems in the classic

RSM literature:

• The steepest ascent search direction is scale dependent.

• The step size along the steepest ascent path is selected intuitively.

The main contributions of that chapter are as follows. We derive a novel search

direction, which we call adapted steepest ascent. We obtain that search direction by

adjusting the estimated first-order factor effects through their estimated covariance

matrix. Furthermore, we prove that adapted steepest ascent is scale independent. In

most of our numerical experiments, that novel search direction is shown to perform

better than classical steepest ascent. We also derive and explore possible solutions for

the step size selection.

In Chapter 3, we focus on a problem with a single random objective function

and multiple random constraints, in addition to deterministic box constraints on the

input variables. Obviously, our problem type is more general than the one in classic

RSM (i.e., a problem with a single random objective function). So far, our problem

type has not received much attention in simulation optimization; see Fu (2002, p. 6).

Also, Myers (1999) points out the importance of extending classic RSM to cope with

multiple random responses.

We have already mentioned the approaches in RSM that deal with constrained

optimization problems; see §1.1. In all those approaches, the constrained optimiza-

tion problem is reformulated by combining the constraints and the original objective

function into a new, single objective function by appropriate transformations. Then,

the resulting unconstrained problem is solved, using an ordinary nonlinear program-

ming algorithm. A major drawback of those approaches is the arbitrariness in the

choice of the transformations. We overcome this drawback by considering the original

stochastically constrained optimization problem, rather than transforming it into an

unconstrained problem.

The contribution of that chapter is its extension of classic RSM to handle

stochastic constraints, as well as deterministic box constraints. This is achieved through

the generalization of the estimated steepest descent search direction using ideas from

interior point methods, more specifically the affine scaling algorithm. Our proposed

search direction is the scaled and projected estimated steepest descent - also called

the estimated affine scaling search direction. Furthermore, we prove that the proposed

search direction has two important features: it is indeed a descent direction, and it is

scale independent.
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We also develop a heuristic for the first stage of RSM, which uses the proposed

search direction iteratively. The step size along the search direction is determined

by “adapted” - with respect to the constraints - binary search. Additionally, that

heuristic uses statistical hypothesis testing to determine the next iterate along the

proposed search direction. Furthermore, although we introduce our heuristic for a

stochastic setting, we also explain how to simplify it for a deterministic setting. Our

numerical experiments show that our heuristic quickly reaches a desired neighborhood

of the true optimum.

Chapter 4 also deals with problems that have a stochastic objective function

and stochastic constraints. There, the focus is on the last stage of black box simulation

optimization methods. More specifically, the main contribution of that chapter is a

statistical, asymptotic stopping rule that tests for the first-order necessary optimality

conditions at a feasible point. A related recent paper is by Bettonvil and Kleijnen

(2004), which derives a novel procedure to test the first-order necessary optimality

conditions for computationally expensive, black box simulation optimization problems,

using bootstrapping.

In particular, the rule in Chapter 4 may end the whole RSM procedure - with-

out necessitating to switch to the second stage - in presence of (possibly stochastic)

constraints, since, in general, the estimated gradient of the fitted objective is signifi-

cantly different than a zero vector in a neighborhood of the true optimum - by definition

of classic RSM, the first stage ends when the estimated gradient is not significantly

different than a zero vector. Notice that to the best of our knowledge, there has been

no study in the classic RSM literature that mentions the first-order necessary optimal-

ity conditions, since that literature has not yet considered constraints extensively; an

exception is Fan and Del Castillo (1999).

Moreover, we introduce two alternative tests, namely Roy’s test and the classic

F test combined with Bonferroni’s inequality, for lack of fit - which is only relevant for

RSM. We also show that Roy’s test is a direct generalization of the classic F test to

multiple responses.
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Chapter 2

Response Surface Methodology’s

(RSM) Steepest Ascent and Step

Size Revisited

2.1 Introduction

Response Surface Methodology (RSM) is a stagewise heuristic that searches for the

input combination that maximizes the output (finding the minimum is equivalent to

finding the maximum of minus the output; the maximization problem is without ex-

plicit constraints or side-conditions). Originally, Box and Wilson (1951) meant RSM

for experiments with real, non-simulated systems; see the vast literature including

Box (1999), Khuri (1996), Khuri and Cornell (1996), Myers (1999), and Myers and

Montgomery (2002).

Later on, RSM was also applied to random simulation models; see the large

literature including Donohue, Houck, and Myers (1993, 1995), Hood and Welch (1993),

Irizarry, Wilson, and Trevino (2001), Kleijnen (1998), Law and Kelton (2000, pp. 646-

655), Neddermeijer et al. (2000), and Safizadeh (2002).

RSM treats simulation models - either random or deterministic - and real sys-

tems as black boxes. Other black box methods are metaheuristics, including tabu

search, simulated annealing, and genetic algorithms. The black box approach is dis-

cussed by Jones, Schonlau, and Welch (1998). Various simulation optimization methods

are presented by Fu (2002).

In this paper, we do not explain all stages of RSM, but we refer the readers to

the literature cited above. We focus on the early stages, in which RSM fits a first-order

17
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polynomial in the inputs, per local area. This fitting uses Ordinary Least Squares

(OLS), and estimates the steepest ascent (SA) path, as follows. Let dj denote the

value of the original, non-standardized input j with j = 1, . . . , k. Hence k main or

first-order effects (say) βj are estimated. To enable this estimation, RSM may use a

Resolution-3 design specifying which n ≈ k+ 1 input combinations are to be observed

or simulated. These n input/output (I/O) combinations give the estimates β̂j. So the

SA path uses the estimated local gradient β̂
T

−0
= (β̂1, . . . , β̂k).

Unfortunately, SA search direction suffers from two well-known problems; see

Myers and Montgomery (2002): (i) it is scale dependent; (ii) the step size along its

path is selected intuitively. In practice, analysts try an intuitively selected value for

the step size. If that value yields a lower response, then they reduce the step size.

Otherwise, they take one more step. An example is the case study in Kleijnen (1993),

which uses a step size that doubles the most important input.

Some disciplines interpret RSM in a completely different way: RSM becomes a

one-shot approach that fits a single response surface - either a second-order polynomial

or a Kriging model - to the I/O data of a random or deterministic simulation model

over the whole experimental area (instead of a series of local areas). Next, that single

model is used to estimate the optimal input combination. See Sacks et al. (1989);

other more recent references are Jones, Schonlau, and Welch (1998), and Simpson et

al. (2001).

Our research contribution is the following. We derive “adapted” steepest as-

cent (ASA); that is, we adjust the estimated first-order factor effects through their

estimated covariance matrix. We prove that ASA is scale independent. In most of our

experiments, ASA gives a better search direction than SA. We also derive and explore

a possible solution for the step size.

We use underlined letters and bold letters to denote vectors and matrices,

respectively. Hence, 0, 1, 0, and 1 stand for a vector of zeros, a vector of ones, a square

matrix of zeros, and a square matrix of ones, respectively. For square matrices, we use

subscripts to denote their dimensions; i.e., Ik denotes a k × k identity matrix.

The remainder of this paper is organized as follows. §2.2 summarizes those

parts of linear regression analysis that we need to formulate our two techniques. §2.3

derives these techniques, and their mathematical properties and interpretation. To

get further insight into these properties, §2.4 applies the step-size selection of ASA to

simple numerical problems. §2.5 compares the search directions of the two techniques

by means of Monte Carlo experiments. §2.6 gives conclusions and future research plans.
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2.2 Linear regression basics

We define the estimated signal/noise ratio (say) γ̂j as

γ̂j =
β̂j√
v̂ar(β̂j)

j = 1, . . . , k (2.1)

where β̂j is the OLS estimator of βj in the local first-order polynomial approximation

y = β0 +
k∑

j=1

βjdj + ε (2.2)

where y is the regression predictor of the corresponding expected output, and ε is white

noise; i.e., ε is normally, identically, and independently distributed with zero mean µε

and constant variance σ2
ε .

The OLS estimator in (2.1) is computed as

β̂ = (XTX)−1XT ŵ (2.3)

with (in order of appearance)

β̂ : vector with the q estimated effects in the regression model

(q = 1 + k in (2.2))

q : number of regression effects including the intercept β0

X : N × q matrix of explanatory or independent regression

variables including the dummy variable with constant

value 1; X is assumed to have linearly independent columns

so X has full column rank

N =
n∑
i=1

mi : number of observations on real system or simulation runs

mi : number of replicates at input combination or point i,

with mi ∈ N ∧mi > 0

n : number of different observed or simulated combinations of the

k inputs, with n ∈ N∧ n ≥ q (necessary condition for avoiding

singularity in (2.3))

ŵ : vector with N outputs ŵi,r - real or simulated - corresponding

to the N inputs.

The signal’s noise (see (2.1)’s denominator) is the square root of the corre-

sponding element on the main diagonal of

cov(β̂) = (XTX)−1σ2
ε . (2.4)
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The unknown parameter σ2
ε in (2.4) can be estimated through the mean squared resid-

ual (MSR) estimator

σ̂2
ε =

n∑
i=1

mi∑
r=1

(ŵi,r − ŷi)
2

(N − q)
(2.5)

where the ith component ŷi of the regression predictor ŷ follows from

ŷ = Xβ̂. (2.6)

The variance of this predictor is a function of d, where dT = (d1, ..., dk):

var(ŷ| d) =
(
1, dT

)
cov(β̂)

(
1

d

)
. (2.7)

Notice that d in (2.7) may correspond with either one of the old N points in X - as in

(2.6) - or a new point; a new point means interpolation or extrapolation.

To illustrate the implications of (2.7), suppose that the design leading to X is

orthogonal; that is, XTX = NIq×q. Combining (2.4) and (2.7) then gives

var(ŷ| d) =
σ2
ε

N

(
1, dT

)(1

d

)
. (2.8)

Obviously, (2.8) shows that the regression predictor becomes less reliable (accurate),

as the number of observations N decreases, or the noise σ2
ε increases . In Appendix 1

we derive d0 = −C−1b where d0 is the design point that minimizes the variance of the

regression predictor, and where C and b follow from

cov(β̂) = σ2
ε(X

TX)−1 = σ2
ε

(
a bT

b C

)

where a is a scalar, b a k × 1 vector, and C a k × k matrix. (Note that σ2
εC is the

covariance matrix of β̂
−0

where β̂
−0

equals β̂ excluding the intercept β̂0.) If the design

is orthogonal, then (2.8) is minimal at the center of the experimental area: d0 = 0

(also see the ‘funnel’ shape of Figure 2.1, discussed below). Hence, extrapolation

should be less trusted as the extrapolated point moves farther away into regions not

yet observed; this property will guide our ASA. (The term “trust region” is used in

nonlinear optimization; see Conn, Gould, and Toint (2000).)

2.3 Two new search techniques

We consider a lower, one-sided 1 − α confidence interval for the predictor based on

(2.2), given d. This interval ranges from infinity down to

ŷmin(d) = ŷ(d) − tαN−qσ̂(ŷ, d) =
(
1, dT

)
β̂ − tαN−qσ̂ε

((
1, dT

)
(XTX)−1

(
1

d

))1/2

(2.9)



2.3. Two new search techniques 21

where tαN−q denotes the 1 − α quantile of the t distribution with N − q degrees of

freedom, and (2.4) through (2.7) lead to

σ̂(ŷ, d) = (v̂ar[ŷ(d)| d])1/2 = σ̂ε

((
1, dT

)
(XTX)−1

(
1

d

))1/2

.

The first term in (2.9) concerns the signal, whereas the second term concerns the noise.

When we consider a set of d values, then the set of intervals following from

(2.9) has a joint (simultaneous) probability lower than 1 − α. This complication is

ignored in our two techniques.

• Technique 1 (ASA) finds (say) d+ which is the d that maximizes the minimum

output predicted through (2.9). This d+ gives both a search direction and a step

size. First we prove in Appendix 2 that the objective function in (2.9) is concave

in d. Next in Appendix 3 we derive the following explicit solution for the optimal

input values of the next observation:

d+ = −C−1b+ λC−1β̂
−0

(2.10)

where C−1β̂
−0

is the ASA direction, and λ the step size specified by

λ =


 a− bTC−1b

(tαN−qσ̂ε)
2 − β̂

T

−0
C−1β̂

−0




1/2

. (2.11)

We point out that when deriving this step size, we assume that the local

regression model provides some guidance outside the local region currently explored.

(Angün et al. (2003) uses the local regression model to make a relatively big step along

the search path, and then check whether that step should be reduced.)

• Technique 2 still maximizes ŷmin(d), but the new point is restricted to the SA

path; that is, the search direction is specified by the estimated local gradient,

β̂
−0

. In Appendix 4, we derive the optimal step size (say) ζ+ along this path:

ζ+ =




a− bTC−1b
(
β̂

T

−0
Cβ̂

−0

β̂
T

−0
β̂
−0

tαN−qσ̂ε

)2

− β̂
T

−0
Cβ̂

−0




1/2

. (2.12)

We derive the following mathematical properties and interpretations of these

two techniques.
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The first term in (2.10) means that the ASA path starts from the point with

minimal predictor variance, namely −C−1b (also see end of §2.2). The second term

means that the ASA path adjusts the classic SA direction β̂
−0

(second term’s last

factor) through the covariance matrix of β̂
−0

, which is σ2
εC (see §2.2, last paragraph).

Finally, the step size λ is quantified in (2.11).

For the orthogonal case (i.e., (XTX) = NIq×q)), it is easy to verify that a =

1/N , b = 0, and C = I/N , so (2.10) reduces to

d+ =
1

(
(tα

N−q
σ̂ε)2

N
− β̂

T

−0
β̂
−0

)1/2
β̂
−0

. (2.13)

This solution implies identical search directions for ASA and SA in case of orthogonal-

ity. Moreover, for the orthogonal case we prove in Appendix 4 that the two techniques

coincide (both the search direction and the step size are the same), provided SA starts

from the design center.

In practice, however, designs are not orthogonal. The classic textbooks on

Design Of Experiments (DOE) and RSM do present many orthogonal designs (for

example, 2k−p designs), but these designs use standardized inputs (say) tj; that is,

inputs ranging between −1 and +1, with an average value of zero. In practice, we apply

the following linear transformation to obtain original inputs dj that range between Lj

and Hj:

dj = fj + gjtj with fj =
Lj +Hj

2
; gj =

Lj −Hj

2
. (2.14)

Consequently, the first-order polynomial regression model (2.2) implies that βj and ϕj

- the main effects of the original and standardized inputs respectively - are related as

follows: βj = ϕj/gj. Hence, the steepest ascent path directions for the original and the

standardized inputs differ (unless ∀j : gj = 1). (The interpretation of standardization

is controversial in mathematical statistics; see the many references in Kleijnen (1987,

pp. 221, 345).)

We prove in Appendix 5 that ASA is scale independent. So ASA is not affected

by switching from (say) inches to centimeters when measuring inputs. Driessen et al.

(2001) proves that ASA is also independent of linear transformations with fj 6= 0 in

(2.14).

In case of large signal/noise ratios (defined in (2.1)), the denominator under

the square root in (2.11) is negative. So this equation does not give a finite solution

for d+; that is, (2.9) can be driven to infinity (unbounded solution). Indeed, if the

noise is negligible, we have a deterministic problem, which our technique is not meant
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to address (many other researchers - including Conn, Gould, and Toint (2000) - study

optimization of deterministic simulation models).

In case of a small signal/noise ratio, no step is taken. Actually, we distinguish

two cases: (i) the signal is small, (ii) the noise is big. These two cases are discussed

next.

In case (i), the signal may be small because the first-order polynomial approx-

imation is bad. Then we should switch to an alternative metamodel using transforma-

tions of dj such as log(dj) or 1/dj (inexpensive alternative), a second-order polynomial,

which adds d2
j and djdj′ with j′ > j (expensive because many more observations are re-

quired to estimate the corresponding effects), etc.; see the RSM literature (for example,

Irizarry, Wilson, and Trevino (2001)).

In case (ii), however, the first-order polynomial may fit, but the intrinsic noise

may be high (also see the comment below (2.8)). To decrease this noise, we should

increase the number of observations, N ; see the denominator in (2.8). Hence, we

should increase either n or mi (see the definitions below (2.3)). When our technique

gives a value d+ that is “close” to one of the old points, then in practice we may

increase mi. Otherwise we observe a new combination: we increase n. So our technique

suggests an approach to the old problem of how to choose between either using the

next observation to increase the accuracy of the current local approximation, or trusting

that approximation and moving into a new area. A different approach is discussed in

Kleijnen (1975, p. 360). In the literature on maximizing the output of deterministic

simulation, this is called the geometry improvement problem; see Conn, Gould, and

Toint (2000). More research on this problem is needed.

If we specify a different α value in tαN−q, then (2.11) gives a different step size

(in the same direction). Obviously, tαN−q increases to infinity, as α decreases to zero.

So, a sufficiently small α always gives a finite solution. However, if we increase α, then

we make a bigger step, and we prefer to take a bigger step in order to get quicker to

the top of the response surface. We feel that a reasonable maximum α value is 0.20 (so

we are “80% sure”), since 0.20 corresponds to the maximum of the common values of α

(i.e., 0.01, 0.05, 0.10, and 0.20) among practitioners; however, more empirical research

is needed.

We assume that the noise ε has zero mean when deriving the 1−α confidence

interval in (2.9), which leads to the techniques in (2.10), (2.11), and (2.12). Actually,

the locally fitted first-order polynomials may show lack of fit so the expected value

of σ̂2
ε exceeds σ2

ε ; see the lack-of-fit tests in many RSM textbooks. Fortunately, this

bias has the “right” sign; that is, this bias increases σ̂ε in (2.11) and (2.12) so that it
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decreases the step size.

2.4 Numerical examples of step-size selection

To obtain a better understanding of ASA - especially its step size - we apply this

technique to the following three numerical examples:

(i) single input, and orthogonal design;

(ii) two inputs, and orthogonal design;

(iii) two inputs, and one-at-a-time design.

For each example, we study several cases; that is, different signal/noise ratios.

We suppose that the regression estimates happen to equal the true values: β̂ = β and

σ̂ε = σε. Without loss of generality, we take β0 = 0 and σε = 1 (σε and X determine

the noise of β̂; see (2.4)). We start with example (iii), because in practice designs are

not orthogonal (see our discussion of (2.14)), and one-at-a-time designs are popular

non-orthogonal designs (nevertheless, we do not recommend one-at-a-time designs);

then we summarize results for the other two examples with orthogonal designs.

We use a one-factor-at-a-time design with dT1 = (−1, −1), dT2 = (−1, 1) so

n = 3 (= q). To estimate σ2
ε through the MSR in (2.5), we duplicate combination 1:

m1 = 2 so N = 4. We consider two extreme signal/noise cases.

• Case 1, high/low signal/noise, γ̂1 = 10 and γ̂2 = 0.10: The given X and σ̂ε result

in β̂1 = 6.124 and β̂2 = 0.061. (2.11) does not give a finite step size for the

traditional α values 0.20, 0.10, and 0.05.

• Case 2, low signal/noise, γ̂1 = 0.3 and γ̂2 = 0.5: This case implies β̂1 = 0.184 and

β̂2 = 0.306. Then α = 0.20 gives (d+
1 , d+

2 ) = (−0.404, −0.212); α = 0.05 gives

(−0.4804, −0.4416): no move outside the local input area (the N old outputs

were obtained for −1 ≤ dj ≤ 1).

The other two examples can be summarized as follows.

• Example (i), single input and orthogonal design: Obviously, we now have q = 2.

Suppose dT1 = (1, −1) and dT2 = (1, 1), so n = 2. Suppose mi = 2, so N = 4.

Then, (2.4) gives v̂ar(β̂1) = σ̂2
ε/N = 1/4. Now (2.13) reduces to

d+
1 = sign(β̂1)

√
γ̂2

1

(tα2 )2 − γ̂2
1

,

which gives a finite solution if tα2 > γ̂1.
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Figure 2.1: High signal/noise case: lower 1 − α confidence intervals for the regression

predictor ŷmin for different α
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Consider a case with high signal/noise: γ̂1 = 10; that is, β̂1 = 5. A finite

solution results only for α ≤ 0.0049; for example, α = 0.001 gives such a solution in

Figure 2.1 (where α ≤ 0.50 or t0.502 = 0 corresponds with ŷmin itself).

• Example (ii), two inputs and orthogonal design: A 2k design gives n = 4; mi = 1

implies N = 4. So (2.13) becomes

d+
j = sign(β̂j)

√
γ̂2
j

(tα1 )2 − (γ̂2
1 + γ̂2

2)
with j = 1, 2.

We consider a case with high/low signal/noise: γ̂1 = 10, γ̂2 = 0.10; that is,

β̂1 = 5 and β̂2 = 0.05. Then neither α = 0.20 nor α = 0.10 gives a finite solution.

So we might split the inputs into two parts: a high signal/noise input 1 treated as in

deterministic simulation, and a low signal/noise input 2. Further, α = 0.025 does give

a finite solution, namely (d+
1 , d+

2 ) = (1.2759, 0.0128); so the input with the highest

signal changes almost 30%.
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2.5 Comparison of the adapted steepest ascent (ASA)

and steepest ascent search directions through

Monte Carlo experiments

We perform some Monte Carlo experiments to compare the search directions of the two

techniques, ASA and SA. The Monte Carlo method is an efficient and effective way

to estimate the behavior of search techniques applied to random simulations (such as

discrete-event dynamic systems, including simulated queuing and inventory systems);

also see McDaniel and Ankenman (2000).

We experiment with two inputs: k = 2. Our Monte Carlo experiments generate

output ŵ (used in (2.3)) through second-order polynomials in two inputs with white

noise:

ω = β0 + β1d1 + β2d2 + β1,1d
2
1 + β2,2d

2
2 + β1,2d1d2 + ψ. (2.15)

RSM fits first-order polynomials defined in (2.2) locally, and then estimates the

SA. The global experimental area is the area over which the inputs of the real system

can be varied, or the area over which the simulation model is assumed to be valid.

We assume that this area is the unit square: −1 ≤ d1 ≤ 1 and −1 ≤ d2 ≤ 1. In the

local area we use a specific design D, namely a one-at-a-time design (as in §2.4). The

specific local area is the upper corner of Figure 2.2, discussed below.

There are infinitely many polynomials that satisfy (2.15). We define the canon-

ical case as β0 = β1 = β2 = β1,2 = 0; β1,1 = β2,2 = −1; see the contour functions in

Figure 2.2. In the canonical case, our local starting area is the upper-right corner (1,

1) with 0.2 input ranges: dT1 = (1, 1), dT2 = (1, 0.8), and dT3 = (0.8, 1). Obviously, the

true optimal input combination (say) d∗ is (0, 0)T .

For dT1 = (1, 1) we observe the output ŵ twice: m1 = 2. After fitting the

first-order polynomial, we start the search from dT0 = (0.95, 0.95), which is the point

that gives the minimal variance; see Appendix 1. In this Monte Carlo experiment we

know that the truly optimal search direction is the vector (say) e that starts at d0 and

ends at the true optimum (0, 0)T ; also see Figure 2.3 below. We estimate the angle

(say) θ̂ between this true search direction e and the estimated search direction v̂, where

|.| and ‖.‖2 denote the absolute value and the two-norm, respectively:

θ̂ =

∣∣∣∣arccos

(
eT v̂

‖e‖2 ‖v̂‖2

)∣∣∣∣ . (2.16)

So, the smaller the resulting θ̂ is, the better the search technique performs.
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Figure 2.2: Contour functions E(ω| d1, d2) with global and local experimental areas
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Figure 2.3: ASA’s search directions when σψ = 0.10
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We take 100 macro-replicates. Each time we apply the two techniques to the

same I/O data (d1, d2, ŵ). Then we compute the 100 search directions v̂ for ASA; see

Figure 2.3. We characterize θ̂’s empirical distribution through its average, standard

deviation, and specific quantiles. This gives Table 2.1 (left part), which demonstrates

the superiority of ASA, unless we focus on the worst case for low variance or the 95%

quantile for high variance.

Next we investigate the effects of σψ (see ψ in (2.15)): we increase σψ from

0.10 to 0.25. We use the same random numbers as we used for the smaller noise. Now

the estimated search directions may be very wrong; see Figure 2.4. ASA still performs

better, unless we focus on outliers: see the 95% or 100% quantiles in the right-hand

part of Table 2.1.

Finally, we consider interaction between the two inputs: we take β0 = β1 =

β2 = 0; β1,1 = −2, β2,2 = −1, β1,2 = 2 in (2.15). We again find that ASA is better; see

Table 2.2.
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Table 2.1: Statistics for ASA and SA’s estimated angle error θ̂ for two noise values σψ

Statistics σψ = 0.10 σψ = 0.25

ASA SA ASA SA

Average 1.83 89.97 19.83 89.84

Standard deviation 17.89 0.04 56.45 0.19

Median (50% quantile) 0.03 89.88 0.06 89.89

75% quantile 0 89.89 0.12 89.91

25% quantile 0.01 89.87 0.03 89.85

95% quantile 0.13 89.91 179.81 89.99

5% quantile 0 89.79 0.01 89.46

100% quantile 178.92 89.93 179.88 90.06

0% quantile 0 89.59 0 88.74

Figure 2.4: ASA’s search directions when σψ = 0.25
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Table 2.2: Statistics in case of interaction, for ASA and SA’s estimated angle error θ̂,

for two noise values σψ

Statistics σψ = 0.10 σψ = 0.25

ASA SA ASA SA

Average 9.72 16.01 10.14 17.33

Standard deviation 3.3 6.23 7.69 12.88

Median (50% quantile) 9.68 16.02 8.99 14.94

75% quantile 12.37 21.12 16.13 27.87

25% quantile 6.99 10.76 3.21 5.84

95% quantile 15.66 27.05 24.78 41.55

5% quantile 4.99 6.8 0.61 0.81

100% quantile 17.41 30.08 32.07 50.99

0% quantile 0.85 1.46 0.04 0.25

2.6 Conclusions and future research

In this paper we addressed the problem of searching for the input combination that

gives the maximum output. RSM is a classic technique for tackling this problem, but

it has two well-known problems: (i) RSM uses steepest ascent (SA), which is scale

dependent; (ii) RSM intuitively selects the step size on the SA path.

To address these two problems, we devised two new techniques. In technique

1 - called “adapted” SA or ASA - we select both a search direction and a step size. In

technique 2, we use classic SA but we select a step size inspired by ASA.

Our main conclusion is that - because ASA is scale independent - it usually

gives a better search direction than SA.

In future research, we may further investigate the step size, for which we pro-

posed (2.11) and (2.12). Actually, Angün et al. (2003) explores this problem in the

wider context of multiple responses.
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2.7 Appendix 1: Derivation of the minimum vari-

ance of the regression predictor

The variance of the regression predictor ŷ at (1, dT ) follows from (2.4) and (2.7), where

without loss of generality we take a unit variance, σ2
ε = 1:

var(ŷ| d) = (1, dT )(XTX)−1

(
1

d

)
.

This can be rewritten as

var(ŷ| d) = a+ 2bTd+ dTCd

where a, b, and C are defined in §2.2.

Because C is positive definite, the necessary and sufficient condition for the

point that gives minimal variance (say) d0 is

2b+ 2Cd0 = 0

which gives

d0 = −C−1b.

If X is orthogonal, then b = 0 so the variance is minimal at the design center:

d0 = 0.

2.8 Appendix 2: Proof of the concavity of the ob-

jective function (2.9)

In (2.9), the first term (1, dT )β̂ is linear and the second term has the positive factors

tαN−q and σ̂ε. Hence, it suffices to show that

((
1, dT

)
(XTX)−1

(
1

d

))1/2

is convex in d.

If in this expression the factor (XTX) is not orthogonal, then we orthogonalize

it through the well-known Gram-Schmidt QR method. It can be proven that convexity

is preserved by linear transformations, so it suffices to show convexity for the orthogonal

case.
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If (XTX) is orthogonal, then it suffices to show that

f(d) =
(
1 + dTd

)1/2

is convex in d. Obviously, we have

∇f(d) =
1

(
1 + dTd

)1/2d

and

∇2f(d) =
(
1 + dTd

)−3/2 [
I + (dTd)I − ddT

]
.

In this expression, (dTd)I − ddT is positive semi-definite: for all (say) u we have

uT
[
(dTd)I − ddT

]
u = ‖d‖2‖u‖2 − (dTu)2

≥ ‖d‖2‖u‖2 − ‖d‖2‖u‖2 = 0.

This means that ∇2f(d) is positive semi-definite; hence, f(d) is convex. Consequently,

(2.9) is an “easy” problem; that is, the local maximum is the global maximum.

2.9 Appendix 3: Maximization of the objective func-

tion (2.9)

We rewrite (2.9) as

β̂0 + β̂
T

−0
d− tαN−qσ̂ε

(
a+ 2bTd+ dTCd

)1/2

where β̂
−0

, a, b, and C are defined in §2.2. Since this function is concave (see Appendix

2), the necessary and sufficient first-order conditions for the maximizing point d+ are

β̂
−0

−
tαN−qσ̂ε(

a+ 2bTd+ + d+TCd+
)1/2

(
b+ Cd+

)
= 0.

Substituting

d+ = −C−1b+ λC−1β̂
−0

in which λ is an unknown scalar, we get

λ =


 a− bTC−1b

(tαN−qσ̂ε)
2 − β̂

T

−0
C−1β̂

−0




1/2

.
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For an orthogonal design (implying a = 1/N , b = 0, and C = I/N), this equation

simplifies to

λ =


 1/N

(tαN−qσ̂ε)
2 −Nβ̂

T

−0
β̂
−0




1/2

.

Hence for an orthogonal design the new point is

d+ =
1

(
(tα

N−q
σ̂ε)2

N
− β̂

T

−0
β̂
−0

)1/2
β̂
−0

.

2.10 Appendix 4: Optimization of the step size in

SA

We assume that the SA path starts from d0 = −C−1b, which is the point at which the

predictor variance is minimal; if X is orthogonal, then b = 0 so d0 = 0 (see Appendix

1). In SA, we make a step of size (say) ζ in the β̂
−0

direction. This means

d+ = −C−1b+ ζβ̂
−0

.

Substitution of (1, d+T ) into the regression predictor (2.9) gives

ŷmin(d
+) = β̂0 − bTC−1β̂

−0
+ ζβ̂

T

−0
β̂
−0

− tαN−qσ̂ε

(
a− bTC−1b+ ζ2β̂

T

−0
Cβ̂

−0

)1/2

.

Since this expression is concave in ζ , it is easy to verify that ζ+ defined in (2.12)

indeed maximizes ŷmin(d
+).

Comparison with Appendix 3 proves that in the orthogonal case the two tech-

niques coincide - provided SA starts from the design center.

2.11 Appendix 5: Scale independence of ASA

Affine scaling implies X = ZA with a non-singular square matrix A so Z = XA−1.

Hence (2.9) expressed in z becomes

zT β̂
z
− tαN−qσ̂ε

(
zT (ZTZ)−1z

)1/2
(2.17)

where

β̂
z

= (ZTZ)−1ZT ŵ
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or

β̂
z

=
(
A−TXTXA−1

)−1
A−TXT ŵ

= A
(
XTX

)−1
ATA−TXT ŵ

= A
(
XTX

)−1
XT ŵ

= Aβ̂
d
.

In (2.17) we write the square-root factor as

(
zT (ZTZ)−1z

)1/2
=

[
zT
((

XA−1
)T

(XA−1)
)−1

z

]1/2

=
[
zT
(
A−T

(
XTX

)
A−1

)−1
z
]1/2

=
(
zTA

(
XTX

)−1
AT z

)1/2

.

Hence (2.17) becomes

zTAβ̂
d
− tαN−qσ̂ε

(
zTA

(
XTX

)−1
AT z

)1/2

= (AT z)T β̂
d
− tαN−qσ̂ε

(
(AT z)T (XTX)−1(AT z)

)1/2

=
(
1, dT

)
β̂
d
− tαN−qσ̂ε

((
1, dT

)
(XTX)−1

(
1

d

))1/2

which is indeed identical to the original expression in (2.9). This proves that ASA is

scale independent.



Chapter 3

RSM with Stochastic Constraints

for Expensive Simulation

3.1 Introduction

Optimization in simulation is attempted by many methods; see Fu (2002). In partic-

ular, when simulation is treated as a black box (that is, gradient estimation through

perturbation analysis (Glasserman (1991)) or through score function (Rubinstein and

Shapiro (1993)) is not applicable), metaheuristics such as simulated annealing, genetic

algorithms, tabu search, or scatter search can be used for optimization. Another ap-

proach is the simultaneous perturbation stochastic approximation of Spall (2003), and

Fu and Hill (1997) for black box simulation optimization. In this paper, we focus on

Response Surface Methodology (RSM), which also treats simulation as a black box.

From the practitioners’ point of view, RSM is broadly applicable since it can

be easily integrated into both stochastic and deterministic simulations; for the opti-

mization of stochastic systems through RSM, see Yang and Tseng (2002), and Irizarry,

Wilson, and Trevino (2001), and for the optimization of a deterministic system through

RSM, see Ben-Gal and Bukchin (2002).

Originally, RSM was derived for problems with a stochastic objective func-

tion and deterministic box constraints; Myers and Montgomery (2002) gave a general

description for the first stage of this conventional RSM as follows. An experimen-

tal design is used to fit locally a first-order polynomial to the observed values of the

stochastic objective through least squares. Then, a steepest descent search direction

is estimated from the resulting model, and a number of steps are taken along the es-

timated steepest descent direction until no additional decrease in objective is evident.

35
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This procedure is repeated until a first-order polynomial becomes an inadequate model,

which is indicated when the gradient is not significantly different from zero.

In practice, however, optimization problems may have stochastic constraints

in addition to deterministic box constraints. In RSM, there have been several ap-

proaches to solve constrained optimization problems. Khuri (1996) surveyed most

of these approaches, including the desirability function (Harrington (1965), and Der-

ringer and Suich (1980)), the generalized distance (Khuri and Conlon (1981)), and

the dual response (Myers and Carter (1973), Vining and Myers (1990), Del Castillo

and Montgomery (1993), and Fan and Del Castillo (1999)). Further, Wei, Olson, and

White (1990) suggested another approach, namely the prediction-interval constrained

goal programming, which was not mentioned in Khuri (1996). After we shall have

described the methods cited in Khuri (1996) and the prediction-interval constrained

goal programming in Wei, Olson, and White (1990), we will explain a major drawback

of these methods.

Harrington (1965), and Derringer and Suich (1980) suggested the approach

called the desirability function. They transformed each predicted response to a desir-

ability index, and combined the transformed desirability indices into a single response

function. In this way, they reduced the multiresponse optimization problem to one with

a single response and no constraints. Then, Derringer and Suich (1980) optimized the

overall desirability function using a pattern search method.

Later, Wei, Olson, and White (1990) compared the desirability approach with

prediction-interval constrained goal programming. They minimized the sum of the

weighted deviations between each response variable and its predetermined target value.

They concluded that their approach gave more flexibility to the users.

Khuri and Conlon (1981) considered the generalized distance approach. They

first optimized each response individually over the experimental region. Then, they de-

fined a distance function that measures the deviations between each predicted response

and its individual optimum. By minimizing the distance function, they obtained a so-

called compromise optimum. Thus, the multiresponse optimization is again converted

into a single response unconstrained optimization.

Myers and Carter (1973), Vining and Myers (1990), Del Castillo and Mont-

gomery (1993), and Fan and Del Castillo (1999) applied the dual response or Taguchian

approach. They locally modelled the same problem in three different ways: i) minimize

the mean response subject to the variance of the response attaining a target value; ii)

maximize the mean response subject to the variance of the response attaining a target

value; iii) minimize the variance of the response subject to the mean response attaining
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a target value. To solve dual response problems, Myers and Carter (1973), and Vin-

ing and Myers (1990) applied the Lagrangian method; Del Castillo and Montgomery

(1993) used the generalized reduced gradient method.

In all these approaches, the constrained optimization problem is reformulated

by combining the constraints and the original objective function into a new, single

objective function by appropriate transformations. The type of transformation differs

with the particular method. Next, the resulting unconstrained problem is solved using

an ordinary nonlinear programming algorithm. These methods suffer from a major

drawback: these transformations require arbitrary choices. To overcome this drawback,

we propose an alternative approach. Rather than transforming it into an unconstrained

problem, we focus on the original (possibly stochastically) constrained optimization

problem.

We now introduce our approach for extending conventional RSM to handle

stochastic constraints. This is achieved through the generalization of the estimated

steepest descent search direction using ideas from interior point methods, more specifi-

cally the affine scaling algorithm. To obtain better insight, we illustrate the superiority

of our search direction through a deterministically constrained problem, as follows. In

Figure 3.1, which is inspired by Ye (1989, p. 51), suppose that the current input vector

is R and the optimal point is P . Suppose further that although there are constraints,

we would use conventional RSM’s estimated steepest descent direction. Then, this

search direction would soon hit the boundary at the input vector C. In this way, we

would have slow convergence, creeping along the boundary. Instead, we propose a

search direction that generates an input vector which avoids hitting the boundary. We

accomplish this by introducing an ellipsoid constraint centered at the current iterate

with a shape determined by the current values of the slacks. By minimizing the linearly

approximated objective function over this ellipsoid, we obtain the next input vector,

P
′

. This gives the search direction RP
′

. An explicit formula for the search direction

obtained by this optimization is well-known in the interior point methods literature

and is given in Barnes (1986), and also in Appendix 1.

The main contribution of this paper is to generalize the estimated steepest

descent search direction for dealing with stochastically constrained problems. Our

proposed search direction is the scaled and projected estimated steepest descent, also

called the estimated affine scaling search direction. To achieve this generalization, we

use standard tools from interior point methods and nonlinear programming such as

scaling and projection. Scaling is a standard feature of the affine scaling algorithm.

Projection of the search direction is also a standard approach when there are linear
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Figure 3.1: Proposed search direction RP
′

versus steepest descent RC
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constraints; there is a related family of algorithms called null-space methods discussed

in Gill, Murray, and Wright (2000).

We prove that the proposed search direction has two important features: it

is indeed a descent direction, and it is scale independent. On the other hand, it is

well-known that the estimated steepest descent direction, used in conventional RSM,

is scale dependent. In general, practitioners need to deal with variables with widely

varying orders of magnitude. In such cases, scale independence enables them to avoid

numerical complications and problems.

Furthermore, we provide a heuristic for the first stage of RSM that uses the

proposed search direction iteratively. This heuristic is primarily meant for expensive

simulation-based optimization problems with a tight simulation budget to reach quickly

a desired neighborhood of the real optimum; that is, for studies in which each simulation

run takes, say several hours or days, and the total simulation budget is limited, so that

only a small number of simulation runs are available. Such problems arise in practice

in diverse fields; see for example Helton et al. (1997), den Hertog and Stehouwer

(2002), and Vonk Noordegraaf, Nielen, and Kleijnen (2003). In particular, the heuristic

enables us to cope with optimization problems with a stochastic objective function and

stochastic constraints, besides deterministic box constraints. However, the heuristic

can also be easily simplified for deterministic problems that are solved iteratively.
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In the heuristic, we proceed towards the solution point through the interior of

the feasible region. This approach is inspired by interior point methods and has two

advantages. First, interior point methods are known to perform well within the interior

of the feasible region; therefore, we expect that our heuristic will also avoid creeping

along the boundary. Second, in practice some simulation programs may simply crash

or become invalid outside the feasible region. Such problems were reported in Bettonvil

and Kleijnen (1996), Booker et al. (1999), and den Hertog and Stehouwer (2002).

We use underlined letters and bold letters to denote vectors and matrices,

respectively. Hence, 0, 1, 0, and 1 stand for a vector of zeros, a vector of ones, a square

matrix of zeros, and a square matrix of ones, respectively. For square matrices, we use

subscripts to denote their dimensions; i.e., Ik denotes a k × k identity matrix.

The remainder of this paper is organized as follows. In §3.2, we formalize our

problem including statistical methods. In §3.3, we give the proposed search direction

and outline its properties. In §3.4, we describe our heuristic for the first stage of RSM.

In §3.5, we evaluate our heuristic through a Monte Carlo example. In §3.6, we give

conclusions. There are three appendices with technical details and proofs.

3.2 Problem formulation

We consider the following problem:

minimize Eω [F0 (d, ω)]

subject to Eω [Fj (d, ω)] ≥ aj for j = 1, ..., r − 1

l ≤ d ≤ u

(3.1)

where Eω is the expectation operator with respect to the simulation’s seed vector ω, d

is k × 1 vector of input variables, aj is the jth component of (r − 1) × 1 deterministic

right-hand-side vector, l is k × 1 vector of lower bounds on d, u is k × 1 vector of

upper bounds on d, and the Fi (i = 0, ..., r − 1) are r random responses that are

estimated through simulation. We assume that the Fi are continuous and continuously

differentiable on the “feasible” set defined by the inequalities in (3.1). For deterministic

problems where the Fi are not known explicitly, ω and hence the expectation operator

Eω will simply vanish in (3.1).

The formulation in (3.1) covers expected values, variances, coefficients of vari-

ation, and probabilities. Note that probabilities can be formulated as expected values

of indicator functions. However, indicator functions are not continuous. Other rele-

vant performance measures are quantiles; there exist more general formulations than
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(3.1) that enable us to consider quantiles as responses, but for simplicity we use the

formulation in (3.1).

Let n (n ≥ k + 1) be the number of distinct simulated input combinations per

local area - usually specified by a resolution-3 design in the first stage of RSM. Further,

let mt be the number of replicates at the tth (t = 1, ..., n) input combination, and let

N be the resulting total number of local runs; that is, N = m1 + ...+mt + ...+mn. In

the first stage of RSM, we locally approximate the r simulation responses Fi in (3.1)

by first-order polynomial regression metamodels with additive noises:

Gi (d, ω) = Xβ
i
+ ǫi (d, ω) for i = 0, ..., r − 1 (3.2)

where X isN×(k + 1) matrix obtained by adding a column of ones to the design matrix,

say, D (i.e., X = (1, D)), β
i

denotes (k + 1) × 1 vector of regression coefficients for

response type i, and ǫi is N × 1 vector of additive noise with mean vector µ
ǫi

and

covariance matrix Σǫi
for response type i. These ǫi account for both the lack of fit of

the first-order polynomial approximations and the inherent randomness in stochastic

simulation created through the use of the simulation’s seed ω.

Classic RSM assumes a single response (r = 1), and µ
ǫi

= 0 and Σǫi
= σi,iI. In

the rest of this paper, we call the assumptions µ
ǫi

= 0 and Σǫi
= σi,iI the ordinary least

squares (OLS) assumptions. When these assumptions are satisfied, the Gauss-Markov

theorem guarantees the OLS estimator of β
i
to be the best linear unbiased estimator

(BLUE), where “best” means minimum variance. In our problem, however, we have

r responses that are statistically dependent (correlated); moreover, the variances per

responses differ in general. Hence, generalized least squares (GLS) gives the BLUE of

β
i
. However, under certain conditions GLS reduces to OLS, as we explain now.

Let F̂ i (d, ω) =
(
F̂ i (d1, ω1)

T , ..., F̂ i (dt, ωt)
T , ..., F̂ i (dn, ωn)

T
)T

be N×1

vector of estimators of Eω [Fi (d, ω)], the expected response i in (3.1), where dt is mt×1

vector of replicates for the tth input combination and ωt is mt×1 seed vector with inde-

pendent components. Moreover, the seed vectors, say ωt and ωt´
(
t´ = 1, ..., n, t´ 6= t

)
,

for distinct input combinations t and t´are independent; that is, we do not use common

random numbers, so all N simulation outputs are independent. Moreover, we assume

that each response i satisfies the OLS assumptions within the local area where we make

N simulation runs (i.e., locally). Then, Rao (1967) and Ruud (2000, p. 703) prove

that if the same design is used for all r responses and if each response satisfies the OLS

assumptions, then the GLS estimator reduces to the OLS estimator of the individual

coefficient vector β
i
:

β̂
i
(d, ω) =

(
XTX

)−1
XT F̂ i (d, ω) for i = 0, ..., r − 1. (3.3)
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Now, let Σ be r×r covariance matrix of responses with entry (i, h) being σi,h

(h = 0, ..., r − 1). Often, simulation analysts estimate Σ through replicates. How-

ever, when simulation is time-consuming, we need to have a single replicate per input

combination; that is, m1 = ... = mt = ... = mn = 1. Therefore, we prefer an alternative

estimator, namely the mean squared residual (MSR). Let Ĝi (d, ω) = Xβ̂
i
(d, ω) be

N × 1 vector of OLS estimators of Eω [Gi (d, ω)], the expectation of the linear approx-

imation in (3.2). Indeed, Khuri (1996, p. 385) gives the following MSR estimator of

σi,h:

σ̂i,h (d, ω) =

(
F̂ i (d, ω) − Ĝi (d, ω)

)T (
F̂ h (d, ω) − Ĝh (d, ω)

)

N − (k + 1)
. (3.4)

We assume constant covariances within the local area (with its N simulation runs);

i.e., σi,h (d) = σi,h locally. The MSR estimators in (3.4) are unbiased for σi,h if the

responses satisfy the OLS assumptions locally; see Theil (1971, p. 114). Furthermore,

since in the rest of this paper we only need point estimates for σ̂i,h, we do not need to

assume multivariate normality of the responses; that is, σ̂i,h in (3.4) are not necessarily

chi-squarely distributed. Note that for i = h, (3.4) is found in any classic RSM or

regression textbook, where “classic” means no multiple responses.

After the β̂
i
are estimated, our problem in (3.1) is locally approximated by

minimize bT0 d

subject to bTj d ≥ cj for j = 1, ..., r − 1

l ≤ d ≤ u

(3.5)

where bi = (bi,1, ..., bi,k)
T denotes a realization of the OLS estimator β̂

i
excluding the

intercept β̂i,0 per response i, and cj = aj − bj,0. In (3.5), we leave the constant term

b0,0 out of the objective function, since we will use only the gradient of the objective

in the following section.

An important characteristic of simulation is the experimenter’s control over

the seed ω that drives the simulation model. The use of common or antithetic seeds as

variance reduction techniques is standard in simulation; see Law and Kelton (2000).

In conventional RSM context, Donohue, Houck, and Myers (1993, 1995), and Hussey,

Myers, and Houck (1987) considered the use of the following three seed assignment

strategies as part of their experimental design: (i) the assignment of an independent

seed to each input vector; (ii) the assignment of a common seed to input vectors; (iii)

Schruben and Margolin’s (1978) “assignment rule” that simultaneously uses common

and antithetic seeds in an orthogonally blocked experimental design. Notice that for

a fixed seed ω, the unknown responses Fi in (3.1) are deterministic functions of d. In
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the heuristic in §3.4, we will use the common seed approach on our path towards the

optimum to reduce the random variations in the estimates for the estimators of the

expected responses.

3.3 The new search direction and its properties

In this section we propose an estimated search direction for problem in (3.1) and present

two properties: it is a descent direction, and it is scale independent.

We rewrite (3.5) by introducing B =
(
b1, ..., br−1

)T
, and we add slack vectors

s, r, and v:

minimize bT0 d

subject to Bd− s = c,

d+ r = u,

d− v = l,

s ∈ Rr−1
+ , r, v ∈ Rk

+.

(3.6)

Note that our purpose is not to solve the linear programming problem in (3.6); we use

the local approximation in (3.6) only to derive a search direction.

Now, we give the proposed search direction p derived in both Appendices 1

and 2, using standard tools from interior point methods and nonlinear programming:

p = −
(
BT Ŝ−2B + R̂−2 + V̂−2

)−1

b0 (3.7)

where Ŝ, R̂, and V̂ are diagonal matrices with the components of the current estimated

slack vectors ŝ, r̂, v̂ > 0 on the diagonals. Notice that in (3.7), the inverse of the matrix

within the parentheses scales and projects the estimated steepest descent (−b0). First,

we present some intuitive ideas about the derivations of (3.7), and then we consider

some special cases of (3.6), which affect (3.7).

To give some geometrical insight about the derivation of (3.7) in Appendix 1,

we start with conventional RSM (with only one response), and the search direction is

given by the estimated steepest descent. Finding the normalized estimated steepest

descent p can then be formulated as

minimize bT0 p subject to ‖p‖2 ≤ 1 (3.8)

where ‖.‖2 denotes the two-norm. The problem in (3.8) corresponds to the minimiza-

tion of a linear function over a ball constraint. However, the estimated steepest descent

may be very inefficient in a constrained problem, as we illustrated with Figure 3.1 in
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§3.1. Hence, we replace the nonnegativity constraints on the estimated slack vectors

by an ellipsoid constraint that lies in the interior of the positive orthant, and that is

centered at the current estimated slacks with a shape determined by the current values

of the estimated slacks; see Barnes (1986) and also Appendix 1. Then, (3.7) is obtained

through the minimization of a linear function over this ellipsoid constraint.

In Appendix 2, we consider an alternative derivation of (3.7). This derivation

has two major components, namely scaling and projection of the estimated steepest

descent. Scaling simply means multiplying the estimated slack vectors by diagonal

matrices with the current estimated slack values on the diagonals. Notice that scaling

maps the current estimated slack vectors to all-one vectors (1, ..., 1)T of appropriate

dimensions. This ensures that (for example) whether distance is measured in miles

or in kilometers, the property of being close to a “wall” remains unchanged. Next,

projection is used to maintain the feasibility of equality constraints while dealing with

the estimated steepest descent.

We now discuss two special cases of (3.6).

• Case 1: If there are no simple bounds (box constraints) on the decision variables

(i.e., a formulation without d+ r = u and d− v = l), then (3.7) reduces to

p = −
(
BT Ŝ−2B

)−1

b0.

This can be seen as follows. No simple bounds on d implies −∞ < d < +∞.

Then, using 1/∞ = 0 reduces R̂−2 and V̂−2 in (3.7) to zero-matrices.

• Case 2: If there are only simple bounds on the decision variables (i.e., a formu-

lation without Bd− s = c), then (3.7) simplifies to

p = −
(
R̂−2 + V̂−2

)−1

b0. (3.9)

This is useful in general, since although it is not explicitly stated, conventional

RSM assumes simple bounds on the decision variables. The scaling matrix(
R̂−2 + V̂−2

)−1

in (3.9) is a diagonal matrix with expressions of the estimated

current slacks on the diagonal. Then, the scaling matrix in (3.9) adapts the

estimated steepest descent (−b0) with respect to the shape of the feasible re-

gion through the estimated slack values. We expect that for problems with only

box constraints, (3.9) performs significantly better than the estimated steepest

descent (−b0) whenever the individual diagonal entries in
(
R̂−2 + V̂−2

)−1

differ.
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We now consider two properties of the proposed search direction. First, since

BT Ŝ−2B, R̂−2, and V̂−2 are positive definite, the estimated search direction in (3.7) is

indeed a descent direction; that is,

−bT0
(
BT Ŝ−2B + R̂−2 + V̂−2

)−1

b0 < 0.

Second, to avoid numerical complications and problems, it is common practice to make

variables have similar magnitudes. This can be done by a general linear transformation

as follows:

Jz + e = d (3.10)

where J is a k × k non-singular matrix and e is a k × 1 vector. This transformation

is one-to-one, so z = J−1 (d− e). Such a transformation is standard in ordinary RSM

literature: transform the original variables into coded ones. In Appendix 3, we prove

that the estimated search direction in (3.7) is invariant under the transformation (3.10).

On the other hand, the estimated steepest descent, used in conventional RSM, is scale

dependent; see Myers and Montgomery (2002, pp. 218-220).

3.4 An iterative heuristic for the first stage of RSM

In this section, we describe a heuristic that uses the search direction in (3.7) itera-

tively. Primarily, this heuristic is intended for simulation-based optimization problems

in which each simulation run is time-consuming, and the simulation budget is tight.

In particular, this heuristic aims at quickly reaching a neighborhood of the minimizer

of stochastically constrained problem in (3.1). Moreover, after a few simplifications,

the heuristic can be easily applied to deterministic problems. We will introduce these

simplifications when we detail each step of the heuristic.

Before presenting the details of the heuristic, we explain briefly the general

procedure. The Fi in (3.1) are locally approximated by first-order polynomials. Then,

a search direction (given in (3.7)) and a maximum step size are estimated from the

resulting model. In the initialization, the heuristic fixes a set of independent seed

vectors to be used when estimating function values locally. This same set is used

several times when estimating function values in different local areas. The heuristic

changes this fixed set of independent seed vectors only once, when there is no progress

observed in a newly estimated search direction. In this way, the heuristic tries to

avoid premature stopping if this stopping is caused by the inherent randomness of the

problem.
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At each iteration of the heuristic, there are two statistical tests - one for “fea-

sibility” and one for “improvement” in objective - to determine whether the candidate

iterate will become the next iterate. Different from the general practice, in these tests

the heuristic considers relative improvements (rather than absolute improvements) in

the candidate iterate with respect to the current iterate. This approach is in line with

interior point methods, where at each iteration one takes a step such that the candidate

iterate’s slacks are equal to some percentage of the current slacks. In addition, the use

of ratios instead of absolute differences avoids scale dependency.

Furthermore, the heuristic does not assume multivariate normality for the Fi.

Hence, we do not use the classical statistical tests. Instead, we use Monte Carlo

sampling (as described in Law and Kelton (2000, pp. 90-91)), which does not require

any assumption on the joint distribution for the Fi.

We now provide a more specific and detailed description of why and how we

resort to Monte Carlo sampling as part of the heuristic: suppose our current iterate is

dm, and it is a “feasible” point. First, we check whether the candidate point, dm + λp,

is “feasible” through a statistical test for “feasibility”. If dm + λp is “feasible”, then

we check whether there is significant decrease in the objective at dm + λp compared to

the objective at dm. This comparison is done through a statistical test for “improve-

ment” in objective. In the heuristic, we consider the ratios Sj
(
dm + λp

)
/Sj (dm) of the

random slacks for the statistical test for “feasibility”; this is in line with the classical

interior point methods. For symmetry and ease of explanation, we also look at the

ratios of the objectives (that is, relative improvements in the objectives formulated

as
(
F0 (dm) − F0

(
dm + λp

))
/ | F0 (dm) |) instead of absolute improvements, where |.|

denotes the absolute value:

Eω
[
F0 (d, ω) | d=dm + λp

]
< Eω [F0 (d, ω) | d=dm] .

Obviously, Eω
[
F0 (d, ω) | d=dm + λp

]
and Eω [F0 (d, ω) | d=dm] are unknown. Since

our heuristic is concerned with cases in which simulation is very time-consuming (so

we cannot make a large number of simulation runs), we consider f̂0

(
dm + λp

)
and

f̂0 (dm), which are the corresponding simulation runs obtained for F0

(
dm + λp, ω

)
and

F0 (dm, ω), as the point estimates for the means of F0

(
dm + λp, ω

)
and F0 (dm, ω).

Notice that we cannot use any of the classical statistical tests, since there is no mul-

tivariate normality assumption for the Fi. Since Monte Carlo requires an amount of

computer time that is negligible in an expensive simulation study and it is easy to use

and explain to the readers, we use Monte Carlo. Note that the use of Monte Carlo

requires the knowledge of the distributions and the distributional parameters. We pro-
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ceed as follows: we sample a large number, say K = 1000, of the random objectives

F0

(
dm + λp, ω

)
and F0 (dm, ω) from their distributions, say normal (but it could be

any other distribution; that is, if the practitioner has reason to believe a particular

distribution may be better suited for the problem on hand, then sampling should be

done from that particular distribution), with means f̂0

(
dm + λp

)
and f̂0 (dm) and the

variance σ̂0,0, which was estimated when the search direction was last revised. A similar

procedure is used for generating a Monte Carlo sample of the slacks. Further details

of the statistical tests for “feasibility” and “improvement” in objective, based on these

Monte Carlo samples, are explained at the end of this section.

In Figure 3.2, we summarize the outer loop of the heuristic. Our heuristic

neglects the statistical dependencies among the Fi. Now, we detail each step of the

heuristic as follows.

• Step 0, Initialize: Input a user-specified fixed number of simulation runs per

inner loop and a maximum total number of simulation runs for the outer loop.

The maximum total number for the outer loop is determined by the time and

budget constraints of an expensive simulation study. For the outer loop, set the

number of simulation runs already executed to zero.

Input also a fixed, user-specified size of the local experimental area, where the re-

sponses Fi are locally approximated by first-order polynomials. This local exper-

imental area should lie within the global area determined by the box constraints

in (3.1). The size of this local experimental area is clearly scale dependent, and

there are no general guidelines to determine an appropriate size that would work

in all applications; see the standard RSM textbooks by Myers and Montgomery

(2002), and Khuri and Cornell (1996). Therefore, to determine an appropriate

size, the users need to have insights into their applications. Notice that the arbi-

trary choice for the initial size of the region of interest is also a general issue in

nonlinear programming: in trust-region methods, the initial size of the local ex-

perimental area, namely the trust-region, is also user-specified; see Conn, Gould,

and Toint (2000).

Furthermore, we assume that the users can determine at least one design point

inside the “feasible” region. The rest of the initial design points may potentially

be “infeasible”, but clearly the simulation program should not crash in those

points. For an existing system, a “feasible” point is provided by the current de-

sign point at which the system is operating. In general, however, there are again

no guidelines that ensure that a selected design point is inside the “feasible” re-
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Figure 3.2: Overview of the iterative heuristic

0. Initialize.

1. Fit first-order polynomials, estimate variances, and

perform Monte Carlo sampling.

5. Stopping criterion

satisfied?

4. Select a resolution-3 design and simulate

at the design points to estimate outputs.

2. Estimate a search direction and 

a maximum step size.

3. Estimate an approximate line minimum.

Y

End.

N
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gion prior to simulating at that point; therefore, the users are again asked to use

their insights into their specific problems. As a further remark, at least one of

the “feasible” points has to be in the interior of the “feasible” region far from

the boundary, since (3.7) will creep along the boundary or fail when this point is

close to the boundary or on the boundary, respectively.

For the first stage of RSM, we use a resolution-3 design, since such a design type

gives unbiased estimators for β
i
in (3.2) with a small number of simulation runs,

provided that first-order polynomials are adequate approximations; see Kleijnen

(1998). Simulate at the design points dm to estimate their objectives f̂0 (dm) and

their slacks ŝj (dm) = aj − f̂j (dm), where the aj are the right-hand-side values in

(3.1). Notice that when we use Monte Carlo sampling later, these f̂0 (dm) and

ŝj (dm), which are obtained through a single simulation run at dm, will be used

as the point estimates for the means of the random objective F0 (dm, ω) and the

random slacks Sj (dm, ω).

For later use, fix the set {ω1, ..., ωm, ..., ωN} of independent seed vectors for

each of the N design points. The initial iterate, say dm, is the “feasible” design

point (among the N design points) that has the minimum objective f̂0 (dm) es-

timated through simulation; i.e., dm is not found by minimizing the local linear

model in (3.6). Fix the seed vector ωm corresponding to dm as the common seed.

Increase the number of already executed simulation runs for the outer loop by

N , which is the number of runs used for initialization.

As we already mentioned in §3.2 when we introduced (3.1), the inherent random-

ness ω vanishes for deterministic problems. Hence, the generation of independent

seeds and the use of common seed are to be skipped when the heuristic is applied

to such problems.

• Step 1, Fit first-order polynomials, estimate variances, and perform

Monte Carlo sampling: Approximate (3.1) by local first-order polynomials

within the local experimental area using (3.3), and obtain point estimates σ̂i,h for

the variances through (3.4). As mentioned already in §3.2 below (3.4), the MSR

estimators in (3.4) are unbiased for σi,h. Besides, the locally constant covariance

assumption, mentioned in §3.2 below (3.4), may not hold globally. Thus, we will

use only the most recent estimates σ̂i,h in the heuristic.

After estimating the variances, we perform Monte Carlo sampling (as a reminder,

the heuristic ignores the correlations among the Fi): sample a large number K

of observations on F0 (dm, ω) from the normal distribution with mean f̂0 (dm)
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and variance σ̂0,0, and on Sj (dm, ω) from the normal distributions with means

ŝj (dm) and variances σ̂j,j. Notice that our normality choice is only for clarity

in describing the heuristic, and in line with conventional RSM literature. Later,

these samples from F0 (dm, ω) and Sj (dm, ω) will be used in the statistical tests

for “feasibility” and “improvement” in objective.

For deterministic problems, variance estimation and Monte Carlo sampling are

not needed since the exact values for F0

(
dm + λp

)
, F0 (dm), Sj

(
dm + λp

)
, and

Sj (dm) are obtained through simulation.

• Step 2, Estimate a search direction and a maximum step size: Determine

a search direction using (3.7), where the diagonal entries of Ŝ−2 are estimated

through a single simulation run at dm; i.e., ŝ−2
j (dm) =

(
aj − f̂j (dm)

)−2

. To

determine a maximum step size into this direction, we initially assume that the

approximation in (3.5) holds globally. Then we find a maximum step size λmax

as follows.

maximize λ

subject to bTj
[
dm + λp

]
≥ cj for j = 1, ..., r − 1

l ≤ dm + λp ≤ u, λ ≥ 0

(3.11)

Notice that it is not necessary to solve (3.11) as a linear program. The maximum

step size λmax can be obtained explicitly through λmax =max{0, min {λ1, λ2, λ3}}
where

λ1 = min
{
(ch − bThdm)/bThp: h ∈ {1, ..., r − 1} , bThp<0

}

λ2 = min {(un − dn) /pn: n ∈ {1, ..., k} , pn > 0}
λ3 = min {(ln − dn) /pn: n ∈ {1, ..., k} , pn < 0} .

To increase the probability of staying within the interior of the “feasible” region,

we take only 80% of λmax as our maximum step size λ.

• Step 3, Estimate an approximate line minimum: In the initialization, set

the number of simulation runs already executed per inner loop to zero. Simulate

at dm + λp to estimate f̂0

(
dm + λp

)
and ŝj

(
dm + λp

)
using the common seed

vector ωm. Sample K observations on F0

(
dm + λp, ω

)
from the normal distribu-

tion with mean f̂0

(
dm + λp

)
and variance σ̂0,0, and on Sj

(
dm + λp, ω

)
from the

normal distributions with means ŝj
(
dm + λp

)
and variances σ̂j,j.

At this point, the heuristic compares the current iterate dm with the candidate
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iterate dm+λp to determine the “better” point, where “better” means “feasible”

with a lower objective. This comparison is done through two statistical tests,

namely one for “feasibility” and one for “improvement” in objective; these tests

will be described in detail at the end of this section. As mentioned in the be-

ginning of this section, the heuristic tests the ratios of the random slacks, which

is in the spirit of interior point methods. By symmetry, the heuristic also tests

the ratios of the objectives. Notice that classical statistical tests (for example, a

paired-t test for the objectives) are not used, since the heuristic does not assume

(multivariate) normality. Besides, normality implies Cauchy type distributions

for ratios, and these distributions have no finite means. Then, the Monte Carlo

samples are used for the two statistical tests that can be summarized as follows:

determine the medians (not means) of the given Monte Carlo samples since ratios

of two random variables may not necessarily have finite means, and test whether

the lower bounds on these medians are significant (i.e., exceed prespecified val-

ues). The details are explained at the end of this section.

Determine the “better” of dm + λp and dm. Denote the “better” by dm and the

other by dm + λp. Set the objective to f̂0 (dm). Increase the number of already

executed simulation runs for both the outer and the inner loops by one.

Now, analogous to binary search, we have the interval
[
dm, dm + λp

]
to be sys-

tematically halved for a prespecified number of simulation runs in the same es-

timated search direction, to estimate an approximate line minimum. Repeat the

procedure each time with a new interval
[
dm, dm + λp

]
, until the fixed number

of simulation runs per inner loop is reached. Then, set the current estimated

approximate line minimum’s (dm) slacks to ŝj (dm). At the end of this step, it is

possible that the heuristic fails to find a better point than the old dm. Then, the

heuristic does not leave that point.

• Step 4, Select a resolution-3 design and simulate at the design points:

The current design point dm and the other design points are the vertices of an

N -dimensional hypercube with the side length determined by the fixed size of the

local experimental area. Using the fixed set {ω1, ..., ωm, ..., ωN} of independent

seeds (except ωm, which was used at dm), simulate at the new design points other

than dm, since we already simulated at dm. If in the line search in Step 3, the

heuristic failed to find a better point than the old dm (we already used dm in

a previous resolution-3 design), then generate a new set {ω1, ..., ωm, ..., ωN}
of independent seeds, and select the seed ωm of dm as the new common seed.
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Increase the number of already executed simulation runs for the outer loop by

the number of new runs.

• Step 5, Stopping criterion satisfied:The heuristic stops when either the num-

ber of executed simulation runs for the outer loop exceeds the maximum, or the

heuristic uses the same design point more than twice in a resolution-3 design. The

latter happens as follows: suppose that our current iterate is dm, and we selected

a resolution-3 design for which dm was one of the vertices. If the heuristic could

not find a better point than dm at the line search (in Step 3), it did not leave the

current iterate dm. Next, the heuristic generates a new set of independent seed

vectors {ω1, ..., ωN} (in Step 4 or in Step 0), and use the previous resolution-3

design to obtain new local linear approximations in (3.2), and to derive a new

search direction (3.7). If the heuristic again fails to find a better point than dm

at the line search, then it stops since dm was already used twice in a resolution-3

design.

Note that in case the current estimated iterate is far from a neighborhood of

the minimizer, premature stopping may be caused by the inherent randomness

of the problem. Therefore, we estimate a new search direction by generating a

new set of independent seeds in Step 4. If, however, the current estimated iterate

is in a neighborhood of the minimizer, the fixed size of the local experimental

area becomes simply too big to estimate a good search direction. If the stopping

criterion is not satisfied yet, then return to Step 1.

For deterministic problems, the only stopping rule is the maximum number of

simulation runs for the outer loop.

This finishes our discussion of Figure 3.2. Clearly, the stopping rules used in

the heuristic are rather arbitrary but also simple to use. The possibility of developing

a more formal stopping rule is mentioned in §3.6, but we consider it outside the scope

of this paper. Besides, this heuristic is designed for a small number of simulation runs.

In such a case, we cannot claim theoretical convergence to the true optimum.

Tests for “feasibility” and “improvement” in objective: The deter-

ministic counterpart of testing for “feasibility” and “improvement” in objective will

be explained in the last paragraph of this section. Therefore, the text until the last

paragraph of this section should be skipped for deterministic problems.

As mentioned before, to decide on the point that has a “better” estimated ob-

jective, we use the random ratio
(
F0 (dm) − F0

(
dm + λp

))
/ | F0 (dm) |, where F0 (dm)
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stands for the minimum objective so far and F0

(
dm + λp

)
for the candidate’s objective.

To simplify the notation, we do not show the dependence on ω.

We use the symbol Qi =
(
F0,i (dm) − F0,i

(
dm + λp

))
/ | F0,i (dm) |, where

i ∈ {1, ..., K} is the ith sampled value (from Monte Carlo). Let Q(1) < ... < Q(K) be

the corresponding order statistics. Then, a point estimator for the median Q0.5 (see

Law and Kelton (2000, p. 517)) is

Q̂0.5 =

{
Q(0.5K) if 0.5K is an integer,

Q(⌊0.5K+1⌋) otherwise.
(3.12)

where ⌊.⌋ denotes the largest integer less than or equal to 0.5K + 1.

Our null hypothesis is H
(1)
0 : Q0.5 ≤ δ, where δ is a user-specified positive

constant indicating the smallest desired improvement in the estimated objective; in

the numerical examples, we have δ = 2.5%. In other words, H
(1)
0 is pessimistic: we

reject H
(1)
0 only if the estimated median q̂0.5 is significantly greater than δ. This implies

that a point will be considered to be a significantly improving point only if its estimated

objective is significantly smaller than the minimum objective so far. Then, the index

y of the lower confidence limit Q(y) is given by

y = ⌈Kx− zα
√
Kx (1 − x)⌉ (3.13)

where α is the significance level, x = 0.5, zα is the 1 − α quantile of the standard

normal distribution (see Kleijnen (1987, pp. 23-25)), and ⌈.⌉ denotes the smallest

integer greater than or equal to Kx− zα
√
Kx (1 − x).

We also use the random ratios Sj
(
dm + λp

)
/Sj (dm) to check the “feasibility”,

where Sj (dm) stands for the slack j at the current iterate dm and Sj
(
dm + λp

)
for the

candidate’s slack j. Ideally, we would take a step such that the candidate iterate’s slacks

would be Sj
(
dm + λp

)
= γSj (dm), where γ is a user-specified constant with γ < 1.

Then, the heuristic considers those points dm + λp with the slacks Sj
(
dm + λp

)
<

γSj (dm) as “infeasible”, although these points may indeed be “feasible” for (3.1). This

way, the heuristic avoids prematurely approaching the boundary. This is important

since if dm is on the boundary or close to the boundary at an early iteration, then the

search direction (3.7) will fail or creep along the boundary. However, as the heuristic

moves towards the optimum, the current iterate dm will eventually be close to the

boundary, and so will be the candidate.

We follow a procedure analogous to the one described for the objective, as fol-

lows. For constraint j, we denote the random ratios by Mj,i = Sj,i
(
dm + λp

)
/Sj,i (dm)

with i = 1, ..., K. Now, our null hypothesis becomes H
(2)
0 : min

{
M0.5

1 , ..., M0.5
r−1

}
≤ γ,
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where γ is the same user-specified constant as the one in the previous paragraph,

and M0.5
j is the median for the jth constraint. Hence, we again have a pessimistic

H
(2)
0 , which means that the “feasible” region considered by the heuristic is tighter

than the actual “feasible” region. In our experiments, we use γ = 0.2, which is in

line with our choice of 80% for determining a maximum step size (see Step 2). Let

M0.5 = min
{
M0.5

1 , ..., M0.5
r−1

}
. We then find a point estimator M̂0.5 and an index y

for the lower confidence limit through (3.12) and (3.13).

Notice that α in (3.13) for H
(2)
0 is not necessarily the same as α for H

(1)
0 .

Moreover, because of Bonferroni’s inequality we choose the significance level αj for

each constraint j such that α1 + ...+αr−1 = α. Furthermore, the choice for α of H
(2)
0 is

not completely arbitrary; when α is small, rejection of H
(2)
0 is more likely. In this way,

we move towards the optimum through the interior of the “feasible” region, which we

empirically found to improve the performance of the heuristic.

To decide on the point that has a lower objective in deterministic problems,

we can check whether
(
f̂0 (dm) − f̂0

(
dm + λp

))
/
(
| f̂0 (dm) | +1

)
> δ, where δ stands

for the user-specified constant indicating the smallest desired improvement in the ob-

jective, and f̂0 (dm) and f̂0

(
dm + λp

)
stand for the exact values obtained through sim-

ulation of F0 (dm) and F0

(
dm + λp

)
. Notice that the ratio

(
f̂0 (dm) − f̂0

(
dm + λp

))
/

(
| f̂0 (dm) | +1

)
is defined even when f̂0 (dm) = 0. For feasibility, we can check whether

{
min

j=1,...,r−1

ŝj
(
dm + λp

)

ŝj (dm)

}
> γ

where γ is the same user-specified constant as in the stochastic case, and ŝj (dm)

and ŝj
(
dm + λp

)
are the exact values obtained through simulation of Sj (dm) and

Sj
(
dm + λp

)
. Analogous to the stochastic case, the feasible point with the lower ob-

jective becomes the current iterate dm.

3.5 Numerical examples

Now, we perform Monte Carlo experiments to estimate the performance of the heuristic

and the proposed search direction. Notice that Monte Carlo experiments enable us to

control the intrinsic noise of the simulation and they are computationally very efficient

compared to an expensive simulation study that may actually take weeks.
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We consider the following example problem:

minimize E[5(d1 − 1)2 + (d2 − 5)2 + 4d1d2 + ǫ0]

subject to E[(d1 − 3)2 + d2
2 + d1d2 + ǫ1] ≤ 4

E[d2
1 + 3 (d2 + 1.061)2 + ǫ2] ≤ 9

0 ≤ d1 ≤ 3, −2 ≤ d2 ≤ 1

(3.14)

where ǫ0, ǫ1, and ǫ2 are assumed to be multivariate normally distributed with mean vec-

tor 0, variances σ0,0 = 1 (σ0 = 1), σ1,1 = 0.0225 (σ1 = 0.15), σ2,2 = 0.16 (σ2 = 0.4), and

correlations ρ0,1 = 0.6, ρ0,2 = 0.3, ρ1,2 = −0.1. It is easy to see that the unconstrained

minimum occurs at (d1, d2) = (−5, 15), whereas the constrained minimum occurs at

approximately (1.24, 0.52) with a mean objective value of 22.96 approximately.

In our Monte Carlo experiment, we arbitrarily choose the following local ex-

perimental area for a 22 design, expressed in the original variables: 2.4 ≤ d1 ≤ 2.7

and −1.1 ≤ d2 ≤ −0.8. So, ∆d1 and ∆d2 are arbitrarily chosen to be 10% of the

whole ranges for d1 (0 ≤ d1 ≤ 3, ∆d1 = 0.3) and d2 (−2 ≤ d2 ≤ 1, ∆d2 = 0.3). Notice

that we do not shrink the experimental area while proceeding towards the optimum

(although shrinking may improve the performance of the heuristic).

The user-supplied maximum number of simulation runs for the outer and the

inner loops are 20 and 3, respectively. For the Monte Carlo sampling, the sample size

K = 1000 is selected. The significance level for H
(1)
0 is selected as α(1) = 20%. As

mentioned in §3.4, relatively small values of α(2) increase the probability of staying

inside the “feasible” region, which enhances the performance of our heuristic; so we

choose α(2) = 1%. Moreover, we choose δ = 2.5% (the smallest desired improvement

in the estimated objective).

To test the performance of the heuristic, we make 100 macro-replicates since

estimated medians and various quantiles are then found to stabilize. Because of the

simplicity of our problem in (3.14), 100 macro-replicates take less than five minutes.

Notice that at the end of each macro-replicate, we have an estimate
(
d̂1, d̂2

)
for the

solution of the first stage of RSM. Then we sort the macro-replicates with respect to the

deviations of the corresponding objectives at
(
d̂1, d̂2

)
from the true minimum 22.96.

Hence, the estimated solutions
(
d̂1, d̂2

)
in Figures 3.3 through 3.5 correspond to the

10th, 50th, and 90th “best” (10th, 50th, and 90th quantiles) of the estimated solutions,

respectively. Furthermore, in these figures the two level curves of the objective function

correspond to the true optimum value (22.96) plus three and six times the standard

deviation σ0 = 1, namely Eω [F0 (d, ω)] = 25.96 and Eω [F0 (d, ω)] = 28.96.

In Figures 3.3 and 3.4, the heuristic indeed reaches the desired neighborhood
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Figure 3.3: The “best” (10th quantile) of 100 estimated solutions for (3.14): (7*) is

estimated solution
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Figure 3.4: The “average” (50th quantile) of 100 estimated solutions for (3.14): (10*)

is estimated solution
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Figure 3.5: The “worst” (90th quantile) of 100 estimated solutions for (3.14): (8*) is

estimated solution
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of the true optimum:
(
d̂1, d̂2

)
= (1.16, 0.22) with 23.99 and

(
d̂1, d̂2

)
= (1.46, 0.19)

with 25.30, respectively. In Figure 3.5, the initial set of independent seeds does not

enable us to estimate a good search direction, so that most of the simulation runs are

wasted until the 8th iterate is reached. The heuristic stops at
(
d̂1, d̂2

)
= (1.52,−0.18)

with the corresponding objective 27.09, since the number of simulations runs exceeds

20 (the maximum for the outer loop). If the budget is flexible, this problem can be

overcome by simply increasing the maximum for the outer loop. (For example, in

Figure 3.5, by increasing the maximum total number of simulation runs for the outer

loop from 20 to 25, the estimated solution and the corresponding objective become(
d̂1, d̂2

)
= (1.26, 0.49) and 23.12, respectively, which is an improvement of 15% in

the objective reached after 20 runs). Detailed numerical results for Figure 3.4 (the

macro-replicate giving the median result) are presented in Table 3.1.

We experimented with different starting points and obtained very similar re-

sults. For example, for 1.7 ≤ d1 ≤ 2.0 and −1.5 ≤ d2 ≤ −1.2, see Figures 3.6 through

3.8.

We summarize the results obtained from all 100 macro-replicates in Table 3.2.

The heuristic tends to end at a “feasible” point since we have only positive quantiles in

Table 3.2. This is clearly due to our conservative (small) significance level α(2) = 1%
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with a pessimistic null hypothesis H
(2)
0 .

Our conclusion is that the heuristic reaches the desired neighborhood of the

true optimum in a relatively small number of simulation runs. Once the heuristic

reaches this neighborhood, it stops at a “feasible” point.
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Table 3.1: Numerical results for Figure 3.4

iteration est. iterate
(
d̂1, d̂2

)
est. search direction pT est. step size λ H

(1)
0 H

(2)
0

0 (2.40, −1.10) (−0.98, 0.18) 0.72

1 (1.69, −0.97) (−0.19, 0.98) 1.18 reject reject

2 (2.05, −1.03) reject reject

3 (1.87, −1.00) reject reject

4 (1.46, 0.19) (−0.91, 0.41), (−0.96, −0.28) 0.16, 0.40 reject reject

5 (1.58, −0.39) reject reject

6 (1.52, −0.09) reject reject

7 (1.32, 0.26) reject reject

8 (1.39, 0.23) reject reject

9 (1.43, 0.21) reject reject

10 (1.08, 0.08) reject reject

11 (1.27, 0.14) reject reject

12 (1.37, 0.16) reject reject
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Figure 3.6: The “best” (10th quantile) of 100 estimated solutions for (3.14): (11*) is

estimated solution

0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1.5

−1

−0.5

0

0.5

d
1

d 2

real optimum       
design points      
iterates           
infeasible iterates

(0) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
(9) 

(10) 

(11*) 

E[F
0
(d

1
, d

2
, ω)]=28.96 

E[F
0
(d

1
, d

2
, ω)]=25.96 

(d
1
−3)2+d

2
2+d

1
d

2
≤4 

d
1
2+3(d

2
+1.061)2≤9  

Figure 3.7: The “average” (50th quantile) of 100 estimated solutions for (3.14): (8*)

is estimated solution
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Figure 3.8: The “worst” (90th quantile) of 100 estimated solutions for (3.14): (8*) is

estimated solution
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Table 3.2: Variability of the estimated objectives and slacks over 100 macro-replicates for the problem (3.14)

10th quantile 25th quantile 50th quantile 75th quantile 90th quantile
(E[F0(d̂1, d̂2)]−22.96)

22.96
0.0448 0.0555 0.1019 0.1858 0.1798

(4−E[F1(d̂1, d̂2)])
4

0.0264 0.1185 0.2529 0.4348 0.6147
(9−E[F2(d̂1, d̂2)])

9
0.0315 0.1453 0.2970 0.4921 0.5009
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3.6 Conclusions and future research

In this paper we focus on RSM for problems with a stochastic objective function and

stochastic constraints, as well as deterministic box constraints. At the first stage

of RSM, the unknown functions are approximated locally by first-order polynomials.

Then, a search direction is estimated, and along this path a number of steps are

taken. The estimated search direction is a generalization of the steepest descent used

in conventional RSM (with a stochastic objective function and deterministic box con-

straints). To achieve this generalization, we use standard ideas such as affine scaling

and projection from nonlinear programming. We prove two properties of our search

direction: it is indeed a descent direction, and it is invariant with respect to general

linear transformations. The ordinary steepest descent, however, is scale dependent.

Next, we provide a heuristic procedure for quickly reaching the desired neigh-

borhood of the true optimum of expensive simulation-based optimization problems.

The heuristic proceeds towards this neighborhood through the interior of the feasible

region. In this way, it avoids creeping along the boundary and ensures that simulation

programs do not crash or become invalid. The heuristic especially aims at dealing with

stochastic optimization problems with stochastic constraints. Yet, after a few simplifi-

cations, it can also be applied to deterministic problems. The empirical results of our

numerical example are encouraging; that is, in general the heuristic reaches a point

that is “sufficiently” close to the true optimum in a few simulation runs.

Notice that RSM treats simulation as a black box; that is, gradient estimation

through simulation is not applicable. The main contribution of this paper is the gener-

alization of the classical RSM to problems with stochastic constraints. The numerical

example is only meant to illustrate the applicability of a heuristic that is based on the

novel scale independent search direction. More experiments and examples may bring

more insight into and better understanding of the capabilities and strengths of our

approach. Furthermore, we might use certain enhancements such as better line search

methods to determine the step size, or dynamically adapting the experimental area as

we move towards the solution point, using ideas from trust-region methods.

In addition, it should be clear that this heuristic covers only the first stage

of RSM; that is, it reaches a neighborhood of the true optimum in a few simulation

runs. Afterwards the second stage, which is fine tuning and getting even closer to the

true optimum with a well defined stopping rule, should be carried out. Analogous to

the unconstrained deterministic optimization, where the vanishing gradient is one of

the necessary conditions for optimality, in conventional RSM the first stage ends when
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the Euclidean norm of the gradient of the fitted objective is not significantly larger

than zero. Then, in the second stage of conventional RSM, a second-order polynomial

is fitted, and canonical analysis finds an optimum, or a saddle point, or a ridge. It

may be possible to develop a formal stopping rule based on ideas from constrained

deterministic optimization. However, this goes beyond the aim and the scope of this

paper, and is left for future research.
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3.7 Appendix 1: Derivation of the search direction

(3.7) by introducing the ellipsoid constraint

We consider the approximation in (3.6), and replace the nonnegativity constraints on

the slack vectors (i.e., s ∈ Rr−1
+ , r, v ∈ Rk

+) by an ellipsoid constraint; see Barnes

(1986).

minimize bT0 d

subject to Bd− s = c,

d+ r = u,

d− v = l,

‖q − q̂‖
Q̂−1 ≤ ρ,

where 0 < ρ < 1, q =
(
sT , rT , vT

)T
, q̂ =

(
ŝT , r̂T , v̂T

)T
, Q̂ = diag (ŝ, r̂, v̂) with q ∈

Rr−1+2k, q̂ ∈ Rr−1+2k, d ∈ Rk, and Q̂ ∈ R(r−1+2k)×(r−1+2k). Note that the entries in Q̂

are the components of the current slack vectors ŝ, r̂, v̂ > 0. The ellipsoid constraint in

the above formulation can be rewritten as

(s− ŝ)T Ŝ−2 (s− ŝ) + (r − r̂)T R̂−2 (r − r̂) + (v − v̂)T V̂−2 (v − v̂) ≤ ρ2.

By substituting the slack vectors in terms of d (i.e., s = Bd−c, r = u−d, v = d−l)
into the ellipsoid constraint, we obtain

(
d− d̂

)T
BT Ŝ−2B

(
d− d̂

)
+
(
d− d̂

)T
R̂−2

(
d− d̂

)
+
(
d− d̂

)T
V̂−2

(
d− d̂

)
≤ ρ2.

Now the approximation can be rewritten as

minimize bT0 d

subject to
(
d− d̂

)T
BT Ŝ−2B

(
d− d̂

)
+
(
d− d̂

)T
R̂−2

(
d− d̂

)

+
(
d− d̂

)T
V̂−2

(
d− d̂

)
≤ ρ2.

Since the problem is to minimize a linear function over an ellipsoid, the optimum

will occur at the boundary. So we can replace the ≤-constraint by a =-constraint

and form the Lagrange function L (d, µ), where µ stands for the Lagrange multiplier.

Hence, from the first-order necessary conditions (that is, ∂L/∂di = 0 and ∂L/∂µ = 0),

we derive

b0 − 2µ[BT Ŝ−2B
(
d− d̂

)
+ R̂−2

(
d− d̂

)
+ V̂−2

(
d− d̂

)
] = 0

(
d− d̂

)T
BT Ŝ−2B

(
d− d̂

)
+
(
d− d̂

)T
R̂−2

(
d− d̂

)
+
(
d− d̂

)T
V̂−2

(
d− d̂

)
= ρ2.
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From the first equality above, we derive

d = d̂− 1

2µ

[
−
(
BT Ŝ−2B + R̂−2 + V̂−2

)−1

b0

]
.

In this expression, the term within the brackets gives the proposed search direction,

denoted as p in (3.7) in §3.3.

3.8 Appendix 2: An alternative derivation of the

search direction (3.7)

We include an alternative derivation of the proposed search direction, which shows the

generalization of the steepest descent used in conventional RSM to our proposed search

direction, namely scaled and projected steepest descent. We follow the same steps as in

Monma and Morton (1987) to derive the search direction. Consider the approximation

in (3.6):

minimize bT0 d

subject to Bd− s = c,

d+ r = u,

d− v = l,

s ∈ Rr−1
+ , r, v ∈ Rk

+.

where B ∈ R(r−1)×k, c ∈ Rr−1, and d, b0, l, and u ∈ Rk. Given a feasible solution(
d̂, ŝ, r̂, v̂

)
with ŝ, r̂, v̂ > 0, we define Ŝ = diag (ŝ) , R̂ = diag (r̂), and V̂ = diag (v̂).

Next we perform an affine transformation on the slack vectors: t = Ŝ−1s,

z = R̂−1r, and y = V̂−1v. Then, we scale the constraints:

minimize bT0 d

subject to Ŝ−1Bd− t = Ŝ−1c,

R̂−1d+ z = R̂−1u,

V̂−1d− y = V̂−1l,

t ∈ Rr−1
+ , z, y ∈ Rk

+.

By simplifying the formulation above, we obtain

minimize bT0 d subject to Hd+ h = g

where H =
(
BT Ŝ−1, R̂−1, V̂−1

)T
, h =

(
−tT , zT , − yT

)T
and g =

(
cT Ŝ−1, uT R̂−1, lT V̂−1

)T
.

Let I and 0 be the identity and zero-matrix, respectively. Assuming that H has full
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rank, we obtain a QR factorization given by the orthonormal matrices Q1 and Q2 with

QT
1 Q1 = I, QT

2 Q2 = I, and QT
2 Q1 = 0, and a nonsingular upper triangular matrix

R so that H = (Q1,Q2)
(
RT ,0

)T
= Q1R. After this QR-factorization for H, the

formulation can be rewritten as

minimize bT0 d subject to Q1Rd+ h = g.

We multiply the equality constraint first by QT
1 and then by QT

2 , to obtain

QT
1 Q1Rd+ QT

1 h = QT
1 g and QT

2 Q1Rd+ QT
2 h = QT

2 g.

Finally we solve for d: d = R−1QT
1

(
g − h

)
to obtain

minimize − bT0 R−1QT
1 h+ bT0 R−1QT

1 g subject to QT
2 h = QT

2 g.

Now, we obtain the search direction ph in the slack space. The steepest de-

scent direction is given by bT0 R−1QT
1 . To maintain the feasibility of the equality con-

straint, we project the steepest descent direction onto the null-space of QT
2 . Note that(

I − Q2

(
QT

2 Q2

)−1
QT

2

)
is the matrix that projects any vector onto the null-space of

QT
2 . Hence the search direction ph in the slack space is given by:

ph =
(
I − Q2

(
QT

2 Q2

)−1
QT

2

)
Q1R

−T b0

= Q1R
−T b0.

Without loss of generality, we assume unit step length at both directions ph and

pd. Suppose that d and h are feasible; that is, Q1Rd+ h = g. To maintain feasibility,

the search direction pd in the d space has to satisfy the following equalities:

Q1R
(
d+ pd

)
+
(
h+ ph

)
= g,

Q1Rp
d + ph = 0,

Rpd + QT
1 p

h = 0.

Therefore pd = −R−1QT
1 p

h = −R−1QT
1 Q1R

−T b0. From QT
1 Q1 = I, we have QT

1 = Q−1
1

and Q1 = Q−T
1 . Replacing QT

1 by Q−1
1 , Q1 by Q−T

1 and Q1R by H, we obtain

pd = −R−1Q−1
1 Q−T

1 R−T b0

= − (Q1R)−1 (RTQT
1

)−1
b0

= −H−1H−T b0

= −
(
HTH

)−1
b0.

Setting back H =
(
BT Ŝ−1, R̂−1, V̂−1

)T
leads to the proposed search direction,

denoted as p in (3.7) in §3.3.
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3.9 Appendix 3: Scale independence of the search

direction (3.7)

We consider a general linear transformation of the variables: Jz+e = d where J ∈ Rk×k

is non-singular, and e Rk. This transformation is one-to-one, and z = J−1 (d− e).

The final result proven in this appendix will be a simple relation between the search

directions pd and pz in the d and z spaces, which implies scale independence: pz =

J−1pd.

Defining z̃ =
(
1, zT

)T
and d̃ =

(
1, dT

)T
, Jz+e = d can be written as: Gz̃ = d̃

where

G =

(
1 0

e J

)

and G is non-singular. Given that Z = XG−T , the least squares estimator β̂ z̃i in the z

space is given by:

β̂ z̃i =
(
ZTZ

)−1
ZT F̂ i

=
(
G−1XTXG−T

)−1
G−1XT F̂ i

= GT
i β̂

d̃
i

where β̂ d̃i is given in (3.3). Now, we can write (3.5) in terms of z, as follows:

minimize bT0 Jz

subject to bTj Jz ≥ cj − bTj e for j = 1, ..., r − 1,

J−1 (l − e) ≤ z ≤ J−1 (u− e) .

Hence, from the above formulation we have: Bz = BdJ. By further simplifying the

formulation and adding the slacks sz, rz, and vz we obtain

minimize bT0 Jz

subject to BdJz − sz = c− Bde,

z + rz = J−1 (u− e),

z − vz = J−1 (l − e),

sz, rz, vz ≥ 0.
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Hence

sz = BdJz − c+ Bde

= BdJ
[
J−1 (d− e)

]
− c− Bde

= Bdd− c = sd,

rz = J−1 (u− e) − z

= J−1 (u− e) − J−1 (d− e)

= J−1 (u− d) = J−1rd,

vz = z − J−1 (l − e)

= J−1 (d− e) − J−1 (l − e)

= J−1 (d− l) = J−1vd.

Thus, Bz = BdJ, Ŝz = Ŝd, R̂z = R̂dJ
−T , and V̂z = V̂dJ

−T . Remember that the search

direction in d is given by pd = −
(
BT
d Ŝ

−2
d Bd + R̂−2

d + V̂−2
d

)−1

b0. Therefore the search

direction in z space is given by

pz = −
(
JTBT

d Ŝ
−2
d BdJ + JT R̂−2

d J + JT V̂−2
d J
)−1

JT b0

= −J−1
(
BT
d Ŝ

−2
d Bd + R̂−2

d + V̂−2
d

)−1

J−TJT b0

= J−1pd.



Chapter 4

An Asymptotic Stopping Rule for

Simulation Optimization

4.1 Introduction

Optimization in simulation is attempted by many methods; for a recent survey, see

Fu (2002). In particular, when simulation is treated as a black box (that is, gradi-

ent estimation through methods such as perturbation analysis (Glasserman (1991))

or likelihood ratio score function (Rubinstein and Shapiro (1993)) is not applicable),

metaheuristics such as simulated annealing, genetic algorithms, tabu search, or scatter

search (see, for example, Fouskakis and Draper (2002)), the simultaneous perturbation

stochastic approximation of Spall (2003), and Kleinman, Spall, and Naiman (1999), or

Response Surface Methodology (RSM) of Myers and Montgomery (2002) can be used

for optimization.

We deal with problems that have a stochastic objective function and stochastic

constraints. More specifically, we derive a statistical stopping rule that assumes large

samples. Under a constraint qualification (regularity condition), this rule tests for the

well-established first-order necessary optimality conditions of deterministic optimiza-

tion (see, for example, Gill, Murray, and Wright (2000, p. 81)) at a feasible point.

To derive this rule, we use the Delta method, which shows that under certain condi-

tions, nonlinear statistics are approximately multivariate normally distributed. Also,

we apply the procedure in Kodde and Palm (1986) that uses Wald’s statistic, which

enables us to test composite hypotheses (that is, hypotheses with vectorial equalities

and inequalities). Notice that in a very recent paper, Bettonvil and Kleijnen (2004)

derives a novel procedure to test the first-order necessary optimality conditions for com-

69
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putationally expensive, black box simulation optimization problems, using bootstrap

procedure.

We also present two alternative lack-of-fit tests, namely Roy’s largest root test

and the classic F test combined with Bonferroni’s inequality, which are only used in

the RSM literature. Notice that the former test was already introduced to RSM with

multiple responses by Khuri (1996). Additionally, we show in Appendix 1 that Roy’s

test is a generalization of the classic F test to multiple responses.

We use underlined letters and bold letters to denote vectors and matrices,

respectively. In addition, 0, 1, 0, and 1 stand for a vector of zeros, a vector of ones, a

square matrix of zeros, and a square matrix of ones, respectively. For square matrices,

we use subscripts to denote their dimensions; for example, Ik denotes a k × k identity

matrix.

The remainder of this paper is organized as follows. In §4.2, we formalize our

problem including some statistical issues. In §4.3, we present two alternative lack-of-fit

tests. In §4.4, we present the proposed stopping rule. In §4.5, we evaluate our stopping

rule through a Monte Carlo example. In §4.6, we give conclusions. In two appendices,

we give technical details and proofs.

4.2 Problem formulation

Our problem is as follows:

minimize Eω [F0 (d, ω)]

subject to Eω [Fj (d, ω)] ≤ aj for j = 1, ..., r − 1
(4.1)

where Eω is the expectation operator with respect to the simulation’s seed vector ω, the

Fi (i = 0, ..., r − 1) are r random responses that are estimated through simulation,

d is k × 1 vector of input variables, and aj is the jth component of the (r − 1) × 1

deterministic right-hand-side vector. An example of (4.1) is the minimization of the

expected inventory-carrying and ordering costs (excluding stock-out costs) such that a

prespecified customer service level is satisfied; obviously, in this example r = 2.

In the following, we explain how to approximate the Fi in (4.1) locally by

first-order polynomials. For clarity in the description, we use the RSM’s approach

to estimate the coefficients of these polynomials; that is, we use linear regression.

In general, one can use different methods - other than linear regression - to obtain

these coefficients, provided that certain conditions, which will be given in Appendix

2, are satisfied. The important issue is to approximate the Fi in (4.1) locally. Let n
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(n ≥ k + 1) be the number of distinct simulated input combinations per local area -

usually specified by a resolution-3 design in the first stage of RSM. Further, let ml

be the number of replicates at the lth (l = 1, ..., n) input combination; let N be the

resulting total number of local runs; that is, N = m1 + ...+ml+ ...+mn. By definition,

the first stage of RSM means that we locally approximate the r simulation responses

Fi in (4.1) by r first-order polynomial regression metamodels with additive noises:

Gi (d, ω) = Xβ
i
+ ǫi (d, ω) for i = 0, ..., r − 1 (4.2)

where X is the N × (k + 1) matrix obtained by adding a column of ones to the design

matrix, say, D (i.e., X = (1, D)), β
i

denotes the (k + 1) × 1 vector of regression co-

efficients for response type i, and ǫi is the N × 1 vector of additive noise with mean

vector µ
ǫi

and covariance matrix Σǫi
for response type i. This ǫi accounts for both

the lack of fit of the first-order polynomial approximations and the inherent random-

ness in stochastic simulation created through the use of the simulation’s seed ω. The

metamodel i is called “adequate” (no lack-of-fit) if µ
ǫi

= E (ǫi) = 0. Furthermore, we

assume that ǫ = (ǫ0, ..., ǫi, ..., ǫr−1)
T is multivariate normally distributed.

Classic RSM assumes a single response (r = 1) and Σǫi
= σi,iI. In the rest of

this paper, we call the assumptions µ
ǫi

= 0 and Σǫi
= σi,iI the ordinary least squares

(OLS) assumptions. When these assumptions are satisfied, OLS gives the best linear

unbiased estimator (BLUE) of β
i
, where “best” means minimum variance. In our

problem, however, we have r responses that are statistically dependent (correlated);

moreover, the variances per responses differ in general. Hence, generalized least squares

(GLS) gives the BLUE of β
i
. However, under certain conditions GLS reduces to OLS,

as we explain now.

Let F̂ i (d, ω) =
(
F̂ i (d1, ω1)

T , ..., F̂ i (dl, ωl)
T , ..., F̂ i (dn, ωn)

T
)T

be the

N × 1 vector of estimators of E [Fi (d, ω)], the expected response i in (4.1), where dl

is the ml × 1 vector of replicates for the lth input combination and ωl is the ml × 1

seed vector with independent components. Moreover, the seed vectors, say ωl and

ωl´
(
l´ = 1, ..., n, l´ 6= l

)
, for distinct input combinations l and l´ are independent. In

other words, we assume that the ml seeds give non-overlapping pseudo-random number

(PRN) streams, so the ml replicates are independent. Moreover, we do not use common

random numbers, so all N simulation outputs are independent.

Rao (1967) proves that if the same design is used for all r responses and if

each response satisfies the OLS assumptions, then the GLS estimator of the r coeffi-

cient vectors
(
βT

0
, ..., βT

r−1

)T
reduces to the OLS estimator of the individual coefficient
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vector β
i
:

β̂
i
(d, ω) =

(
XTX

)−1
XT F̂ i (d, ω) for i = 0, ..., r − 1. (4.3)

The r simulation responses of a specific replicate are correlated, since they map the

same PRN using different transformation functions. For example, the inventory sim-

ulation example records the realized ordering costs and the service percentage per

simulation run or replicate. The r simulation responses have different variances. For

example, ordering costs and service percentage even have different dimensions.

The OLS assumptions imply Σǫi
= σi,iI. Now, let Σ be the r × r covariance

matrix with entry (i, h) being σi,h (h = 0, ..., r − 1). Often, simulation analysts es-

timate Σ through the ml replicates, which results in
n∑
l=1

(ml − 1) = N − n degrees of

freedom. However, we prefer an alternative estimator, namely the mean squared resid-

ual (MSR), since this alternative has more degrees of freedom, namely N − (k + 1),

provided n > k+1; n > k+1 implies a non-saturated design (some resolution-3 designs

are saturated). In the following, Ĝi (d, ω) = Xβ̂
i
(d, ω) denotes the N × 1 vector of

OLS estimators of E [Gi (d, ω)], the expectation of the linear approximation in (4.2).

Indeed, Khuri (1996, p. 385) gives the following MSR estimator of σi,h:

σ̂i,h (d, ω) =

(
F̂ i (d, ω) − Ĝi (d, ω)

)T (
F̂ h (d, ω) − Ĝh (d, ω)

)

N − (k + 1)
. (4.4)

We assume constant covariances within the local area (with its N simulation runs);

i.e., σi,h (d) = σi,h locally. The MSR estimators in (4.4) are unbiased if the responses

satisfy the OLS assumptions locally; see Theil (1971, p. 114). Note that for i = h,

(4.4) is found in any classic RSM or regression textbook, where “classic” means “no

multiple responses”. Notice also that (4.4) is specific to the RSM literature. In general,

one can use a pooled sample variance estimate, instead of (4.4).

4.3 Testing the lack of fit

Since RSM uses locally fitted first-order polynomials, it is prudent to test the local

first-order approximations in (4.2) for lack of fit; see Myers and Montgomery (2002,

p. 51). If there is no lack of fit, then we use the OLS estimators in (4.3) to test the

optimality conditions in §4.4. However, if there is lack of fit, then classic RSM switches

to alternative regression metamodels, using transformations of d such as log dk´ or 1/dk ,́

where dk´ is the k´th component of d, or to second-order polynomials. In this paper, we

do not consider switching to different models; instead, we refer to, for example, Irizarry

et al. (2003).
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We discuss two alternative lack-of-fit tests for multivariate responses, namely

Roy’s largest root test (§4.3.1) and the classic F test and Bonferroni’s inequality

(§4.3.2). We remind that the results of this section belong only to the RSM litera-

ture.

4.3.1 Roy’s largest root test

Based on classic RSM, we extend the lack-of-fit test for multiple responses, as follows.

We define a joint, “optimistic” null hypothesis:

H0 : ∀i : E [Fi (d, ω)] = E [Gi (d, ω)] . (4.5)

where Fi and Gi were defined in (4.1) and (4.2). H0 is “optimistic” since it is rejected

only if there is significant lack of fit for any of the r responses. Note that failing to

reject the lack-of-fit test H0 in (4.5) does not guarantee that this H0 holds (type I

error). We test (4.5) by Roy’s largest root test, explained in Roy, Gnanadesikan, and

Srivastava (1971). This test is a multivariate version of the ordinary lack-of-fit F test;

i.e., it reduces to the ordinary test when there is a single response - as we show in

Appendix 1.

As in the classic lack-of-fit F test, Roy’s test requires replicates at some design

points - to estimate the pure error. (As a reminder, n (n > k + 1) is the number

of distinct simulated input combinations, ml is the number of replicates at the lth

input combination, and N is the total number of local runs.) Let q (1 ≤ q ≤ n) be

the number of distinct input combinations with at least two replicates. The total

number of replicates at these q input combinations must satisfy the following condition:

(m1 − 1) + ... + (mq − 1) ≥ r, where r is the number of response types; see Roy,

Gnanadesikan, and Srivastava (1971, p. 35). Below we summarize the version in Roy,

Gnanadesikan, and Srivastava (1971) with q = n and m1 = ... = mn = m; we explain

the general setting in Roy, Gnanadesikan, and Srivastava (1971) and the relation of

this test with the classic F test (novel results) in Appendix 1.

Roy’s test considers the weighted sums of all r responses b0G0 (d, ω) + ... +

br−1Gr−1 (d, ω) for all r× 1 nonzero weight vectors b. Roy, Gnanadesikan, and Srivas-

tava (1971) defines r × r matrices Q1 and Q2 as follows:

Q1 = F̂T
[
IN − Z

(
ZTZ

)−
ZT − K

]
F̂ and Q2 = F̂TKF̂

where F̂=
[
F̂ 0, ..., F̂ r−1

]
is the N×r matrix of simulation estimators for the expected

responses in (4.1), Z is the N × (r (k + 1)) matrix consisting of r identical X matrices,
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(
ZTZ

)−
is a generalized inverse of ZTZ, and K is the N × N block-diagonal matrix

with Kl = Im − (1/m)1m on the diagonal, since there are m replicates at each input

combination l; i.e., K = diag (K1, ..., Kn). Notice that the condition on the total

number of replicates (namely, (m1 − 1)+ ...+(mq − 1) ≥ r) ensures that Q2 is positive

definite; see Roy, Gnanadesikan, and Srivastava (1971, p. 35).

For readers familiar with the classic lack-of-fit F test, it is clear that Q1 is the

difference between the sum of squared residuals SSR and the sum of squared pure errors

SSPE for r responses; i.e., Q1 represents the sum of squared lack of fit (say) SSLOF

(see Appendix 1). Appendix 1 further shows that Q2 represents the sum of squared

pure errors SSPE for r responses. Q2 accounts for both the correlations between the

responses and their different variances. Since Roy, Gnanadesikan, and Srivastava (1971)

considers the weighted sums of all responses, it also considers the weighted sums of

SSLOF and SSPE corresponding to all r responses; that is, SSLOF (b) and SSPE (b).

IfH0 in (4.5) and the multivariate normality assumption hold, then the statistic

in (4.6) has the F distribution with ν1 and ν2 degrees of freedom, where ν1 and ν2

correspond to the degrees of freedom for SSLOF (b) and SSPE (b); that is, ν1 = n −
(k + 1) and ν2 = N − n. Hence

Fν1,ν2 (b) =
SSLOF (b) /ν1

SSPE (b) /ν2

=
bTQ1b/ν1

bTQ2b/ν2

. (4.6)

Note that to avoid division by ν2 = 0 in (4.6), n has to satisfy the following condition:

n > (k + 1). H0 in (4.5) is rejected if max
b6=0

Fν1,ν2 (b) exceeds a prespecified critical value,

Fα,ν1,ν2 , where α is the significance level (type I error rate). In Appendix 1, we explain

how to transform the maximization problem max
b 6=0

Fν1,ν2 (b) into the standard problem

in linear algebra of finding the largest eigenvalue, say κmax

(
Q−1

2 Q1

)
, of the matrix

Q−1
2 Q1. So, the test reduces to checking whether κmax

(
Q−1

2 Q1

)
exceeds Fα,ν1,ν2 ; that

is, H0 in (4.5) is rejected if

κmax

(
Q−1

2 Q1

)
≥ Fα,ν1,ν2 . (4.7)

4.3.2 Classic F test and Bonferroni’s inequality

An alternative to Roy’s test formulated in (4.7) is the ordinary lack-of-fit F test per

response - combined with Bonferroni’s inequality; that is, select αi for each response

i such that α0 + ... + αr−1 = α. When testing the responses individually, we have r

null hypotheses H0,i : E [Fi (d, ω)] = E [Gi (d, ω)] instead of the single, joint H0 in

(4.5). Bonferroni’s inequality implies that α constitutes an upper bound on the actual
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significance level of the alternative test; i.e., the null hypothesis tends to be rejected less

frequently by the alternative test. Whenever the condition (m1 − 1)+...+(mq − 1) ≥ r

is not satisfied, Q2 in (4.7) becomes singular, and the alternative F test becomes a

good alternative. In our asymptotic cases (m = 100 or 250), however, this condition

always holds; so Roy’s test can be applied.

4.4 The statistical stopping rule

The application of the rule requires the knowledge of the index set A (d) of the con-

straints that are binding (active) at d; that is, slacks sj are zero. Hence, per constraint

j we test the corresponding null hypothesis:

H
(1)
0,j : E [sj (d, ω)] = 0 (4.8)

Notice that sj in (4.8) satisfies sj (d, ω) = aj−Fj (d, ω), where aj and Fj were defined

in (4.1). Because we assume multivariate normality of (F1, ..., Fr−1)
T , the slack vector

(s1, ..., sr−1)
T also has a multivariate normal distribution. Under H

(1)
0,j in (4.8), the

following statistic has a t distribution with ν = N − (k + 1) degrees of freedom:

tj,ν =
ŝj (d, ω)√
σ̂j,j (d, ω)

(4.9)

where σ̂j,j follows from (4.4) with i = h = j. Let tα/2,ν be the critical value for the

two-sided test of (4.8); i.e., H
(1)
0,j is rejected if the absolute value of tj,ν exceeds tα/2,ν .

These r − 1 tests give an index set A (d) that consists of the indices of the binding

constraints at d. We proclaim a constraint to be binding whenever its observed slack

value is not significantly positive or negative. If the slack is very positive, then the

point d is inside the feasible area - away from the boundary; so there is no need to test

for optimality (we assume that the optimum occurs on the boundary), and we continue

along the search path. If the slack is very negative, then d is infeasible; so we do not

test for optimality, but back-up along the search path.

Let d0 denote a local minimizer of (4.1). Then, - given a constraint qualification

- the first-order necessary optimality conditions for d0 are:

∇E
[
F0

(
d0, ω

)]
+

∑
j´∈A(d0)

λ0
j´
∇E

[
Fj´
(
d0, ω

)]
= 0

λ0
j´
≥ 0, E

[
sj´
(
d0, ω

)]
λ0
j´

= 0 j´∈ A
(
d0
) (4.10)

where λ0
j´

is the Lagrange multiplier for the j´th binding constraint at d0. The condi-

tions in (4.10) imply that at d0, the gradient of the objective can be expressed as a
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nonnegative linear combination of the gradients of the binding constraints at d0. The

constraint qualification is relevant when there are nonlinear constraints in (4.1); see

Gill, Murray, and Wright (2000, p. 81). There are several forms of constraint qualifica-

tion, many of which are of theoretical interest. A practical constraint qualification for

nonlinear constraints is the condition that the constraint gradients at d0 are linearly

independent.

Since we do not know the functional forms of E [Fi (d, ω)] in (4.1) explicitly,

we use the local approximations in (4.2), so ∇E [Fi (d, ω)] = β
i,−0

, where β
i,−0

denotes

β
i
excluding the intercept βi,0. Based on (4.10), we test for the existence of Lagrange

multipliers λj ,́ using the following null hypothesis H
(2)
0 and the alternative hypothesis

H
(2)
1 :

H
(2)
0 : β

0,−0
+
∑

j´∈A(d)

λj´βj´,−0
= 0 and λj´ ≥ 0 for j´∈ A (d) (4.11)

H
(2)
1 : β

0,−0
+
∑

j´∈A(d)

λj´βj´,−0
6= 0 or λj´ � 0 for j´∈ A (d) .

We consider the point d that satisfies (4.11) as an approximation to d0. In (4.11), we

omit the complementarity conditions E
[
sj´(d, ω)

]
λj´ = 0: from (4.8), the realizations

of the slacks for the active constraints are not significantly different from zero.

Moreover, to determine the active set A (d), we use the H
(1)
0,j in (4.8), which

tends to consider the constraints to be “active” at d. Considering “inactive” con-

straints as “active” may cause fewer problems than considering “active” constraints as

“inactive” - as we explain now. Suppose that there are
∣∣A
(
d0
)∣∣ active constraints at

d0, where |.| denotes the cardinality of the finite set A
(
d0
)
. However, (4.9) gives us

these
∣∣A
(
d0
)∣∣ constraints plus - falsely - one extra constraint (say) the

(∣∣A
(
d0
)∣∣+ 1

)
th

constraint. Then, (4.11) may have an infinite number of solutions, where the solution

with the
(∣∣A

(
d0
)∣∣+ 1

)
th Lagrange multiplier equal to zero corresponds to the true

solution. On the other hand, if we found
∣∣A
(
d0
)∣∣− 1 “active” constraints at d0, then

(4.11) would have no solution. Obviously, (4.9) gives only a tentative solution to de-

termine A (d), and it is very important to determine the true A (d) for the rest of this

rule.

We now introduce the stopping rule that holds asymptotically. This rule uses

the Delta method to show that under certain conditions, nonlinear statistics are approx-

imately multivariate normally distributed. Furthermore, this rule uses the procedure

in Kodde and Palm (1986) to test composite hypotheses such as the one in (4.11).

Kodde and Palm (1986) uses Wald’s statistic, which is shown to have a so-called chi-
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bar-squared distribution. A detailed explanation of the test is given in Appendix 2. In

the rest of this section, we summarize this asymptotic test.

To apply Kodde and Palm (1986), we obtain a slightly different form of (4.11),

as follows. Suppose that the gradients β
j´,−0

for active constraints at d are linearly

independent (i.e., the regularity condition holds). Let Γ be a k × |A (d)| matrix with

the β
j´,−0

for j´∈ A (d) as columns. Then, ε is defined as

ε
(
β

0,−0
, Γ
)

= β
0,−0

− Γ
(
ΓTΓ

)−1
ΓTβ

0,−0
. (4.12)

Under H
(2)
0 in (4.11), the residual component, say ε, of β

0,−0
that lies in the null space

of the linear space generated by those β
j´,−0

corresponding to the active constraints has

to be a zero-vector. Notice that in (4.12), Γ
(
ΓTΓ

)−1
ΓT is the orthogonal projection

matrix that projects β
0,−0

onto the linear space generated by the gradients β
j´,−0

of the

active constraints. Besides, ε can be rewritten as ε = β
0,−0

+Γλ, where λ is the vector

of Lagrange multipliers λj .́ Hence, from (4.12) we have

λ
(
β

0,−0
, Γ
)

= −
(
ΓTΓ

)−1
ΓTβ

0,−0
. (4.13)

Now, we replace (4.11) by

H
(2)
0 : ε

(
β

0,−0
, Γ
)

= 0 and λ
(
β

0,−0
, Γ
)
≥ 0 (4.14)

H
(2)
1 : ε

(
β

0,−0
, Γ
)
6= 0 or λ

(
β

0,−0
, Γ
)

� 0.

In practice, the unknown deterministic values such as ε, λ, Γ, β
0,−0

, and Ψ are

replaced by their consistent estimators ε̂N , λ̂N , Γ̂N , β̂
N

0,−0
, and Ψ̂N . Using the Delta

method, we show in Appendix 2 that
√
N
(
ε̂TN − εT , λ̂

T

N − λT
)T

is approximately mul-

tivariate normally distributed with zero mean vector and variance-covariance matrix

Σ̂ that can be partitioned as

Σ̂ =

[
Σ̂ε̂N

Σ̂ε̂N ,λ̂N

Σ̂λ̂N ,̂εN
Σ̂λ̂N

]
. (4.15)

In (4.15), these four components are defined as

Σ̂ε̂N
= (∇ε̂N)T Ψ̂N (∇ε̂N) , Σ̂λ̂N

=
(
∇λ̂N

)T
Ψ̂N

(
∇λ̂N

)

Σ̂ε̂N ,λ̂N
= (∇ε̂N)T Ψ̂N

(
∇λ̂N

)
, Σ̂λ̂N ,̂εN

=
(
∇λ̂N

)T
Ψ̂N (∇ε̂N)

where ∇ε̂N is a consistent estimator of the (k × |A′ (d)|)×k Jacobian matrix of ε, ∇λ̂N
is a consistent estimator of the (k × |A′ (d)|) × |A (d)| Jacobian matrix of λ, and Ψ̂N
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is the (k × |A′ (d)|)× (k × |A′ (d)|) matrix with σ̂i´,i´C
(
i´∈ A′ (d)

)
on the diagonal and

σ̂i´,h´C
(
i´ 6= h´, h´∈ A′ (d)

)
on the off-diagonal, with C being the matrix

(
1/N

(
XTX

))−1

after deleting its first row and column (A′ (d) is the index set of all binding constraints

at d plus the index of the objective function (i.e., A′ (d) = A (d) ∪ {0})); Appendix 2

gives formulas for ∇ε̂N and ∇λ̂N .

For simplicity of notation, we omit the dependencies on β
0,−0

, Γ, β̂
N

0,−0
, and

Γ̂N in the rest of this section. Define γ
1

=
√
Nε, γ

2
=

√
Nλ, γ̂N

1
=

√
Nε̂N , and

γ̂N
2

=
√
Nλ̂N . Rewriting (4.14), we obtain the null and alternative hypotheses

H
(2)
0 : γ

1
= 0 and γ

2
≥ 0, H

(2)
1 : γ

1
6= 0 or γ

2
� 0. (4.16)

Let ‖.‖ denote the distance function in the metric Σ̃, which is a realized value of

Σ̂ defined in (4.15); that is, ‖x‖ = xT Σ̃−1x denotes the distance from the origin

of an arbitrary vector x. Furthermore, let S0 and S1 denote the feasible spaces for

γ=
(
γT

1
, γT

2

)T
under H

(2)
0 and H

(2)
1 in (4.16), respectively. Kodde and Palm (1986)

uses Wald’s test statistic, (say) Ŵ = Ŵ0 − Ŵ1, where under H
(2)
0 in (4.16)

W̃0 = minimize
γN∈S0

∥∥γ̃N − γN
∥∥ , (4.17)

and under H
(2)
1 in (4.16)

W̃1 = minimize
γN∈S1

∥∥γ̃N − γN
∥∥ (4.18)

with γ̃N=

[(
γ̃N

1

)T
,
(
γ̃N

2

)T]T
, W̃0, and W̃1 being the realized values of γ̂N , Ŵ0, and

Ŵ1. W̃0 and W̃1 in (4.17) and (4.18) are the distances of γ̃N to its orthogonal projections

onto S0 and S1, respectively. Then, Kodde and Palm (1986) gives the statistic Ŵ as

Ŵ =
(
γ̂N

1

)T
Σ̂−1
ε̂N

(
γ̂N

1

)
+
(
γ̂N

2
− γN

2
− Σ̂λ̂N ,̂εN

Σ̂−1
ε̂N
γ̂N

1

)T
(4.19)

(
Σ̂λ̂N

− Σ̂λ̂N ,̂εN
Σ̂−1
ε̂N

Σ̂ε̂N ,λ̂N

)−1 (
γ̂N

2
− γN

2
− Σ̂λ̂N ,̂εN

Σ̂−1
ε̂N
γ̂N

1

)

where γN
2

denotes the orthogonal projection of γ̃N
2

onto S0.

Kodde and Palm (1986) proves that the statistic Ŵ in (4.19) has the following

so-called chi-bar-squared distribution under H
(2)
0 in (4.16) (remember, k and |A (d)|

are the dimensions of ε in (4.12) and λ in (4.13), respectively):

Pr
{
Ŵ ≥ u| Σ̂

}
=

|A(d)|∑

t=0

wt Pr
{
χ2
k+|A(d)|−t ≥ u

}
(4.20)
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where u is the critical value, χ2
k+|A(d)|−t is the central chi-squared random variable with

k + |A (d)| − t degrees of freedom, and wt is the weight denoting the probability that

t of |A (d)| components of γ̃N
2

are strictly positive. In (4.20), the weights wt are such

that wt ≥ 0 for each t, and w0 + ...+w|A(d)| = 1; see Kodde and Palm (1986). We now

comment on these weights.

In general, the computation of the weights wt can be very complicated; see

Shapiro (1988). Kodde and Palm (1986) provides lower and upper bound critical

values, say u1 and u2 respectively, for which the computation of wt is not necessary;

we give the formulas for u1 and u2 in Appendix 2. The problem with Kodde and Palm

(1986)’s approach is that the test is inconclusive whenever u1 < W̃ < u2, where W̃ is

a realization of Ŵ . In such a case, the weights wt in (4.20) must be computed.

Notice that the weights wt in (4.20) are functions of the following arguments: (i)

|A (d)|, (ii) the conditional covariance matrix of γ̂N
2

given γ̂N
1

, and (iii) the nonnegative

orthantR
|A(d)|
+ =

{
γN

2
: γN

2
≥ 0
}

; i.e., wt = wt

(
|A (d)| , Σ̂λ̂N

− Σ̂λ̂N ,̂εN
Σ̂−1
ε̂N

Σ̂ε̂N ,λ̂N
, R

|A(d)|
+

)
.

When the covariance matrix is equal to I, Gouriéroux, Holly, and Monfort (1982) pro-

vides the following easy formula:

wt

(
|A (d)| , I, R

|A(d)|
+

)
=

(|A (d)|
t

)
2−|A(d)| (t = 0, ..., |A (d)|) .

However, since the conditional covariance matrix may not be I for our case, we will

compute the weights through a Monte Carlo sampling. Once the weights are computed,

the critical value u can be obtained through (4.20), and H
(2)
0 is rejected if W̃ > u.

Now, we explain how we can compute the weights wt in (4.20), as follows. Let

λ̃N be a vector of |A (d)| estimates of λ̂N obtained through (4.13); let Σ̃λ̂N
, Σ̃λ̂N ,̂εN

,

Σ̃ε̂N
, and Σ̃ε̂N ,λ̂N

be estimates of Σ̂λ̂N
, Σ̂λ̂N ,̂εN

, Σ̂ε̂N
, and Σ̂ε̂N ,λ̂N

obtained through the

formulas that were defined below (4.15). We sample a large number, say K = 1000, of√
Nλ̂N = γ̂N

2
from the multivariate normal distribution with mean vector

√
Nλ̃N = γ̃N

2

and covariance matrix Σ̃λ̂N
− Σ̃λ̂N ,̂εN

Σ̃−1
ε̂N

Σ̃ε̂N ,λ̂N
. Next, the number of times (out of

1000) at which the sampled γ̂N
2

have no positive components (say, k0 times), a single

positive component (say, k1 times), ..., and |A (d)| positive components (say, k|A(d)|

times) are determined. Now, the fractions k0/1000, k1/1000, ..., k|A(d)|/1000 give the

weights w0, w1, ..., w|A(d)|, respectively.

A special case of (4.16) occurs if the number of binding constraints at d0 is equal

to the number of input variables (i.e., |A (d0)| = k), since then β
0,−0

lies in the linear

space generated by the β
j,−0

(i.e., the columns of Γ); that is, the residual component

ε of β
0,−0

, defined in (4.12), becomes a zero-vector. This is obvious from (4.12) by
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considering Γ as a square (i.e., k × k), nonsingular (i.e., the regularity condition)

matrix. Hence, we may replace (4.16) by

H
(2)
0 : γ

2
≥ 0, H

(2)
1 : γ

2
� 0.

To test this simplified H
(2)
0 , we can still use Kodde and Palm (1986)’s procedure. The

resulting Wald’s test, first defined in (4.20), reduces to

Pr
{
Ŵ ≥ u| Σ̂

}
=

|A(d)|∑

t=0

wt Pr
{
χ2
|A(d)|−t ≥ u

}

where χ2
0 corresponds to the origin 0.

Now, we explain two simplifications for the test procedure that will result in a

chi-square test statistic. The first simplification is to have only equality constraints in

(4.1) so that there are no sign restrictions for λj ;́ see, for example, Gill, Murray, and

Wright (2000, p. 81). The second simplification is to assume strict complementarity

for λj´ (i.e., E
[
sj´(d, ω)

]
λj´ = 0 implies λj´ > 0 for each binding constraint j´); see,

for example, Shapiro and Homem-de-Mello (1998). Obviously, for any one of these

simplifications, we may replace the composite hypothesis in (4.11) by

H0 : ε
(
β

0,−0
, Γ
)

= 0 (4.21)

H1 : ε
(
β

0,−0
, Γ
)
6= 0.

Furthermore, the Delta method shows that
√
N
(
ε̂TN − εT

)T
is approximately multi-

variate normally distributed with zero mean vector and covariance matrix Σ̂ε̂N
. Then,

under the null hypothesis in (4.21), the statisticNε̂TNΣ̂−1
ε̂N
ε̂N has approximately a central

chi-squared distribution with k degrees of freedom; see, for example, Muirhead (1982,

p. 26). An alternative test statistic is ε̂TN ε̂N ; numerically, ε̂TN ε̂N is more convenient since

it does not involve the inversion of the matrix Σ̂ε̂N
, which may be ill-conditioned. To

test the statistic ε̂TN ε̂N , we refer to Shapiro and Homem-de-Mello (1998), and Mathai

and Provost (1992, p. 164).

As we have already mentioned in the discussion of (4.10), the point d at which

H
(2)
0 in (4.16) or (4.21) is not rejected will be considered as an approximation to the

local minimizer d0. On the other hand, if H
(2)
0 is rejected, the realizations of the OLS

estimators in (4.3) can be used to obtain an appropriate search direction and a step

size; see, for example, Angün et al. (2003).



4.5. Numerical examples 81

Figure 4.1: Location of the three central points and level curves of expected objective
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4.5 Numerical examples

Now, we perform Monte Carlo experiments to estimate the type I and type II errors

of the test in (4.20). Notice that Monte Carlo experiments enable us to control the

intrinsic noise of the simulation. More importantly, since we have an asymptotic case,

they are computationally very efficient compared to a time-consuming simulation study,

which may actually take weeks.

We consider the following simple example problem:

minimize E[(d1 − 8)2 + (d2 + 8)2 + ǫ0]

subject to E[(d1 − 3)2 + d2
2 + d1d2 + ǫ1] ≤ 4

E[d2
1 + 3 (d2 + 1.061)2 + ǫ2] ≤ 9

(4.22)

where ǫ0, ǫ1, and ǫ2 are assumed to be multivariate normally distributed with mean

vector 0. For (ǫ0, ǫ1, ǫ2)
T , we use different covariance matrices that will be explained

later in this section. Obviously, the unconstrained minimum occurs at (d1, d2)
T =

(8, − 8)T . Figure 4.1 shows that the constrained minimum occurs at approximately

(2.5328, − 1.9892)T ; substitution into (4.22) gives a mean objective value of 66.02

approximately.

In our Monte Carlo experiments, we use a 22 full-factorial design augmented

with a central point. Although 22 is not saturated (see the discussion of (4.4)), we add
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the central point since we test for lack of fit at that point. We choose three different local

areas with central points expressed in the original variables as (2.5328, − 1.9892)T ,

(1, − 1)T , and (2, − 2.352)T ; see points ◦, +, and ∗ in Figure 4.1. We find the other

four design points by (arbitrarily) changing the coordinates of the central points by

0.5% (i.e., a total change of 1% in the local area size) and 0.25% (i.e., a total change

of 0.5% in the local area size); in Figure 4.1, 22 points are situated very close to the

central points. Changing by only 0.5% gives a very small signal; however, the noise is

also very small in asymptotic situations.

We use two different covariance matrices of (ǫ0, ǫ1, ǫ2)
T for each local area.

For the first local area with central point (2.5328, − 1.9892)T , we select σ0,0 = 3,

σ1,1 = 1, and σ2,2 = 1.5 (low noise), and σ0,0 = 6, σ1,1 = 2, and σ2,2 = 3 (high

noise). For the second local area around (1, − 1)T , we select σ0,0 = 0.25, σ1,1 = 0.1,

and σ2,2 = 0.05 (low noise), and σ0,0 = 0.5, σ1,1 = 0.2, and σ2,2 = 0.1 (high noise).

For the third local area around (2, − 2.352)T , we select σ0,0 = 0.6, σ1,1 = 0.35, and

σ2,2 = 0.45 (low noise), and σ0,0 = 1.2, σ1,1 = 0.7, and σ2,2 = 0.9 (high noise). For

all three local areas, we let ρ denote the correlation between the responses, and select

ρ0,1 = −0.3, ρ0,2 = 0.4, and ρ1,2 = 0.6 (for low noise case), and ρ0,1 = −0.2, ρ0,2 = 0.7,

and ρ1,2 = −0.8 (for high noise case). We select these specific values for variances since

they gave acceptable results for signal/noise ratios.

Depending on the type of noise (low or high), we select different number of

replicates, namely 100 for low noise and 250 for high noise, for all three local areas. For

problems where the null hypothesis is expressed as in (4.21) and Wald’s statistic is used,

Shieh (2003) provides a formula for the sample size as a function of the user-defined

significance level and power.

Now, we summarize our results for the local area with the central point cor-

responding to the true optimum (2.5328, − 1.9892)T , where we change the local area

size by 0.5% and make 100 replicates per input combination. Changing the coordi-

nates of (2.5328, − 1.9892)T by 0.25%, we obtain the other four design points, namely

(2.5391, − 1.9842)T , (2.5391, − 1.9942)T , (2.5265, − 1.9842)T , (2.5265, − 1.9942)T .

Given this input/output data
(
d, F̃ i

)
, where F̃ i is a vector of estimates of F̂ i in (4.3),

we fit linear regression metamodels; see (4.2) and (4.3). Next, we test these metamod-

els for lack-of-fit using Roy’s test in (4.7) (given 100 replicates, the classic F test with

Bonferroni’s inequality is not needed). If there is no lack-of-fit, then we test for bind-

ing constraints at the central point (2.5328, − 1.9892)T using the t statistic in (4.9).

If there is at least one binding constraint, then we test for the first-order necessary

optimality conditions at the central point using Wald’s test in (4.20). Note that if
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the true optimum occurs inside the feasible area, then (4.20) does not apply; in such

a case, the classic t test can be used to test whether the objective gradient is zero.

Therefore, we assume that the true optimum occurs on the boundary; see also Figure

4.1. We repeat the procedure described above for 100 macro-replicates. Notice that

if there is lack-of-fit or there is no binding constraint, then we proceed with the next

macro-replicate.

For simplicity, we use the same significance level α = 10% for all three statisti-

cal tests, namely for lack-of-fit, binding constraints, and first-order necessary optimality

conditions. In Table 4.1, we present the results of the 100 macro-replicates at the local

area around the true optimal point, (2.5328, − 1.9892)T . We examine different local

area sizes (0.5% and 1%), noise types (low and high), and number of replicates (100

and 250). In Table 4.1, the number 93 in the cell corresponding with the second row

and column represents the number of macro-replicates (out of 100 macro-replicates) at

which we have no lack of fit for the first-order regression metamodels through Roy’s

test in (4.7). 93/100 is close to the expected value, 1−α = 0.9. The second constraint

in (4.22) is active; see Figure 4.1. Hence, the number 84 in the second row and third

column represents the number of macro-replicates (out of 93 macro-replicates) at which

we detect d2
1 +3 (d2 + 1.061)2 ≤ 9 as the only active constraint at (2.5328, − 1.9892)T

through the t test in (4.9). 84/93 is again close to 1−α = 0.9. Furthermore, the number

13 in the second row and fourth column represents the number of macro-replicates (out

of 84 macro-replicates) at which the null hypothesis H
(2)
0 in (4.16) is rejected through

Wald’s test in (4.20). Notice that when testing for the first-order necessary optimality

conditions, we have better results for smaller local areas (3 versus 13 out of 84); the

expected quadratic functions in (4.22) can be better approximated by linear functions

in smaller local areas.

We also obtain numerical results at the other two local areas. At (1, − 1)T ,

the binding constraint is (d1−3)2+d2
2+d1d2 ≤ 4, whereas at (2, − 2.352)T , the binding

constraint is d2
1 + 3 (d2 + 1.061)2 ≤ 9. Note that (1, − 1)T is further away from the

true optimum (2.5328, − 1.9892)T than (2, − 2.352)T is; see Figure 4.1. Hence, we

expect higher rejection rates for H
(2)
0 in (4.16) at (1, − 1)T ; that is, the power of

Wald’s test in (4.20) should increase as we move away from the true optimum. The

numerical values in Tables 4.2 and 4.3 illustrate this increase in power: 69/82 ≃ 0.8415

versus 56/84 ≃ 0.6667, 60/85 ≃ 0.7059 versus 47/89 ≃ 0.5281 etc., where ≃ means

approximately equal.
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Table 4.1: Results for 100 macro-replicates at the local area where the true optimal point (2.5328, −1.9892)T is the central

point

(local area size, noise, replicates) no lack of fit d2
1 + 3 (d2 + 1.061)2 ≤ 9 active H2

0 rejected

(0.5%, low noise, 100) 93 84 3

(1%, low noise, 100) 93 84 13

(0.5%, high noise, 250) 92 89 10

(1%, high noise, 250) 92 89 15

Table 4.2: Results for 100 macro-replicates at the worst local area around (1, −1)T

(local area size, noise, replicates) no lack of fit (d1 − 3)2 + d2
2 + d1d2 ≤ 4 active H2

0 rejected

(0.5%, low noise, 100) 91 82 69

(1%, low noise, 100) 91 82 82

(0.5%, high noise, 250) 92 85 60

(1%, high noise, 250) 92 85 79
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Table 4.3: Results for 100 macro-replicates at the better local area around (2, −2.352)T

(local area size, noise, replicates) no lack of fit d2
1 + 3 (d2 + 1.061)2 ≤ 9 active H2

0 rejected

(0.5%, low noise, 100) 93 84 56

(1%, low noise, 100) 93 84 78

(0.5%, high noise, 250) 92 89 47

(1%, high noise, 250) 92 89 79



86 4. An Asymptotic Stopping Rule for Simulation Optimization

4.6 Conclusions

In this paper, we derive an asymptotic, statistical stopping rule that tests the first-order

necessary optimality conditions at a feasible point for black box simulation optimiza-

tion. The derivation of this stopping rule uses the Delta method and Wald’s statistic.

We estimate the performance of this rule through a simple Monte Carlo example. The

numerical results of this example are encouraging; that is, the null hypothesis (i.e., the

first-order necessary optimality conditions hold) is “accepted” at the true optimum

very often. Furthermore, the estimated power increases as the points move away from

the true optimum.

Moreover, we introduce two alternative lack-of-fit tests, namely Roy’s largest

root test and the classic F test combined with Bonferroni’s inequality, which are only

relevant to the RSM literature. Further, we show that Roy’s test is a direct gener-

alization of the classic F test to multiple responses. Note that Roy’s test should be

preferred if the condition on the number of replicates, which was mentioned in this

paper, is satisfied. If this condition is not satisfied, then the classic F test with Bonfer-

roni’s inequality is a better alternative. In an asymptotic case, Roy’s test is preferred.
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4.7 Appendix 1: Roy’s largest root test

In this appendix, we present the details of Roy’s largest root test, which was summa-

rized in §4.3.1; see Roy, Gnanadesikan, and Srivastava (1971), and Khuri (1985). We

further show that Roy’s test is a generalization of the ordinary lack-of-fit F test in

classic RSM to multiple responses.

Let n with n ≥ k + 1 be the number of distinct simulated input combinations

per local area. Further, letml be the number of replicates at the lth (l = 1, ..., n) input

combination. Suppose that we obtain at least two replicates at q (1 ≤ q ≤ n) distinct

input combinations. Without loss of generality, suppose that these q input combina-

tions are the first q design points: i.e., m1 replicates for the first input combination, ...,

mq replicates for the qth input combination, mq+1 = ... = mn = 1. Roy, Gnanadesikan,

and Srivastava (1971, p. 35) shows that the total number of replicates at these q input

combinations has to satisfy the following condition: (m1 − 1)+...+(mq − 1) ≥ r, where

r is the number of response types. The total number of local runs is N = m1 + ...+mn.

Let b = (b0, ..., br−1)
T be an arbitrary nonzero weight vector. Then, to test

the joint hypotheses H0 in (4.5), we consider the weighted sums of all responses

b0G0 (d, ω) + ...+ br−1Gr−1 (d, ω)

for all nonzero b. In the following, we describe the components of the lack-of-fit test

- namely, the sum of squared residuals (denoted by SSR), the sum of squared pure

errors (denoted by SSPE), and the sum of squared lack of fit (denoted by SSLOF ) - for

a single response. Further, we generalize these components to multiple responses.

Notice that F̂ i, Ĝi, β̂i, and X were already defined in §4.2. The classic F test

for a single response i uses

SSR =
(
F̂ i − Ĝi

)T (
F̂ i − Ĝi

)
(4.23)

=
(
F̂ i − Xβ̂

i

)T (
F̂ i − Xβ̂

i

)

=
(
F̂ i − X

(
XTX

)−1
XT F̂ i

)T (
F̂ i − X

(
XTX

)−1
XT F̂ i

)

= F̂
T

i

(
IN − X

(
XTX

)−1
XT
)
F̂ i.

The last line in (4.23) is obtained using the fact that
(
IN − X

(
XTX

)−1
XT
)

is a

projection matrix, say, P with the following properties: PP = P and P = PT .

We now explain the SSR for multiple responses. Let Z be anN×(r (k + 1)) ma-

trix consisting of r identical X matrices; further, F̂=
[
F̂ 0, ..., F̂ r−1

]
and Ĝ=

[
Ĝ0, ..., Ĝr−1

]
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are N × r matrices, and B is an (r (k + 1) × r) block-diagonal matrix with β̂
i
on the

diagonal; i.e., B = diag
(
β̂

0
, ..., β̂

r−1

)
. Analogous to (4.23), SSR with the weight

vector b can be written as

SSR (b) = bT
(
F̂−Ĝ

)T (
F̂−Ĝ

)
b (4.24)

= bT
(
F̂−ZB

)T (
F̂−ZB

)
b

= bT
(
F̂−Z

(
ZTZ

)−
ZT F̂

)T (
F̂−Z

(
ZTZ

)−
ZT F̂

)
b

= bT F̂T
[
IN − Z

(
ZTZ

)−
ZT
]
F̂b

where
(
ZTZ

)−
denotes a generalized inverse of ZTZ.

Now, we derive the pure error SSPE, in case of a single response i. Let K be

the N × N block-diagonal matrix with Kp = Imp
− (1/mp)1mp

(p = 1, ..., q) on the

diagonal; i.e., K = diag
(
K1, K2, ..., Kq, 0N−m1−...−mq

)
. Notice that K is a projection

matrix. Let F̂ i be the N × 1 vector of response i averaged over the ml replicates; i.e.,

its first m1 rows consist of F̂ i,m1
, where F̂ i,m1

corresponds to the average of the first

m1 components of F̂ i, its next m2 rows consist of F̂ i,m2
, where F̂ i,m2

corresponds to

the average of the next m2 components of F̂ i, etc. This gives

SSPE =
(
F̂ i − F̂ i

)T (
F̂ i − F̂ i

)
(4.25)

=
(
KF̂ i

)T (
KF̂ i

)

= F̂
T

i KF̂ i.

Let F̂ be the N × r matrix with F̂ i as its columns. Similar to (4.25), SSPE for

multiple responses is

SSPE (b) = bT F̂TKF̂b = bT
(
KF̂

)T (
KF̂

)
b = bT

(
F̂ − F̂

)T (
F̂ − F̂

)
b. (4.26)

The diagonal of the r × r matrix
(
F̂ − F̂

)T (
F̂ − F̂

)
consists of the r sum of squared

pure errors corresponding to the r responses; the off-diagonal has estimators for the

covariances between the responses of the same replicate.

Now (4.24) and (4.26) give the lack of fit (LOF) error:

SSLOF (b) = SSR (b) − SSPE (b)

= bT F̂T
[
IN − Z

(
ZTZ

)−
ZT − K

]
F̂b.
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If H0 in (4.5), the independence of the columns of F̂ (see the discussion on page 3 about

the non-overlapping PRN streams and common random numbers), and the multivariate

normality assumption for the simulation responses F̂ hold, then the statistic in (4.27)

has the F distribution with ν1 and ν2 degrees of freedom:

Fν1,ν2 (b) =
SSLOF (b) /ν1

SSPE (b) /ν2

(4.27)

where ν1 = n− (k + 1) and ν2 = N − n are the degrees of freedom for SSLOF (b) and

SSPE (b), respectively. Further, Roy, Gnanadesikan, and Srivastava (1971) defines r×r
matrices Q1 and Q2 as follows:

Q1 = F̂T
[
IN − Z

(
ZTZ

)−
ZT − K

]
F̂ and Q2 = F̂TKF̂

so that Fν1,ν2 (b) in (4.27) can be rewritten as

Fν1,ν2 (b) =
bTQ1b/ν1

bTQ2b/ν2

.

H0 in (4.5) is rejected if max
b6=0

(
bTQ1b/b

TQ2b
)

exceeds a prespecified critical value,

Fα,ν1,ν2 , where α is the significance level.

Roy, Gnanadesikan, and Srivastava (1971, p. 35) shows that when the condition

on the number of replicates is satisfied (that is, (m1 − 1) + ... + (mq − 1) ≥ r), then

Q2 is positive definite. So, b can be defined as b = Q
−1/2
2 z. Then,

max
b6=0

(
bTQ1b

bTQ2b

)
= max

z 6=0

(
zTQ

−1/2
2 Q1Q

−1/2
2 z

zT z

)
. (4.28)

Note that in (4.28),
(
zTQ

−1/2
2 Q1Q

−1/2
2 z/zT z

)
is known as Rayleigh quotient in linear

algebra. Furthermore, the maximization problem on the right-hand-side of the equality

in (4.28) is a standard problem in linear algebra for finding the largest eigenvalue (say)

κmax of the r × r matrix Q
−1/2
2 Q1Q

−1/2
2 . However, the matrices Q

−1/2
2 Q1Q

−1/2
2 and

Q−1
2 Q1 have the same eigenvalues; see Magnus and Neudecker (1988, p. 13). Thus, H0

in (4.5) is rejected if κmax

(
Q−1

2 Q1

)
≥ Fα,ν1,ν2 .

4.8 Appendix 2: Derivation of the statistical stop-

ping rule

In this appendix, we detail the procedure described in Kodde and Palm (1986) for test-

ing composite hypotheses such as the one in (4.16). For completeness in the description
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of its procedure, before introducing this procedure, we present two well-known proper-

ties of OLS estimators, which we need for the Delta method. Next, we introduce the

(finite-dimensional) Delta method in §4.8.1 and Kodde and Palm (1986)’s procedure

in §4.8.2.

Now, we state two well-known properties of OLS estimators that are required

for the application of the Delta method. Suppose that the OLS assumptions (i.e., µ
ǫi

=

0 and Σǫi
= σi,iI) hold per response type i. If

(
1/N

(
XTX

))
converges to a positive

definite matrix as N −→ ∞, then β̂
N

i
converges in probability to the (unobservable)

true value β
i
, denoted as β̂

N

i

P−→ β
i
; see Theil (1971, p. 362). In other words,

β̂
N

i
is a consistent estimator of β

i
. Furthermore,

√
N
(
β̂
N

i
− β

i

)
has a multivariate

normal limiting distribution with zero mean vector and covariance matrix given by

σi,i
(
1/N

(
XTX

))−1
; see Theil (1971, p. 378).

Let A′ (d) denote the index set of all binding constraints at d plus the index

of the objective function; i.e., A′ (d) = A (d) ∪ {0}. Let z denote a (k × |A′ (d)|) × 1

vector with β̂
N

i´,−0
− β

i´,−0
as rows for i´∈ A′ (d), where β̂

N

i´,−0
denotes β̂

N

i´
excluding the

intercept β̂N
i´,0

. It is known from the previous paragraph that
√
Nz has a multivariate

normal limiting distribution with zero mean vector and covariance matrix, say, Ψ.

Notice that Ψ is a (k × |A′ (d)|)× (k × |A′ (d)|) matrix with σi´,i´C on the diagonal and

σi´,h´C
(
i´ 6= h´, h´∈ A′ (d)

)
on the off-diagonal, where C is the matrix

(
1/N

(
XTX

))−1

after deleting its first row and column.

4.8.1 Delta method

Now, we introduce the (finite-dimensional) Delta method; see, for example, Rubinstein

and Shapiro (1993, p. 259). Later in this appendix, the Delta method is used to show

that under certain conditions, nonlinear test statistics are approximately multivariate

normally distributed.

Let
{
γ
N

}
be a sequence of m× 1 random vectors converging in probability to

a vector µ. Let {τN} be a sequence of positive numbers tending to infinity such that

τN

(
γ
N
− µ

)
converges in distribution to a random vector δ. Let g : Rm −→ Rn be a

mapping that is differentiable at µ. Then, τN

(
g
(
γ
N

)
− g

(
µ
))

has the same limiting

distribution as
(
∇g
(
µ
))T

δ where ∇g
(
µ
)

denotes the Jacobian matrix of g at µ.

Before applying the Delta method, it is necessary to show that ε and λ are

differentiable with respect to β
i´,−0

for i´∈ A′ (d). Apparently, ε is everywhere partially
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differentiable with respect to β
0,−0

:

∂ε =
{
Ik − Γ

(
ΓTΓ

)−1
ΓT
}
∂β

0,−0
(4.29)

where the k × k matrix within the curly brackets in (4.29) denotes the first partial

derivative of ε with respect to β
0,−0

. To show that ε and λ are also partially differen-

tiable with respect to β
j´,−0

, we use the following theorem in Magnus and Neudecker

(1988, p. 151).

Theorem: Let T be the set of non-singular real m×m matrices. Let S be an open

subset ofRn×q. If the matrix function F : S → T is k times (continuously) differentiable

on S, then so is the matrix function F−1 : T → S defined by F−1 (X) = (F (X))−1,

and the differential is dF−1 = −F−1 (dF )F−1.

Since β
j´,−0

for j´∈ A (d) are columns of the matrix Γ, Γ is everywhere partially

differentiable with respect to β
j´,−0

. Furthermore, because of our assumption of the

linearly independent binding constraints at d, ΓTΓ is non-singular. Hence, using the

above theorem, the partial differential of ε with respect to β
j´,−0

is given by

∂ε = −∂Γ
(
ΓTΓ

)−1
ΓTβ

0,−0
+ Γ

(
ΓTΓ

)−1
∂
(
ΓTΓ

) (
ΓTΓ

)−1
ΓTβ

0,−0
(4.30)

− Γ
(
ΓTΓ

)−1
(∂Γ)T β

0,−0

= −∂Γ
(
ΓTΓ

)−1
ΓTβ

0,−0
+ Γ

(
ΓTΓ

)−1
[
(∂Γ)T Γ + ΓT∂Γ

] (
ΓTΓ

)−1
ΓTβ

0,−0

− Γ
(
ΓTΓ

)−1
(∂Γ)T β

0,−0

= −∂Γ
(
ΓTΓ

)−1
ΓTβ

0,−0
+ Γ

(
ΓTΓ

)−1
(∂Γ)T Γ

(
ΓTΓ

)−1
ΓTβ

0,−0

+ Γ
(
ΓTΓ

)−1
ΓT∂Γ

(
ΓTΓ

)−1
ΓTβ

0,−0
− Γ

(
ΓTΓ

)−1
(∂Γ)T β

0,−0
.

Note that ∂Γ = ∂β
j´,−0

eT
j´
, where ej´ is |A (d)| × 1 vector of zeros, except a one in the

j´th position. Replacing ∂Γ by ∂β
j´,−0

eT
j´
, we can rewrite (4.30) as follows:
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∂ε = −
(
∂β

j´,−0
eTj´
) (

ΓTΓ
)−1

ΓTβ
0,−0

(4.31)

+ Γ
(
ΓTΓ

)−1
(
∂β

j´,−0
eTj´
)T

Γ
(
ΓTΓ

)−1
ΓTβ

0,−0

+ Γ
(
ΓTΓ

)−1
ΓT
(
∂β

j´,−0
eTj´
) (

ΓTΓ
)−1

ΓTβ
0,−0

− Γ
(
ΓTΓ

)−1
(
∂β

j´,−0
eTj´
)T

β
0,−0

= −∂β
j´,−0

[
eTj´
(
ΓTΓ

)−1
ΓTβ

0,−0

]
+ Γ

(
ΓTΓ

)−1
ej´

[(
∂β

j´,−0

)T
Γ
(
ΓTΓ

)−1
ΓTβ

0,−0

]

+ Γ
(
ΓTΓ

)−1
ΓT∂β

j´,−0

[
eTj´
(
ΓTΓ

)−1
ΓTβ

0,−0

]
− Γ

(
ΓTΓ

)−1
ej´

[(
∂β

j´,−0

)T
β

0,−0

]

= −
[
eTj´
(
ΓTΓ

)−1
ΓTβ

0,−0

]
∂β

j´,−0
+ Γ

(
ΓTΓ

)−1
eTj´β

T

0,−0
Γ
(
ΓTΓ

)−1
ΓT∂β

j´,−0

+
[
eTj´
(
ΓTΓ

)−1
ΓTβ

0,−0

]
Γ
(
ΓTΓ

)−1
ΓT∂β

j´,−0
− Γ

(
ΓTΓ

)−1
ej´β

T

0,−0
∂β

j´,−0

=
{
−
[
eTj´
(
ΓTΓ

)−1
ΓTβ

0,−0

] (
Ik−Γ

(
ΓTΓ

)−1
ΓT
)

−Γ
(
ΓTΓ

)−1
ej´β

T

0,−0

(
Ik−Γ

(
ΓTΓ

)−1
ΓT
)}

∂β
j´,−0

where the expressions within the square brackets are scalars, and the k × k matrix

within the curly brackets on the last two lines in (4.31) is the first partial derivative of

ε with respect to β
j´,−0

.

Analogously, the partial differential of λ with respect to β
0,−0

is given by

∂λ =
{
−
(
ΓTΓ

)−1
ΓT
}
∂β

0,−0
(4.32)

where the |A (d)|×k matrix within the curly brackets in (4.32) denotes the first partial

derivative of λ with respect to β
0,−0

. Furthermore, the partial differential of λ with

respect to β
j´,−0

is given by

∂λ =
(
ΓTΓ

)−1
∂
(
ΓTΓ

) (
ΓTΓ

)−1
ΓTβ

0,−0
−
(
ΓTΓ

)−1
(∂Γ)T β

0,−0
(4.33)

=
(
ΓTΓ

)−1
[
(∂Γ)T Γ + ΓT∂Γ

] (
ΓTΓ

)−1
ΓTβ

0,−0
−
(
ΓTΓ

)−1
(∂Γ)T β

0,−0

=
(
ΓTΓ

)−1
(∂Γ)T Γ

(
ΓTΓ

)−1
ΓTβ

0,−0
+
(
ΓTΓ

)−1
ΓT∂Γ

(
ΓTΓ

)−1
ΓTβ

0,−0

−
(
ΓTΓ

)−1
(∂Γ)T β

0,−0
.



4.8. Appendix 2: Derivation of the statistical stopping rule 93

Replacing again ∂Γ by ∂β
j´,−0

eT
j´
, we rewrite (4.33) as follows:

∂λ =
(
ΓTΓ

)−1
(
∂β

j´,−0
eTj´
)T

Γ
(
ΓTΓ

)−1
ΓTβ

0,−0
(4.34)

+
(
ΓTΓ

)−1
ΓT
(
∂β

j´,−0
eTj´
) (

ΓTΓ
)−1

ΓTβ
0,−0

−
(
ΓTΓ

)−1
(
∂β

j´,−0
eTj´
)T

β
0,−0

=
(
ΓTΓ

)−1
ej´

[(
∂β

j´,−0

)T
Γ
(
ΓTΓ

)−1
ΓTβ

0,−0

]

+
(
ΓTΓ

)−1
ΓT∂β

j´,−0

[
eTj´
(
ΓTΓ

)−1
ΓTβ

0,−0

]
−
(
ΓTΓ

)−1
ej´

[(
∂β

j´,−0

)T
β

0,−0

]

=
(
ΓTΓ

)−1
eTj´β

T

0,−0
Γ
(
ΓTΓ

)−1
ΓT∂β

j´,−0

+
[
eTj´
(
ΓTΓ

)−1
ΓTβ

0,−0

] (
ΓTΓ

)−1
ΓT∂β

j´,−0
−
(
ΓTΓ

)−1
ej´β

T

0,−0
∂β

j´,−0

=
{[
eTj´
(
ΓTΓ

)−1
ΓTβ

0,−0

] (
ΓTΓ

)−1
ΓT

+
(
ΓTΓ

)−1
ej´β

T

0,−0

(
Γ
(
ΓTΓ

)−1
ΓT − Ik

)}
∂β

j´,−0

where the expressions within the square brackets are scalars, and the |A (d)|×k matrix

within the curly brackets on the last two lines in (4.34) is the first partial derivative of

λ with respect to β
j´,−0

.

In practice, the unknown deterministic values such as ε, λ, Γ, β
0,−0

, and Ψ are

replaced by their consistent estimators ε̂N , λ̂N , Γ̂N , β̂
N

0,−0
, and Ψ̂N . Now, the Delta

method shows that
√
N
(
ε̂TN − εT , λ̂

T

N − λT
)T

is approximately multivariate normally

distributed with zero mean vector and variance-covariance matrix Σ̂ that can be par-

titioned as

Σ̂ =

[
Σ̂ε̂N

Σ̂ε̂N ,λ̂N

Σ̂λ̂N ,̂εN
Σ̂λ̂N

]
. (4.35)

In (4.35), these four components are defined as

Σ̂ε̂N
= (∇ε̂N)T Ψ̂N (∇ε̂N) , Σ̂λ̂N

=
(
∇λ̂N

)T
Ψ̂N

(
∇λ̂N

)

Σ̂ε̂N ,λ̂N
= (∇ε̂N)T Ψ̂N

(
∇λ̂N

)
, Σ̂λ̂N ,̂εN

=
(
∇λ̂N

)T
Ψ̂N (∇ε̂N)

where ∇ε̂N is a consistent estimator of the (k × |A′ (d)|)×k Jacobian matrix of ε, which

is formed by the transposes of the matrices within the curly brackets in (4.29) and in

(4.31) for each j´∈ A (d), ∇λ̂N is a consistent estimator of the (k × |A′ (d)|) × |A (d)|
Jacobian matrix of λ, which is formed by the transposes of the matrices within the

curly brackets in (4.32) and in (4.34) for each j´∈ A (d), and Ψ̂N is the (k × |A′ (d)|)×
(k × |A′ (d)|) matrix with σ̂i´,i´C

(
i´∈ A′ (d)

)
on the diagonal and σ̂i´,h´C

(
i´ 6= h´, h´∈ A′ (d)

)
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on the off-diagonal, with C being the matrix
(
1/N

(
XTX

))−1
after deleting its first

row and column (remember, A′ (d) = A (d) ∪ {0}). Notice that for the application of

the Delta method, τN =
√
N and

√
N −→ ∞ as N −→ ∞.

4.8.2 Kodde and Palm (1986)’s procedure

We rewrite the null and alternative hypotheses in (4.16) in §4.4:

H
(2)
0 : γ

1
= 0 and γ

2
≥ 0, H

(2)
1 : γ

1
6= 0 or γ

2
� 0. (4.36)

Remember that γ
1

=
√
Nε, γ

2
=

√
Nλ, γ̂N

1
=

√
Nε̂N , and γ̂N

2
=

√
Nλ̂N , where ε and

λ were already defined in (4.12) and (4.13). Remember also from §4.4 that S0 and S1

denote the feasible spaces for γ=
(
γT

1
, γT

2

)T
under H

(2)
0 and H

(2)
1 in (4.36), respectively.

Notice that when H
(2)
0 holds, S0 is convex in γ, and so is S1 under H

(2)
1 . Furthermore,

define the distance function in the metric V of an arbitrary vector x from the origin

by ‖x‖ = xTV−1x, where V is a given positive definite symmetric matrix. In the rest

of this appendix, we consider Σ̃, which is a realized value of Σ̂ defined in (4.35), for

the distance function.

To test (4.36), Kodde and Palm (1986) suggests Wald’s test statistic, (say)

Ŵ = Ŵ0 − Ŵ1, where under H
(2)
0 in (4.36)

W̃0 = minimize
γN∈S0

∥∥γ̃N − γN
∥∥ , (4.37)

and under H
(2)
1 in (4.36)

W̃1 = minimize
γN∈S1

∥∥γ̃N − γN
∥∥ (4.38)

with γ̃N=

[(
γ̃N

1

)T
,
(
γ̃N

2

)T]T
, W̃0, and W̃1 being the realized values of γ̂N , Ŵ0, and

Ŵ1. W̃0 and W̃1 in (4.37) and (4.38) are the distances of γ̃N to its orthogonal projections

onto S0 and S1, respectively. Since S0 and S1 are convex under the relevant hypotheses,

these orthogonal projections are uniquely determined.

If H
(2)
1 in (4.36) holds, W̃1 = 0 since S1 is unrestricted. Therefore, Ŵ =

Ŵ0. If H
(2)
0 in (4.36) holds, W̃0 is obtained through solving the following quadratic

optimization problem:

minimize
γN
2
≥0

(
γ̃N

2
− γN

2
− Σ̂λ̂N ,̂εN

Σ̂−1
ε̂N
γ̃N

1

)T (
Σ̂λ̂N

− Σ̂λ̂N ,̂εN
Σ̂−1
ε̂N

Σ̂ε̂N ,λ̂N

)−1

(
γ̃N

2
− γN

2
− Σ̂λ̂N ,̂εN

Σ̂−1
ε̂N
γ̃N

1

)
.
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Then, Kodde and Palm (1986) gives the statistic Ŵ = Ŵ0 as

Ŵ =
(
γ̂N

1

)T
Σ̂−1
ε̂N

(
γ̂N

1

)
+
(
γ̂N

2
− γN

2
− Σ̂λ̂N ,̂εN

Σ̂−1
ε̂N
γ̂N

1

)T
(4.39)

(
Σ̂λ̂N

− Σ̂λ̂N ,̂εN
Σ̂−1
ε̂N

Σ̂ε̂N ,λ̂N

)−1 (
γ̂N

2
− γN

2
− Σ̂λ̂N ,̂εN

Σ̂−1
ε̂N
γ̂N

1

)

where γN
2

denotes the orthogonal projection of γ̃N
2

onto S0.

Kodde and Palm (1986) proves that the statistic Ŵ in (4.39) has the following

so-called chi-bar-squared distribution under H
(2)
0 in (4.36) (remember, k and |A (d)|

are the dimensions of ε in (4.12) and λ in (4.13), respectively):

Pr
{
Ŵ ≥ u| Σ̂

}
=

|A(d)|∑

t=0

wt Pr
{
χ2
k+|A(d)|−t ≥ u

}
(4.40)

where u is the critical value, χ2
k+|A(d)|−t is the central chi-squared random variable with

k + |A (d)| − t degrees of freedom, and wt is the weight denoting the probability that

t of |A (d)| components of γN
2

are strictly positive. In (4.40), the weights wt are such

that wt ≥ 0 for each t, and w0 + ...+ w|A(d)| = 1; see Kodde and Palm (1986).

In general, the computation of the weights wt can be very complicated; see

Shapiro (1988). For a given significance level α, Kodde and Palm (1986) provides

the following formulas to obtain lower and upper bound critical values, say u1 and u2

respectively, for which the computation of wt is not necessary:

α = inf
Σ̃>0

Pr
{
Ŵ ≥ u1| Σ̂

}

= 0.5 Pr
{
χ2
k ≥ u1

}
+ 0.5 Pr

{
χ2
k+1 ≥ u1

}

α = sup
Σ̃>0

Pr
{
Ŵ ≥ u2| Σ̂

}

= 0.5 Pr
{
χ2
k+|A(d)|−1 ≥ u2

}
+ 0.5 Pr

{
χ2
k+|A(d)| ≥ u2

}
.

To test (4.36), W̃ , which is a realization of Ŵ , is compared to u1 and u2: if W̃ ≤ u1,

then H
(2)
0 in (4.36) is not rejected. However, if W̃ ≥ u2, then H

(2)
0 in (4.36) is rejected.

The problem with Kodde and Palm (1986)’s approach is that the test is inconclusive

whenever u1 < W̃ < u2. In such a case, the weights wt in (4.40) must be computed.
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Chapter 5

Conclusions and Further Research

In this thesis, we focused on a specific black box simulation optimization method,

namely Response Surface Methodology (RSM) - where black box means that the gra-

dient estimates through simulation are not available using either perturbation analysis

or likelihood ratio score function. Other black box simulation optimization methods

are the stochastic approximation method and metaheuristics (e.g., genetic algorithms,

tabu search, and simulated annealing).

In this study, we dealt with several disadvantages of RSM. Myers and Mont-

gomery (2002) states that classic RSM suffers from two well-known disadvantages: (i)

the classic RSM’s search direction is scale dependent; (ii) the step size along the search

direction is selected intuitively. Therefore, we derived a novel, scale independent search

direction - which we called adapted steepest ascent - by adjusting the estimated first-

order factor effects through their estimated covariance matrix. In most of our numerical

experiments, the novel search direction performed better than the classic RSM’s search

direction. We also derived and explored possible solutions for the step size.

Another disadvantage of RSM is that classic RSM was derived for uncon-

strained optimization problems. Myers (1999) also points out the need for extending

classic RSM to cope with multiple random responses. Hence, we extended classic RSM

to handle stochastic constraints on the outputs, as well as deterministic box constraints

on the inputs. This was achieved through the generalization of the search direction,

using ideas from interior point methods. Furthermore, we proved that the proposed

search direction is scale independent. We also provided a heuristic procedure that

uses the proposed search direction iteratively. That procedure was primarily meant for

time-consuming simulation optimization problems with a tight computational budget.

Our numerical results were encouraging; that is, our procedure reached the desired

neighborhood of the true optimum in a relatively small number of simulation runs.
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The final disadvantage of RSM that we handled in this thesis is the lack of

a statistical stopping rule when there are (possibly stochastic) constraints. Thus, we

derived a statistical stopping rule that assumes large samples for black box simulation

optimization methods. That rule tests the first-order necessary optimality conditions

- originally derived for deterministic optimization - at a feasible point. To obtain that

rule, we used the Delta method, which proves that under certain conditions nonlinear

statistics are asymptotically multivariate normally distributed, and Kodde and Palm

(1986)’s statistical procedure, which is based on Wald’s statistic. The results of our

numerical experiments were encouraging; that is, the null hypothesis (i.e., the first-

order necessary optimality conditions hold) was “accepted” at the true optimum very

often. Furthermore, the estimated power increased as the points moved away from the

true optimum.

There are more problems of RSM that we have not tackled in this thesis. For

example, RSM does not necessarily exploit the stochastic structure of the simulated

system. As a result, RSM may be computationally more expensive than white box

methods, which do take the stochastic structure into account. Therefore, in cases

where the system’s stochastic structure is available, white box methods will be compu-

tationally better alternatives. Furthermore, RSM is not a global optimization method,

and it is not suitable for discrete optimization. In those situations, metaheuristics may

be better alternatives. Finally, the convergence properties of RSM have not yet been

studied, whereas the convergence properties of the stochastic approximation method -

which is an alternative to RSM - have been well-studied. These problems are left for

further research.



Samenvatting

Dit proefschrift behandelt het optimaliseren van gesimuleerde systemen. Het proef-

schrift gebruikt “Response Surface Methodology” (RSM), die het simulatiemodel als

een “black box” beschouwt. Die beschouwing houdt in dat de gradiënten (wiskundige

afgeleiden) niet door middel van simulatie worden geschat, zoals dat wel gebeurt in

“perturbation analysis” en “likelihood ratio/score function”. Oorspronkelijk is RSM

door Box en Wilson (1951) gëıntroduceerd. Myers en Montgomery (2002) geven -

in hun monografie over RSM - de volgende globale omschrijving, uitgaande van een

minimalisatie-probleem.

In de eerste stap van RSM wordt een statistische proefopzet gebruikt om een

eerste-orde polynoom te schatten dat lokaal goed aansluit bij de geobserveerde waar-

den van de stochastische (toevallige) simulatierespons. Die schatting maakt gebruik

van lineaire regressieanalyse. Vervolgens wordt - via dat eerste-orde polynoom - de

zoekrichting gezocht met de “steepest ascent”. Stappen in die richting worden een

aantal malen herhaald - totdat er geen significante verbetering van de response gevon-

den wordt. De gehele procedure wordt herhaald, totdat het eerste-orde polynoom een

slechte benadering wordt, wat wil zeggen dat de gradiënt niet significant afwijkt van

nul.

In de tweede stap van RSM wordt een tweede-orde polynoom geschat, die

wordt geminimaliseerd. Verder worden canonieke en “ridge” analyses toegepast om de

eigenschappen van de gevonden doelfunctie te bepalen (concaaf, convex, of onbepaald)

en van het geschatte optimum (uniek optimum of meerdere optima). Deze tweede stap

van RSM wordt in dit proefschrift niet verder behandeld.

Klassieke RSM neemt aan dat er een enkele, stochastische respons is. In Hoofd-

stuk 2 bestuderen we zo’n probleem. In tegenstelling tot de klassieke benadering die

de geschatte stochastische respons maximaliseert, maximaliseren wij de ondergrens

van die respons. Onze benadering is robuuster (pessimistischer). Wij concentreren

ons op de eerste stappen, waarbij RSM met lineaire regressie een lokaal eerste-orde

polynoom zoekt dat past bij de respons. Dat gebeurt middels de gebruikelijke kleinste-
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kwadratenmethode. Om deze schatting mogelijk te maken, kan RSM een proefopzet

van “resolution-3” gebruiken, omdat zo’n proefopzet zuivere schatters oplevert voor

de regressiecoëfficiënten - met een klein aantal simulatieruns, vooropgesteld dat eerste-

orde polynomen adequate benaderingen zijn (Kleijnen 1998).

Myers en Montgomery (2002) stellen dat de Steepest Ascent zoekrichting twee

problemen kent:

• De Steepest Ascent zoekrichting is schaalafhankelijk.

• De stapgrootte in die richting moet intüıtief bepaald worden.

Simulatieanalisten gebruiken hun intüıtie om een stapgrootte te keizen. Wan-

neer vervolgens deze stapgrootte tot een slechtere respons leidt, wordt hij verkleind; zo

niet, dan wordt nog een stap in dezelfde richting gezet. Een voorbeeld is de praktijk-

studie in Kleijnen (1993), waarin een stapgrootte wordt gebruikt die de belangrijkste

invoervariabele met een factor twee laat toenemen.

In Hoofdstuk 2 leiden we een nieuwe zoekrichting af, die we “adaptive Steepest

Ascent” noemen. We vinden deze richting door de geschatte eerste-orde effecten van

de invoervariabelen aan te passen via hun geschatte covarianties. Verder bewijzen

we dat deze adaptatie schaalonafhankelijk is. In de meeste numerieke experimenten

presteerde de nieuwe zoekrichting beter dan de klassieke zoekrichting. We leiden ook

nieuwe oplossingen voor de stapgrootte af, en exploreren hun toepassing.

In Hoofdstuk 3 behandelen we een probleem met een enkele stochastische doel-

functie en meerdere voorwaarden voor de overige stochastische uitvoervariabelen, naast

deterministische randvoorwaarden voor de invoervariabelen. Ons probleemtype is dus

algemener dan het klassieke RSM probleemtype. Tot nu toe heeft ons probleemtype

niet veel aandacht gekregen in de simulatieoptimalisatie, zie Fu (2002, p.6). Ook My-

ers (1999) wijst op het belang van het uitbreiden van klassieke RSM, teneinde om te

kunnen gaan met meervoudige stochastische responsies.

Er zijn verschillende benaderingen om RSM te generaliseren, zodat RSM over-

weg kan met stochastische randvoorwaarden. Voorbeelden zijn de “desirability func-

tion” (Harrington 1965, Derringer en Suich 1980), de “generalized distance” (Khuri

en Conlon 1981), de duale response (Myers en Carter 1973, Vining en Myers 1990,

Del Castillo en Montgomery 1993, en Fan en Del Castillo (1999)), en “prediction in-

terval constrained goal programming” (Wei, Olson, en White 1990). Bij al deze be-

naderingen wordt het optimalisatieprobleem met nevenvoorwaarden geherformuleerd

door de nevenvoorwaarden te combineren met de oorspronkelijke doelfunctie: een
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nieuwe, enkelvoudige doelfunctie wordt geformuleerd via geschikte transformaties. Ver-

volgens wordt het resulterende probleem (zonder nevenvoorwaarden) opgelost met

een gebruikelijk niet-lineair programmeringalgoritme. Een groot nadeel van deze be-

naderingen is de arbitraire keuze van de transformaties.

Een van de bijdragen van Hoofdstuk 3 is dus de uitbreiding van klassieke RSM

dusdanig dat RSM kan omgaan met zowel stochastische beperkingen voor de uitvoer

als deterministische beperkingen voor de invoervariabelen. Dit wordt bereikt door

de generalisatie - van de geschatte Steepest Ascent zoekrichting - via ideeën uit “in-

wendige punt” methoden, specifiek het “affine scaling”-algoritme. Onze zoekrichting

is de geschaalde en geprojecteerde geschatte Steepest Ascent (estimated affine scaling

search direction). Verder bewijzen we dat onze zoekrichting twee belangrijke eigen-

schappen heeft: zij is inderdaad een richting die leidt tot lagere waarden in minimal-

isatieproblemen, en zij is schaalonafhankelijk.

Een andere bijdrage van Hoofdstuk 3 is een heuristiek voor de eerste stap in

RSM, die de voorgestelde nieuwe zoekrichting iteratief volgt. Deze heuristiek gebruikt

een aangepaste binaire zoekmethode om de stapgrootte in de zoekrichting te bepalen.

Ook past onze methode statistische toetsing van hypotheses toe, om de volgende it-

eratie in de voorgestelde zoekrichting te bepalen. Deze procedure is voornamelijk

bedoeld voor problemen - in de optimalisatie van gesimuleerde systemen - die veel

rekentijd kosten en een strak budget voor computertijd hebben. Met andere woorden,

onze procedure convergeert snel naar een acceptabele benadering van het optimum.

Dit is noodzakelijk bij simulatiestudies waarbij iedere computerrun vele uren of da-

gen kost maar het totale budget zo beperkt is dat er maar een beperkt aantal runs

doorgerekend kunnen worden. Tenslotte laten we zien, hoe de originele heuristiek voor

een stochastisch probleem kan worden vereenvoudigd tot die voor een deterministisch

probleem.

Gebruik makend van ideeën uit “inwendige punt ” methoden (dat wil zeggen,

naar de optimale oplossing toewerken door volledig binnen de toegelaten oplossingsruimte

te blijven) heeft de volgende twee voordelen:

• Onze heuristiek vermijdt dat hij langs de rand van de oplossingsruimte kruipt.

• Sommige simulatieprogrammatuur kan falen of verkeerde resultaten geven buiten

de toegelaten oplossingsruimte - maar onze heuristiek komt daar niet!

Hoofdstuk 4 gaat weer over problemen met een stochastische doelfunctie en

stochastische nevenvoorwaarden, maar we concentreren ons nu op de laatste fase van
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een “black box” methode voor de optimalisatie van gesimuleerde systemen. In concreto,

leiden we een statistische stopregel af die grote steekproeven veronderstelt. Deze regel

toetst de Karush-Kuhn-Tucker (KKT) eerste-orde noodzakelijke optimaliteitscondities

voor een toelaatbare oplossing die wel bekend zijn uit de deterministische optimalisatie.

Omdat ons probleem stochastisch van aard is, gebruiken we de statistische procedure

van Kodde en Palm (1986), die gebaseerd is op Wald’s toets. Deze procedure maakt

het ons mogelijk om samengestelde (meervoudige) hypothesen te toetsen De resultaten

van onze numerieke experimenten zijn bemoedigend: de nulhypothese (namelijk, de

KKT-condities gelden) wordt heel vaak in het optimum geaccepteerd. Ook nemen de

fouten van type-II (oftewel de bètafouten) af naar mate de getoetste oplossingen dichter

bij het werkelijke optimum liggen, wat een erg gewenste eigenschap is. Opgemerkt zij

dat recentelijk Bettonvil en Kleijnen (2004) een nieuwe procedure afgeleid hebben die

de KKT-condities toetst voor rekenintensieve simulaties (zonder grote steekproeven),

gebruikmakend van een “bootstrap”-procedure.

Wanneer er (stochastische of deterministische) nevenvoorwaarden zijn, hoeven

we wellicht niet tot de tweede stap van RSM over te gaan. De geschatte gradiënt van

de gevonden oplossing kan namelijk significant afwijken van nul - in de buurt van het

werkelijke optimum (per definitie eindigt de eerste stap van RSM wanneer de geschatte

gradiënt niet significant meer van nul afwijkt). Opgemerkt zij dat - voor zover wij weten

- de KKT-condities niet genoemd worden in de klassieke RSM-literatuur, omdat in deze

literatuur nog niet uitgebreid naar nevenvoorwaarden is gekeken; een uitzondering is

Fan en Del Castillo (1999).

Verder presenteren we twee alternatieve statistische toetsen, namelijk Roy’s

toets en de klassieke F-toets gecombineerd met Bonferroni’s ongelijkheid. We gebruiken

deze toetsen om te kijken naar de benaderingsfout (lack of fit) van de geschatte poly-

nomen van de eerste orde. We laten ook zien dat Roy’s toets de klassieke F-toets

generaliseert voor multipele responsies.
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