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Preface

My career as researcher at Tilburg University started back in 1998, when as a second

year student of Econometrics (without OR at that time) I became research assistant

to Ton van Schaik. For 18 months, we tried to measure the rather vague concept

of social capital by means of principal component analysis and used this to perform

an empirical study of the effect of social capital on key macro-economic variables

like growth and unemployment. As this thesis attests, this strand of research did

not turn out to be entirely my cup of tea, but the critical attitude and, above all,

the enthusiasm Ton exhibited for discovering the unknown taught and inspired me

a lot. For this I deeply thank him.

The seeds of my second stab at research were sown in the autumn of 1998, when

I followed a course in game theory by Stef Tijs. I remember vividly how our class

was intimidated by the chaotic nature and sheer number of Stef’s slides. Without

a doubt, his unorthodox and intriguing method of teaching has contributed greatly

to my subsequent interest in the field of game theory. The third year thesis (now

called Bachelor’s thesis) I started writing in the following spring – which deals with

correlated equilibria in bimatrix games – has laid the foundation for my next five

years in Tilburg.

Whereas Stef was responsible for enthusing me for game theory, it was Peter

Borm who made the effort to persuade me to become a PhD student in Tilburg.

His and Stef’s trademark cooperative approach to doing research has resulted in

four years of fruitful and, more importantly, pleasant research. For this, I am much

indebted to my two promotores.

I would also like to thank the other committee members, Michael Maschler, Car-

les Rafels, Hans Reijnierse, Dolf Talman and Judith Timmer, for taking the time to

read and evaluate this thesis.

Of course, doing research is not only about reading and writing articles. Game
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theory and game practice are, or at least should be, Siamese twins. To compensate

for the lack of noncooperative game theory in this thesis, I have spent much of my

time in Tilburg practicing this discipline, in particular zero-sum games. I enjoyed

many evenings and lunch breaks playing (and far too often, losing) a wide variety

of games. Alex, Arantza, Bas, Frans, Hendri, Jacco, Johan, Marcel, Marieke, Paul,

Ramon and Stefan, thanks for this. I would also like to thank various members of

De Wolstad and the wider chess community for revealing my inaptitude at this most

frustrating of occupations.

A valuable contribution to this thesis was made by my two officemates during the

past four years, Grzegorz (pronounced Greg) and Marcel. Their diversions during

working hours (some of them serious, some not-so-serious) certainly helped keeping

the show on the road. I am particularly grateful to Marcel for our moral, linguis-

tic, psychological, TEXnical, didactic, philosophical and, most of the time, pointless

discussions on the state of the world.

I was brought up with the notion that one’s family should always be central in

one’s life. Fortunately, mine are. Without the support and warmth of my family, my

life would be poorer and I thank them for keeping things in (a joyful) perspective.

My parents are of course the main contributors to keeping me on the straight and

narrow.

Finally, I am much indebted to Marloes and Coen for agreeing to be my para-

nimfen.

Neem deel aan het onderwijs en jullie zullen

daardoor veel zilver en goud verwerven.

Sir 51,28

Het onderzoeken van moeilijke dingen is eervol.

Spr 25,27

Wat is het leven voor iemand die geen wijn heeft?

Sir 31,27
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Chapter 1

Introduction

Game theory deals with models of competition and cooperation. Since the appear-

ance of Von Neumann and Morgenstern (1944), many game theorists have tried to

capture economic behaviour and other situations in which agents (or rather, play-

ers) interact in formal models, with the purpose of analysing them in a coherent and

systematic way.

The competitive nature of interaction is the topic of noncooperative game theory.

There, players are considered as individual utility-maximisers playing a game against

each other. The term game in this context is interpreted as any interactive situation

in which a player’s payoff depends not only on his own choice of actions, but also

on the actions of his opponents. One can think of parlour games (eg, chess) or more

worldly games like firms competing in an oligopolistic market. The main focus in

noncooperative game theory is on formalising notions of rationality, the main one

being the concept of equilibrium.

In cooperative game theory, which is the subject matter of this thesis, coopera-

tion between the players is studied. By working together in coalitions, players can

generate benefits. A typical example is that of a number of firms cooperating in

order to save costs. Not only is it interesting to know how players can cooperate

in an optimal way, but also the problem of allocation arises. The central question

in cooperative game theory is how the proceeds of cooperation can or should be

divided among the players in a fair way. To assess this, one has to come up with

properties on the basis of which allocation rules can be compared.

Cooperative game theory comprises many different models. By far the most

popular of these is the model of transferable utility games. One can think of a

transferable utility game as an allocation problem in which an amount of money is

1



2 CHAPTER 1. INTRODUCTION

to be divided and where one abstracts from the fact that the players involved might

put different value on the monetary payoffs they may receive. Transferable utility

games were already introduced in Von Neumann and Morgenstern (1944) and have

since formed the main pillar of cooperative game theory.

The second main model in cooperative game theory is that of nontransferable

utility games, introduced by Aumann and Peleg (1960). Such a game arises when

the objects to be divided are not valued in the same way by all the players. As one

might imagine, such situations are much harder to analyse than transferable utility

games. Eg, the well-known characterisation of nonemptiness of the core of a trans-

ferable utility game in terms of balancedness by Bondareva (1963) has only recently

been extended to the context of nontransferable utility games by Predtetchinski and

Herings (2003).

In the first few chapters of this thesis, we consider some well-known concepts in

transferable utility theory and extend them to the context of nontransferable utility.

Convexity is the subject of Chapter 3. Convexity for transferable utility games was

already introduced in Shapley (1971) and has various equivalent definitions (cf. Ichi-

ishi (1981)), each having its own interpretation. The most direct interpretation is in

terms of increasing marginal contributions: a game is convex if the marginal contri-

bution of a player to a coalition increases when the coalition that he joins becomes

larger. This nice marginalistic interpretation, however, has not been central in the

extensions of convexity to nontransferable utility games up till now. Vilkov (1977)

and Sharkey (1981) generalise convexity on the basis of its so-called supermodular

interpretation, yielding ordinal convexity and cardinal convexity, respectively.

In Chapter 3, we define three new types of convexity for nontransferable utility

games that are based on the marginalistic interpretation: coalition merge convex-

ity, individual merge convexity and marginal convexity. The main message of this

chapter is that although in the case of transferable utility, all convexity notions boil

down to the same, for nontransferable utility they are different. We investigate all

the relations between the five types of convexity and consider them in the light of

some special classes of games and of some rules.

In both transferable and nontransferable utility theory, various concepts of mono-

tonicity have been studied. An interesting contribution in this field is Sprumont

(1990), who introduces the concept of population monotonic allocation scheme. In

a convex transferable utility game, each extended marginal vector is such a scheme
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and in his concluding remarks, Sprumonts asks the question whether this result

can be extended to games with nontransferable utility. In Chapter 4 we answer this

question in the affirmative by showing that individual merge convexity is a sufficient

condition for each extended marginal vector to constitute a population monotonic

allocation scheme.

In the same chapter, we also introduce a new type of monotonicity, drop out

monotonicity, which we analyse in the context of sequencing situations (cf. Curiel

et al. (1989)). A sequencing rule is said to be drop out monotonic if all remaining

players become better off if one of them leaves the queue. This natural property is

not satisfied by many well-known sequencing rules. We show that, in fact, there is at

most one drop out monotonic rule that is stable, ie, always yielding a core element.

This so-called µ rule, which is a marginal vector of the corresponding sequencing

game, turns out to be drop out monotonic on the simple class of sequencing games

with linear cost functions. For many other classes of regular cost functions, no stable

drop out monotonic rule exists.

Myerson (1977) introduces a cooperative model in which cooperation between

the players is modelled by a communication network as well as a transferable utility

game. This underlying game models the benefits that the coalitions can generate if

they cooperate, whereas the communication network models the extent to which this

cooperation is possible. These two ingredients result in a so-called graph-restricted

game, which reflects both the underlying possibilities of the players and the extent

to which these can come to fruition. For such communication situations, Van den

Nouweland and Borm (1991) and Slikker and Van den Nouweland (2001) analyse

the problem of inheritance of properties. In short, what conditions must a commu-

nication network satisfy so that for every underlying game that satisfies a certain

property, the resulting graph-restricted game satisfies the same property? In Chap-

ter 5, we extend this analysis to nontransferable utility games and point out some

differences between the two models.

The distinction between cooperative and noncooperative behaviour is not always

clear-cut (cf. Van Damme and Furth (2002)). In many economic situations, both

elements are present and a unified approach is called for. In a noncooperative model,

like the Cournot oligopoly model, one might want to explicitly model the possibility

of collusion. Or the other way around, in a cooperative model, one might want to

incorporate some strategic elements in order to come to a more realistic or fairer
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solution.

In Chapter 6, we introduce the class of spillover games. This is basically a

transferable utility model with an extra ingredient: spillovers. Whenever a coalition

of players decides to cooperate, they do not only generate a payoff to themselves,

but also to the players outside that coalition. Such spillovers can arise if, eg, the

coalition inflicts externalities as a result of pollution. In Chapter 6 we present this

new model and extend some well-known concepts for transferable utility games to

this new class.

Not only can economic externalities result in spillovers, also in operations re-

search problems, such spillovers can occur. In the case of minimum cost spanning

trees, a coalition building a public network obviously influences the possibilities and

hence the payoffs of the other players in the game. We analyse this public-private

connection problem using our new model, which results in an elegant depiction of

the problem of free riding.

As mentioned before, cooperation and allocation are inextricably linked. An

allocation problem arises whenever a bundle of goods is held in common by a group

of individuals and must be alloted to them individually. The purest allocation

problem is a bankruptcy situation, as modelled by O’Neill (1982). In a bankruptcy

situation, there is a sum of money, the estate, available to be divided among a group

of players, each having a single claim on the estate. This simple division problem

has inspired many allocation proposals, each having its own appealing properties.

Although there has been a recent upsurge in attention for bankruptcy situations (see,

eg, the survey article by Thomson (2003)), still a lot has to be explored. Solving this

easy problem may and should help us understand more difficult allocation problems.

An interesting variation on the bankruptcy model is provided by Pulido et al.

(2002). In their model, the players do not only have a claim on the estate available,

but in addition there is also an objective criterion to compute a reference amount

for each player. Obviously, this extra information should be used to find a fair

allocation of the estate. In Chapter 7, we analyse these bankruptcy situations with

references and propose a compromise method to divide the estate.

In Chapter 8, we take a broader view on bankruptcy. Instead of each player having

a single claim on the estate, we consider the situation in which there are multiple

issues on the basis of which the estate is to be divided. These issues are equally

valid, so the asymmetry which we can exploit in the case of claims and references
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is not present here. The resulting model of multi-issue allocation situations can

be seen as a general framework for division problems, to which, depending on the

context, many methods of solution can be applied.

Related to this new type of allocation problem, we define two transferable util-

ity games and obtain the nice theoretical result that this class of games coincides

with the class of all nonnegative exact games. We propose two rules, based on

the run-to-the-bank rule that was already introduced by O’Neill (1982), where the

interdependency between the various issues is reflected by compensation payments.

O’Neill uses a property of consistency to characterise the run-to-the-bank rule.

In this thesis, we frequently draw on this consistency principle to provide character-

isations of run-to-the-bank-like rules. In Chapter 8, we give the first of these.

The main part of Chapter 9 considers a further extension of the run-to-the-bank

rule in the context of multi-issue allocation situations, which unlike the extensions in

Chapter 8 always yields a core element. This new extension is based on a two-stage

approach, where the issues and the players are treated in subsequent order rather

than simultaneously. Also this new rule is characterised by a consistency property,

called issue-consistency.

Our final model related to bankruptcy is the subject of Chapter 10. In many eco-

nomic situations where players can cooperate, one can a priori partition the players

into groups. These so-called a priori unions were first analysed by Owen (1977),

who adapted the Shapley value to take these unions into account. Whereas Owen

considers a general transferable utility framework with a priori unions, in Chap-

ter 10 we study the more specific context of bankruptcy situations. In a bankruptcy

situation, the players can often be partitioned into a priori unions on the basis of the

nature of their claim. The main focus of the chapter is on extending the constrained

equal award rule for bankruptcy situations to take the union structure into account.

We introduce and characterise two such extensions.

Geometry plays a minor, though interesting role in cooperative game theory.

Many set-valued solutions for transferable utility games have a nice geometric struc-

ture and various rules can be described in terms of geometric principles. The best-

known example is the Shapley value, which is the barycentre of the Weber set. In

Chapter 11, we characterise an adaptation of the compromise value, the τ ∗ value,

as the barycentre of the edges of the core cover. The proof requires some intricate

machinery which provides some insight into the structure of the core cover.





Chapter 2

Preliminaries

2.1 Basic notation

The set of all natural numbers is denoted by N, the set of real numbers by R, the

set of nonnegative (nonpositive) reals by R+ (R−) and the set of positive (negative)

reals by R++ (R−−). For a finite set N , we denote its power set, ie, the collection of

all its subsets, by 2N and its number of elements by |N |. By RN we denote the set of

elements of R|N | whose entries are indexed by N , or equivalently, the set of all real-

valued functions on N . An element of RN is denoted by a vector x = (xi)i∈N . For

S ⊂ N,S 6= ∅, we denote the restriction of x on S by xS = (xi)i∈S. For x, y ∈ RN ,

y ≥ x denotes yi ≥ xi for all i ∈ N , y > x denotes yi > xi for all i ∈ N and y 	 x

denotes y ≥ x, y 6= x.

For a finite set N and a subset S ⊂ N , we denote by eS the vector in RN defined

by eS
i = 1 for all i ∈ S and eS

i = 0 for all i ∈ N\S. If S = {i}, we denote the

corresponding unit vector by ei. By 0N we denote the zero vector in RN .

An ordering of the elements in N is a bijection σ : {1, . . . , |N |} → N , where σ(i)

denotes which element in N is at position i. The notation σ = (a1, a2, . . . , an) is

used as shorthand for σ(1) = a1, σ(2) = a2, . . . , σ(n) = an. The set of all |N |!
orderings of N is denoted by Π(N).

2.2 TU games

A cooperative game with transferable utility, or TU game, is a pair (N, v), where

N = {1, . . . , n} denotes the set of players and v : 2N → R is the characteristic

function, assigning to every coalition S ⊂ N of players a value, or worth, v(S),

7



8 CHAPTER 2. PRELIMINARIES

representing the total payoff to this coalition of players when they cooperate. By

convention, v(∅) = 0. We denote the class of all TU games with player set N by

TUN . Where no confusion can arise, we denote a game (N, v) ∈ TUN by v.

The subgame of (N, v) with respect to coalition S ⊂ N,S 6= ∅ is defined as the

TU game (S, vS) with vS(T ) = v(T ) for all T ⊂ S.

For a game v ∈ TUN , the imputation set I(v) is defined by

I(v) = {x ∈ RN |
∑
i∈N

xi = v(N), ∀i∈N : xi ≥ v({i})}.

The core C(v) is defined by

C(v) = {x ∈ RN |
∑
i∈N

xi = v(N), ∀S⊂N :
∑
i∈S

xi ≥ v(S)}.

A core element is stable in the sense that if such a vector is proposed as allocation

for the grand coalition, no coalition will have an incentive to split off and cooperate

on their own.

A game is called balanced if its core is nonempty and totally balanced if the core

of each of its subgames is nonempty.

A game v ∈ TUN is called superadditive if for all coalitions S, T ⊂ N such that

S ∩ T = ∅ we have

v(S) + v(T ) ≤ v(S ∪ T ).

The marginal vector mσ(v) of a game v ∈ TUN corresponding to the ordering

σ ∈ Π(N) is defined by

mσ
σ(k)(v) = v({σ(1), . . . , σ(k)})− v({σ(1), . . . , σ(k − 1)})

for all k ∈ {1, . . . , n}.
The Shapley value of a game v ∈ TUN , Φ(v), (cf. Shapley (1953)) is defined as

the average of the marginal vectors

Φ(v) =
1

n!

∑

σ∈Π(N)

mσ(v).

For a game v ∈ TUN , the utopia vector M(v) ∈ RN is defined by

Mi(v) = v(N)− v(N\{i})

for all i ∈ N , and the minimal right vector m(v) ∈ RN by
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mi(v) = max
S:i∈S


v(S)−

∑

j∈S\{i}
Mj(v)




for all i ∈ N . A game v ∈ TUN is called compromise admissible (or quasi-balanced)

if m(v) ≤ M(v) and
∑

i∈N mi(v) ≤ v(N) ≤ ∑
i∈N Mi(v). We denote the set of all

compromise admissible games with player set N by CAN .

For a compromise admissible game the compromise value or τ value (cf. Tijs

(1981)) is defined as the linear combination of the utopia vector and the minimal

right vector that is efficient, ie, for all v ∈ CAN ,

τ(v) = λM(v) + (1− λ)m(v)

with λ ∈ [0, 1] such that
∑

i∈N τi(v) = v(N).

For a game v ∈ TUN , the core cover is defined by

CC(v) = {x ∈ RN |
∑
i∈N

xi = v(N),m(v) ≤ x ≤ M(v)},

so a game is compromise admissible if and only if its core cover is nonempty. Tijs and

Lipperts (1982) show that C(v) ⊂ CC(v), so every balanced game is compromise

admissible. A game v ∈ TUN is called semi-convex (cf. Driessen and Tijs (1985)) if

it is superadditive and

mi(v) = v({i})

for all i ∈ N .

The excess of coalition S ⊂ N for imputation x ∈ I(v) is defined by

E(S, x) = v(S)−
∑
i∈S

xi.

If x is proposed as an allocation vector, the excess of S measures to which extent

S is satisfied with x: the lower the excess, the more pleased S is with the proposed

allocation. The idea behind the nucleolus is to minimise the highest excesses in a

hierarchical manner.

Let x, y ∈ Rt. Then we say that x is lexicographically smaller than or equal to

y, or x ≤L y, if x = y or if there exists an s ∈ {1, . . . , t} such that xk = yk for all

k ∈ {1, . . . , s− 1} and xs < ys. For a finite set A, we denote x ≤∗L y with x, y ∈ RA,

if x′ ≤L y′ where x′ (y′) is the vector in R|A| containing the elements of x (y) in

decreasing order.
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Let v ∈ TUN be a game with a nonempty imputation set. The nucleolus of v,

ν(v), (cf. Schmeidler (1969) and Maschler et al. (1992)) is the unique point in I(v)

for which the excesses are lexicographically minimal, ie,

(E(S, ν(v)))S⊂N ≤∗L (E(S, x))S⊂N

for all x ∈ I(v).

2.3 NTU games

A cooperative game with nontransferable utility, or NTU game, is a pair (N, V ),

where N = {1, . . . , n} is the set of players and V is the payoff map assigning to

each coalition S ⊂ N,S 6= ∅ a subset V (S) of RS. This set represents all the payoff

vectors that coalition S can obtain when they cooperate.

We impose some conditions on V : for all i ∈ N ,

V ({i}) = (−∞, 0]

and for all S ⊂ N, S 6= ∅ we have

V (S) is nonempty and closed,

V (S) is comprehensive, ie, x ∈ V (S) and y ≤ x imply y ∈ V (S),

V (S) ∩ RS
+ is bounded.

Furthermore, we assume that (N, V ) is monotonic:

∀S⊂T⊂N,S 6=∅∀x∈V (S)∃y∈V (T ) : yS ≥ x.

Note that we do not define V (∅). The class of NTU games with player set N is

denoted by NTUN . Again, we sometimes use V rather than (N, V ) to denote an

NTU game.

NTU games generalise TU games. Every TU game (N, v) gives rise to an NTU

game (N, V ) by defining V (S) = {x ∈ RS | ∑
i∈S xi ≤ v(S)} for all S ⊂ N, S 6= ∅.

The subgame of (N, V ) with respect to coalition S ⊂ N, S 6= ∅ is defined as the

NTU game (S, V S) with V S(T ) = V (T ) for all T ⊂ S, T 6= ∅.
The set of Pareto efficient allocations for coalition S ⊂ N,S 6= ∅, denoted by

Par(S), is defined by

Par(S) = {x ∈ V (S) | ¬∃y∈V (S) : y 	 x},
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its set of weak Pareto efficient allocations WPar(S) is defined by

WPar(S) = {x ∈ V (S) | ¬∃y∈V (S) : y > x}

and its set of individually rational allocations is defined by1

IR(S) = {x ∈ V (S) | ∀i∈S : xi ≥ 0} = V (S) ∩ RS
+.

The imputation set of a game V ∈ NTUN , denoted by I(V ), is defined by

I(V ) = IR(N) ∩WPar(N).

The core of an NTU game (N, V ) consists of those elements of V (N) for which it

holds that no coalition S ⊂ N, S 6= ∅ has an incentive to split off:

C(V ) = {x ∈ V (N) | ∀S⊂N,S 6=∅¬∃y∈V (S) : y > xS}.

Again, we call a game V ∈ NTUN balanced2 if it has a nonempty core and totally

balanced if all its subgames have a nonempty core.

An NTU game V ∈ NTUN is called superadditive if for all coalitions S, T ⊂ N

such that S 6= ∅, T 6= ∅, S ∩ T = ∅ we have

V (S)× V (T ) ⊂ V (S ∪ T ).

This definition of superadditivity is a straightforward generalisation of the concept of

superadditivity for TU games. In addition, we define a weaker property concerning

only the merger between individual players and coalitions rather than between two

arbitrary disjoint coalitions. A game V ∈ NTUN is called individually superadditive

if for all i ∈ N and for all S ⊂ N\{i}, S 6= ∅ we have

V (S)× V ({i}) ⊂ V (S ∪ {i}).

Note that individual superadditivity is stronger than monotonicity.

The marginal vector Mσ(V ) of a game V ∈ NTUN corresponding to the ordering

σ ∈ Π(N) (cf. Otten et al. (1998)) is defined by

Mσ
σ(1)(V ) = 0

and

1Recall that we assumed zero-normalisation.
2In the case of (total) balancedness, we abuse standard terminology. Formally, balancedness is

a property of TU games, which in Bondareva (1963) is shown to coincide with nonemptiness of the
core. For both TU and NTU games, we refer to the latter property as balancedness.
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Mσ
σ(k)(V ) = max{xσ(k) | x ∈ V ({σ(1), . . . , σ(k)}),

∀i∈{1,...,k−1} : xσ(i) = Mσ
σ(i)(V )}

for all k ∈ {2, . . . , n}. We use the assumption of monotonicity to ensure that the

sets over which the maximums are taken are nonempty. By construction, Mσ(V ) ∈
WPar(N). If a game is individually superadditive, then all marginal vectors belong

to IR(N).



Chapter 3

Convexity

3.1 Introduction

The notion of convexity for cooperative games with transferable utility was intro-

duced by Shapley (1971) and is one of the most analysed properties in cooperative

game theory. Many economic and combinatorial situations give rise to convex (or

concave) cooperative games, such as airport games (cf. Littlechild and Owen (1973)),

bankruptcy games (cf. Aumann and Maschler (1985)) and sequencing games (cf.

Curiel et al. (1989)).

Convexity for TU games can be defined in a number of equivalent ways. One

of these is by means of the supermodularity property, which has its origins outside

the field of game theory. Vilkov (1977) and Sharkey (1981) have extended this

property towards cooperative games with nontransferable utility to define ordinal

and cardinal convexity, respectively. The supermodular interpretation of convexity

also plays an important role in the context of effectivity functions (cf. Abdou and

Keiding (1991)).

Economically more appealing than the supermodular interpretation of convexity

are the definitions of convexity that are based on the concept of marginal contribu-

tions. In cooperative games with stochastic payoffs, this marginalistic interpretation

of convexity has already been successfully applied (cf. Timmer et al. (2000) and

Suijs (2000)). In this chapter, which is mainly based on Hendrickx et al. (2002), we

build on the work originated by Ichiishi (1993) and consider three types of convex-

ity for NTU games, which are based on three corresponding marginalistic convexity

properties for TU games.

Although all five convexity properties for NTU games coincide within the subclass

13
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of TU games, they are not equivalent on the whole class of NTU games. In this

chapter we analyse the relations between these convexity concepts.

This chapter is organised as follows. In section 2, we define the three marginalistic

types of convexity for NTU games. In section 3, we investigate how the various types

of convexity are related in general. In section 4, we analyse the relations between

the convexity types in three-player games, while in section 5 we do this for some

special classes of NTU games. Finally, in section 6, we study the relation between

the various types of convexity and some rules.

3.2 Convexity

A TU game v ∈ TUN is called convex if it satisfies the following four equivalent

conditions (cf. Shapley (1971) and Ichiishi (1981)):

∀S,T⊂N : v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ), (3.1)

∀U⊂N∀S⊂T⊂N\U : v(S ∪ U)− v(S) ≤ v(T ∪ U)− v(T ), (3.2)

∀i∈N∀S⊂T⊂N\{i} : v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ), (3.3)

∀σ∈Π(N) : mσ(v) ∈ C(v). (3.4)

Condition (3.1), which is called the supermodularity property, was originally stated

in Shapley (1971) as the definition of convexity for TU games. Subsequently, Vilkov

(1977) and Sharkey (1981) generalised this property to ordinal and cardinal convex-

ity for NTU games, respectively. A game V ∈ NTUN is called ordinally convex if

for all S, T ⊂ N such that S 6= ∅, T 6= ∅ and for all x ∈ RN such that xS ∈ V (S)

and xT ∈ V (T ) we have

xS∩T ∈ V (S ∩ T ) or xS∪T ∈ V (S ∪ T ). (3.5)

A game is called cardinally convex if for all coalitions S, T ⊂ N such that S 6= ∅, T 6=
∅ we have1

V ◦(S) + V ◦(T ) ⊂ V ◦(S ∩ T ) + V ◦(S ∪ T ), (3.6)

where V ◦(S) = V (S)× {0N\S} for all S ⊂ N, S 6= ∅ and V ◦(∅) = {0N}.
1Cardinal convexity is only defined for V ∈ NTUN for which V (N) is a convex set. Throughout

this chapter, this condition is implicitly assumed when dealing with cardinal convexity. All results
relating to the other types of convexity hold without this requirement.
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In contrast to these supermodular definitions of convexity by Vilkov (1977) and

Sharkey (1981), Ichiishi (1993) considers the marginalistic interpretation of convex-

ity. We analyse three types of convexity for NTU games, based on the marginalistic

properties (3.2)-(3.4).

First of all, we have coalition merge convexity2, which generalises property (3.2).

For U = ∅ and S = T , (3.2) is trivial and these cases can therefore be ignored when

defining an analogous property for NTU games. If S = ∅, (3.2) is equivalent to

superadditivity. Because we do not define V (∅) for NTU games, we require super-

additivity as a separate condition. For S 6= ∅, (3.2) states that for any coalition U ,

the marginal contribution to the larger coalition T is larger than the marginal con-

tribution to the smaller coalition S. In terms of allocations, this can be interpreted

as follows: given the situation in which coalitions S and T have agreed upon an indi-

vidually rational (and weak Pareto efficient) allocation of v(S) and v(T ) (say, p and

q, respectively), if coalition U joins the smaller coalition S, then for any allocation r

of v(S∪U) such that the players in S get at least their previous amount (rS ≥ p), it

is possible for U to join the larger coalition T using allocation s of v(T ∪ U), which

gives the players in T at least their previous amount (sT ≥ q) and makes all players

in U better off than in case they join S (sU ≥ rU). Using this interpretation of (3.2),

we can now define an analogous property for NTU games.

A game V ∈ NTUN is called coalition merge convex, if it is superadditive and it

satisfies the coalition merge property, ie, for all coalitions U ⊂ N such that U 6= ∅
and all S $ T ⊂ N\U such that S 6= ∅ the following statement is true: for all

p ∈ WPar(S) ∩ IR(S), all q ∈ V (T ) and all r ∈ V (S ∪ U) such that rS ≥ p, there

exists an s ∈ V (T ∪ U) such that
{

si ≥ qi for all i ∈ T,
si ≥ ri for all i ∈ U.

(3.7)

As a result of comprehensiveness, it makes no differences whether we require the

coalition merge property for all q ∈ V (T ) or only for q ∈ WPar(T ) ∩ IR(T ).

The extension of (3.3) towards NTU games goes in a similar manner: a game

V ∈ NTUN is called individual merge convex if it is individually superadditive and

it satisfies the individual merge property, ie, for all k ∈ N and all S $ T ⊂ N\{k}
such that S 6= ∅, the following statement is true: for all p ∈ WPar(S) ∩ IR(S), all

2This notion is introduced for stochastic cooperative games in Suijs and Borm (1999). The
name coalition merge convexity and the subsequent names individual merge convexity and marginal
convexity are from Timmer et al. (2000).
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q ∈ V (T ) and all r ∈ V (S ∪ {k}) such that rS ≥ p there exists an s ∈ V (T ∪ {k})
such that{

si ≥ qi for all i ∈ T,
sk ≥ rk.

(3.8)

Finally, a game V ∈ NTUN is called marginal convex if for all σ ∈ Π(N) we have

Mσ(V ) ∈ C(V ). (3.9)

One important aspect of the five convexity properties defined in this section is that

within the class of NTU games that correspond to TU games, they are all equivalent

and coincide with TU convexity. Another aspect of these properties is that if a game

satisfies some particular form of convexity, then all its subgames do.

3.3 Relations between the convexity notions

In this section we investigate the relations between the five types of convexity for

NTU games that were presented in the previous section. For 2-player NTU games,

all five types are equivalent to (individual) superadditivity. For general n-player

NTU games, equivalence between the five types of convexity does not hold. The

remainder of this section shows which relations do exist between these properties.

It follows immediately from the definitions that coalition merge convexity implies

individual merge convexity. The following example shows that the reverse need not

be the case.

Example 3.3.1 Consider the following NTU game with player set N = {1, 2, 3, 4}:

V ({i}) = (−∞, 0] for all i ∈ N,

V (S) = {x ∈ RS | max
i∈S

xi ≤ 1} if S = {1, 2} or S = {3, 4},

V (S) = {x ∈ RS | max
i∈S

xi ≤ 0} for other S ⊂ N, |S| = 2,

V ({1, 2, 3}) = {x ∈ R{1,2,3} |x1 ≤ 1, x2 ≤ 1, x3 ≤ 0},

V ({1, 2, 4}) = {x ∈ R{1,2,4} |x1 ≤ 1, x2 ≤ 1, x4 ≤ 0},

V ({1, 3, 4}) = {x ∈ R{1,3,4} |x1 ≤ 0, x3 ≤ 1, x4 ≤ 1},
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V ({2, 3, 4}) = {x ∈ R{2,3,4} |x2 ≤ 0, x3 ≤ 1, x4 ≤ 1},

V (N) = {x ∈ RN |
∑
i∈N

xi ≤ 3}.

This game is not superadditive and therefore not coalition merge convex3: take

S = {1, 2}, T = {3, 4}, then (1, 1) ∈ V (S) and (1, 1) ∈ V (T ), but (1, 1, 1, 1) /∈
V (S ∪ T ). This game does, however, satisfy individual merge convexity. First,

individual superadditivity can easily be checked to be satisfied. Next, let k ∈ N , let

S $ T ⊂ N\{k} be such that S 6= ∅ and let p ∈ WPar(S) ∩ IR(S), q ∈ V (T ) and

r ∈ V (S∪{k}) be such that rS ≥ p. Define s = (q, rk) ∈ RT∪{k}. If |T | = 3, then we

have T ∪ {k} = N . Because
∑

i∈T qi ≤ 2 and rk ≤ 1 (which follows from |S| ≤ 2),

we have
∑

i∈N si ≤ 3 and hence, s ∈ V (N). If T = {1, 2} or T = {3, 4}, then we

have |S| = 1 and rk ≤ 0 and because of individual superadditivity, s ∈ V (T ∪ {k}).
Finally, for other coalitions T with |T | = 2, we have maxi∈T qi ≤ 0, rk ≤ 1 and

therefore s ∈ V (T ∪ {k}). Hence, V satisfies the individual merge property. /

The following theorem shows that individual merge convexity implies marginal con-

vexity.

Theorem 3.3.1 Let V ∈ NTUN . If V is individual merge convex, then it is

marginal convex.

Proof: Assume that V is individual merge convex and let σ ∈ Π(N). To simplify

notation, assume without loss of generality that σ(i) = i for all i ∈ N . We prove

that Mσ(V ) ∈ C(V ) by induction on the player set. For this, we define for k ∈
{1, . . . , n} the subgame (Nk, V k) where Nk = {1, . . . , k} and V k(S) = V (S) for all

S ⊂ Nk, S 6= ∅. Mσ,k(V k) denotes the marginal vector in (Nk, V k) that corresponds

to the ordering σ restricted to the first k positions. For k = 1, Mσ,k(V k) ∈ C(V k) by

construction. Next, let k ∈ {2, . . . , n} and assume that Mσ,k−1(V k−1) ∈ C(V k−1).

We show that Mσ,k(V k) ∈ C(V k), ie, no coalition has an incentive to leave the

“grand” coalition Nk. Define T = {1, . . . , k − 1} and let S $ T, S 6= ∅. Then it

suffices to show that coalitions S, T , {k}, T ∪ {k} and S ∪ {k} have no incentive to

split off:

3One can even construct an individual merge convex game that is superadditive, but which does
not satisfy the coalition merge property.
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• Because Mσ,k−1(V k−1) ∈ C(V k−1), by definition there does not exist a

y ∈ V (S) such that y > Mσ,k−1
S (V k−1). By construction, Mσ,k

S (V k) =

Mσ,k−1
S (V k−1), so there does not exist a y ∈ V (S) such that y > Mσ,k

S (V k).

Hence, coalition S has no incentive to leave Nk when the payoff vector is

Mσ,k(V k). The same argument holds for coalition T .

• Player k will not deviate on his own, because individual merge convexity im-

plies individual superadditivity and hence, Mσ,k(V k) ∈ IR(V k).

• Because Mσ,k(V k) ∈ WPar(Nk), there exists no y ∈ V k(Nk) such that y >

Mσ,k(V k) and hence, the “grand” coalition T ∪{k} has no incentive to deviate.

• Finally, we show that coalition S ∪ {k} has no incentive to split off. Define

R = {r ∈ V (S∪{k}) | rS ≥ Mσ,k
S (V k)} to be the set of allocations in V (S∪{k})

according to which the players in S get at least the amount they get according

to the marginal vector Mσ,k(V k) . If R = ∅, then S∪{k} will be satisfied with

the allocation Mσ,k(V k). Because Mσ,k(V k) ∈ IR(Nk), it follows from the

basic assumptions of an NTU game that R is closed and bounded, so if R 6= ∅,
we can compute max{rk | r = (rS, rk) ∈ R}. Let r ∈ R be a point in which

this maximum is reached. Because Mσ,k−1(V k−1) ∈ C(V k−1), we must have

Mσ,k
S (V k) /∈ V (S) or Mσ,k

S (V k) ∈ WPar(S). Let p be the intersection point of

the line segment between 0 and Mσ,k
S (V k) and the set WPar(S) ∩ IR(S). By

construction, r ∈ V (S ∪ {k}) is such that rS ≥ p.

Next, take q = Mσ,k−1(V k−1) ∈ V (T ). As a result of individual merge convex-

ity and comprehensiveness, there exists an s ∈ V (T ∪ {k}) such that sT = q

and sk ≥ rk. Because sT = Mσ,k−1(V k−1), it follows from the construction

of Mσ,k(V k) that Mσ,k
k (V k) ≥ sk. But then, Mσ,k

k (V k) ≥ rk. We constructed

rk as the maximum amount player k can obtain by cooperating with coali-

tion S, while giving each player i ∈ S at least Mσ,k
i (V k). Hence, we conclude

that there does not exist a y ∈ V (S ∪ {k}) such that yi > Mσ,k
i (V k) for all

i ∈ S ∪ {k}.

From these four cases we conclude that Mσ,k(V k) ∈ C(V k) and by induction on k,

we obtain Mσ(V ) ∈ C(V ). ¤

In Example 3.3.2 we show that the reverse implication of Theorem 3.3.1 need not

hold.
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Example 3.3.2 The following game with player set N = {1, 2, 3} is the NTU

analogue of Example 4.6 in Timmer et al. (2000), which is a cooperative game

with stochastic payoffs:

V ({i}) = (−∞, 0] for all i ∈ N,

V ({1, 2}) = {x ∈ R{1,2} |x1 + x2 ≤ 3},

V ({1, 3}) = {x ∈ R{1,3} |x1 + x3 ≤ 2},

V ({2, 3}) = {x ∈ R{2,3} |x2 + x3 ≤ 6},

V (N) = {x ∈ RN | x1

6
+

x2

10
+

x3

14
≤ 1}.

The marginal vectors of this games are stated in the following table.

σ (1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

Mσ(V ) (0, 3, 49
5
) (0, 60

7
, 2) (3, 0, 7) (24

7
, 0, 6) (2, 20

3
, 0) (12

5
, 6, 0)

The core is given by

C(V ) = {x ∈ RN
+ |

x1

6
+

x2

10
+

x3

14
= 1, x1 + x3 ≥ 3, x1 + x3 ≥ 2, x2 + x3 ≥ 6}.

It is easy to check that Mσ(V ) ∈ C(V ) for all σ ∈ Π(N) and hence, V is marginal

convex. Next, we show that this game is not individual merge convex. Take k =

1, S = {2}, T = {2, 3} and take p = 0 ∈ WPar(S) ∩ IR(S), q = (6, 0) ∈ V (T ) and

r = (3, 0) ∈ V (S ∪ {k}). Note that rS ≥ p. Suppose V is individual merge convex.

Then there exists an s ∈ V (T ∪ {k}) such that (3.8) holds, ie, s2 ≥ 6, s3 ≥ 0 and

s1 ≥ 3. But s ∈ V (T ∪ {k}) implies s1

6
+ s2

10
+ s3

14
≤ 1, which gives a contradiction.

Hence, V is not individual merge convex. /

In the following example, we prove that ordinal convexity does not imply any of

the other four types of convexity. This example disproves Theorem 2.2.3 in Ichiishi

(1993), which states that in an ordinally convex NTU game, all marginal vectors

are in the core.

Example 3.3.3 Consider the following NTU game with player set N = {1, 2, 3}:
V ({i}) = (−∞, 0] for all i ∈ N,

V ({1, 2}) = {x ∈ R{1,2} |x1 ≤ 0, x2 ≤ 2},
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V ({1, 3}) = {x ∈ R{1,3} |x1 + x3 ≤ 1},

V ({2, 3}) = {x ∈ R{2,3} |x2 ≤ 0, x3 ≤ 0},

V (N) = {x ∈ RN |
∑
i∈N

xi ≤ 2}.

This game V is ordinally convex: let S, T ⊂ N be such that S 6= ∅, T 6= ∅ and

let x ∈ RN be such that xS ∈ V (S) and xT ∈ V (T ). We distinguish between four

cases. If S ⊂ T or T ⊂ S, then (3.5) is trivially satisfied. If S ∩ T = ∅, then (3.5)

is equivalent to superadditivity, which is satisfied by this game. If S = {1, 2} and

T = {1, 3}, then x1 ≤ 0 and hence, xS∩T ∈ V (S ∩ T ). Otherwise,
∑

i∈N xi ≤ 2 and

hence, xS∪T ∈ V (S ∪ T ). From these four cases we conclude that (3.5) is satisfied

and V is ordinally convex.

However, this game is not marginal convex, because the marginal vector cor-

responding to σ = (1, 2, 3),Mσ(V ) = (0, 2, 0), does not belong to the core, be-

cause coalition {1, 3} has an incentive to leave the grand coalition. Using The-

orem 3.3.1, we conclude that V is neither coalition merge nor individual merge

convex. Furthermore, this game is not cardinally convex: (0, 2, 0) ∈ V ◦({1, 2}) and

(0, 0, 1) ∈ V ◦({1, 3}), but (0, 2, 0) + (0, 0, 1) = (0, 2, 1) /∈ V ◦({1}) + V ◦(N). /

Next, we show that ordinal convexity is not implied by any of the other four types

of convexity.

Example 3.3.4 Consider the following NTU game with player set N = {1, 2, 3, 4}:

V ({i}) = (−∞, 0] for all i ∈ N,

V (S) = {x ∈ RS | max
i∈S

xi ≤ 1} for all S ⊂ N, |S| = 2,

V (S) = {x ∈ RS |
∑
i∈S

xi ≤ 4} for all S ⊂ N, |S| = 3,

V (N) = {x ∈ RN |
∑
i∈N

xi ≤ 7}.

First, we show that this game is not ordinally convex. Consider S = {1, 2, 3}, T =

{2, 3, 4} and x = (4,−3, 3, 4) ∈ RN . Then we have both xS ∈ V (S) and xT ∈ V (T ),
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but neither xS∩T ∈ V (S ∩T ) nor xS∪T ∈ V (S ∪T ). Hence, (3.5) is not satisfied and

V is not ordinally convex.

Next, we show that V is coalition merge convex. Let U ⊂ N, U 6= ∅ and let

S $ T ⊂ N\U be such that S 6= ∅. Let p ∈ WPar(S)∩ IR(S), let q ∈ V (T ) and let

r ∈ V (S ∪ U) be such that rS ≥ p. Define s = (q, rU). If |T | = 3 and |U | = 1, then∑
i∈T qi ≤ 4 and rU ≤ 3. If |T | = 2 and |U | = 2, then

∑
i∈T qi ≤ 2 and

∑
i∈U ri ≤ 4.

In both cases, we have
∑

i∈T∪U si ≤ 7 and hence, s ∈ V (T ∪ U) = V (N). In case

|T | = 2 and |U | = 1, we have
∑

i∈T qi ≤ 2 and rU ≤ 1 and hence,
∑

i∈T∪U si ≤ 3,

implying s ∈ V (T ∪U). Noting that V is superadditive, we conclude that this game

is coalition merge convex, and hence, also individual merge and marginal convex.

Finally, we show that V is cardinally convex. Let S, T ⊂ N be such that S 6=
∅, T 6= ∅ and let xS ∈ V ◦(S), xT ∈ V ◦(T ). If S ⊂ T or T ⊂ S, then (3.6) is trivially

satisfied. If S ∩ T = ∅, then (3.6) follows from superadditivity. We distinguish

between three further cases. First, if |S| = |T | = 3, then |S∩T | = 2 and S∪T = N .

Take xS∩T = eS∩T ∈ V ◦(S ∩ T ) and define x = xS + xT − xS∩T . Then
∑

i∈S∪T xi =∑
i∈S xS

i +
∑

i∈T xT
i − 2 ≤ 4 + 4 − 2 = 6. Hence, x ∈ V ◦(S ∪ T ). Second, if

|S| = 2, T = |3|, then |S ∩T | = 1 and S ∪T = N . Take xS∩T = 0N ∈ V ◦(S ∩T ) and

define x as before. Then
∑

i∈S∪T xi ≤ 2+4−0 = 6 and hence, x ∈ V ◦(S∪U). Third,

if |S| = |T | = 2, then |S ∩ T | = 1 and |S ∪ T | = 3. Take xS∩T = 0N ∈ V ◦(S ∩ T )

and define x as before. Then
∑

i∈S∪T xi ≤ 2 + 2− 0 = 4 and hence, x ∈ V ◦(S ∪ U).

From these three cases we conclude that V is cardinally convex. /

From the previous two examples we conclude that ordinal convexity is independent of

the other four types of convexity. The example below shows that cardinal convexity

does not imply any of the marginalistic types of convexity.

Example 3.3.5 Consider the following NTU game with player set N = {1, 2, 3, 4}:

V ({i}) = (−∞, 0] for all i ∈ N,

V ({1, 2}) = {x ∈ R{1,2} |x1 + x2 ≤ 2, x2 ≤ 1},

V (S) = {x ∈ RS | max
i∈S

xi ≤ 0} for other S ⊂ N, |S| = 2,

V ({1, 2, 3}) = {x ∈ R{1,2,3} |x1 + x2 + x3 ≤ 2, x3 ≤ 2},
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V ({1, 2, 4}) = {x ∈ R{1,2,4} |x1 + x2 + x4 ≤ 2, x4 ≤ 1},

V (S) = {x ∈ RS | max
i∈S

xi ≤ 0} for other S ⊂ N, |S| = 3,

V (N) = {x ∈ RN |
∑
i∈N

xi ≤ 2, x3 ≤ 2, x4 ≤ 1}.

For the cardinal convexity property (3.6), only the case with S = {1, 2, 3} and T =

{1, 2, 4} is nontrivial. Let xS ∈ V ◦(S), xT ∈ V ◦(T ). Because (1, 1, 0, 0) ∈ V ◦(S∩T ),

it suffices to show that x = xS + xT − (1, 1, 0, 0) ∈ V ◦(S ∪ T ) = V (N). Now,

∑
i∈N

xi =
∑
i∈S

xS
i +

∑
i∈T

xT
i − 2 ≤ 2 + 2− 2 = 2,

x3 = xS
3 ≤ 2,

x4 = xT
4 ≤ 1.

Hence, x ∈ V (N) and V is cardinally convex. For σ = (1, 2, 3, 4) we have Mσ =

(0, 1, 1, 0). The players of coalition {1, 2, 4} have an incentive to deviate from this

vector, because the allocation (1
3
, 4

3
, 1

3
) ∈ V ({1, 2, 4}) gives them a strictly higher

payoff. Hence, Mσ(V ) /∈ C(V ) and V is not marginal convex, and therefore neither

coalition merge nor individual merge convex. /

Finally, we show that the three marginalistic convexity properties do not imply

cardinal convexity.

Example 3.3.6 Consider the following NTU game with player set N = {1, 2, 3}:

V ({i}) = (−∞, 0] for all i ∈ N,

V (S) = {x ∈ RS | max
i∈S

xi ≤ 1} for S ⊂ N, |S| > 1.

This game is a 1-corner game (see section 3.5.2) and it follows from Proposition 3.5.4

that V is coalition merge convex (and hence, individual merge and marginal convex

as well). This game is, however, not cardinally convex: take S = {1, 2}, T = {2, 3}
and take (1, 1, 0) ∈ V ◦(S), (0, 1, 1) ∈ V ◦(T ). Then (1, 1, 0) + (0, 1, 1) = (1, 2, 1) /∈
V ◦(S ∩ T ) + V ◦(S ∪ T ). /
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Summarising all the results in this section, the five types of convexity for NTU

games are related as is depicted in Figure 3.1. Cardinal convexity is abbreviated

to card-convex, coalition merge convexity to cm-convex, individual merge convexity

to im-convex, ordinal convexity to ord-convex and marginal convexity to m-convex.

An arrow from one type of convexity to another indicates that the former implies

the latter. Where an arrow is absent, such an implication does not hold in general.

?
-

HHHHjcard-convex

cm-convex ord-convex

im-convex m-convex

Figure 3.1: Relations between the convexity notions

3.4 Three-player games

The results in Figure 3.1 hold for general n-player NTU games. In this section, we

consider the relations between the five types of convexity for 3-player NTU games.

First, we prove that in 3-player NTU games, individual merge convexity implies

coalition merge convexity.

Proposition 3.4.1 Let V ∈ NTUN such that |N | = 3. If V is individual merge

convex, then it is coalition merge convex.

Proof: Assume that V is individual merge convex. Then V is individually super-

additive, and because there are only three players, superadditive. For the coalition

merge property, if |U | = 1, then (3.7) is equivalent to (3.8). For |U | > 1, we cannot

find coalitions S and T such that S $ T ⊂ N\U and S 6= ∅. Hence, the coalition

merge property is satisfied. ¤

Next, we show that in 3-player games, coalition merge convexity implies ordinal

convexity.

Proposition 3.4.2 Let V ∈ NTUN such that |N | = 3. If V is coalition merge

convex, then it is ordinally convex.
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Proof: Assume that V is coalition merge convex. Let S1, S2 ⊂ N be such that

S1 6= ∅ and S2 6= ∅. If S1 ⊂ S2 or S2 ⊂ S1, then (3.5) is trivially satisfied. If

S1∩S2 = ∅, then (3.5) is satisfied because V is superadditive. Otherwise, let x ∈ RN

be such that xS1 ∈ V (S1) and xS2 ∈ V (S2) and suppose xS1∩S2 /∈ V (S1 ∩ S2). Then

xS1∩S2 > 0 because |S1 ∩ S2| = 1. Next, define U = S2\S1, S = S1 ∩ S2 and T = S1

and take p = 0 ∈ WPar(S) ∩ IR(S), q = xS1 ∈ V (T ) and r = xS2 ∈ V (S ∪ U).

Then rS = xS1∩S2 > 0 = p. Because V is coalition merge convex, there exists

an s ∈ V (T ∪ U) = V (N) such that s ≥ (q, rU) = (xT , xU) = xS1∪S2 . Hence,

xS1∪S2 ∈ V (N) = V (S1 ∪ S2) and V is ordinally convex. ¤

The following example shows that in 3-player NTU games, marginal convexity need

not imply ordinal convexity.

Example 3.4.1 Consider the following NTU game with player set N = {1, 2, 3}:
V ({i}) = (−∞, 0] for all i ∈ N,

V (S) = {x ∈ RS | max
i∈S

xi ≤ 1} for all S ⊂ N, |S| = 2,

V (N) = {x ∈ RN |
∑
i∈N

xi ≤ 2}.

The marginal vectors of this game are

σ (1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

Mσ (0, 1, 1) (0, 1, 1) (1, 0, 1) (1, 0, 1) (1, 1, 0) (1, 1, 0)

and the core is

C(V ) = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}.
This game is marginal convex. For ordinal convexity, consider S = {1, 2}, T = {2, 3}
and x = (1, 1, 1) ∈ RN . Then we have both xS ∈ V (S) and xT ∈ V (T ), but neither

xS∩T ∈ V (S ∩ T ) nor xS∪T ∈ V (S ∪ T ). Hence, V is not ordinally convex. /

Finally, we show that in 3-player games, cardinal convexity is stronger than coalition

merge convexity.

Proposition 3.4.3 Let V ∈ NTUN be such that |N | = 3. If V is cardinally convex,

then it is coalition merge convex.
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Proof: Assume that V is cardinally convex. Then it is superadditive. For the

coalition merge property, let U ⊂ N be such that U 6= ∅ and let S $ T ⊂ N\U
be such that S 6= ∅. Let p ∈ WPar(S) ∩ IR(S), q ∈ V ◦(T ) and r ∈ V ◦(S ∪ U) be

such that rS ≥ p. Because |S| = 1, we have p = 0 and hence, rS ≥ 0. Next, define

Ŝ = S ∪ U . Then q + r ∈ V ◦(Ŝ) + V ◦(T ) and because of cardinal convexity, there

exists an s ∈ V ◦(Ŝ ∩T )+V ◦(Ŝ ∪T ) such that s ≥ q + r. Because |Ŝ ∩T | = |S| = 1,

V ◦(Ŝ ∩ T ) = R− × 0N\(Ŝ∩T ) and hence, s ∈ V ◦(Ŝ ∪ T ) = V (N) = V (T ∪ U).

Furthermore, sT = (sS, sT\S) ≥ (rS + qS, qT\S) ≥ q and sU ≥ rU . So s satisfies (3.7)

and V is coalition merge convex. ¤

As a corollary, we obtain that in 3-player NTU games, cardinal convexity implies

individual merge, marginal and ordinal convexity as well.

Combining the results of this section with some results of the previous section, in

Figure 3.2 we depict all the relations between the five types of convexity for 3-player

games. To keep the picture clear, the arrows from cardinal convexity to ordinal and

marginal convexity have been omitted.
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Figure 3.2: Relations between the convexity notions, three players

3.5 Special classes of games

In this section, we look at our convexity notions in some specific classes of NTU

games.

3.5.1 Hyperplane games

A hyperplane game is an NTU game V ∈ NTUN such that for all coalitions S ⊂
N, S 6= ∅ we have

V (S) = {x ∈ RS |x>aS ≤ bS} (3.10)

for certain aS ∈ ◦
∆S = {x ∈ RS | ∑

i∈S xi = 1, x > 0} and bS ∈ R. Note that every

entry of aS must be positive to ensure boundedness of V (S) ∩ RS
+. We denote the
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class of all hyperplane games with player set N by HN . A property of hyperplane

games that we are going to use later on, is that these games possess a convex core.

Lemma 3.5.1 Let V ∈ HN . Then C(V ) is a convex set.

Proof: Let aS, bS for all S ⊂ N, S 6= ∅ be as in (3.10). Then

C(V ) = {x ∈ V (N) | ∀S⊂N,S 6=∅@y∈V (S) : y > xS}
=

⋂

S⊂N,S 6=∅
{x ∈ RN |@y∈V (S) : y > xS} ∩ V (N)

=
⋂

S$N,S 6=∅
{x ∈ RN |x>S aS ≥ bS} ∩ {x ∈ RN | x>aN = bN}.

C(V ) is the intersection of a finite number of convex sets and is hence convex. ¤

A parallel hyperplane game is a hyperplane game V ∈ HN such that the projection

of aN onto
◦
∆S equals aS for all coalitions S ⊂ N,S 6= ∅. A parallel hyperplane game

can be viewed as a TU game in which each player’s utility is multiplied by a certain

positive factor. We denote the class of parallel hyperplane games with player set N

by PN .

The next lemma shows that parallel hyperplane games are the only hyperplane

games that can be individually superadditive. As a result, hyperplane games that

are not parallel cannot be coalition merge, individual merge, ordinal or cardinal

convex.

Lemma 3.5.2 Let V ∈ HN . If V is individually superadditive, then it belongs to

PN .

Proof: Assume that V is individually superadditive and for all S ⊂ N, S 6= ∅, let

aS, bS be as in (3.10). Let S ⊂ N,S 6= ∅. Take p ∈ V (S) and let i, j ∈ S. Construct

for all α ∈ R the vector pα = p + α(
aS

i

aS
j
ej − ei), where ej and ei are unit vectors in

RS. Then

p>αaS = p>aS + α(
aS

i

aS
j

(ej)>aS − (ei)>aS)

= p>aS + α(
aS

i

aS
j

aS
j − aS

i )

= p>aS
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≤ bS

for all α ∈ R and hence, pα ∈ V (S). Next, define qα = (pα, 0N\S) for all α ∈ R.

Applying individual superadditivity |N\S| times yields qα ∈ V (N). Hence,

q>α aN = p>aN
S + α(

aS
i

aS
j

(ej)>aN
S − (ei)>aN

S ) ≤ bN

for all α ∈ R. The inequality can only hold for all α ∈ R if the expression between

parentheses equals zero. Therefore
aS

i

aS
j

=
aN

i

aN
j

. Hence, aS is the projection of aN onto
◦
∆S and V ∈ PN . ¤

The following lemma relates the five convexity properties within the class of parallel

hyperplane games.

Lemma 3.5.3 Within PN , coalition merge, individual merge, marginal, ordinal and

cardinal convexity coincide.

Proof: First of all, note that all five convexity properties are scale invariant: if V

satisfies some form of convexity, then so does V w for every vector of scale factors

w ∈ RN
++, where V w(S) = {(wixi)i∈S | x ∈ V (S)} for all S ⊂ N, S 6= ∅. In a parallel

hyperplane game V ∈ PN , one can choose w in such a way that V w corresponds to

a TU game. From this the assertion follows. ¤

The relations between the various forms of convexity for hyperplane games are sum-

marised in Figure 3.3. For simplicity, the double arrow between cardinal and ordinal

convexity and the arrow from cardinal to marginal convexity have been omitted. It

follows from Lemmas 3.5.2 and 3.5.3 that within the class HN , coalition merge, indi-

vidual merge, ordinal and cardinal convexity coincide. Because there are hyperplane

games that are marginal convex, but not parallel, marginal convexity is weaker than

the other four types of convexity.

XXXXXXzXXXXXXy
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Figure 3.3: Relations between convexity notions, hyperplane games
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3.5.2 1-corner games

An NTU game is called a 1-corner game if V (S) = {x ∈ RS |x ≤ uS} for some

uS ∈ RS for all S ⊂ N, S 6= ∅. We denote the class of 1-corner games with player

set N by CN . Monotonicity implies that for all S ⊂ T ⊂ N,S 6= ∅ we must have

uT
S ≥ uS. From this, superadditivity readily follows.

The core of a 1-corner game is given by (cf. Otten (1995)):

C(V ) =
⋃

σ∈Π(N)

{x ∈ V (N) |x ≥ Mσ(V )} (3.11)

In the following proposition we show that all 1-corner games are coalition merge

convex.

Proposition 3.5.4 Let V ∈ CN . Then V is coalition merge convex.

Proof: Let U ⊂ N be such that U 6= ∅, let S $ T ⊂ N\U be such that S 6= ∅ and

let p ∈ WPar(S) ∩ IR(S), q ∈ V (T ) and r ∈ V (S ∪ U) be such that rS ≥ p. Then

it suffices to show that (q, rU) ∈ V (T ∪ U). First, q ∈ V (T ), so q ≤ uT . Similarly,

r ≤ uS∪U and hence, rU ≤ uS∪U
U . Because of monotonicity, we have q ≤ uT∪U

T and

rU ≤ uT∪U
U . Therefore, (q, rU) ≤ uT∪U and (q, rU) ∈ V (T ∪ U). ¤

It can be shown in a similar fashion that every 1-corner game is ordinally con-

vex. However, a 1-corner game need not be cardinally convex, as is illustrated by

Example 3.3.6.

3.5.3 Bargaining games

A bargaining situation is a pair (F, d) where F ⊂ RN is a closed, convex and com-

prehensive set of attainable utility vectors and d ∈ F is a disagreement point such

that there exists a y ∈ F with y > d.

A bargaining situation with d = 0 gives rise to the bargaining game V with

V (S) = RS
− for all S $ N, S 6= ∅ and V (N) = F . We denote the class of bargaining

games with player set N by BN .

Proposition 3.5.5 Let V ∈ BN . Then V satisfies all five convexity properties.

Proof: Define the game W ∈ CN by W (S) = RS
− for all coalitions S ⊂ N,S 6= ∅.

Then W trivially satisfies all five convexity properties. Because V (S) = W (S) for
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all S $ N,S 6= ∅ and V (N) % W (N), it follows from the definitions (3.5)-(3.9) that

V satisfies all five convexity properties as well. ¤

3.6 Relations between convexity and some rules

In this section we investigate how some rules and set-valued solutions on subclasses

of NTUN relate to our convexity notions.

3.6.1 The MC value

The marginal based compromise value or MC value was introduced in Otten et al.

(1998) and is defined by

MC(V ) = αV

∑

σ∈Π(N)

Mσ(V ), (3.12)

where αV = max{α ∈ R+ |α
∑

σ∈Π(N) Mσ(V ) ∈ V (N)}.

Proposition 3.6.1 Let V ∈ NTUN . If V is marginal convex and belongs to HN ,

CN or BN , then MC(V ) ∈ C(V ).

Proof: Assume that V is marginal convex. For V ∈ HN and V ∈ CN , the statement

follows from Lemma 3.5.1 and equation (3.11), respectively. If V ∈ BN , then it is

easily seen that the core includes the set on the right hand side of (3.11), from which

MC(V ) ∈ C(V ) follows. ¤

3.6.2 The compromise value and semi-convexity

The compromise value for NTU games is introduced in Borm et al. (1992) and is an

extension of the τ value for TU games (cf. Tijs (1981)). The compromise value is

a compromise between two payoff vectors. The first one is the utopia vector K(V ),

defined by

Ki(V ) = sup{t ∈ R | ∃
a∈RN\{i}

+
: (a, t) ∈ V (N),@b∈V (N\{i}) : b > a}

for all i ∈ N . The second one is the minimal right vector k(V ), defined by

ki(V ) = max
S:i∈S

ρS
i (V )
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for all i ∈ N , where ρS
i (V ) is the remainder for player i after giving the other

members in S their utopia payoff:

ρS
i (V ) = sup{t ∈ R | ∃a∈RS\{i} : (t, a) ∈ V (S), a > KS\{i}(V )}.

The following lemma comes from Borm et al. (1992).

Lemma 3.6.2 Let V ∈ NTUN with x ∈ C(V ). Then k(V ) ≤ x ≤ K(V ).

A game V ∈ NTUN is called compromise admissible if k(V ) ≤ K(V ), k(V ) ∈ V (N)

and there does not exist a b ∈ V (N) such that b > K(V ). In view of Lemma 3.6.2,

every NTU game with a nonempty core is compromise admissible. For a compromise

admissible game, the compromise value T (V ) is defined by

T (V ) = λV K(V ) + (1− λV )k(V ),

where

λV = max{λ ∈ [0, 1] |λK(V ) + (1− λ)k(V ) ∈ V (N)}.
A game V ∈ NTUN is called semi-convex if k(V ) = 0.4 For TU games, semi-

convexity is implied by convexity and the next lemma states the corresponding

result for NTU games.

Lemma 3.6.3 Let V ∈ NTUN . If V is marginal convex, then it is semi-convex.

Proof: Assume that V is marginal convex. Let i ∈ N and let σ ∈ Π(N) be such

that σ(1) = i. By construction, Mσ
i (V ) = 0. Because of Lemma 3.6.2, we have

ki(V ) ≤ Mσ
i (V ) = 0. On the other hand, ki(V ) = maxS:i∈S ρS

i (V ) ≥ ρ
{i}
i (V ) = 0.

We conclude that ki(V ) = 0 for all i ∈ N and V is semi-convex. ¤

As a corollary, we obtain the following proposition, in which compromise admissi-

bility follows from nonemptiness of the core.

Proposition 3.6.4 Let V ∈ NTUN . If V is marginal convex, then it is compromise

admissible and the compromise value is proportional to the utopia payoff vector.

4Contrary to the TU case (cf. Driessen and Tijs (1985)), we do not require superadditivity in
the definition of semi-convexity.
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3.6.3 The bargaining set

The bargaining set for a game V ∈ NTUN is defined as (cf. Aumann and Maschler

(1964))

M(V ) = {x ∈ I(V ) | ∀i,j∈N∀S⊂N,i∈S,j /∈S∀y∈WPar(S),y>xS

∃T⊂N,i/∈T,j∈T∃z∈WPar(T ) : z ≥ (yS∩T , xT\S)}.

The bargaining set consists of those imputations x such that whenever player i

raises an objection against player j by cooperating with coalition S and promising

the members of S more than they get according to x, player j can counter this

objection by cooperating with coalition T , giving each player in S ∩ T at least the

amount they are promised by i.

It is a well-known result that in TU games, this set is always nonempty and

contains the core. For convex TU games, the bargaining set coincides with the core

(cf. Maschler et al. (1972)). In NTU games, the bargaining set still contains the

core, but there are games in which M(V ) is empty. In the next example we show

that even a strong form of convexity does not ensure M(V ) = C(V ).

Example 3.6.1 Consider the same game as in Example 3.3.6, which is coalition

merge convex. The imputation x = (1
2
, 1

2
, 1) does not belong to the core, but we

show that x ∈ M(V ). By symmetry, we only have to look at objections of player

1 against player 3. Player 1 cannot object on his own, but only through coalition

S = {1, 2}. The maximum payoff vector player 1 can promise is y = (1, 1). But

player 3 can counter this objection through coalition T = {2, 3} and payoff vector

z = (1, 1). Hence, x ∈ M(V ) although x /∈ C(V ) and V is coalition merge convex.

/

Of course, there might be some subclass of NTUN for which coalition merge con-

vexity (or even a weaker form of convexity) implies M(V ) = C(V ). The proof in

Solymosi (1999) for the corresponding TU result uses excess games and it might be

interesting to investigate how this result can be extended to NTU games, and in

particular, what definition of excess games can be used in this context.





Chapter 4

Monotonicity

4.1 Introduction

In cooperative game theory, many monotonicity properties have been introduced

to analyse and characterise various rules. Roughly, a rule on a class of games or

economic situations is monotonic if a certain change in some of the parameters (eg,

player set or payoff function) completely determines the direction of change in a

player’s payoff.

For example, a rule f : TUN → RN is called strongly monotonic (cf. Young

(1985)) if for all u, v ∈ TUN and i ∈ N such that v(S)−v(S\{i}) ≤ u(S)−u(S\{i})
for all S ⊂ N, i ∈ S, we have fi(u) ≥ fi(v). So, if we have a game v ∈ TUN and take

a second game u ∈ TUN in which all of player i’s marginal contributions are higher,

then according to f , player i should get a higher payoff. Young (1985) uses this

monotonicity property, together with efficiency, to characterise the Shapley value.

An overview of various types of monotonicity can be found in Levinský (2000).

In this chapter, we consider two types of monotonicity. First, we generalise a

well-known TU result on population monotonic allocation schemes to NTU games.

The bulk of this chapter deals with sequencing situations, for which we introduce

the concept of drop out monotonicity.

The concept of population monotonic allocation scheme (pmas) was introduced

in Sprumont (1990). A pmas of a game is a scheme consisting of a set of allocations,

one for each subgame. These allocations are all core elements of their corresponding

subgames, and moreover, each player’s payoff increases as the coalition to which he

belongs increases in size. As a result of this monotonicity property, the allocation

33
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for the grand coalition can be seen as fair, since each coordinate is bounded from

below by core elements of the subgames.

Sprumont (1990) shows that for convex TU games, every extended marginal vec-

tor is a pmas and poses the question, whether this result can be extended to NTU

games. In section 2 of this chapter, which is based on Hendrickx (2003), we use

the extensions of TU convexity that we presented in the previous chapter to answer

this question. We show that in an individual merge convex game, each extended

marginal vector is indeed a pmas, while marginal convexity is not sufficient.

In the remainder of this chapter, which is based on Fernández et al. (2002),

we introduce and analyse the concept of drop out monotonicity in the context of

sequencing situations. We say that a rule on a certain class of situations is drop out

monotonic if applying the rule to a reduced situation, in which one of the players

has left, yields an allocation, which, depending on the context, either makes all

remaining players better off or all of them worse off than in the original situation.

We link this concept of drop out monotonicity to stability. A rule is called stable

if it always generates a core element of the corresponding TU game.

If the games corresponding to the reduced situations are subgames of the original

game, then a stable and drop out monotonic rule generates a pmas for the original

game (cf. Sprumont (1990)). In the cases of linear production situations (cf. Owen

(1975)), airport situations (cf. Littlechild and Owen (1973)) and holding situations

(cf. Tijs et al. (2000)), the game corresponding to a reduced situation after one player

drops out is a subgame of the original game. So here, the existence of stable and

monotonic rules boils down to the existence of a pmas. Such pmas-es do not always

exist for linear production games. However, for airport situations, the Shapley value

induces one of many stable and drop out monotonic rules. For holding games, the

rule which gives all gains to the so-called holding house keeper is a pmas.

The property of drop out monotonicity introduced here is inspired by the fairness

condition introduced in Ambec and Sprumont (2002). They study the problem of

water management from a game theoretical point of view: given a river of certain

capacity flowing through a number of countries with certain demand for water, how

should the water of the river be allocated?

The fairness condition states that whenever one of the countries ceases to demand

water (drops out), all other countries should be better off. Contrary to the examples

mentioned before, the reduced situation after a player drops out does not give rise to
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a subgame of the original game. Ambec and Sprumont show that there is a unique

allocation rule which satisfies both stability (ie, generates a core element) and the

fairness condition. This rule (the µ rule) is the marginal vector corresponding to

the ordering of the countries along the river (from upstream to downstream).

As stated before, we study the drop out monotonicity property in the context

of sequencing situations, as introduced in Curiel et al. (1989), in which there is

also a natural ordering of the players. Indeed, in the most basic class of sequencing

situations (with linear cost functions), a result similar to Ambec and Sprumont is

established. Within a more general class of sequencing situations (with regular cost

functions), it turns out that there is at most one stable and drop out monotonic

rule, which must be the (analogue of the) µ rule. Finally, we introduce a class of

sequencing situations with linear cost functions, in which one of the players faces a

due date. It turns out that in this class, the µ rule is indeed stable and drop out

monotonic if the processing times of the agents are equal.

This chapter is organised as follows. In section 2, we consider pmas-es for NTU

games and show that individual merge convexity is sufficient to ensure that each

extended marginal vector is a pmas. In section 3, we introduce the basic sequencing

model and define the µ rule. In section 4, we define drop out monotonicity for

sequencing situations and show that if the cost functions are regular, there can be

at most one stable and drop out monotonic rule. In section 5, we show that in the

class of sequencing situations with linear cost functions in which one of the players

faces a due date, the µ rule is stable and drop out monotonic.

4.2 Population monotonic allocation schemes

A population monotonic allocation scheme or pmas for a TU game v ∈ TUN is a

collection of vectors (yS)S⊂N,S 6=∅, where for all S ⊂ N, S 6= ∅ we have yS ∈ RS such

that
∑
i∈S

yS
i = v(S) (4.1)

and

yS
i ≤ yT

i (4.2)

for all ∅ 6= S ⊂ T ⊂ N and all i ∈ S. A pmas for an NTU game V ∈ NTUN is

a collection of vectors (yS)S⊂N,S 6=∅ satisfying monotonicity condition (4.2) and the
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following efficiency condition, which generalises (4.1):

yS ∈ WPar(S) (4.3)

for all S ⊂ N, S 6= ∅.
As is the case for TU games, also in an NTU game a pmas induces a core element

in every subgame, as is shown in the following lemma.

Lemma 4.2.1 Let V ∈ NTUN and let (yS)S⊂N,S 6=∅ be a pmas for V . Then yS ∈
C(V S) for all S ⊂ N,S 6= ∅.

Proof: Let S ⊂ N, S 6= ∅. Then by definition, yS ∈ V S(S). Suppose that there

exists a coalition T ⊂ S, T 6= ∅ and an allocation x ∈ V S(T ) such that x > yS
T .

Then by (4.2), x > yT , which contradicts yT ∈ WPar(T ). Hence, yS ∈ C(V S) ¤

The extended marginal vector of V with respect to ordering σ ∈ Π(N) is the collec-

tion of vectors (Mσ|S(V S))S⊂N,S 6=∅, where σ|S ∈ Π(S) is such that σ−1(i) < σ−1(j)

implies σ−1
|S (i) < σ−1

|S (j) for all i, j ∈ S.

Sprumont (1990) shows that for TU games, convexity implies that each of the ex-

tended marginal vectors consitutes a pmas. In his concluding paragraph, Sprumont

poses the question whether this result can be generalised to NTU games. Moulin

(1989) shows that in an ordinally convex NTU game, the extended marginal vec-

tor need not constitute a pmas. In the following example, we show that marginal

convexity is not sufficient either.

Example 4.2.1 Consider the following NTU game with player set N = {1, 2, 3}:
V ({i}) = (−∞, 0] for all i ∈ N,

V ({1, 2}) = {x ∈ R{1,2} | 10x1 + x2 ≤ 10},
V ({1, 3}) = {x ∈ R{1,3} |x1 + 10x3 ≤ 10},
V ({2, 3}) = {x ∈ R{2,3} |x2 + x3 ≤ 1},
V (N) = {x ∈ RN |

∑
i∈N

xi ≤ 11}.

It is readily verified that this game is marginal convex. Take σ = (3, 1, 2) and

S = {1, 2}. Then Mσ
2 (V ) = 1 and M

σ|S
2 (V S) = 10, so the extended marginal vector

corresponding to σ is not a pmas. (However, each of the five other extended marginal

vectors does constitute a pmas.) /
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Although in a marginal convex game not every extended marginal vector need be

a pmas, it is still an open question whether for each marginal convex game a pmas

exists.

Individual merge convexity does turn out to be sufficient for the extended

marginal vector to be a pmas, as is shown in the following theorem.

Theorem 4.2.2 Let V ∈ NTUN be an individual merge convex game and let σ ∈
Π(N). Then (Mσ|S(V S))S⊂N,S 6=∅ is a pmas for V .

Proof: First note that property (4.3) is satisfied by construction. For monotonicity

condition (4.2), let S ⊂ T ⊂ N, S 6= ∅ and let i ∈ S. Define S̄ = {j ∈ S |σ−1(j) <

σ−1(i)} and T̄ = {j ∈ T |σ−1(j) < σ−1(i)}. We show that M
σ|S
i (V S) ≤ M

σ|T
i (V T )

by distinguishing between three cases:

• If S̄ = T̄ , then M
σ|S
i (V S) = M

σ|T
i (V T ) by construction.

• Otherwise, if S̄ = ∅, then M
σ|S
i (V S) = 0 and by individual superadditivity,

M
σ|T
i (V T ) ≥ 0.

• Otherwise, apply the individual merge property to i, S̄ and T̄ . Because V is

individual merge convex, the game V and all its subgames are also marginal

convex. Since Mσ|S(V S) ∈ C(V S), there exists no y ∈ V (S̄) such that y >

M
σ|S
S̄

(V S), so M
σ|S
S̄

(V S) lies on or above the weak Pareto boundary of V (S̄).

Hence, there exists a p ∈ WPar(S̄)∩ IR(S̄) such that M
σ|S
S̄

(V S) ≥ p. Taking

q = M
σ|T
T̄

(V T ) ∈ V (T̄ ) and r = M
σ|S
S̄∪{i}(V

S) ∈ V (S̄∪{i}), the individual merge

property states that there exists an s ∈ V (T̄ ∪ {i}) such that si ≥ M
σ|S
i (V S)

and sT̄ ≥ M
σ|T
T̄

(V T ). The latter inequality together with the construction of

a marginal vector imply M
σ|T
i (V T ) ≥ si and hence, M

σ|S
i (V S) ≤ M

σ|T
i (V T ).

From these three cases it follows that (4.2) is satisfied as well and hence,

(Mσ|S(V S))S⊂N,S 6=∅ is a pmas for V . ¤

An immediate consequence of the TU equivalent of Theorem 4.2.2, as noted by

Sprumont (1990), is that for convex TU games, the extended Shapley value is a

pmas.

Using the MC value, as defined by (3.12), the result in Sprumont (1990) can be

extended to the class of NTU games where the core of each subgame is a convex set.
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Proposition 4.2.3 Let V ∈ NTUN be an individual merge convex game such that

C(V S) is convex for all S ⊂ N, S 6= ∅. Then (MC(V S))S⊂N,S 6=∅ is a pmas for V .

Proof: Because the core of every subgame of V is a convex set, the MC value

equals the average of the marginal vectors in each subgame. Using Theorem 4.2.2,

the assertion readily follows. ¤

Without the extra condition on C(V S), the extended MC value need not be a pmas.

As was the case for the extended marginal vectors, marginal convexity is not

sufficient for the extended MC value to be a pmas, even if the core of every subgame

is a convex set.

Example 4.2.2 Consider the 3-person game of Example 4.2.1. The MC value of

the whole game equals (51
6
, 32

3
, 21

6
), while in the subgame consisting of players 1 and

2, the MC value equals (1
2
, 5). Monotonicity condition (4.2) is violated for player 2.

/

4.3 Sequencing situations

One-machine sequencing situations were introduced in Curiel et al. (1989). Follow-

ing the standard notions and notation of the ensuing literature (see, eg, the survey

article of Borm et al. (2001)), there is a queue of players, each with one job, in front

of a machine. Each player must have his job processed on this machine. The finite

set of players is denoted by N = {1, ..., n}. The positions of the players in the queue

are described by a bijection σ : N → {1, . . . , n}, where σ(i) = j means that player i

is at position j in the queue. The set of all such bijections is denoted by ΠN .1 We

assume that the initial order on the jobs before the processing of the machine starts

is σ0 ∈ ΠN , defined by σ0(i) = i for all i ∈ N . The processing time pi > 0 of the job

of player i is the time the machine takes to handle this job. For each player i ∈ N ,

the costs of spending time in the system is described by a cost function ki : R+ → R,

where ki(t) represents the costs of player i if his job is completed in t time units.

Costs are assumed to be additive: the total costs of a coalition S ⊂ N equal the

sum of the individual costs of the members of S. Furthermore, the cost functions

1In sequencing it is more convenient to use these bijections rather than the orderings in Π(N),
which are defined the other way around.
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are regular, ie, for all i ∈ N , ki(t) is increasing in t and ki(0) = 0. A sequencing

situation is described by a triple (N, p, k) with p = (pi)i∈N and k = (ki)i∈N . We

denote the class of all sequencing situations with player set N by SEQN .

We pay special attention to the class of sequencing situations with linear cost

functions, ie, ki(t) = αit for all t ∈ R+ with αi ≥ 0. A sequencing situation with

linear cost functions is denoted by (N, p, α) with α = (αi)i∈N . We denote all such

sequencing situations with player set N by LSEQN .

The completion time C(σ, i) of the job of player i if the jobs are processed (in a

semi-active way) according to the order σ ∈ ΠN is given by

C(σ, i) =
∑

{j∈N |σ(j)≤σ(i)}
pj.

A processing order is called semi-active if there does not exist a job which could be

processed earlier without altering the processing order, ie, if there are no unnecessary

delays. The total costs of all players if the jobs are processed according to the order

σ equal
∑

i∈N ki(C(σ, i)). Clearly, because ΠN is finite, there exists an order for

which total costs are minimised.

In the linear case, a processing order that minimises total costs of N is an order

in which the jobs are processed in decreasing order with respect to the urgency index

ui defined by ui = αi

pi
(cf. Smith (1956)).

Example 4.3.1 Consider a linear one-machine sequencing situation (N, p, α) ∈
LSEQN , where N = {1, 2, 3}, p = (2, 2, 1) and α = (4, 6, 5). Then the urgen-

cies for the players are u1 = 2, u2 = 3 and u3 = 5, respectively. Hence, the optimal

processing order is (3, 2, 1) with total costs 5 · 1 + 6 · 3 + 4 · 5 = 43. /

Note that an optimal order can be obtained from the initial order by consecutive

switches of neighbours i, j with i directly in front of j and ui < uj. This process

will be referred to as the Smith algorithm.

For a sequencing situation (N, p, k) ∈ SEQN the costs CS(σ) of coalition S

with respect to a processing order σ equal CS(σ) =
∑

i∈S ki(C(σ, i)). We want to

determine the minimal costs of a coalition S when its members decide to cooperate.

For this, we have to define which rearrangements of the coalition S are admissible

with respect to the initial order. A bijection σ ∈ ΠN is called admissible for S (cf.

Curiel et al. (1989)) if it satisfies the following condition:
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P (σ, j) = P (σ0, j)

for all j ∈ N\S, where for any τ ∈ ΠN the set of predecessors of a player j ∈ N

with respect to τ is defined as P (τ, j) = {k ∈ N | τ(k) ≤ τ(j)}.2
This condition implies, in particular, that the starting time of each player outside

the coalition S is equal to his starting time in the initial order and the players of S

are not allowed to “jump” over players outside S. The set of admissible orders for

a coalition S is denoted by A(S).

We define the sequencing game (N, c) corresponding to the sequencing situation

(N, p, k) ∈ SEQN by

c(S) = min
σ∈A(S)

∑
i∈S

ki(C(σ, i)) (4.4)

for all S ⊂ N . Contrary to the standard definition of a game, the coalitional value

c(S) reflects the costs of coalition S rather than its worth. As a result, some of the

definitions in section 2.2 change accordingly.

In case the cost functions are linear, expression (4.4) can be rewritten in terms

of gij = max{0, αjpi − αipj}, which equals the cost savings attainable by player i

and j when i is directly in front of j, regardless of the exact position in the order.

A coalition S is called connected with respect to σ if for all i, j ∈ S and ` ∈ N such

that σ(i) < σ(`) < σ(j) it holds that ` ∈ S. The Smith algorithm and (4.4) imply

the following proposition (cf. Curiel et al. (1989)).

Proposition 4.3.1 Let (N, p, α) ∈ LSEQN be a linear sequencing situation and let

c be the corresponding sequencing game. Then for any coalition S that is connected

with respect to σ0 we have

c(S) =
∑
i∈S

αiC(σ0, i)−
∑

i,j∈S:i<j

gij.

For a coalition T that is not connected with respect to σ0 the definition of admissible

orders implies that

c(T ) =
∑

S∈T\σ0

c(S),

2This notion of admissibility is standard in the sequencing literature. Relaxations have been
studied in Van Velzen and Hamers (2003) and Slikker (2003).
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where T\σ0 is the set of components of T , a component of T being a maximally

connected subset of T .

The core of a cost game c is defined by

C(c) = {x ∈ RN |
∑
i∈N

xi = c(N),∀S⊂N :
∑
i∈S

xi ≤ c(S)}.

Analogous to benefit games, a core element is stable in the sense that if such a

vector is proposed as cost allocation for the grand coalition, no coalition will have

an incentive to split off and cooperate on their own.

A sequencing rule is a function f : SEQN → RN
+ assigning to every sequencing

situation (N, p, k) ∈ SEQN a vector f(N, p, k) ∈ RN
+ such that

∑
i∈N fi(N, p, k) =

c(N). A rule f is called stable if f(N, p, k) ∈ C(c) for every sequencing situation

(N, p, k) ∈ SEQN . In this chapter, we investigate one specific rule for the class

of sequencing games with regular cost functions, the µ rule, which is the marginal

vector corresponding to the initial order σ0:

µj(N, p, k) = c(Pj)− c(Pj−1)

for all j ∈ N , where Pj = P (σ0, j) = {1, . . . , j}. In case the cost functions are linear,

we can use Proposition 4.3.1 to rewrite this as

µj(N, p, α) = c({j})−
∑

i∈N :i<j

gij.

According to this rule, the gain gij goes fully to player j, who is behind i in the

queue.

Since every sequencing game is σ0-component additive (cf. Curiel et al. (1995)),

the µ rule is stable.3 So letting the players at the front of the queue pay the highest

costs and attributing the gains to the players at the back of the queue results in a

stable outcome.

4.4 Drop out monotonicity

Suppose that one player in the queue decides to wait no longer and drops out.

One natural question in this situation is how the costs of the other players will be

affected by this. It seems natural that none of the players should be worse off if one

3For sequencing games arising from linear cost functions, concavity of these games can be used
to establish stability of the µ rule (cf. Curiel et al. (1989)).
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of them drops out of the queue. Formally, a rule f : SEQN → RN
+ is called drop out

monotonic if for all sequencing situations (N, p, k) ∈ SEQN and all q ∈ N we have

fj(N, p, k) ≥ fj((N, p, k)−q)

for all j ∈ N\{q}, where (N, p, k)−q = (N\{q}, (pi)i∈N\{q}, (ki)i∈N\{q}) and the initial

order in (N, p, k)−q is σ0 restricted to N\{q}.

Proposition 4.4.1 µ is drop out monotonic on the class of sequencing situations

with linear cost functions.

Proof: Let (N, p, α) ∈ LSEQN be a sequencing situation with linear cost functions,

let q ∈ N and let j ∈ N\{q}. If j < q, then µj(N, p, α) = c({j}) −∑
i∈N :i<j gij =

µj((N, p, α)−q). If j > q, then µj((N, p, α)−q) = (
∑j

i=1 pi − pq)αj −
∑

i∈N :i<j gij +

gqj = ((
∑j

i=1 pi)αj −
∑

i∈N :i<j gij) + (gqj − pqαj) = µj(N, p, α)−min{pjαq, pqαj} ≤
µj(N, p, α). ¤

Proposition 4.4.1 shows that the µ rule is drop out monotonic in case the cost

functions are linear. The question now arises whether this is the only rule satisfying

this property. In the following theorem, we show that within the class of sequencing

situations with regular cost functions (not necessarily linear), the µ rule is the only

possible stable and drop out monotonic rule.

Theorem 4.4.2 Let f be a rule on the class of sequencing situations with regular

cost functions. If f is stable and drop out monotonic, then f equals the µ rule.

Proof: Let (N, p, k) ∈ SEQN be a sequencing situation with regular cost functions

and let f be a stable and drop out monotonic rule. Denote the corresponding

sequencing game by c and denote fS
i = fi(S, (pj)j∈S, (kj)j∈S) and µi = µi(N, p, k)

for all i ∈ N and S ⊂ N,S 6= ∅. We show that f = µ by an inductive argument.

First, from drop out monotonicity it follows that fN
1 ≥ f

{1}
1 . From stability we have

fN
1 ≤ c({1}) = f

{1}
1 . Hence, fN

1 = f
{1}
1 = c({1}) = µ1.

Next, let j ∈ {2, . . . n}. Assume that fN
i = f

Pj−1

i = µi for all i ∈ Pj−1. From drop

out monotonicity we have fN
i ≥ f

Pj

i for all i ∈ Pj, so
∑

i∈Pj
fN

i ≥ ∑
i∈Pj

f
Pj

i = c(Pj).

By stability,
∑

i∈Pj
fN

i ≤ c(Pj). So,
∑

i∈Pj
fN

i = c(Pj) and, using the induction

hypothesis, fN
j = c(Pj)−

∑
i∈Pj−1

fN
i = c(Pj)− c(Pj−1) = µj.

Hence, we conclude that f = fN = µ. ¤
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It follows from Proposition 4.4.1 and Theorem 4.4.2 that drop out monotonicity and

stability together characterise the µ rule on the class of sequencing situations with

linear cost functions.

Theorem 4.4.2 states that if the cost functions are regular, then there exists at

most one stable drop out monotonic rule, which must be the µ rule. However, not

for every class of regular cost functions the µ rule is drop out monotonic. It is

readily seen that for concave cost functions, drop out monotonicity of µ does not

hold. Hence, for such situations no stable drop out monotonic rule exists.

For convex cost functions, the next proposition establishes drop out monotonicity

of µ in case there are three players involved.

Proposition 4.4.3 µ is drop out monotonic on the class of 3-player sequencing

situations with convex cost functions.

Proof: Let (N, p, k) ∈ SEQN be such a situation. To avoid unnecessarily

complicated notation, we only show that µ3 ≥ µ−1
3 , where µ3 = µ3(N, p, k) and

µ−1
3 = µ3({2, 3}, (p2, p3), (k2, k3)). The other cases can be shown in a similar way.

Let σ̂ be an optimal order for N . Then, denoting by σ̂S the order on the players in

S induced by σ̂,

µ3 =
∑
i∈N

ki(C(σ̂, i))− min
σ∈Π({1,2})

∑

i∈{1,2}
ki(C(σ, i))

≥
∑
i∈N

ki(C(σ̂, i))−
∑

i∈{1,2}
ki(C(σ̂{1,2}, i))

= k1(C(σ̂, 1))− k1(C(σ̂{1,2}, 1)) + k2(C(σ̂, 2))− k2(C(σ̂{1,2}, 2)) +

k3(C(σ̂, 3))

≥ 0 + k2(C(σ̂{2,3}, 2))− k2(p2) + k3(C(σ̂{2,3}, 3))

≥ min
σ∈Π({2,3})

∑

i∈{2,3}
ki(C(σ, i))− k2(p2)

= µ−1
3 ,

where the second inequality follows from regularity and convexity of the cost func-

tions. ¤

A type of cost function that has been studied in the literature (cf. Moore (1968))

arises when the players face a due date. Suppose player i ∈ N must have his job
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completed before a certain due date di ≥ 0. If he manages to do this, waiting is

costless and if he is tardy, he has to pay a penalty of one unit. So,

ki(t) =

{
1 if t > di,
0 if t ≤ di.

(4.5)

Finding an optimal order for these cost functions boils down to minimising the

number of tardy jobs. An efficient algorithm for this is provided by Moore (1968).

The following proposition is immediate.

Proposition 4.4.4 The µ rule is drop out monotonic on the class of sequencing

situations with cost functions as in (4.5).

4.5 Sequencing with a single due date

In this section, we consider a mixture of the two main types of cost functions, linear

cost functions and step functions as in (4.5), that were analysed in the previous

section. One of the players, i∗ ∈ N , faces a due date, and the players in N\{i∗}
have linear cost functions. Player i∗ also has a linear cost parameter αi∗ , but if his

job is completed after a certain due date d, he also has to pay a fixed penalty γ > 0.

Note that the cost functions in this framework are regular, so we can apply

Theorem 4.4.2 to conclude that there is at most one stable and drop out monotonic

rule, which must be the µ rule. Contrary to the situation with only linear cost

functions, however, the µ rule may not be drop out monotonic, as is shown in the

next example.

Example 4.5.1 Consider the sequencing situation (N, p, k) ∈ SEQN with N =

{1, 2, 3}, processing times p1 = 1, p2 = 5 and p3 = 1 and cost functions k1(t) = 1000t,

k2(t) =

{
100 if t > 5,
0 if t ≤ 5,

and k3(t) = 10t. For the grand coalition, the optimal order is (1, 3, 2) with costs

1000+100+20=1120, while for coalition {1, 2}, the optimal order is (1, 2) with costs

1000+100=1100. So, according to the µ rule, player 3 should pay 20.

Now, consider the situation in which player 1 has dropped out of the queue. The

optimal order for coalition {2, 3} is then (2, 3) with costs 0+60=60 and the costs for
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coalition {2} equal 0. So, in this reduced situation, player 3 has to pay 60 according

to the µ rule, which is more than in the original situation. Hence, the µ rule is not

drop out monotonic. /

In the remainder of this section, we restrict ourselves to sequencing situations with

a single due date and equal processing times (which without loss of generality we

assume to be 1). It turns out that for this class of situations, drop out monotonicity

of the µ rule can be established.

A sequencing situation with a single due date is represented by a 5-tuple

(N, α, i∗, d, γ) with player set N = {1, . . . , n}, a vector of cost parameters α ∈ RN
+ ,

player i∗ ∈ N facing the due date d ∈ N and penalty γ > 0. Such a situation is a

sequencing situation (N, p, k) ∈ SEQN with pi = 1 for all i ∈ N , ki(t) = αit for all

i ∈ N\{i∗} and

ki∗(t) =

{
αi∗t if t ≤ d,
αi∗t + γ if t > d.

Let (N, α, i∗, d, γ) be a sequencing situation with a single due date. With this

situation we associate two games, ĉ and c. The game ĉ is the formal sequencing

game defined by applying (4.4) to the actual cost functions (ki)i∈N . The game c is

the auxiliary sequencing game that arises if γ is set to 0, ie, the game corresponding

to the linear sequencing situation (N, p, α) ∈ LSEQN with pi = 1 for all i ∈ N .

Games arising from linear sequencing situations are concave, ie, the reverse in-

equalities hold in (3.1)-(3.3). The single due date game ĉ need not be concave, as is

shown in the following example.

Example 4.5.2 Consider (N, α, i∗, d, γ) with N = {1, 2, 3}, α = (10, 2, 5), i∗ = 2,

d = 1 and γ = 10. Then ĉ(N)− ĉ({1, 2}) = 37− 22 > 26− 14 = ĉ({2, 3})− ĉ({2}).
/

Let j ∈ N and let σj ∈ ΠPj
be the unique urgency order on Pj (recall Pj =

{1, . . . , j}), where ties are broken by some fixed order on the players, starting with

i∗. Then the following proposition is immediate.

Proposition 4.5.1 The optimal order on Pj is either σj or the order in which the

completion time of job i∗ is exactly the due date and all other jobs are ordered in

decreasing urgency.
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In order to prove drop out monotonicity of the µ rule, we need to introduce some

auxiliary lemmas and notation. By βj we denote the cost of making player i∗ in

time, starting from the urgency order σj, so

βj =





∑

i∈N :d≤σj(i)<σj(i∗)

αi − (σj(i
∗)− d)αi∗ if d < σj(i

∗) and i∗ ≤ j,

0 if σj(i
∗) ≤ d or i∗ > j.

Note that βj ≥ 0. From Proposition 4.5.1 it follows that

ĉ(Pj) = c(Pj) + Aj,

where Aj = min{γ, βj} represents the extra costs as a result of the due date.

For q ∈ N\{j}, we denote by β−q
j and A−q

j the corresponding costs in the situation

where player q has dropped out of the queue (for q = i∗, we define β−i∗
j = 0). Next,

we define µj = µj(N, p, α) = c(Pj)− c(Pj−1) and µ̂j = µj(N, p, k) = ĉ(Pj)− ĉ(Pj−1)

and µ−q
j and µ̂−q

j accordingly.

From Proposition 4.4.1 we have µ−q
j ≤ µj. To show that the µ rule is drop out

monotonic on the class of sequencing situations with a single due date, we have to

show that µ̂−q
j ≤ µ̂j for all j 6= q. If player i∗ drops out of the queue, then it is

readily seen that this inequality is satisfied, so in the remainder we assume that

q 6= i∗. Rewriting the inequality, we have to show that for all q ∈ N\{i∗, j},

Aj − Aj−1 − (A−q
j − A−q

j−1) ≥ −min{αj, αq}, (4.6)

where the right hand side equals µ−q
j − µj by the proof of Proposition 4.4.1.

First of all, we establish (4.6) for some easy cases.

Lemma 4.5.2 If q > j or i∗ > j, then Aj − Aj−1 − (A−q
j − A−q

j−1) ≥ 0 ≥
−min{αj, αq}.

Proof: If q > j, then A−q
j = Aj and A−q

j−1 = Aj−1. If i∗ > j , then Aj = Aj−1 =

A−q
j = A−q

j−1 = 0. From this the assertion follows. ¤

For i∗ ≤ j, q < j we have the following expressions:

βj =





∑
i∈N :

d≤σj(i)<σj(i∗)

αi − (σj(i
∗)− d)αi∗ if d < σj(i

∗),

0 if σj(i
∗) ≤ d.
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β−q
j =





βj if d < σj(i
∗) < σj(q),∑

i∈N :

d≤σj(i)<σj(i∗)

αi − αq − (σj(i
∗)− d− 1)αi∗ if d < σj(q) < σj(i

∗),

∑
i∈N :

d<σj(i)<σj(i∗)

αi − (σj(i
∗)− d− 1)αi∗ if σj(q) ≤ d < σj(i

∗),

0 if σj(i
∗) ≤ d.

βj−1 =





βj if d < σj(i
∗) < σj(j),∑

i∈N :

d≤σj(i)<σj(i∗)

αi − αj − (σj(i
∗)− d− 1)αi∗ if d < σj(j) < σj(i

∗),

∑
i∈N :

d<σj(i)<σj(i∗)

αi − (σj(i
∗)− d− 1)αi∗ if σj(j) ≤ d < σj(i

∗),

0 if σj(i
∗) ≤ d

β−q
j−1 =





βj−1 if d < σj(i
∗) < σj(q),

β−q
j

if d < σj(i
∗) < σj(j),

σj(q) < σj(i
∗),

∑
i∈N :

d≤σj(i)<σj(i∗)

αi − αj − αq − (σj(i
∗)− d− 2)αi∗

if d < σj(q) < σj(i
∗),

d < σj(j) < σj(i
∗),

∑
i∈N :

d<σj(i)<σj(i∗)

αi − αq − (σj(i
∗)− d− 2)αi∗ if σj(j) ≤ d < σj(q) < σj(i

∗),

∑
i∈N :

d<σj(i)<σj(i∗)

αi − αj − (σj(i
∗)− d− 2)αi∗ if σj(q) ≤ d < σj(j) < σj(i

∗),

∑
i∈N :

d+2≤σj(i)<σj(i∗)

αi − (σj(i
∗)− d− 2)αi∗

if σj(q) ≤ d,
σj(j) ≤ d,
d + 2 ≤ σj(i

∗),

0

if σj(i
∗) ≤ d or

σj(q) ≤ d,
σj(j) ≤ d,
σj(i

∗) = d + 1.

Lemma 4.5.3 If i∗ ≤ j and q < j, then βj ≥ β−q
j .

Proof: Assume that i∗ ≤ j, q < j. Distinguish between the following four cases:

a) σj(i
∗) < σj(q). Then βj = β−q

j .
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b) d < σj(q) < σj(i
∗). Then βj − β−q

j = αq − αi∗ ≥ 0.

c) σj(q) ≤ d < σj(i
∗). Then βj − β−q

j = ασ−1
j (d) − αi∗ ≥ 0.

d) σj(q) < σj(i
∗) ≤ d. Then βj = β−q

j = 0.

¤

As an immediate corollary, we have Aj ≥ A−q
j for i∗ ≤ j, q < j. The case j = i∗ is

considered in the following lemma.

Lemma 4.5.4 If q < j, then Ai∗ − Ai∗−1 − (A−q
i∗ − A−q

i∗−1) ≥ 0 ≥ −min{αj, αq}.

Proof: Obviously, Ai∗−1 = A−q
i∗−1 = 0, so the assertion follows from Lemma 4.5.3.

¤

As a result of the previous lemma, we only consider the case i∗ < j in the remainder.

Lemma 4.5.5 If i∗ < j, q < j and αj ≥ αq, then β−q
j ≥ βj−1.

Proof: Assume that i∗ < j, q < j and αj > αq, then σj(j) < σj(q). (The proof for

αj = αq is similar.) Distinguish between the following seven cases:

a) d < σj(i
∗) < σj(j) < σj(q). Then β−q

j = βj−1 = 0.

b) d < σj(j) < σj(i
∗) < σj(q). Then β−q

j − βj−1 = αj − αi∗ ≥ 0.

c) σj(j) ≤ d < σj(i
∗) < σj(q). Then β−q

j − βj−1 = ασ−1
j (d) − αi∗ ≥ 0.

d) d < σj(j) < σj(q) < σj(i
∗). Then β−q

j − βj−1 = αj − αq ≥ 0.

e) σj(j) ≤ d < σj(q) < σj(i
∗). Then β−q

j − βj−1 = ασ−1
j (d) − αi∗ ≥ 0.

f) σj(j) < σj(q) ≤ d < σj(i
∗). Then β−q

j − βj−1 = 0.

g) σj(i
∗) ≤ d. Then β−q

j = βj−1 = 0.

¤

Similarly, one can prove the following lemma.
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Lemma 4.5.6 If i∗ < j, q < j and αj ≤ αq, then βj−1 ≥ β−q
j .

In Lemmas 4.5.7 and 4.5.8, we establish (4.6) for the cases not covered in Lem-

mas 4.5.2 and 4.5.4.

Lemma 4.5.7 If i∗ < j, q < j and αj ≥ αq, then Aj −Aj−1− (A−q
j −A−q

j−1) ≥ −αq.

Proof: Assume that i∗ < j, q < j and αj ≥ αq. It follows from Lemmas 4.5.3

and 4.5.5 that βj ≥ β−q
j ≥ βj−1 ≥ β−q

j−1. Define ` = Aj − Aj−1 − (A−q
j − A−q

j−1).

Distinguish between the following five cases:

a) γ ≤ β−q
j−1. Then ` = 0.

b) β−q
j−1 < γ ≤ βj−1. Then ` = β−q

j−1 − γ.

c) βj−1 < γ ≤ β−q
j . Then ` = −βj−1 + β−q

j−1.

d) β−q
j < γ ≤ βj. Then ` = γ − βj−1 − (β−q

j − β−q
j−1).

e) βj < γ. Then ` = βj − βj−1 − (β−q
j − β−q

j−1).

From these five cases it follows that ` ≥ −βj−1 + β−q
j−1, so it suffices to show βj−1 −

β−q
j−1 ≤ αq. Assume that αj > αq, then σj(j) < σj(q). (The proof for αj = αq is

similar.) Distinguish between the following six cases:

a) σj(i
∗) < σj(q). Then βj−1 = β−q

j−1.

b) d < σj(j) < σj(q) < σj(i
∗). Then βj−1 − β−q

j−1 = αq − αi∗ ≤ αq.

c) σj(j) ≤ d < σj(q) < σj(i
∗). Then βj−1 − β−q

j−1 = αq − αi∗ ≤ αq.

d) σj(q) ≤ d ≤ σj(i
∗)− 2. Then βj−1 − β−q

j−1 = ασ−1
j (d+1) − αi∗ ≤ αq.

e) σj(q) ≤ d = σj(i
∗)− 1. Then βj−1 = β−q

j−1.

f) σj(i
∗) ≤ d. Then βj−1 = β−q

j−1 = 0.

¤

Similarly, one can prove the following lemma, using Lemma 4.5.6.
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Lemma 4.5.8 If i∗ < j, q < j and αq ≥ αj, then Aj −Aj−1− (A−q
j −A−q

j−1) ≥ −αj.

From Lemmas 4.5.2, 4.5.4, 4.5.7 and 4.5.8 one readily concludes the following theo-

rem.

Theorem 4.5.9 µ is drop out monotonic on the class of sequencing situations with

a single due date.

Since the resulting sequencing games are σ0-component additive, the µ rule also

satisfies stability (cf. Curiel et al. (1995)). As a result, the µ rule is the unique

stable and drop out monotonic rule on this class of situations.



Chapter 5

Communication

5.1 Introduction

In cooperative game theory the central question is how to divide the value of the

grand coalition in a fair way, given the values of all subcoalitions. The value of a

coalition is interpreted as the (monetary) amount the members of that coalition can

obtain if they cooperate. Often, however, this hypothetical maximum is based on

some simplifying assumptions on the underlying problem. Eg, in linear production

situations (cf. Owen (1975)), it is assumed that all the players in a coalition are

physically able to pool their resources. But one can imagine that as a result of

transportation difficulties, cooperation between certain players is restricted.

Myerson (1977) models such a problem as a communication situation, which

consists of an underlying game (eg, linear production game) and an undirected

graph representing the players’ communication possibilities (eg, transport routes).

A communication situation gives rise to a graph-restricted game, in which the value

of a coalition of players reflects their underlying theoretical possibilities as well as

their ability to realise them. A recent overview of communication situations and

related models is provided by Slikker and Van den Nouweland (2001).

The literature on communication situations mainly focuses on the case in which

the underlying game is a transferable utility game, which then gives rise to a TU

graph-restricted game. In section 3, we indicate a disadvantage of modelling the

communication restrictions in this way. To address this, in this chapter, which

is based on Hendrickx (2002), we consider nontransferable utility communication

situations and compare the two approaches.

Myerson (1977) proposes the Shapley value of the graph-restricted game (later

51
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called the Myerson value) as solution concept for TU communication situations. We

use the MC value, which is an NTU generalisation of the Shapley value (cf. Otten

et al. (1998)), to extend the Myerson value to the class of NTU communication

situations.

Van den Nouweland and Borm (1991) and Slikker (2000) study the inheritance

of properties in TU communication situations, ie, given a certain property of TU

games, they provide necessary and sufficient conditions which a graph must satisfy

such that for every game satisfying that property, the graph-restricted game satisfies

the same property. We extend their analysis to NTU communication situations and

relate the TU and NTU models.

This chapter is organised as follows. In section 2, we introduce some notation

and basic definitions. In section 3, we define graph-restricted games, discuss the

models of TU and NTU communication situations and extend the Myerson value.

Finally, in section 4, inheritance of properties is analysed.

5.2 Notation and definitions

For a finite set S, the comprehensive convex hull of a set A ⊂ RS is defined by

cc(A) = {x ∈ RS | ∃t∈N∃x1,...,xt∈A∃(λ1,...,λt)∈∆t : x ≤
t∑

i=1

λix
i},

where ∆t = {λ ∈ Rt
+ |

∑t
i=1 λi = 1}.

For x ∈ R we define

ZS,x = {y ∈ RS |
∑
i∈S

yi ≤ x}

and

Z̄S,x = {y ∈ RS |
∑
i∈S

yi ≤ x, ∀i∈S : yi ≤ x}.

Using this notation, a TU game v ∈ TUN gives rise to an NTU game V ∈ NTUN

by defining

V (S) = ZS,v(S) (5.1)

for all S ⊂ N, S 6= ∅.
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A communication network is an undirected graph (N, E), where the vertices N =

{1, . . . , n} represent the players and the edges E ⊂ {{i, j} | i, j ∈ N, i 6= j} represent

the (bilateral) communication links between the players.

Let (N,E) be a communication network. For all S ⊂ N we define

E(S) = {{i, j} ∈ E | i, j ∈ S},

the set of links between members of S.

A path in (N,E) is a sequence of players (x1, . . . , xt) such that {xi, xi+1} ∈ E

for all i ∈ {1, . . . , t − 1}. A cycle is a path (x1, . . . , xt) where t ≥ 4, xt = x1 and

x1, . . . , xt−1 are all distinct points. Two players i, j ∈ N, i 6= j are connected if there

exists a path (x1, . . . , xt) with x1 = i and xt = j.

A network (N, E) is called

• empty if E = ∅;

• complete if E = {{i, j} | i, j ∈ N, i 6= j};

• connected if each pair i, j ∈ N, i 6= j is connected;

• cycle-free if it does not contain a cycle;

• cycle-complete if for every cycle (x1, . . . , xt), {xi, xj} ∈ E for all i, j ∈
{1, . . . , t}, i 6= j;

• a star if there exists an i ∈ N such that E = {{i, j} | j ∈ N\{i}}.

For S ⊂ N we denote the components of S with respect to (N, E) by S/E, ie,

S/E = {S1, . . . , Sm} such that

• (Si, E(Si)) is connected for all i ∈ {1, . . . , m};

• Si ∩ Sj = ∅ for all i, j ∈ {1, . . . ,m}, i 6= j;

• (Si ∪ Sj, E(Si ∪ Sj)) is not connected for all i, j ∈ {1, . . . , m}, i 6= j;

• Si 6= ∅ for all i ∈ {1, . . . , m}.

Player i ∈ N is called a dummy player in the game V ∈ NTUN if

V (S ∪ {i}) = V (S)× V ({i})
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for all S ⊂ N\{i}, S 6= ∅.
To avoid confusion, we denote the set of weak Pareto optimal allocations for a

coalition S in a game V ∈ NTUN by WPar(V, S) rather than WPar(S) throughout

this chapter. Similarly, we write IR(V, S) instead of IR(S).

To round off this section, a TU communication situation is a triple (N, v, E),

where v ∈ TUN is an underlying TU game and (N,E) is a communication network

with the same player set. Similarly, an NTU communication situation is a triple

(N, V, E) with V ∈ NTUN . The classes of TU communication situatons and NTU

communication situations with player set N are denoted by TUCN and NTUCN ,

respectively.

5.3 Graph-restricted games

In this section, we define graph-restricted games, starting with TU games. We point

out why TU graph-restricted games might not be a satisfactory way of modelling

the role of the communication restrictions. To address this, we define NTU graph-

restricted games and compare the two models.

Let (N, v, E) ∈ TUCN . The game v ∈ TUN represents the underlying possibili-

ties of the players. However, these possibilities cannot come all to fruition because

of the communication restrictions represented by the network (N, E). The graph-

restricted game vE ∈ TUN (cf. Myerson (1977)) takes these restrictions into account

by considering the values of the components that can communicate:

vE(S) =
∑

C∈S/E

v(C) (5.2)

for all S ⊂ N .

The resulting graph-restricted game is again a TU game and hence, side payments

between the players through binding contracts are assumed to be possible, even

between players that cannot communicate. When solving the subsequent graph-

restricted game, this possibility should be carefully taken into account, eg, by only

considering component decomposable solution concepts. A solution f is component

decomposable (cf. Myerson (1977)) if applying f to a communication situation and

applying f to all its components separately leads to the same outcome for each

player.

Another way to address this element of the model is to exclude side payments

between noncommunicating players a priori and consider NTU games. So, let
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(N, V, E) ∈ NTUCN . The graph-restricted game V E ∈ NTUN (cf. Slikker and

Van den Nouweland (2001)) is defined by

V E(S) =
∏

C∈S/E

V (C) (5.3)

for all S ⊂ N, S 6= ∅. Note that the graph-restricted game V E is again an element

of NTUN , satisfying all the basic assumptions as stated in section 2.3.

In particular, NTU graph-restricted games can be constructed for NTU games

that arise from TU games (as in (5.1)). So, a TU communication situation

(N, v, E) ∈ TUCN gives rise to two graph-restricted games: vE and V E.1 But

whereas side payments between players that cannot communicate are still possible

in vE, they are ruled out in V E. In the remainder of this section, we study the

relation between these two graph-restricted games.

The difference between the two games is illustrated in the following example.

Example 5.3.1 Consider the communication situation (N, v, E) ∈ TUCN with

N = {1, 2, 3}, v(S) = 1 for all S ⊂ N, |S| ≥ 2 and E = {{1, 2}}, so players 1 and 2

can communicate, while player 3 cannot communicate with either of them.

In the TU graph-restricted game vE, the value of the grand coalition equals

vE(N) = v({1, 2}) + v({3}) = 1 + 0 = 1,

while in the NTU graph-restricted game V E,

V E(N) = V ({1, 2})× V ({3}) = {x ∈ RN | x1 + x2 ≤ 1, x3 ≤ 0}.

So, whereas in the TU graph-restricted game (0, 0, 1) is a feasible (though unattrac-

tive) payoff vector, in the NTU graph-restricted game a positive payoff to player 3

is ruled out ex ante. /

Although the two graph-restricted games need not be the same, they have the same

core, as is shown in the following proposition.

Proposition 5.3.1 Let (N, v, E) ∈ TUCN . Then C(vE) = C(V E).

1By V E we denote the game that is obtained from v by first taking the corresponding game V
(as in (5.1)) and then applying (5.3). Reversing the order, ie, first applying (5.2) and then taking
the corresponding NTU game would result in a different graph-restricted game, which does not
essentially differ from the TU restricted game vE .
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Proof: “⊂” Let x ∈ C(vE). Because
∑

i∈N xi = vE(N) and vE(N) =∑
C∈N/E v(C), we have

∑
C∈N/E

∑
i∈C xi =

∑
C∈N/E v(C). Furthermore,

∑
i∈C xi ≥

vE(C) = v(C) for all C ∈ N/E, so
∑

i∈C xi = v(C) for all C ∈ N/E. From this it

follows that x ∈ V E(N). Next, let S ⊂ N, S 6= ∅. Then V E(S) =
∏

C∈S/E V (C) =∏
C∈S/E ZC,v(C) ⊂ ZS,

P
C∈S/E v(C). Since

∑
i∈S xi ≥ vE(S) =

∑
C∈S/E v(C), there can

exist no y ∈ V E(S) such that y > xS. Hence, x ∈ C(V E).

“⊃” Let x ∈ C(V E). For all C ∈ N/E, @y∈V E(C) : y > xC implies
∑

i∈C xi =

vE(C) = v(C). Hence,
∑

i∈N xi =
∑

C∈N/E

∑
i∈C xi =

∑
C∈N/E v(C) = vE(N).

Next, let S ⊂ N, S 6= ∅. Then for all C ∈ S/E, @y∈V E(C) : y > xC implies∑
i∈C xi ≥ v(C), and hence,

∑
i∈S xi =

∑
C∈S/E

∑
i∈C xi ≥

∑
C∈S/E v(C) = vE(S).

Hence, x ∈ C(vE). ¤

Not only do the cores of the two graph-restricted games coincide, but also the Shap-

ley/MC solutions. To show this, we first prove equality between the corresponding

marginal vectors.

Lemma 5.3.2 Let (N, v,E) ∈ TUCN and let σ ∈ Π(N). Then mσ(vE) = Mσ(V E).

Proof: Assume without loss of generality that σ(i) = i for all i ∈ N . Define

Si = {1, . . . , i} for all i ∈ N . First, Mσ
1 (V E) = 0 = mσ

1 (vE). Next, let k ∈ N\{n}
and assume that Mσ

j (V E) = mσ
j (vE) for all j ∈ {1, . . . , k}. Let Tk ⊂ Sk be such

that Tk ∪ {k + 1} ∈ Sk+1/E and define T̄k = Tk ∪ {k + 1}. Then,

Mσ
k+1(V

E) = max{x | (Mσ
Sk

, x) ∈ V E(Sk+1)}
= max{x | (Mσ

Tk
, x) ∈ V E(T̄k)}

= max{x |
∑
i∈Tk

Mσ
i (V E) + x ≤ v(T̄k)}

= v(T̄k)−
∑
i∈Tk

Mσ
i (V E)

= vE(Tk ∪ {k + 1})−
∑
i∈Tk

mσ
i (vE)

= mσ
k+1(v

E).

¤

The Shapley value of the TU graph-restricted game is called the Myerson value of

the communication situation (cf. Myerson (1977)). This value µ : TUCN → RN is
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defined as

µ(N, v,E) = Φ(vE).

Theorem 5.3.3 Let (N, v, E) ∈ TUCN . Then µ(N, v,E) = MC(V E).

Proof: It follows from Lemma 5.3.2 that µ(N, v, E) is a compromise between 0

and
∑

σ∈Π(N) Mσ(V E):

µ(N, v,E) = βV

∑

σ∈Π(N)

Mσ(V E),

where βV = max{β ∈ R+ | β
∑

σ∈Π(N) Mσ(V ) ∈ ZN,vE(N)}. By construction,∑
i∈C µi(N, v, E) = v(C) for all C ∈ N/E (cf. Myerson (1977)). So, µ(N, v, E) ∈

V E(N) =
∏

C∈N/E ZC,v(C). Then, from the definition of MC(V E) and V E(N) ⊂
ZN,vE(N), the assertion follows. ¤

5.4 Inheritance of properties

In this section we study the inheritance of properties in NTU communication sit-

uations. Ie, we provide necessary and sufficient conditions that a network (N, E)

must satisfy so that for every game V ∈ NTUN that satisfies a certain property, the

graph-restricted game V E satisfies the same property. Most of our results are based

on their TU counterparts in Van den Nouweland and Borm (1991) and Slikker (2000)

and in many proofs, counterexamples with NTU games arising from TU games are

used. It turns out that the necessary and sufficient conditions on the network are

the same for TU and NTU games for many properties, with the notable exception

of (individual merge) convexity.

First of all, we characterise when balancedness is inherited.

Theorem 5.4.1 Let (N, E) be a communication network. Then the following two

statements are equivalent.

(i) (N, E) is connected or empty.

(ii) For all balanced V ∈ NTUN , V E is balanced.
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Proof: “(i)⇒(ii)” Assume that (i) holds. If (N,E) is empty, then for all V ∈
NTUN , V E(S) = Z̄S,0 for all S ⊂ N, S 6= ∅ and hence, V E is balanced. So, assume

that (N, E) is connected and let V ∈ NTUN be balanced. Let x ∈ C(V ). Because

(N,E) is connected, x ∈ V E(N) = V (N). Let S ⊂ N, S 6= ∅. Because x ∈ C(V ),

there does not exist a y ∈ V (C) such that y > xC for any C ∈ S/E. But since

V E(S) =
∏

C∈S/E V (C), there does not exist a y ∈ V E(S) such that y > xS. Hence,

x ∈ C(V E) and V E is balanced.

“(ii)⇒(i)” Assume that (ii) holds. If |N | ≤ 2, the statement is trivial, so assume

that |N | ≥ 3 and suppose (N, E) is not connected. Take V (S) = ZS,−1 for all S ⊂
N, 1 < |S| < |N | and V (N) = ZN,0. Then V is balanced, since (0, . . . , 0) ∈ C(V ).

By assumption, V E is balanced as well, so let y ∈ C(V E). Then yi ≥ V E({i}) = 0

for all i ∈ N . We also have
∑

i∈N yi =
∑

C∈N/E

∑
i∈C yi. Since for each component

C ∈ N/E it holds that
∑

i∈C yi is at most either 0 or -1, it follows from y ≥ 0

that N/E can only contain components C with
∑

i∈C yi = 0. Since (N, E) is not

connected, it must be empty. ¤

Contrary to balancedness, total balancedness is always inherited, as is shown in the

following proposition. We denote the subgame of a restricted game V E with respect

to coalition S ⊂ N, S 6= ∅ by V E,S.

Proposition 5.4.2 Let (N, V, E) ∈ NTUCN . If V is totally balanced, then V E is

totally balanced.

Proof: Assume that V is totally balanced. Let T ⊂ N, T 6= ∅. Then there exists

an xC ∈ C(V C) for all C ∈ T/E. Define x ∈ RT by xC = xC for all C ∈ T/E. It

suffices to show that x ∈ C(V E,T ).

Since xC ∈ V C(C) = V E,T (C) for all C ∈ T/E, we have x ∈ V E,T (T ). Next, let

S ⊂ T, S 6= ∅. Suppose there exists a y ∈ V E,T (S) such that y > xS. Let D ∈ S/E

and let C ∈ T/E be such that D ⊂ C. Then yD > xD and yD ∈ V E,T (D) = V C(D)

contradict xC ∈ C(V C). Hence, there exists no y ∈ V E,T (S) such that y > xS and

so, V E is totally balanced. ¤

Superadditivity is also inherited for every communication network.

Proposition 5.4.3 Let (N, V, E) ∈ NTUCN . If V is superadditive, then V E is

superadditive.
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Proof: Assume that V is superadditive. Let S, T ⊂ N,S ∩ T = ∅, S, T 6= ∅. Note

that (S/E) ∪ (T/E) is a finer partition of S ∪ T than (S ∪ T )/E. Now,

V E(S)× V E(T ) =
∏

C∈S/E

V (C)×
∏

C∈T/E

V (C) ⊂
∏

C∈(S∪T )/E

V (C) = V E(S ∪ T ),

where the inclusion follows from combining the components of (S/E) ∪ (T/E) and

using superadditivity of V . ¤

In a similar way, one can prove that individual superadditivity is always inherited.

Lemma 5.4.4 Let (N, V, E) ∈ NTUCN . If V is individually superadditive, then

V E is individually superadditive.

Van den Nouweland and Borm (1991) show that TU convexity is inherited for all

cycle-complete graphs. The following lemma shows that cycle-completeness is also

necessary for individual merge convexity in NTU games (see section 3.2).

Lemma 5.4.5 Let (N, E) be a network which is not cycle-complete. Then there

exists an individual merge convex game V ∈ NTUN such that V E is not individual

merge convex.

Proof: Van den Nouweland and Borm (1991) show that there exists a convex game

v ∈ TUN such that vE is not convex. Let v ∈ TUN be such a game and let V be

the corresponding NTU game. Then V is individual merge convex. Because a TU

game is convex if and only if all its marginal vectors belong to the core, there exists

a σ ∈ Π(N) such that mσ(vE) /∈ C(vE). But then, because of Proposition 5.3.1 and

Lemma 5.3.2, Mσ(V E) /∈ C(V E). Hence, V E is not marginal convex and therefore

not individual merge convex. ¤

However, cycle-completeness is not sufficient for inheritance of individual merge

convexity, as is shown in the following example.

Example 5.4.1 Consider (N, V, E) ∈ NTUCN with N = {1, 2, 3, 4},
V (S) = Z̄S,1 if S ∈ {{1, 3}, {3, 4}, {2, 3, 4}},

V ({1, 2, 3}) = cc({(1, 0, 0), (0, 2, 0), (0, 0, 1)}),
V ({1, 3, 4}) = Z̄{1,3,4},2,
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V (N) = cc(Z̄N,2 ∪ {(0, 2, 0, 1)}),
V (S) = Z̄S,0 for other S ⊂ N, S 6= ∅

and E = {{1, 2}, {2, 3}, {3, 4}}.
This game is individual merge convex. The graph-restricted game V E is given

by

V E(S) = Z̄S,1 if S ∈ {{3, 4}, {2, 3, 4}},
V E({1, 2, 3}) = cc({(1, 0, 0), (0, 2, 0), (0, 0, 1)}),
V E({1, 3, 4}) = cc({(0, 1, 0), (0, 0, 1)}),

V E(N) = cc(Z̄N,2 ∪ {(0, 2, 0, 1)}),
V E(S) = Z̄S,0 for other S ⊂ N, S 6= ∅.

The graph-restricted game is not individual merge convex: take k = 2, S = {1, 3}
and T = {1, 3, 4}, and take p = (0, 0) ∈ WPar(V E, S) ∩ IR(V E, S), q = (0, 1, 0) ∈
V E(T ) and r = (0, 2, 0) ∈ V E(S∪{k}). Then there does not exist an s ∈ V E(T∪{k})
such that s2 ≥ 2 and s3 ≥ 1. Hence, V E is not individual merge convex.

For later purposes, note that if we take E ′ = E ∪ {{2, 4}}, we get the same

graph-restricted game V E′ = V E and hence, V E′ is not individual merge convex. /

It turns out that for NTU games, individual merge convexity is inherited for graphs

whose components are either complete or a star.

Theorem 5.4.6 Let (N,E) be a communication network. Then the following two

statements are equivalent.

(i) For all C ∈ N/E, (C, E(C)) is complete or a star.

(ii) For all individual merge convex V ∈ NTUN , V E is individual merge convex.

Proof: “(i)⇒(ii)” Assume that (i) holds. Let V ∈ NTUN be an individual merge

convex game. Then it follows from Lemma 5.4.4 that V E is individually superad-

ditive. For the individual merge property, let k ∈ N , S $ T ⊂ N\{k}, S 6= ∅,
and let p ∈ WPar(V E, S) ∩ IR(V E, S), q ∈ V E(T ) and r ∈ V E(S ∪ {k}) be such

that rS ≥ p. Let Ck ∈ N/E be such that k ∈ Ck and denote Sk = S ∩ Ck and

T k = T ∩ Ck. Then it suffices to show that (qT k , rk) ∈ V E(T k ∪ {k}).
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First, suppose Ck is complete. Then Sk ∈ S/E, T k ∈ T/E and Sk ∪ {k} ∈ (S ∪
{k})/E, so pSk ∈ WPar(V, Sk)∩IR(V, Sk), qT k ∈ V (T k) and rSk∪{k} ∈ V (Sk∪{k}).
Since V is individual merge convex, (qT k , rk) ∈ V (T k ∪ {k}) = V E(T k ∪ {k}).
Second, suppose that Ck is a star. If k is at the centre of this star, then (Sk, E(Sk))

and (T k, E(T k)) are empty and (qT k , rk) ∈ V E(T ∪{k}) by individual superadditiv-

ity. If k is not at the centre, but a member of Sk is, then the same argument as in

the case where Ck is complete can be used. If neither k nor a member of Sk is at

the centre, then rk = 0 and (qT k , rk) ∈ V E(T ∪ {k}) by individual superadditivity.

“(ii)⇒(i)” Assume that (ii) holds. It follows from Lemma 5.4.5 that (N, E) is cycle-

complete. Suppose there exists a component C ∈ N/E which is not complete or a

star. If (C, E(C)) does not contain a cycle, then there exist four players in C, with-

out loss of generality M = {1, . . . , 4} ⊂ C, such that E(M) = {{1, 2}, {2, 3}, {3, 4}}.
Otherwise, it follows from Lemma 4.2 in Slikker (2000) that there exists, without loss

of generality, M = {1, . . . , 4} ⊂ C, such that E(M) = {{1, 2}, {2, 3}, {3, 4}, {2, 4}}.
Take V ∈ NTUN such that the subgame (M, V M) equals the game in Example 5.4.1

and the players in N\M are dummy players. This game is individual merge con-

vex, but the graph-restricted game V E is not. This contradicts (ii), so every every

component must be complete or a star. ¤

Although cycle-completeness is not sufficient to ensure inheritance of individual

merge convexity for arbitrary NTU games, it is sufficient for NTU games arising

from TU games.

Proposition 5.4.7 Let (N, E) be a communication network. Then the following

two statements are equivalent.

(i) (N, E) is cycle-complete.

(ii) For every convex game v ∈ TUN , V E is individual merge convex.

Proof: “(i)⇒(ii)” Assume that (i) holds. Let v ∈ TUN be a convex game. Then

the corresponding NTU game V is individually superadditive and by Lemma 5.4.4,

V E is individually superadditive as well.

For the individual merge property, let k ∈ N , S $ T ⊂ N\{k}, S 6= ∅ and let p ∈
WPar(V E, S)∩IR(V E, S), q ∈ V E(T ), r ∈ V E(S∪{k}) be such that rS ≥ p. Define

C = {C ∈ S/E | ∃i∈C : {i, k} ∈ E}, C ′ = (S/E)\C, D = {D ∈ T/E | ∃i∈D : {i, k} ∈
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E} and D′ = (T/E)\D. Because p ∈ WPar(V E, S), we have that
∑

i∈C pi = v(C)

for all C ∈ S/E. Also,
∑

i∈D qi ≤ v(D) for all D ∈ T/E, rk +
∑

i∈SC∈C C ri ≤
v({k} ∪⋃

C∈C C) and
∑

i∈C ri ≤ v(C) for all C ∈ C ′. From the proof of Theorem 1

in Van den Nouweland and Borm (1991), we know that

v({k} ∪
⋃
C∈C

C)−
∑
C∈C

v(C) ≤ v({k} ∪
⋃

D∈D
D)−

∑
D∈D

v(D).

So, subsequently we have

v({k} ∪
⋃
C∈C

C) +
∑

C∈C′
v(C)−

∑

C∈S/E

v(C) ≤ v({k} ∪
⋃

D∈D
D)−

∑
D∈D

v(D),

rk +
∑

i∈SC∈C C

ri +
∑

i∈SC∈C′ C

ri −
∑
i∈S

pi ≤ v({k} ∪
⋃

D∈D
D)−

∑

i∈SD∈D D

qi,

v({k} ∪
⋃

D∈D
D) ≥ rk +

∑

i∈SD∈D D

qi,

where in the last step we use rS ≥ p. Then, because

V E(T ∪ {k}) = Z
S

D∈D D∪{k},v(
S

D∈D D∪{k}) ×
∏

D∈D′
ZD,v(D),

we have that (q, rk) ∈ V E(T ∪ {k}) and hence, V E is individual merge convex.

“(ii)⇒(i)” Follows from the proof of Lemma 5.4.5. ¤

As is the case for TU games, existence of a population monotonic allocation scheme,

or pmas (see section 4.2), is always inherited for NTU games, as is shown in the

following proposition.

Proposition 5.4.8 Let (N, V, E) ∈ NTUCN . If V has a pmas, then V E has a

pmas.

Proof: Assume that V has a pmas (yS)S⊂N,S 6=∅. For i ∈ S, denote by Ci(S) the

component in S/E to which i belongs. Define xS
i = y

Ci(S)
i for all S ⊂ N, i ∈ S.

Because yC ∈ WPar(V, C) for all C ∈ S/E, we have that xS ∈ WPar(V E, S).

Furthermore, for all i ∈ S ⊂ T ⊂ N ,

xS
i = y

Ci(S)
i ≤ y

Ci(T )
i = xT

i ,

because Ci(S) ⊂ Ci(T ) and (yS)S⊂N,S 6=∅ is a pmas. Hence, (xS)S⊂N,S 6=∅ is a pmas

for the game V E. ¤
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Now we turn our attention to the MC value (see section 3.6.1). One interesting

question is whether the MC value is an element of the core. The following proposition

shows the relationship between an NTU game and its graph-restricted game in terms

of this question.

Proposition 5.4.9 Let (N, E) be a communication network. Then the following

two statements are equivalent.

(i) (N, E) is complete or empty.

(ii) For every V ∈ NTUN with MC(V ) ∈ C(V ), MC(V E) ∈ C(V E).

Proof: “(i)⇒(ii)” Trivial.

“(ii)⇒(i)” Assume that (ii) holds. Suppose (N, E) is not complete or empty. Then,

along the lines of Theorem 4.1 in Slikker (2000), for the game V described in the

proof of Theorem 5.4.1, we have that MC(V ) ∈ C(V ), but MC(V E) /∈ C(V E).

This contradicts (ii), so (i) must hold. ¤

Another interesting question is whether the MC allocation scheme (MC(V S))S⊂N,S 6=∅
is a pmas for the NTU game V . To characterise when this property is inherited, we

need the following lemma.

Lemma 5.4.10 Let V ∈ NTUN and let i ∈ N be a dummy player. Then

MCi(V ) = 0 and MCN\{i}(V ) = MC(V N\{i}).

Proof: By construction, Mσ
i (V ) = 0 for all σ ∈ Π(N) and hence, MCi(V ) =

αV

∑
σ∈Π(N) Mσ

i (V ) = 0. Furthermore, Mσ
j (V ) = M

σ|N\{i}
j (V N\{i}) for all j ∈

N\{i}, σ ∈ Π(N) and V (N\{i}) = V N\{i}(N\{i}), so MCN\{i}(V ) = MC(V N\{i}).

¤

For TU games, the property that the Shapley allocation scheme is a pmas is inherited

for graphs whose components are all complete. This is also necessary for NTU games,

as is illustrated in the following example.

Example 5.4.2 Consider (N, V, E) ∈ NTUCN with N = {1, 2, 3}, E =

{{1, 2}, {2, 3}}, V (S) = ZS,2 for S ⊂ N, |S| = 2 and V (N) = ZN,3. It is read-

ily checked that the MC allocation scheme (MC(V S))S⊂N,S 6=∅ is a pmas for V .

However, in the graph-restricted game V E,
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MC1(V
E,{1,2}) = 1 >

2

3
= MC1(V

E).

/

However, completeness of every component is not sufficient, as is shown in the

following example.

Example 5.4.3 Consider (N, V, E) ∈ NTUCN with N = {1, . . . , 4}, E =

{{1, 2}, {3, 4}} and

V ({1, 2}) = Z{1,2},1,

V ({3, 4}) = {x ∈ R{3,4} |x3 ≤ 1, x4 ≤ 1},
V (S ∪ {i}) = V (S)× V ({i}) for S ∈ {{1, 2}, {3, 4}}, i ∈ N\S,

V (N) = ZN,4,

V (S) = Z̄S,0 for other S ⊂ N, S 6= ∅.

It is readily checked that (MC(V S))S⊂N,S 6=∅ is a pmas for (N, V ). However, in the

graph-restricted game (N, V E),

MC3(V
E,{3,4}) = 1 >

1

2
= MC3(V

E),

where αV E,{3,4} = 1 and αV E = 1
24

. Note that the MC value is not component

decomposable: in the grand coalition, players 3 and 4 suffer from the presence of

players 1 and 2 in the sense that the maximum α is restricted by coalition {1, 2}.
Moreover, because the MC allocation scheme is a pmas, MC(V S) ∈ C(V S) for

all S ⊂ N,S 6= ∅. However, the MC value of the graph-restricted game is not even

a core element:

MC(V E) = (
1

2
,
1

2
,
1

2
,
1

2
) /∈ C(V E).

/

Proposition 5.4.11 Let (N,E) be a communication network. Then the following

two statements are equivalent.

(i) If C ∈ N/E, |C| > 1, then (C, E(C)) is complete and |D| = 1 for all D ∈
N/E, D 6= C.
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(ii) For all V ∈ NTUN such that (MC(V S))S⊂N,S 6=∅ is a pmas for V ,

(MC(V E,S))S⊂N,S 6=∅ is a pmas for V E.

Proof: “(i)⇒(ii)” Assume that (i) holds. If |C| = 1 for all C ∈ N/E, then (ii)

holds trivially. So, let C ∈ N/E, |C| > 1, and let V ∈ NTUN be such that the MC

allocation scheme is a pmas. By Lemma 5.4.10, MCi(V
E,S) = 0 for all S ⊂ N, i ∈

S\C and MCC(V E) = MC(V E,C). Because C is complete, MC(V E,S) = MC(V S)

for all S ⊂ C, S 6= ∅. So, since (MC(V S))S⊂C,S 6=∅ is a pmas for (C, V C), it is also a

pmas for (C, V E,C) and (ii) holds.

“(ii)⇒(i)” Assume that (ii) holds. Suppose that there is a component C ∈ N/E

such that (C, E(C)) is not complete. Then there exists, without loss of generality,

M = {1, 2, 3} ⊂ C such that E(M) = {{1, 2}, {2, 3}}. Take V ∈ NTUN such

that (M, V M) is the game in Example 5.4.2 and the players in N\M are dummy

players. Then, as a result of Lemma 5.4.10, (MC(V E,S))S⊂N,S 6=∅ is not a pmas for

V E, although (MC(V S))S⊂N,S 6=∅ is a pmas for V . Contradiction, so there is no

incomplete component.

Next, suppose there exist two complete components with more than one player.

Then, without loss of generality, there exists M = {1, . . . , 4} ⊂ N such that E(M) =

{{1, 2}, {3, 4}}. Take V ∈ NTUN such that (M,V M) is the game in Example 5.4.3

and the players in N\M are dummy players. Then (MC(V S))S⊂N,S 6=∅ is a pmas for

V , but (MC(V E,S))S⊂N,S 6=∅ is not a pmas for V E. This contradicts (ii), so (i) must

hold. ¤

Finally, we consider the MC values of all subgames. Slikker (2000) shows that

for TU games, the property that the Shapley value of each subgame lies in its

corresponding core is inherited for graphs with complete or star components. In the

following example, we show that for NTU games, completeness of each component

is necessary.

Example 5.4.4 Consider (N, V, E) ∈ NTUCN with N = {1, 2, 3}, E =

{{1, 2}, {2, 3}} and

V ({1, 2}) = {x ∈ R{1,2} |x1 ≤ 1, x2 ≤ 2},
V ({1, 3}) = {x ∈ R{1,3} |x1 ≤ 2, x3 ≤ 0},
V ({2, 3}) = Z{2,3},1,

V (N) = ZN,3.
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It is readily checked that MC(V S) ∈ C(V S) for all S ⊂ N, S 6= ∅. However, in the

graph-restricted game V E,

MC(V E) = (
5

6
,
9

6
,
4

6
),

which is not a core element because of coalition {1, 2}. /

Furthermore, we need the following lemma.

Lemma 5.4.12 Let (N, V,E) ∈ NTUCN and let i ∈ N be a dummy player. Then

C(V ) = {(x, 0) ∈ RN |x ∈ C(V N\{i})}.

Using this, we can state our final result of this chapter.

Proposition 5.4.13 Let (N,E) be a communication network. Then the following

two statements are equivalent.

(i) If C ∈ N/E, |C| > 1, then (C, E(C)) is complete and |D| = 1 for all D ∈
N/E, D 6= C.

(ii) For all V ∈ NTUN such that MC(V S) ∈ C(V S) for all S ⊂ N,S 6= ∅,
MC(V E,S) ∈ C(V E,S) for all S ⊂ N, S 6= ∅.

Proof: “(i)⇒(ii)” Follows immediately from Lemmas 5.4.10 and 5.4.12.

“(ii)⇒(i)” Assume that (ii) holds. Suppose that there exists a C ∈ N/E which is

not complete. Then the game in Example 5.4.4 can be used to contradict (ii). If

there is more than one component with more than one player, Example 5.4.3 can

be used. Hence, (i) must hold. ¤

To round of this chapter, we summarise our inheritance results in the following table,

together with the corresponding results for TU games from Van den Nouweland and

Borm (1991) and Slikker (2000).
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Property TU inheritance condition NTU inheritance condition

Balancedness connected or empty connected or empty
Total balancedness no condition no condition
Superadditivity no condition no condition
Individual merge con-
vexity

cycle-complete every component complete
or star

Existence of pmas no condition no condition
MC value in core complete or empty complete or empty
MC allocation scheme
pmas

every component com-
plete

one component complete,
others singletons

MC value of every
subgame in core

every component com-
plete or star

one component complete,
others singletons





Chapter 6

Spillover games

6.1 Introduction

In standard noncooperative game theory it is assumed that players cannot make

binding agreements. That is, each cooperative outcome must be sustained by Nash

equilibrium strategies. At the other end of the spectrum, in cooperative game theory,

players have no choice but to cooperate. The standard transferable utility (TU)

model assumes that all players involved want to come to an agreement and the

main task is to propose socially acceptable solutions. Noncooperative theory tries

to predict the outcome of strategic situations using equilibrium concepts that at

least require the predicted strategy combinations to be robust against unilateral

deviations.

Both approaches seem to be diametrically opposed. Many real life situations,

however, exhibit both cooperative and strategic features. Neither approach suffices

in these cases. Examples of these situations can be found in parliaments where

governments are based on multiple-party coalitions. Here noncooperative theory

obviously does not work, since agreements have to be made. Also TU theory is not

sufficiently rich, since typically not all parties represented in parliament are part of

the government. Furthermore, TU theory does not take into account the spillover

effects from coalitions on the parties outside. These spillovers measure the impact

of government policy on the opposition parties and thus reflect in some way the

parties’ relative positions in the political spectrum.

This kind of spillovers is present in many situations. For example, one can think

of a situation where a group of people needs to be connected to a source, like in

a telecommunication network. In the literature, many solution concepts have been

69
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introduced (cf. Bird (1976) and Feltkamp (1995)), but these do not take into account

the strategic considerations of players not to join the public enterprise. However,

spillovers occur if one assumes that publicly accessible networks can be built by

smaller groups, hence creating a special type of free-rider effect. In order to find a

fair solution, these possible spillovers should be taken into account.

From these examples one can conclude that in many cooperative situations, a

socially acceptable solution concept should incorporate the strategic options that

result from spillovers. Essentially, spillovers induce a noncooperative aspect in co-

operative situations. They provide incentives for players to join or to stay out of a

coalition. In TU games, these spillovers are not taken into account, but one implic-

itly assumes that players do not have a better alternative than to stay in the group.

As mentioned before, in the government example, this is typically not the case.

To capture spillovers in a cooperative model, this chapter, which is based on

Thijssen et al. (2002), introduces a new class of games, namely spillover games.

This class of games builds on ideas introduced in Van der Rijt (2000) for government

situations. In a spillover game, each coalition is assigned a value, as in a TU game.

In addition, all the players outside the coalition are separately assigned a value as

well, capturing the spillovers from the coalition to the outside players. We restrict

ourselves to a coalitional structure where there is one coalition (eg, a government or

a group building a public network) and a group of singletons outside. This allows

us to redefine some basic concepts of TU theory, while not assuming ex ante that

all players are fully cooperating.

The model of spillover games is explicitly aimed at analysing the influence of a

coalition S on the payoffs of the players outside S. In this sense, spillover games

differ fundamentally from games in partition function form (cf. Bloch (1996) and Yi

(1997)), where for each coalition S the influence of the possible coalition structures

on the player set outside S on the payoff to coalition S is analysed. Hence, the

causality of spillovers in spillover games is reversed compared to partition function

form games.

The structure of this chapter is as follows. In section 2 the class of spillover

games is introduced. In section 3 we extend various TU notions (eg, core, nucle-

olus, convexity) to this new class of games and generalise some basic results. In

section 4 we use a government formation example to introduce marginal vectors and
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a Shapley value. Section 5 takes a closer look at public-private connection prob-

lems and discusses some other classes of OR games where our spillover model seems

appropriate.

6.2 The model

A spillover game is a tuple G = (N,W , v, z), where N = {1, . . . , n} is the set of

players, W ⊂ 2N is a set of coalitions that can cooperate and v and z are payoff

functions, to be specified below.

One main feature of our model is the assumption that exactly one coalition of

players will cooperate. Contrary to TU games, however, we do not impose that the

resulting coalition is the grand coalition. In the example of government formation,

the grand coalition would be a very extreme outcome.

The set W ⊂ 2N contains those coalitions of players who can actually cooperate.

An element of W is called a winning coalition. In a government situation, a natural

choice for W is the collection of coalitions that have a majority in parliament.

We assume that W satisfies the following properties:

• N ∈ W .

• S ⊂ T, S ∈ W ⇒ T ∈ W (monotonicity).

The first property ensures that the game is not trivial, in the sense that there is

at least one winning coalition. The second property states that if a small group of

players S can cooperate (eg, have a majority), then a larger coalition T ⊃ S is also

winning.

The (nonnegative) payoff function v : 2N → R+ assigns to every coalition S ⊂ N

a value v(S). If S ∈ W , then v(S) represents the total payoff to the members of S

in case they cooperate. For S /∈ W we simply impose v(S) = 0.

Suppose that the players in S cooperate. Then the members of S do not only

generate a payoff to themselves. Their cooperation also affects the players outside

S. The payoffs to the other players, which are called spillovers (with respect to S),

are given by the vector zS ∈ RN\S
+ . Again, we simply put zS = 0 for S /∈ W . Note

that whereas the members of S still have the freedom to divide the amount v(S)

among themselves, the payoffs to the players outside S are individually fixed.

Spillovers (with respect to S) are called positive if the total payoff to every coali-

tion U ⊂ N\S is higher than what U can earn on its own, so if
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∑
i∈U

zS
i ≥ v(U) (6.1)

for every U ⊂ N\S. Likewise, spillovers are negative if for every U ⊂ N\S the

reverse inequality holds in (6.1). Note that if for different coalitions U not the same

inequality holds, spillovers are neither positive nor negative.

A set of winning coalitions W ⊂ 2N is called N-proper (cf. Feltkamp (1995)) if

S ∈ W implies N\S /∈ W . In the context of coalition formation in politics, this

property relates to the fact that a coalition and its complement can not have a ma-

jority at the same time.

6.3 Some basic results

In this section, we define and analyse some rules for and properties of spillover

games. These notions are based on their well-known analogues for TU games.

A payoff vector x ∈ RN is individually rational if xi ≥ v({i}) for all i ∈ N . The

S-imputation set of a spillover game G = (N,W , v, z) for S ∈ W , IS(G), consists

of those individually rational payoff vectors in RN
+ which allocate v(S) among the

members of S, while giving the members of N\S their spillovers, ie,

IS(G) = {x ∈ RN |
∑
i∈S

xi = v(S), xN\S = zS,∀i∈N : xi ≥ v({i})}.

The imputation set of G is defined by

I(G) =
⋃

S∈W
IS(G).

It follows from individual rationality that every imputation vector is nonnegative.

A payoff vector in the S-imputation set belongs to the S-core if for every coalition,

the total payoff to the members of that coalition exceeds its value. So, for S ∈ W
we define the S-core by

CS(G) = {x ∈ RN |
∑
i∈S

xi = v(S), xN\S = zS, ∀T⊂N :
∑
i∈T

xi ≥ v(T )},

or equivalently,

CS(G) = {x ∈ RN
+ |

∑
i∈S

xi = v(S), xN\S = zS, ∀T∈W :
∑
i∈T

xi ≥ v(T )}.
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An element of the S-core is stable in the sense that there is no other winning coalition

T that objects to the proposed allocation on the basis of it being able to obtain more

if it forms. The core of G consists of all Pareto efficient payoff vectors in the union

of all S-cores, so

C(G) = Par(
⋃

S∈W
CS(G)),

where Par(A) = {x ∈ A | ¬∃y∈A : y 	 x}. It follows immediately from the defini-

tions that CS(G) ⊂ IS(G) for all S ∈ W and C(G) ⊂ I(G).

Example 6.3.1 Consider the spillover game G = (N,W , v, z) with N = {1, 2, 3},
W = {{1}, {1, 2}, {1, 3}, N} and the following payoffs:

S {1} {1, 2} {1, 3} N
v(S) 1 5 2 6
zS (1, 1) 3 5

Then

C{1}(G) = ∅,
C{1,2}(G) = Conv({(1, 4, 3), (5, 0, 3)}),
C{1,3}(G) = Conv({(1, 5, 1), (2, 5, 0)}),

CN(G) = Conv({(6, 0, 0), (5, 0, 1), (1, 4, 1), (2, 4, 0)}),

where Conv(A) = {x ∈ RN | ∃t∈N∃x1,...,xt∈A∃(λ1,...,λt)∈∆t : x =
∑t

i=1 λix
i} is the

convex hull of A ⊂ RN .

Because the sum of the value and the spillovers is highest for {1, 2}, the core

elements corresponding to this coalition cannot be dominated, so C{1,2}(G) ⊂ C(G).

Also, we have C{1,3}(G) ⊂ C(G), since the payoff to player 2 is strictly higher than

in the core elements corresponding to the other winning coalitions. The N -core,

however, does not fully belong to the core of the game. Eg, (1, 4, 1) is dominated

by (1, 4, 3) ∈ C{1,2}(G) and (2, 4, 0) by (2, 5, 0) ∈ C{1,3}(G). The core of this game is

as follows:

C(G) = Conv({(1, 4, 3), (5, 0, 3)}) ∪ Conv({(1, 5, 1), (2, 5, 0)}) ∪
Conv({(6, 0, 0), (5, 0, 1), (1, 4, 1), (2, 4, 0)})\

(
Conv({(1, 4, 1),

(5, 0, 1)}) ∪ Conv({(1, 4, 1), (2, 4, 0)})
)
.

/
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For TU games, Bondareva (1963) and Shapley (1967) characterised nonemptiness of

the core by means of the concept of balancedness. We establish a similar result for

the class of W-stable spillover games. A game G = (N,W , v, z) is called W-stable if

S, T ∈ W , S ∩ T = ∅ ⇒
{ ∑

i∈T zS
i ≥ v(T ),∑

i∈S zT
i ≥ v(S).

The idea behindW-stability is that there can exist no two disjoint winning coalitions

with positive mutual spillovers. For, if two such coalitions are present, the game

would have no stable outcome in the sense that both these coalitions would want

to form. Note that positive spillover games and spillover games with N -proper W
belong to the class of W-stable games.

A mapping λ : W → R+ is called S-subbalanced if
∑
T∈W

λ(T )eT
S ≤ eS

S.

We denote the set of all S-subbalanced mappings by BS. A game G = (N,W , v, z)

is S-subbalanced if for all λ ∈ BS it holds that

∑
T∈W

λ(T )


v(T )−

∑

i∈(N\S)∩T

zS
i


 ≤ v(S).

Suppose a winning coalition S forms, giving its members a total payoff of v(S). Next,

consider a winning coalition T and consider the situation where T forms. The payoff

to T would then be v(T ), but some of its members would have to forego the spillovers

resulting from the formation of S. So, after subtracting these opportunity costs, the

net payoff to T equals the expression inside the brackets. A game is S-subbalanced

if dividing the net payoffs of all winning coalitions T in an S-subbalanced way yields

a lower payoff than v(S).

Theorem 6.3.1 Let G = (N,W , v, z) be a W-stable spillover game. Then C(G) 6= ∅
if and only if there exists an S ∈ W such that G is S-subbalanced.

Proof: Let S ∈ W . Then

CS(G) 6= ∅
⇔ {x ∈ RN

+ |
∑
i∈S

xi = v(S), xN\S = zS,∀T∈W :
∑
i∈T

xi ≥ v(T )} 6= ∅
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⇔ v(S) = min
x∈RN

{
∑
i∈S

xi | ∀T∈W :
∑
i∈T

xi ≥ v(T ),∀i∈S : xi ≥ 0, xN\S = zS}

(∗)⇔ v(S) = max
λ,µ,ψ

{
∑
T∈W

λ(T )v(T ) +
∑

i∈N\S
µiz

S
i −

∑

i∈N\S
ψiz

S
i |

∑
i∈S

µie
{i} +

∑

i∈N\S
µie

{i} −
∑

i∈N\S
ψie

{i} +
∑
T∈W

λ(T )eT = eS, λ, µ, ψ ≥ 0}

⇔ v(S) = max
λ,µ,ζ

{
∑
T∈W

λ(T )v(T ) +
∑

i∈N\S
ζiz

S
i |

∑
i∈S

µie
{i} +

∑

i∈N\S
ζie

{i} +
∑
T∈W

λ(T )eT = eS, λ, µ ≥ 0}

⇔ ∀λ∈BS :
∑
T∈W

λ(T )v(T ) +
∑

i∈N\S
ζiz

S
i ≤ v(S),

where ∀i∈N\S : ζi =
∑

T∈W:i∈T

λ(T )

⇔ ∀λ∈BS :
∑
T∈W

λ(T )v(T ) +
∑

i∈N\S

∑
T∈W:i∈T

λ(T )zS
i ≤ v(S)

⇔ ∀λ∈BS :
∑
T∈W

λ(T )


v(T )−

∑

i∈(N\S)∩T

zS
i


 ≤ v(S).

The equivalence (*) follows from duality theory. Note that nonemptiness of the

primal feasible set follows from W-stability and that the dual feasible set is always

nonempty. Since C(G) 6= ∅ if and only if there exists an S ∈ W such that CS(G) 6= ∅,
the assertion follows. ¤

A well-known rule for the class of TU games with nonempty imputation set is the

nucleolus (see section 2.2). The nucleolus has the appealing property that it lies in

the core whenever the core is nonempty (cf. Schmeidler (1969)). For spillover games,

we establish a similar result.

The excess of coalition T ⊂ N for imputation x ∈ I(G) is defined by

E(T, x) = v(T )−
∑
i∈T

xi.

If x is proposed as allocation (corresponding to some winning coalition), the excess

of T measures to which extent T is satisfied with x: the lower the excess, the more

pleased T is with the proposed allocation. The idea behind the nucleolus is to

minimise the highest excesses in a hierarchical manner.

Let G = (N,W , v, z) be a game with nonempty imputation set and let S ∈ W
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be such that IS(G) 6= ∅. We define the S-nucleolus of G, νS(G) to be the set of

S-imputations for which the excesses are lexicographically minimal, ie,

νS(G) = {x ∈ IS(G) | ∀y∈IS(G) : (E(T, x))T⊂N ≤∗L (E(T, y))T⊂N}.
Because IS(G) is compact and convex, there exists a unique lexicographic minimum.

The nucleolus of G, ν(G), is the lexicographic minimum of all (well-defined) S-

nucleoli, which is equivalent to

ν(G) = {x ∈ I(G) | ∀y∈I(G) : (E(T, x))T⊂N ≤∗L (E(T, y))T⊂N}.
Because the imputation set is the finite union of all S-imputation sets, the lexico-

graphic minimum exists. It need not be unique, however, since I(G) itself need not

be convex.

As stated before, the TU nucleolus always belongs to the core whenever this

set is nonempty. The same holds for spillover games, as is shown in the following

proposition.

Proposition 6.3.2 Let G = (N,W , v, z) be such that C(G) 6= ∅. Then ν(G) ⊂
C(G).

Proof: First note that since C(G) 6= ∅, the game has a nonempty imputation set

and ν(G) is well-defined. Let y ∈ ν(G) and let Sy ∈ W be such that νSy(G) = {y}.
Let x ∈ C(G). Then the inequalities in the core definition imply E(T, x) ≤ 0 for

all T ⊂ N . But then we must also have E(T, y) ≤ 0 for all T ⊂ N and hence,

y ∈ CSy(G).

To show that y is Pareto efficient, suppose there exists a z ∈ ⋃
S∈W CS(G) such that

z 	 y. Then E(T, z) � E(T, y) for all T ⊂ N . This contradicts (E(T, z))T⊂N ≥∗L
(E(T, y))T⊂N and hence, y ∈ C(G). ¤

A spillover game G = (N,W , v, z) is called superadditive if

v(T ) ≥ v(S) +
∑

i∈T\S
zS

i

for all S ⊂ T ⊂ N . If a game is superadditive, then it is beneficial to form a large

coalition: the payoff to S and the individual players in T\S is larger if these two

groups merge into one coalition rather than stay separate. Note that if spillovers are

positive, this condition is stronger than the TU definition v(T ) ≥ v(S) + v(T\S),

ie, if spillovers are positive, the coalitions have a bigger incentive not to merge.
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A weaker version of superadditivity is individual superadditivity:

v(T ) ≥ v({i}) +
∑

j∈T\{i}
z
{i}
j

for all T ⊂ N, i ∈ T . As we did in Chapter 3 for NTU games, we extend the concept

of TU convexity to the class of spillover games in various ways.

G is convex if

v(S ∪ T ) +
∑

i∈S∩T

z
S\T
i ≥ v(S) +

∑
i∈T

z
S\T
i

for all S, T ⊂ N .

The game G is coalition merge convex if

v(T ∪ U)−
∑
j∈T

zU
j ≥ v(S ∪ U)−

∑
j∈S

zU
j

for all U ⊂ N, S ⊂ T ⊂ N\U . Coalition merge convexity can be interpreted in

terms of increasing marginal contributions: if a large coalition T decides to join U ,

then its marginal contribution, being the value of the resulting coalition minus the

opportunity costs of staying separate, is larger than the marginal contribution (to

U) of a smaller coalition S.

Similarly, G is individual merge convex if

v(T ∪ {k})−
∑
i∈T

z
{k}
i ≥ v(S ∪ {k})−

∑
i∈S

z
{k}
i

for all k ∈ N, S ⊂ T ⊂ N\{k}.
Like their TU analogues, convexity and coalition merge convexity turn out to be

equivalent, as is shown in the following proposition.

Proposition 6.3.3 Let G = (N,W , v, z) be a spillover game. Then G is convex if

and only if G is coalition merge convex.

Proof: “⇒” Let U ⊂ N,S ⊂ T ⊂ N\U . Take A = S ∪ U and B = T . Then,

v(T ∪ U) = v(A ∪B)

≥ v(A) +
∑
i∈B

z
A\B
i −

∑
i∈A∩B

z
A\B
i

= v(S ∪ U) +
∑
i∈T

zU
i −

∑
i∈S

zU
i .
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“⇐” Let A,B ⊂ N . Take S = A ∩B, T = B and U = A\B. Then,

v(A ∪B) = v(T ∪ U)

≥ v(S ∪ U)−
∑
i∈S

zU
i +

∑
i∈T

zU
i

= v(A)−
∑

i∈A∩B

z
A\B
i +

∑
i∈B

z
A\B
i .

¤

As in TU games, (coalition merge) convexity is stronger than superadditivity.

Proposition 6.3.4 Let G = (N,W , v, z) be a convex game. Then G is superaddi-

tive.

Proof: Let A ⊂ B. Then,

v(B) = v(A ∪ (B\A))

≥ v(A) +
∑

i∈B\A
z

A\(B\A)
i −

∑

i∈A∩(B\A)

z
A\(B\A)
i

= v(A) +
∑

i∈B\A
zA

i .

¤

In a similar way, individual merge convexity implies individual superadditivity.

It follows immediately from the definitions that every coalition merge convex

game is individual merge convex. The reverse is not true, as is shown in the following

example.

Example 6.3.2 Consider the spillover game of Example 6.3.1. This game is in-

dividual merge convex. However, it is not superadditive: take S = {1, 2} and

T = {1, 2, 3}, then v(T ) = 6 < 5 + 3 = v(S) + zS
3 . /

6.4 A Shapley value

In this section, we introduce a Shapley value that can be used to provide an indi-

cation of the relative power of the players in a game. On the basis of a government
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example we introduce the concept of marginal vector for spillover games. Con-

trary to its TU counterpart, strategic considerations play an important role in our

definition of marginal vector.

Example 6.4.1 Consider a parliament with four parties1: the communists (COM),

socialists (SOC), Christian democrats (CD) and liberals (LIB). The seats are divided

as follows:

party COM SOC CD LIB
share of seats 0.1 0.3 0.25 0.35

This gives rise to a spillover game with N = {COM, SOC, CD, LIB} and an N -

proper set W of coalitions having a majority:

W = {{SOC, CD}, {SOC, LIB}, {CD, LIB}, {COM,SOC, CD},
{COM, SOC, LIB}, {COM, CD,LIB}, {SOC,CD, LIB}, N} .

For the winning coalitions the payoffs could look as follows (the first entry in the

two-dimensional zS-vectors corresponds to COM):

S v(S) zS

{SOC, CD} 12 (4, 3)
{SOC, LIB} 10 (2, 7)
{CD, LIB} 15 (0, 4)

{COM,SOC, CD} 19 0
{COM, SOC, LIB} 13 6
{COM, CD,LIB} 14 4
{SOC,CD, LIB} 18 1

N 16

Obviously, COM and LIB do not have much in common, which is reflected by a

relatively low payoff to coalitions in which both are involved. The central position of

CD is reflected by the relatively high spillover it experiences when a coalition forms

in which it is not involved. If all four parties get together, the resulting coalition

will not be very homogeneous, which is reflected by a low value for N .

To construct a marginal vector, assume that first the largest party, LIB, enters.

Since this party on itself is not winning, its marginal contribution is zero. To keep

things simple, we assume that parties always join if the coalition in place is not yet

winning. Hence, the second largest party, SOC, joins, creating a winning coalition.

1This example is inspired by the model presented in Van der Rijt (2000).
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Its payoff equals the marginal contribution to the existing coalition, which equals

10-0=10. Next, the third largest, CD has the choice whether to join or not. If it

joins, its marginal contribution is 18-10=8. If it does not join, the worst that can

happen is that coalition {COM, SOC,LIB} eventually emerges, giving CD a payoff

(spillover) of 6. Hence, CD joins the existing coalition. Finally, COM decides not

to join, giving it a spillover of 1 rather than the marginal contribution of -2. So, the

resulting coalition will be {SOC, CD,LIB} with payoff 1 to COM , 10 to SOC, 8

to CD and 0 to LIB. /

The procedure described in the previous example resembles the well-known concept

of marginal vector for TU games. The crucial difference, however, is that contrary

to the TU case, in our context players do not have to join the existing coalition.

As long as there is a winning coalition in place and the worst that can happen if a

player does not join is better than joining, that player has the option to stay outside.

Let (N,W , v, z) be a spillover game. The marginal vector corresponding to σ,

σ ∈ Π(N), denoted by Mσ(N,W , v, z), is defined recursively. By Sσ
k we denote

the current coalition after the first k players have entered and we initialise Sσ
0 = ∅.

Let k ∈ {1, . . . , n}. We assume that player i = σ(k) has to join the coalition in

place, Sσ
k−1, if this coalition is not yet winning. Otherwise, he has to choose between

joining and staying out. As a result of monotonicity of W , once a winning coalition

is in place, a winning coalition will result regardless of whether the next player joins

or not. The minimum payoff to player i = σ(k) if he chooses not to join the winning

coalition Sσ
k−1 equals

mσ
i = min

T⊂N\{i}:T∩P σ
i =Sσ

k−1

zT
i ,

where P σ
i = {j ∈ N | σ−1(j) < σ−1(i)}. If he does join, his marginal contribution

equals

cσ
i = v(Sσ

k−1 ∪ {i})− v(Sσ
k−1).

If player i has the choice, he decides not to join Sσ
k−1 if the worst that can happen

to i if he stays outside, mσ
i , is better than his marginal contribution cσ

i . So,

Sσ
k =

{
Sσ

k−1 if Sσ
k−1 ∈ W and mσ

i > cσ
i ,

Sσ
k−1 ∪ {i} otherwise

and
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Mσ
i (N,W , v, z) =

{
z

Sσ
n

i if Sσ
k−1 ∈ W and mσ

i > cσ
i ,

cσ
i otherwise.

According to this procedure, the coalition Sσ = Sσ
n eventually results and in the

corresponding marginal vector, v(Sσ) is divided among the members of Sσ and the

players in N\Sσ get their corresponding spillovers.

The solution that is computed in Example 6.4.1 is the marginal vector that cor-

responds to the ordering based on the shares of the seats. Of course, this procedure

can be performed with all orderings on the parties, each leading to a marginal vector.

The Shapley value (cf. Shapley (1953)) is defined as the average of these marginal

vectors:

Φ(N,W , v, z) =
1

n!

∑

σ∈Π(N)

Mσ(N,W , v, z).

The Shapley value can be interpreted as an expected vector of power indices if the

orderings on the players are equally likely. The total power according to different

marginal vectors need not be the same. Contrary to each marginal vector separately,

the Shapley value is not “supported” by a single coalition.

Example 6.4.2 Recall from Example 6.4.1 that the marginal vector corresponding

to the order σ = (LIB, SOC, CD, COM) equals Mσ = (1, 10, 8, 0), with resulting

coalition {SOC, CD, LIB}. If we take the order τ = (CD,COM, LIB, SOC),

we obtain the marginal vector M τ = (0, 4, 0, 14) with corresponding coalition

{COM,CD, LIB}. Note that
∑

i∈N Mσ
i 6=

∑
i∈N M τ

i .

Computing all marginal vectors and taking the average yields the Shapley value:

Φ(N,W , v, z) =
1

24
(24, 140, 172, 116).

It is readily seen that there exists no coalition for which the Shapley value is an

allocation. /

The procedure presented in the definition of marginal vector should not be viewed

as a description of how governing coalitions are or should be formed. Rather, these

marginal vectors are an indication of what could happen and through the Shapley

value, they provide an insight into the relative power of the players.

The strategic element in our definition of marginal vector is that a player can

choose not to join when it is in his interest to stay separate. We assume that players
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are cautious in that they only decide not to join when the worst that can happen

when doing so is better than the payoff if they join.2 This strategic element can

be extended in several ways. For example, one can assume that the players play a

sequential move extensive form game and the resulting marginal vector is the payoff

vector corresponding to a subgame perfect equilibrium.

6.5 Public-private connection problems

In many allocation decisions resulting from Operations Research (OR) problems

(cf. Borm et al. (2001)), spillovers occur naturally. In this section, we analyse

public-private connection (ppc) problems. We address two main questions: which

coalition will cooperate and how should the value of this coalition be divided among

its members? We conclude this section by indicating how our model can be used to

handle spillovers in other OR games.

Consider a group of players that can be connected to a source. If a player is

connected to the source, he receives some fixed benefit. On the other hand, by

creating connections costs are incurred. Each player can construct a direct link

between the source and himself, or he can connect himself via other players.

There are two types of connections: public and private. If a player constructs a

public link, other players can use this link to get to the source. A private connection

can only be used by the player who constructs it.

When constructing a network, players can cooperate in order to reduce costs.

We assume that if a group of players cooperate, the players within that coalition

construct an optimal public network, which by definition is open for use by other

players. Once this optimal public network for the coalition is constructed, the players

outside can decide whether or not to connect to the source, using the public network

in place, possibly complemented with private connections. The corresponding pay-

offs to these individual players are the spillovers that result from the formation of

this coalition. We call the resulting model a public-private connection (ppc) prob-

lem. Note that in principle every coalition can build the public network and hence,

W = 2N .

Before formally introducing ppc problems, we start with an example.

2This is quite standard practice in cooperative game theory. Usually, a noncooperative game
is turned into a TU game by assigning values to coalitions based on the maximin principle, ie, by
assuming that the players in a coalition maximise their payoff given that the other players try to
minimise this payoff.
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Example 6.5.1 Consider the ppc problem depicted in Figure 6.1, where * is the

source, the bold numbers indicate the players, the numbers between parentheses

represent the benefits if the players are connected to the source and the numbers on

the edges are the corresponding construction costs.
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Figure 6.1: A ppc problem

First, consider the grand coalition. The best this coalition can do is to build a

public network connecting all players to the source, creating links {∗, 1}, {1, 2} and

{2, 3}. The net payoff equals 4 + 6 + 5− (3 + 2 + 2) = 8.

Next, consider coalition {2}.3 It is optimal for this coalition to create {∗, 1} and

{1, 2}, giving player 2 a payoff of 6− (2 + 3) = 1. The construction of these public

links results in spillovers for players 1 and 3. Player 1 can use the public network and

does not have to create an extra private link, so his spillover equals his benefit of 4.

Player 3 can also use the public network, complemented with the private connection

{2, 3}, giving him a spillover of 5− 2 = 3.

Next, consider {3}. Since every path to the source is more expensive that his

benefit, player 3 will not construct a network at all, giving him a payoff of 0. Player

1 then has to construct a private link {∗, 1} with spillover 1 and player 2, who cannot

use 1’s private link, will have to construct {∗, 1} and {1, 2} privately, giving him a

spillover of 1 as well.

Doing this for every possible coalition, we obtain a spillover game G = (N,W , v, z)

with N = {1, 2, 3}, W = 2N and the following payoffs:

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 1 1 0 5 3 4 8
zS (1, 1, 0) (4, 2) (4, 3) (1, 1) 3 4 4

/

3It may seem strange that a single player or even the empty coalition can build a public network.
For the sake of expositional clarity, we do not a priori exclude this possibility.
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A public-private connection or ppc problem is a triple (N, ∗, b, c), where N =

{1, . . . , n} is a set of agents, ∗ is a source, b : N → R+ is a nonnegative benefit

function and c : EN∗ → R+ is a nonnegative cost function, where N∗ = N ∪ {∗}.
ES is defined as the set of all edges between pairs of elements of S ⊂ N∗, so that

(S,ES) is the complete graph on S:

ES = {{i, j} | i, j ∈ S, i 6= j}.

b(i) represents the benefits if player i ∈ N is connected to ∗ and c({i, j}) represents

the costs if a link between i ∈ N∗ and j ∈ N∗ is formed.

To avoid unnecessary diversions, we simply assume that the optimal public net-

work for each coalition is unique.

A network of edges is a set K ⊂ EN∗ . By N(K) ⊂ N we denote the set of players

that are connected to the source in network K.

A ppc problem (N, ∗, b, c) gives rise to a public-private connection game or ppc

game (N,W , v, z) with W = 2N ,

v(S) = max
K⊂EN∗

{
∑

i∈S∩N(K)

b(i)−
∑

k∈K

c(k)} (6.2)

for all S ⊂ N and

zS
i = max

L⊂EN∗\KS

{b(i)IN(KS∪L)(i)−
∑

`∈L

c(`)},

for all S ⊂ N, i ∈ N\S, where KS denotes the unique network K that maximises

(6.2), and IA(i) equals 1 if i ∈ A and 0 if i /∈ A.

Although the players outside S can use the public network created by S, the

spillovers need not be positive. This is caused by the assumption that only the play-

ers within the coalition that eventually builds the public network can cooperate,

whereas the players outside can only build private links. As a result, the costs of a

particular connection may have to be paid more than once by the players outside

the coalition and consequently, they could be worse off than when they cooperate.

Public-private connection games are superadditive, as is shown in the following

proposition.

Proposition 6.5.1 Let (N, ∗, b, c) be a ppc problem. Then the corresponding game

(N,W , v, z) is superadditive.
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Proof: Let S ⊂ T ⊂ N . Let KS be the optimal public network for S and for all

i ∈ T\S, let L
N\S
i be the optimal private network for i, given that KS is present.

Define K̄ = KS ∪
⋃

i∈T\S L
N\S
i . Then

v(T ) = max
K⊂EN∗

{
∑

i∈T∩N(K)

b(i)−
∑

k∈K

c(k)}

≥
∑

i∈T∩N(K̄)

b(i)−
∑

k∈K̄

c(k)

=
∑

i∈S∩N(K̄)

b(i)−
∑

k∈KS

c(k) +
∑

i∈(T\S)∩N(K̄)

b(i)−
∑

k∈K̄\KS

c(k)

≥ v(S) +
∑

i∈T\S
b(i)IN(K̄)(i)−

∑

k∈K̄\KS

c(k)

≥ v(S) +
∑

i∈T\S


b(i)I

N(KS∪L
N\S
i )

(i)−
∑

`∈L
N\S
i

c(`)




= v(S) +
∑

i∈T\S
zS

i .

¤

Although public-private connection games are superadditive, they need not be con-

vex, as is illustrated in the following example.
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Figure 6.2: A ppc problem

Example 6.5.2 Consider the ppc problem depicted in Figure 6.2. Let S = {1},
T = {1, 3} and U = {2}. Then for the corresponding game (N,W , v, z) we have

v(T ∪ U)−
∑
j∈T

zU
j = v(N)− z

{2}
1 − z

{2}
3
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= 3− 1− 1

< 3− 1

= v({1, 2})− z
{2}
1

= v(S ∪ U)−
∑
j∈S

zU
j .

Hence, this game is not (coalition merge) convex. /

Let us return to the ppc problem in Example 6.5.1. To find a suitable solution

for this problem, we first consider the core of the corresponding ppc game G. The

S-cores are given in the following table.

S CS(G)
∅ ∅
{1} {(1, 4, 2)}
{2} {(4, 1, 3)}
{3} ∅
{1, 2} Conv({(4, 1, 3), (1, 4, 3)})
{1, 3} Conv({(3, 4, 0), (1, 4, 2)})
{2, 3} Conv({(4, 4, 0), (4, 1, 3)})

N Conv({(4, 1, 3), (4, 4, 0), (3, 5, 0), (1, 5, 2), (1, 4, 3)})
Since the N -core (weakly) dominates all the other cores, we have C(G) = CN(G).

Note that there are some core elements that are supported by other coalitions as

well, all of which contain player 2. The core element (4, 1, 3) is even supported by

every coalition containing player 2.

In Figure 6.3 we depict the four S-cores that yield core elements and (therefore)

lie in the hyperplane with total payoff 8. The payoff to player 1 is in normal typeface,

the payoff to player 2 is italic and the payoff to player 3 is bold. The N -core CN(G)

is the shaded pentagon, C{1,2} is the line segment with the triangles, C{2,3} is the

line segment with the stars and C{2} is the point (4, 1, 3).

To solve the ppc problem, suppose for the moment that all players cooperate.

We have already seen that it is optimal for the grand coalition to connect all its

members to the source. Since the benefits of a coalition do not depend on the shape

of the network that is formed as long as everyone is connected, the optimal network

in this ppc problem, {{∗, 1}, {1, 2}, {2, 3}}, is actually a minimum cost spanning

tree (cf. Claus and Kleitman (1973)). In this context, Bird (1976) proposed that

each player pays the costs of the (unique) link that is adjacent to him and lies on

the path between him and the source. So, one way to solve a ppc problem is to
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Figure 6.3: The core of G

assume that construction costs are divided using Bird’s rule and everyone gets his

own benefit. According to this Bird-like procedure, player 1 receives 4 − 3 = 1,

player 2 gets 6 − 2 = 4 and player 3 gets 5 − 2 = 3. This yields the core element

(1, 4, 3) as solution.

This procedure, however, has some elementary flaws. The nice properties of the

Bird rule for minimum cost spanning tree problems follow from the assumption that

all players have to cooperate and connect to the source. Moreover, this rule does not

take the spillovers into account. The strategic option of players not to participate in

a coalition undermines the Bird approach. Player 1 will never agree to the proposed

payoff vector (1, 4, 3), since he will be better off leaving the grand coalition, which

will lead to a payoff (spillover) of 4. Knowing this, player 3 can argue that he should

at least receive 3, his spillover when player 2 forms a coalition on his own. Taking this

into account, the payoff vector (4, 1, 3) seems a more reasonable outcome. Because

player 2 on his own will build a network that also connects player 1 to the source,

the latter player occupies a position of power in this ppc problem, which should

somehow be reflected in his payoff.

The payoff vector (4, 1, 3) is a core element of the corresponding ppc game and

is supported by all coalitions containing player 2. This payoff, however, is not

acceptable to player 2. He can argue that if he were to refuse to build his optimal
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public network, it would then be optimal for players 1 and 3 to work together, giving

player 2 a spillover of 4.

By considering this kind of strategic threats of the players not to cooperate, any

seemingly reasonable proposal can be dismissed. As a result, it is not clear which

coalition will eventually emerge and what the corresponding payoffs will be.

This phenomenon of free-riding is well-known in the context of public goods.

Although it is socially optimal for all the players to cooperate in order to provide a

public good, the players separately have the strategic incentive not to do so.

One way to solve this problem is to apply the Shapley value, as defined in the

previous section. In each marginal vector, the strategic aspects mentioned above are

taken into account. By averaging over all marginal vectors, some kind of “average”

influence of these noncooperative considerations is reflected in the payoff.

Example 6.5.3 Consider the ppc problem of Example 6.5.1. The Shapley value

equals

Φ(N,W , v, z) =
1

6
(17, 20, 11).

/

As was discussed in the previous section, the definition of marginal vector can be

adapted to reflect the level of strategic considerations one wants to incorporate in

the model.

Public-private connection situations are not the only class of OR problems in

which spillovers occur. A related phenomenon arises in travelling salesman situ-

ations (cf. Tamir (1989)). In a travelling salesman situation, there is a graph in

which the vertices represent the locations of the players (and the salesman) and the

edges represent the roads between them along which the salesman can travel. The

problem is to find a cheapest Hamiltonian circuit in this graph, where each edge has

a nonnegative cost associated with it.

Also, each subcoalition faces the same problem of finding a cheapest Hamiltonian

circuit through the vertices in which the players in this coalition and the salesman

are located. This gives rise to a cooperative cost game. As is the case in minimum

cost spanning tree situations, however, one does not take into account that there are



6.5. Public-private connection problems 89

spillovers involved. If a subcoalition of players decides to work together and invite

the salesman to travel to them according to their cheapest tour, the salesman might

come near some players outside the coalition, making it cheaper for them to have

him come to visit them as well.

In sequencing situations (see section 4.3), spillovers can also play a role. In a

sequencing situation, there is a queue of players waiting to be served. The players

in the queue might have different opportunity costs, so moving high-cost players to

the front while compensating the low-cost players through side payments can result

in a Pareto improvement.

Normally, in such situations, only pairs of players who are adjacent in the queue

are allowed to switch, so that a third player can never suffer. If we use our spillover

model, however, this restriction is unnecessary, since the effect of any pairwise switch

on the other players can be taken into account explicitly.





Chapter 7

Bankruptcy situations with
references

7.1 Introduction

Bankruptcy problems were introduced by O’Neill (1982) and have been subsequently

analysed in a variety of contexts. In a bankruptcy situation, one has to divide a given

amount of money (estate) amongst a set of agents, each of whom has a claim on the

estate. The total amount claimed typically exceeds the estate available, so not all

the claims of the agents can be fully satisfied.

The example originally given by O’Neill (and which is inspired by some passages

in the Talmud) is that of a bequest: a man dies, leaving behind an estate which is

not sufficiently large to satisfy all promises made to his heirs in his will. Another

example is that of a firm going bankrupt, whose assets are insufficient to satisfy all

creditors’ outstanding claims.

O’Neill proposes a particular solution to this problem, which he calls the method

of recursive completion (also known as the run-to-the-bank rule). This solution

turns out to be the Shapley value of a corresponding bankruptcy game, which is a

transferable utility game where the value of each coalition is the amount of money

that is left of the estate after all the claims of the agents outside that coalition

are satisfied. Aumann and Maschler (1985) and Curiel et al. (1987) proposed and

characterised two further solutions that coincide with the nucleolus and compromise

value of the corresponding bankruptcy game, respectively.

O’Neill’s bankruptcy model has been applied to a wide array of economic prob-

lems, eg, taxation problems (cf. Young (1988)), surplus-sharing problems (cf. Moulin

(1987)), cost-sharing problems (cf. Moulin (1988)), apportionment of indivisible

91
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good(s) problems (cf. Young (1994)) and priority problems (cf. Moulin (2000) and

Young (1994)).

In some situations the claims of the players are not the only quantities that are

relevant for determining how to divide the estate. Pulido et al. (2002) analyse the

problem of dividing a sum of money to the various degree courses that are offered

at Miguel Hernandez University in Elche, Spain. Each course has a claim, which

reflects in some way the monetary needs of this course. These needs are determined

within a fixed set of rules and are verifiable to everyone involved. In addition to

these claims, the Valencian government (Generalitat Valenciana) provides a set of

rules of its own to indicate what each course should get, without taking into account

how much money is available. This allocation can be considered as an exogenous

reference point for determining a fair division of the estate.

Clearly, both the claims and the references form a relevant basis for the allocation

decision. The natural question is how these two criteria in such a bankruptcy situa-

tion with references should be combined in order to reach a fair outcome. In Pulido

et al. (2002), the special case is considered, in which the estate suffices to implement

the reference point. In this case, the references can be interpreted as rights. They

describe a two-stage procedure which first gives each claimant his reference amount

and then shares the remainder using a bankruptcy rule.

In this chapter, which is based on Pulido et al. (2003), we consider situations in

which the estate is not necessarily big enough to pay all reference amounts. Hence,

we do not regard these references as rights. As a result, our analysis extends the

analysis in Pulido et al. (2002), but we provide different answers on the class of

situations in which both models are applicable.

We consider two ways in which the claim and reference vectors are combined and

for either approach, we define a compromise solution. The underlying idea is the

following: for each player we combine the claim and reference vectors in such a way

that the resulting payoff to him is maximal. Doing this for every player, we obtain

an upper vector, which can be seen as a utopia point. On the other hand, we find for

each player that combination which gives him a minimal outcome, which results in

a lower vector. The compromise solution is then defined as the convex combination

of the upper and lower vector that is efficient with respect to the estate.

For both approaches we also define a corresponding bankruptcy game with ref-

erences. These games are exact, but not necessarily convex. Our two compromise
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solutions turn out to coincide with the compromise values of these games.

This chapter is organised as follows. First, in section 2 we introduce bankruptcy

situations and discuss some bankruptcy rules. In section 3, we introduce bankruptcy

situations with references. In section 4 we present our compromise solutions. In

section 5 we define and analyse the two corresponding games and show that the

compromise solutions coincide with their compromise values.

7.2 Bankruptcy situations and games

A bankruptcy situation (cf. O’Neill (1982)) is a triple (N,E, c), where N = {1, . . . , n}
is the set of players, E ≥ 0 is the estate to be divided and c ∈ RN

++ is the vector

of claims such that C ≥ E, where we define C = c(N).1 We denote the class of

bankruptcy situations with player set N by BRN . As with games, we sometimes

omit the player set and denote a bankruptcy situation by (E, c).

A bankruptcy rule is a function f : BRN → RN that assigns to every bankruptcy

situation (N, E, c) ∈ BRN a payoff vector f(N, E, c) ∈ RN such that

0 ≤ fi(N,E, c) ≤ ci for all i ∈ N (reasonability),∑
i∈N fi(N,E, c) = E (efficiency).

In the literature, many bankruptcy rules have been proposed. The most well-known

are summarised below.

• Proportional rule: PROP (N, E, c) = E
C
c, ie, each player gets a share of E

proportional to his claim.

• Constrained equal award rule: CEAi(N,E, c) = min{α, ci} for all i ∈ N ,

where α ∈ R is such that
∑

i∈N CEAi(N,E, c) = E, ie, each player receives

the same amount, provided that this does not exceed his claim.

• Constrained equal loss rule: CELi(N, E, c) = max{ci − β, 0}, where β ∈ R
is such that

∑
i∈N CELi(N,E, c) = E, ie, each player loses the same amount

with respect to his claim, provided that he gets at least zero.

• Talmud rule or contested garment rule (Aumann and Maschler (1985)):

TAL(N,E, c) =

{
CEA(N,E, 1

2
c) if C ≥ 2E,

c− CEA(N, C − E, 1
2
c) if C < 2E.

1Throughout this chapter, for a vector x ∈ RN we denote x(S) =
∑

i∈S xi for all S ⊂ N .
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If the estate is small, then this amount is divided using the CEA rule after

halving the claims. Otherwise each player receives his claim and the difference

is taken back using CEA.

• Run-to-the-bank-rule or random arrival rule or recursive completion rule

(cf. O’Neill (1982)): RTB(N, E, c) = 1
n!

∑
σ∈Π(N) ρ(σ), where for all σ ∈ Π(N)

and p ∈ {1, . . . n}, ρσ(p)(σ) = max{min{cσ(p), E − ∑p−1
k=1 cσ(k)}, 0}. So an or-

dering σ determines a race to the bank, where the players arriving at the

bank receive their claim as long as there is still some money available. The

run-to-the-bank solution is the average over all such races.

• Adjusted proportional rule (cf. Curiel et al. (1987)): APROP (E, c) =

m(E, c) + PROP (E ′, c′), where mi(E, c) = max{E − ∑
j∈N\{i} cj, 0} de-

notes player i’s minimal right, E ′ = E − ∑
i∈N mi(E, c) and for all i ∈ N ,

c′i = min{ci −mi(E, c), E ′}. First, each player receives his minimal right and

the remainder is divided using the proportional rule, where each player’s claim

is truncated to the estate left.

Every bankruptcy situation (N,E, c) ∈ BRN gives rise to a bankruptcy game vE,c ∈
TUN , where the value of a coalition S ⊂ N is given by

vE,c(S) = max{E −
∑

i∈N\S
ci, 0}. (7.1)

So vE,c(S) is that part of the estate that is left for the players in S after the claims

of all the other players have been satisfied.

A bankruptcy rule f is called game-theoretic if for all (N, E, c), (N, E, c′) ∈ BRN

such that vE,c = vE,c′ we have f(N, E, c) = f(N, E, c′). Curiel (1988) shows that

f is game theoretic if and only if it satisfies the truncation property, ie, for all

(N,E, c) ∈ BRN , f(N, E, c) = f(N, E, c′) with c′i = min{ci, E} for all i ∈ N . Of

the rules discussed in this section, only PROP and CEL are not game-theoretic.

Some bankruptcy solutions turn out to coincide with well-known solutions of

the corresponding bankruptcy games. O’Neill (1982) showed that RTB(N,E, c) =

Φ(vE,c) for all (N,E, c) ∈ BRN . Similarly, the Talmud rule coincides with the nucle-

olus of the corresponding game (cf. Aumann and Maschler (1985)) and the adjusted

proportional rule coincides with the compromise value (cf. Curiel et al. (1987)).

A nice survey on bankruptcy situations is provided by Thomson (2003).
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7.3 Bankruptcy situations with references

A bankruptcy situation with references (cf. Pulido et al. (2002)) is a 4-tuple

(N, E, r, c), where N = {1, . . . , n} is the set of players, E ≥ 0 is the estate un-

der contest, r ∈ RN
+ is the vector of references and the vector of claims, c ∈ RN

++, is

such that c(N) ≥ E. The claim vector c has the same interpretation as the claim

vector in standard bankruptcy situations, while r represents some exogenously given

reference point for the division of the estate. We assume that ri ≤ ci for every player

i ∈ N . We denote R = r(N) and C = c(N). The set of all bankruptcy situations

with references with player set N is denoted by BRRN .

Pulido et al. (2002) distinguish between two types of bankruptcy situations with

references: CERO bankruptcy situations (C ≥ E ≥ R ≥ 0) and CREO bankruptcy

situations (C ≥ R > E ≥ 0). They only analyse the CERO case, in which the

estate is sufficient to give each player his reference amount. As pointed out in

the introduction, in the CERO case the references can be interpreted as rights.

Basically, such a situation can be solved by first allocating this reference point and

then dividing the surplus E − R. Using this idea, Pulido et al. (2002) define

corresponding CERO bankruptcy games.

We consider both cases simultaneously, so in our context the references cannot

necessarily all be satisfied and can therefore not be considered as rights. Hence,

we take a different approach to solving such situations and defining appropriate

corresponding games. As a result, the analysis differs from Pulido et al. (2002) even

on the class of CERO situations.

In order to come to a solution we will have to make some assumptions on the way

in which the claims and reference point are used to divide the money. Obviously,

the claim and reference vectors should both be taken into account, but this can be

done in a number of ways. We first construct a new “demand” vector2, reflecting

both r and c. After that, a given bankruptcy rule f is applied to this new vector.

Throughout our analysis, we consider two approaches to constructing the com-

bined demand vector. For either approach we define a family of compromise solu-

tions and games, depending on the choice for f .

We assume that f satisfies complementary monotonicity (CM): for all S ⊂ N

2To avoid confusion, in the remainder of this chapter we will reserve the term claim vector
for the bankruptcy situation with references. The claims in the ensuing bankruptcy situation are
called demands, which we denote by the demand vector d ∈ RN

+ .
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and d, d′ ∈ RN
+ such that dj = d′j, for all j ∈ N\S and di ≤ d′i for all i ∈ S, we

have that fj(N,E, d) ≥ fj(N,E, d′) for all j ∈ N\S. Using an induction argument,

it is easily established that this is equivalent to the same requirement only for all

one-person coalitions S.

All bankruptcy rules mentioned in section 7.2 satisfy CM, with the notable ex-

ception of APROP , as is shown in Pulido (2001).

7.4 Compromise solutions

In this section, we define two (families of) compromise solutions for bankruptcy

situations with references. As stated in the previous section, we assume that first

the reference and claim vectors are combined into a new demand vector. But instead

of directly combining these two vectors, we determine, given the rule f , for each

player which combination leads to the highest payoff to him and which one to his

lowest payoff. This leads to an upper and lower bound for the allocation of the

estate. The compromise solution is then simply defined as the unique efficient convex

combination of these two vectors.

Geometrically, combining claims and references boils down to picking a point in

the hypercube Πi∈N [ri, ci]. We consider two possibilities. In our first approach, the

extreme approach, we consider the extreme points of this hypercube, ie, points in

which some players demand their reference amount and the others their claim. The

lower vector `f and the upper vector Lf are defined by

`f
i (N, E, r, c) =

{
fi(N, E, (ri, cN\{i})) if ri + c(N\{i}) ≥ E,
E − c(N\{i}) if ri + c(N\{i}) < E

and

Lf
i (N, E, r, c) =

{
fi(N, E, (ci, rN\{i})) if ci + r(N\{i}) ≥ E,
ci if ci + r(N\{i}) < E

for all i ∈ N . It follows from CM that (ri, cN\{i}) is the worst extreme point for

player i and that (ci, rN\{i}) is the best. If in a point the estate suffices to satisfy

all demands, then player i gets what is left by the other players, with a maximum

of his own claim ci.

In the following lemma, which we will prove in section 5, we show that `f and Lf

can indeed be considered as lower and upper bounds, respectively, for the division

of the estate.
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Lemma 7.4.1 Let (N, E, r, c) ∈ BRRN be a bankruptcy situation with references.

Then for the corresponding lower and upper vectors we have `f ≤ Lf and
∑

i∈N `f
i ≤

E ≤ ∑
i∈N Lf

i .

The extreme compromise solution γf : BRRN → RN is defined by

γf = α`f + (1− α)Lf ,

where α ∈ [0, 1] is such that
∑

i∈N(α`f
i +(1−α)Lf

i ) = E. As a result of the previous

lemma, such α exists.

In our second approach, the diagonal approach, we consider the main diagonal of

the hypercube. The lower and upper vectors ¯̀f and L̄f are defined by

`
f

i (N,E, r, c) = inf
λ∈[0,1]

hf,λ
i (N, E, r, c),

L
f

i (N,E, r, c) = sup
λ∈[0,1]

hf,λ
i (N, E, r, c),

where for all i ∈ N and λ ∈ [0, 1],

hf,λ
i (N, E, r, c) =

{
fi(N,E, λr + (1− λ)c) if λR + (1− λ)C ≥ E,

λri + (1− λ)ci + fi(N, E
λ
, d

λ
) if λR + (1− λ)C < E

with E
λ

= E− (λR+(1−λ)C) and d
λ

= c− (λr +(1−λ)c) = λ(c− r). Also in the

diagonal case, the vectors ¯̀ and L̄ can be considered as lower and upper bounds, as

is shown for the extreme approach in Lemma 7.4.1.

The diagonal compromise solution γ̄f is defined by

γ̄f = α ¯̀f + (1− α)L̄f ,

where α ∈ [0, 1] is such that
∑

i∈N(α ¯̀f
i + (1− α)L̄f

i ) = E.

7.5 Bankruptcy games with references

In this section, we define for either approach a corresponding cooperative game. In

line with Pulido et al. (2002), we take a pessimistic point of view, so the definitions

of the characteristic functions resemble the ones for the lower vectors in the previous

section. Throughout the analysis, we assume that f is a CM bankruptcy rule.

We define the extreme game vf ∈ TUN by
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vf (S) =

{ ∑
i∈S fi(N, E, (rS, cN\S)) if r(S) + c(N\S) ≥ E,

E − c(N\S) if r(S) + c(N\S) < E

for all S ⊂ N . Note that if r(S) + c(N\S) < E, the ensuing problem is not a

bankruptcy situation and the players in S can obtain what is left by the players in

N\S.

As a result of CM, it immediately follows that (rS, cN\S) is the worst point for

S in the hypercube, so vf (S) actually represents the most pessimistic situation for

coalition S under the extreme approach. Although it is intuitively clear that this

should be the worst point for S, we need CM to ensure that it is actually so.3

The diagonal game is defined by v̄f (S) = infλ∈[0,1] v̄
f
λ(S), where

v̄f
λ(S) =

{ ∑
i∈S fi(N,E, λr + (1− λ)c) if λR + (1− λ)C ≥ E,

λr(S) + (1− λ)c(S) +
∑

i∈S fi(N, E
λ
, d

λ
) if λR + (1− λ)C < E

with E
λ

= E − (λR + (1− λ)C) and d
λ

= c− (λr + (1− λ)c) = λ(c− r).

In the second part of the definition the agents receive what is prescribed by the

weighted vector and the remainder Ēλ is distributed according to the rule f , using

the residual demands d̄λ. Note that if (N,E, r, c) is a CREO bankruptcy situation,

then in the definitions of both vf and v̄f only the first case arises.

As a result of CM, it is readily seen that the game vf is more pessimistic than

v̄f , ie, vf (S) ≤ v̄f (S) for all S ⊂ N .

The extreme and diagonal games corresponding to a bankruptcy situation with

references turn out to be exact. A game v ∈ TUN is called exact if for all S ⊂ N

there exists an x ∈ C(v) such that
∑

i∈S xi = v(S). Driessen and Tijs (1985) show

that exactness is weaker than convexity and stronger than superadditivity.

Proposition 7.5.1 Let (N, E, r, c) ∈ BRRN be a bankruptcy situation with refer-

ences. Then the two corresponding games vf and v̄f are exact.

Proof: First, we prove exactness of vf . Let S ⊂ N and distinguish between two

cases:

1. If r(S) + c(N\S) ≥ E, then vf (S) =
∑

i∈S fi(N, E, (rS, cN\S)). Consider

x = f(N,E, (rS, cN\S)), so x(S) = vf (S). It is easily checked that, because f

3Pulido (2001) shows that for the adjusted proportional rule, which is not CM, this is not the
case.
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satisfies CM, x ∈ C(vf ).

2. If r(S) + c(N\S) < E, then vf (S) = E − c(N\S). Let x ∈ RN be defined by

xi =

{
ci if i ∈ N\S,
ri + fi(S,E − c(N\S)− r(S), cS − rS) if i ∈ S

for all i ∈ N . Obviously, x(N) = E = vf (N) and x(S) = E−c(N\S) = vf (S).

Let T ⊂ N and distinguish between two cases:

(a) If r(T ) + c(N\T ) ≥ E, then vf (T ) =
∑

i∈T fi(N, E, (rT , cN\T )) ≤ r(T ) ≤
x(T ).

(b) If r(T )+c(N\T ) < E, then vf (T ) = E−c(N\T ). Define T1 = T ∩(N\S)

and T2 = T ∩ S. Then,

x(T ) = c(T1) + r(T2) +
∑
i∈T2

fi(S,E − c(N\S)− r(S), cS − rS)

≥ c(T1) + r(T2) + E − c(N\S)− r(S)−
∑

i∈S\T2

(ci − ri)

= E + c(T1)− c(N\S)− c(S\T2) + r(T2) + r(S\T2)− r(S)

= E + c(T1)− c(N\T2) = E − c(N\T ) = vf (T ).

Hence, x ∈ C(vf ).

To show that v̄f is exact, let S ⊂ N and let λ∗ ∈ [0, 1] be such that v̄f (S) =

infλ∈[0,1] v̄
f
λ(S) = v̄f

λ∗(S). We distinguish between two cases:

1. If λ∗R + (1 − λ∗)C ≥ E, then x = f(N,E, λ∗r + (1 − λ∗)c) ∈ C(v̄f ) and

x(S) = v̄f (S).

2. If λ∗R + (1 − λ∗)C < E, then x = λ∗r + (1 − λ∗)c + f(N,E − λ∗R − (1 −
λ∗)C, λ∗(c− r)) ∈ C(v̄f ) and x(S) = v̄f (S).

Note that complementary monotonicity of f is not necessary to establish exactness

of v̄f . ¤

The next example shows that the games vf and vf need not be convex (see sec-

tion 3.2).
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Example 7.5.1 Consider the bankruptcy situation with references (N, E, r, c) ∈
BRRN with N = {1, 2, 3, 4}, E = 12, r = (1, 2, 4, 7) and c = (3, 3, 5, 10). Taking

the CEA rule, we obtain

S {3} {1, 3} {2, 3} {1, 2, 3}
vCEA(S) 3 5 51

2
7

vCEA(S) 3 5 6 7

Then,

vCEA({1, 3}) + vCEA({2, 3}) > vCEA({3}) + vCEA({1, 2, 3}),
vCEA({1, 3}) + vCEA({2, 3}) > vCEA({3}) + vCEA({1, 2, 3}).

Therefore, (3.1) is violated and vCEA and vCEA are not convex. /

Using exactness of vf , we can now prove Lemma 7.4.1.

Proof of Lemma 7.4.1 From complementary monotonicity of f , `f ≤ Lf readily

follows. For the second statement, first observe that `f
i = vf ({i}) for all i ∈ N .

Then exactness of vf implies
∑
i∈N

`f
i =

∑
i∈N

vf ({i}) ≤ vf (N) = E.

If i ∈ N is such that ci + r(N\{i}) < E, then Lf
i = ci ≥ fi(N,E, c). On the

other hand, if ci + r(N\{i}) ≥ E, then Lf
i = fi(N, E, (ci, rN\{i})) ≥ fi(N, E, c).

Combining these two cases, we have
∑

i∈N Lf
i ≥

∑
i∈N fi(N, E, c) = E. ¤

The extreme compromise solution coincides with the compromise value of the

extreme game vf , as is shown in the following theorem.

Theorem 7.5.2 Let (N, E, r, c) ∈ BRRN be a bankruptcy situation with references

and let f be a complementary monotonic bankruptcy rule. Then γf = τ(vf ).

Proof: First note that as a result of exactness, vf is compromise admissible.

Driessen and Tijs (1985) show that for each exact game v ∈ TUN , mi(v) = v({i})
for all i ∈ N . Hence, mi(v

f ) = vf ({i}) = `f
i . For the upper vector, we have

Lf
i = fi(N, E, (ci, rN\{i}))

= E −
∑

j∈N\{i}
fj(N, E, (ci, rN\{i}))

= vf (N)− vf (N\{i})
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if ci + r(N\{i}) ≥ E and

Lf
i = ci

= E − (E − ci)

= vf (N)− vf (N\{i})

otherwise. Hence, Lf = M(vf ). From this, we conclude that γf = τ(vf ). ¤

Similarly, one can prove the analogous result for the diagonal compromise solution.

Theorem 7.5.3 Let (N,E, r, c) ∈ BRRN be a bankruptcy situation with references

and let f be a complementary monotonic bankruptcy rule. Then γ̄f = τ(v̄f ).





Chapter 8

Multi-issue allocation situations

8.1 Introduction

In Chapter 7 we presented the model of bankruptcy situations and extended this

model by adding an extra element, a vector of references. In this chapter, we take

a different view on bankruptcy problems and introduce the concept of issues.

Generally speaking, a bankruptcy model relates to a particular kind of allocation

problem. An allocation problem arises whenever a bundle of goods (resources, rights,

costs, burdens) is held in common by a group of individuals and must be allotted

to them individually. An allocation situation has two ingredients: the goods to

be distributed and the claimants amongst whom they are to be allotted. Young

(1994) introduced a general framework with the central concept of a “type” of a

claimant: “The type of a claimant is a complete description of the claimant for

purposes of the allocation, and determines the extent of a claimant’s entitlement

to the good”. A type of a claimant therefore involves a complete description of

the claimant in several dimensions or attributes. These attributes are accepted as

the benchmark against which allocations are to be judged and can take on many

forms, depending on the particular allocation situation at hand. Eg, the allocation

of public housing typically depends on such attributes as financial need, family size

and time spent on a waiting list. Looking from this general point of view, one can

say that the bankruptcy model deals with all allocation problems in which there is

one perfectly divisible good (money) to be allocated and the type of each agent can

be characterised by a single (monetary) claim on that good.

In a general rationing framework, Kaminski (2000) considers bankruptcy situa-

tions in which the type of each claimant is not one-dimensional, as is the case in

103
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O’Neill, but multi-dimensional. In the environment he presents, a type is a vector of

claims, the components of which have different legal statuses. As a result, different

priorities are assigned to the various components of an agent’s claim vector.

The model we present in this chapter, which is based on Calleja et al. (2001),

also characterises the types of the claimants in a multi-dimensional way by means

of a vector of claims. Contrary to Kaminski however, the multidimensionality of

claims is not the necessary consequence of some exogenously given priorities. Our

model is inspired by O’Neill’s representation of a standard bankruptcy problem in

terms of wills. In his context, a will is a document stating how much of the estate

should go to one particular person. Hence, there is a one-to-one correspondence

between the claims of the agents and the wills. Furthermore, it is assumed that all

wills are equally “valid” and have the same legal status. The motivation for having

as many wills as there are claims is provided by the Talmudic scholar Ibn Ezra.

O’Neill hints at generalising Ibn Ezra’s approach, stating that “there is no reason

why the problem should be restricted in this way”. Indeed, why can’t a single person

be mentioned in more than one will or why should a will only mention one single

claimant? We model this kind of situation by considering multi-dimensional claims,

the components of which correspond to the wills.

In Young’s terminology, the type of a claimant is represented by his claim vector

and each will is an attribute. Leaving behind O’Neill’s story, we regard each claim

component as originating from a particular issue (of which a will is a special case).

An issue constitutes a reason on the basis of which the estate is to be divided. Cru-

cially, such a reason should be well founded and be accepted as such by all parties

involved and there should be no a priori discrimination between the issues.

To illustrate the terminology of our model, consider the following example. The

central government has to decide how to allocate the taxpayers’ money to various

public services. The system of government is such that it doesn’t allocate this money

directly to these services, but indirectly through various government departments.

Each department (agent/player) has a number of claims on the amount of money

available (estate), arising from those public services (issues) for which it has respon-

sibility. Some of these services are provided by just a single department (eg, tax

collection by the Department of Finance), while more departments may be respon-

sible for other services (eg, foreign trade by the Departments of Economic Affairs,

Foreign Affairs and Defence). If we were to add up all the claims of a department into

one single claim, an ordinary bankruptcy problem would arise. In this bankruptcy
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problem a rule can be applied to generate an allocation. As argued before, the

underlying issues should play a role in determining an outcome. If the departmen-

tal claims are combined, however, this crucial information is lost and hence, in our

model we take the distinction between the issues explicitly into account.

Another multi-dimensional extension of the bankruptcy model is provided by

Lerner (1998). In that paper, a pie is allocated amongst groups, not necessarily

disjoint, rather than users.

An interesting application of our model of multi-issue allocation situations can

be found in Wintein (2002) and Wintein et al. (2002), where so-called multiple

fund investment situations are considered. Given certain restrictions, players have

to decide in which funds they invest their capital. This results in a bankruptcy-like

model, which is solved using a linear production approach (cf. Owen (1975)). More-

over, an alternative way of looking at this type of investment problem is offered by

considering the funds as issues and translating the players’ investment opportunities

into claims.

The outline of this chapter is as follows. In section 2, we introduce multi-issue

allocation situations and define two corresponding cooperative games. These games

are constructed from a pessimistic point of view, as are standard bankruptcy games.

In order to determine the value of a particular coalition, we let the players outside

that coalition decide in which order the issues are to be addressed.

One important assumption in our framework is that once we start paying out

money according to one particular issue, this issue must first be fully dealt with

before we move on to the next. Going back to O’Neill’s example, it seems natural to

execute wills completely in a consecutive way rather than satisfying parts of different

wills. But this still leaves some freedom within each issue: in our first game (called

Proportional game), we distribute the money within each issue proportional to the

claims in that issue, while in the second game (called Queue game), we take an even

more pessimistic view by allowing the players outside the coalition to choose also

the order in which the claims within each issue are satisfied.

The computation of the second of our multi-issue allocation games turns out to

be a less than straightforward combinatorial optimisation problem. In section 3, we

provide algorithms to determine the worth of coalitions in both approaches.

Properties of multi-issue allocation games are presented in section 4. The main

result is that the class of multi-issue allocation games coincides with the class of



106 CHAPTER 8. MULTI-ISSUE ALLOCATION SITUATIONS

nonnegative exact games.

In section 5, we analyse run-to-the-bank rules as solutions for multi-issue alloca-

tion situations. These rules are based on the interpretation behind the method of

recursive completion for bankruptcy situations (cf. O’Neill (1982)). As the name

suggests, the players hold a race to the person or institution administering the estate.

Upon arrival, each player can choose an order on the issues that is most favourable

to him. By averaging over all possible orders of arrival, we obtain a run-to-the-bank

rule. One new aspect of this rule in our context, which is not present in the standard

bankruptcy context, is that a new player arriving has to take into account the effect

of his choice of order on the issues on the players already present. If they stand to

lose out because of this choice, the new player has to compensate them for this.

The two run-to-the-bank rules we introduce in this fashion differ in the way they

treat claims within each issue. The first one (the P-rule) divides the money assigned

to a particular issue proportionally, while the second one (the Q-rule) chooses an

“optimistic” order on the players. The two run-to-the-bank rules turn out to be the

Shapley value of the corresponding P-game and Q-game, respectively.

Finally, in section 6, we characterise both run-to-the-bank rules by means of (P-

and Q-)consistency. In the context of bankruptcy games, the term consistency has

been used for a number of different properties. Our definition of consistency is

similar to the one used by O’Neill (1982). It is based on the idea that applying a

solution concept to a particular problem and applying the same solution concept to

some specific subproblems and aggregating the solutions of these subproblems should

yield the same outcome. In order to properly define such a consistency property, we

extend the domain of a solution concept to a wider class of problems, ie, the class

of multi-issue allocation situations with awards. This extended class of situations

however is not our prime interest, but its purpose is solely a technical framework in

which O’Neill’s characterisation can be extended in a natural way.

8.2 The model

A multi-issue allocation situation is a triple (N, E, C), where N = {1, . . . , n} is the

set of players, E ≥ 0 is the estate under contest and C ∈ RR×N
+ is the matrix

of claims. Every row in C represents an issue and the set of issues is denoted by

R = {1, . . . , r}. An element cki ≥ 0 represents the amount that player i ∈ N claims

according to issue k ∈ R. If a player is not involved in a particular issue, his claim
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corresponding to that issue equals zero.

Every bankruptcy situation (N, E, c) ∈ BRN gives rise to a multi-issue allocation

situation, where the issues correspond to the single-claim wills and C ∈ RN×N is

the diagonal matrix with the claims ci on the main diagonal.

With respect to the matrix of claims C, we assume the following:

• Every issue gives rise to a claim:
∑

i∈N cki > 0 for all k ∈ R.

• Every player is involved in at least one issue:
∑

k∈R cki > 0 for all i ∈ N .

• The allocation problem is nontrivial:
∑

k∈R

∑
i∈N cki ≥ E.

For ease of notation, we define ckS =
∑

i∈S cki to be the total of claims of coali-

tion S ⊂ N according to issue k. Similarly, we define cKi =
∑

k∈K cki and

cKS =
∑

k∈K

∑
i∈S cki for all K ⊂ R, S ⊂ N . We denote the class of all multi-

issue allocation situations with player set N by MIAN .

As stated in the introduction, we make the basic assumption that once we are

paying out money according to one particular issue, this issue must first be fully

dealt with before we move on to the next. In addition, we consider two approaches

on how to handle the claims within each issue. As a result, we define two multi-issue

allocation games, a proportional game vP based on Assumption 8.2.1 and a queue

game vQ based on Assumption 8.2.2.

Assumption 8.2.1 If some money is allocated to the players on the basis of a

particular issue, the amount of money each of the players gets is proportional to his

claim according to that issue.

In order to define the proportional game vP , we first compute the maximum amount

the players in a coalition S ⊂ N can get when the issues are dealt with according

to Assumption 8.2.1. We do this by considering all orders on the issues, so let

τ ∈ Π(R). Now the players in S first address the first t issues completely, where t =

max{t′ | ∑t′
s=1 cτ(s),N ≤ E}. The part of the estate that is left, E ′ = E−∑t

s=1 cτ(s),N ,

is divided proportional to the claims according to issue τ(t + 1). So in total, the

players in S receive1

1In the boundary case E = cRN , we have t = n and E′ = 0 and we simply define fP
S (τ) =

fQ
S (σ, τ) = cRS for all τ ∈ Π(R), σ ∈ Π(N)
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fP
S (τ) =

t∑
s=1

cτ(s),S +
cτ(t+1),S

cτ(t+1),N

E ′. (8.1)

The value of coalition S ⊂ N is the amount of money they can guarantee themselves

when the players in N\S are free to choose an order on the issues:

vP (S) = min
τ∈Π(R)

fP
S (τ).

Since for each τ ∈ Π(R) we have fP
S (τ)+fP

N\S(τ) = E, this pessimistic point of view

for S is equivalent with saying that the players in N\S maximise their own payoff:

vP (S) = E − max
τ∈Π(R)

fP
N\S(τ). (8.2)

The queue game vQ is based on Assumption 8.2.2.

Assumption 8.2.2 If a particular coalition allocates some money to the players

on the basis of a particular issue, this coalition can also decide in which order the

claims corresponding to that issue are satisfied.

To define the queue game, we first define an auxiliary function g(S, k, σ, E ′), which

describes how much money the players in S ⊂ N get according to issue k ∈ R if the

order on the players is σ ∈ Π(N) and the estate is E ′ with E ′ < ckN . The first q

players get their entire claim, where q = max{q′ | ∑q′
p=1 ckσ(p) ≤ E ′}. The function

g is then defined by

g(S, k, σ, E ′) =





E ′ −
q∑

p = 1
σ(p) ∈ N\S

ckσ(p) if σ(q + 1) ∈ S,

q∑

p = 1
σ(p) ∈ S

ckσ(p) if σ(q + 1) /∈ S.

(8.3)

The computation of g(S, k, σ, E ′) is illustrated in the following example with five

players.

0 E ′ ck

issue kckσ(1) ckσ(2) ckσ(3) ckσ(4) ckσ(5)
¡¡
¡

¡¡
¡

¡¡
¡¡

¡¡
¡

¡¡
¡

¡¡
¡

¡¡
¡

¡¡
¡

¡¡
¡

¡¡
¡¡

Coalition S consists of players σ(1), σ(3) and σ(4) and corresponds to the shaded

area. The estate E ′ is such that only the claims of the first three players can be fully
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satisfied (q = 3). Furthermore, σ(q+1) ∈ S, so (8.3) yields g(S, k, σ, E ′) = E ′−ckσ(2),

which is represented by the area to the left of E ′ that is not shaded, ie, the part of

the estate left that is not claimed by N\S.

Next, we compute the maximum amount the players in a coalition S ⊂ N can

get if the order on the issues is τ ∈ Π(R). As in the proportional case, the first t

issues are fully dealt with and the remainder E ′ is distributed according to some

order σ ∈ Π(N) on the players, using Assumption 8.2.2. So, in total the players in

S receive

fQ
S (σ, τ) =

t∑
s=1

cτ(s),S + g(S, τ(t + 1), σ, E ′),

where again, E ′ = E −∑t
s=1 cτ(S),N . The value of coalition S is then, analogous to

the proportional case, given by

vQ(S) = min
τ∈Π(R)

min
σ∈Π(N)

fQ
S (σ, τ),

or equivalently, using the identity fQ
S (σ, τ) + fQ

N\S(σ, τ) = E,

vQ(S) = E − max
τ∈Π(R)

max
σ∈Π(N)

fQ
N\S(σ, τ). (8.4)

Again, pessimism by the members of S boils down to letting the members of N\S
choose an order on the issues that maximise their payoff.

It is immediately clear that the optimal order on the players that coalition N\S
will choose puts themselves in front. So, (8.4) reduces to

vQ(S) = E − max
τ∈Π(R)

fQ
N\S(τ),

where

fQ
N\S(τ) = fQ

N\S(σ̂, τ) =
t∑

s=1

cτ(s),N\S + min{cτ(t+1),N\S, E ′} (8.5)

with σ̂ ∈ Π(N) such that σ̂−1(N\S) = {1, . . . , |N\S|}.

8.3 Algorithms

In this section we present two algorithms to compute the proportional game vP and

the queue game vQ corresponding to any multi-issue allocation situation (N, E, C).
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8.3.1 Proportional game

Let (N, E, C) ∈ MIAN and let S ⊂ N be a coalition of players. The value of S,

vP (S), is computed in a number of steps:

1. Compute for every issue k ∈ R the proportion of the total of claims corre-

sponding to issue k that is claimed by coalition S:

pk = ckS

ckN
.

2. Take τ ∈ Π(R) such that τ−1(k) ≤ τ−1(`) whenever pk ≤ p`.

3. vP (S) = fP
S (τ), where fP

S (τ) is defined in (8.1).

8.3.2 Queue game

Let (N, E, C) ∈ MIAN and let S ⊂ N be a coalition of players. The value of S,

vQ(S), is computed in a number of steps:

1. For all I ⊂ R calculate

xI =
∑

k∈I

ckS,

yI =
∑

k∈I

ck,N\S + max
k∈R\I

ck,N\S.

2. If y∅ ≥ E then vQ(S) = 0, otherwise proceed.

3. Find I ⊂ R such that

(a) xI + yI ≥ E,

(b) xI ≥ xI for all I ⊂ R such that xI + yI ≥ E.

Next, find I ⊂ R such that

(a) xI + yI ≤ E,

(b) yI ≥ yI for all I ⊂ R such that xI + yI ≤ E.

4. Compute

vQ(S) = min{xI , E − yI}.
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To show that this algorithm works, first of all note that it follows from the definition

of fQ that vQ(S) depends only on the aggregate claim of coalition S within each

issue and not on the distribution of claims between the members of S.

The idea behind the algorithm is to represent all possible payoff profiles (x, y)

for all possible estates by paths in the payoff space (R2
+), where x (on the horizontal

axis) is the payoff to S and y (on the vertical axis) the payoff to N\S. The aim is

to find the minimum possible payoff to S given the fact that the estate equals E.

The estate E is represented by the line x + y = E.

Coalition N\S has the freedom to choose an order on the issues. Now, forget the

actual amount of the estate for a moment and suppose the players in N\S choose

to address issues I ⊂ R fully and furthermore choose one other issue in R\I that

gives them their maximal payoff (without paying the claim of S according to that

last issue). This action leads to a payoff profile of (xI , yI). If the estate were to

equal xI + yI , the point (xI , yI) would represent a payoff profile which according to

Assumption 8.2.2 would be feasible for N\S to reach.

With each order on I we associate a path connecting (xI , yI) to the origin. Start-

ing with an estate of 0 (and hence, a (0, 0) payoff), we are going to increase the

estate to xI +yI , plotting the payoff profiles associated with all intermediate estates

(determined by the order on I) in the picture. From the origin, we start paying

out money to N\S according to the first issue in I, represented by a vertical line

segment. When the estate reaches the total claim of N\S corresponding to the first

issue, we start paying out to coalition S, represented by a horizontal line segment.

After the total claim associated with the first issue has been paid out, we continue

with the second issue in the order, and so on. When all issues I have been addressed,

we end with a vertical line segment representing the claim of N\S according to the

last issue. Typically, such a path looks as depicted in Figure 8.1. Note that some

horizontal or vertical line segments may be absent because of zero claims.

We draw such a path for every order on I. These paths represent all possible

payoff profiles that coalition N\S can reach for estates smaller than xI + yI if they

choose to address the issues in I first and put themselves in front within each issue.

Doing this for all I ⊂ R yields all feasible payoff profiles (provided N\S acts

optimally within each issue) for any order on the issues for all estates smaller than

the total of all claims. Note that every path associated with some set I $ R of

issues is part of a path connecting (xR, yR) to the origin.
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The value of coalition S is the x-coordinate of the leftmost intersection between

one of these paths and the line x + y = E. It is immediately clear that vQ(S) = 0

if y∅ ≥ E. Otherwise, take I and I as stated (which is always possible because of R

and ∅, respectively).

Typically, I and I are situated as depicted in Figure 8.2. By construction, there

is no I ⊂ R giving rise to a payoff profile (xI , yI) in either shaded area. Note also

that whereas I and I need not be uniquely determined, xI and yI are.

x

y

I

E 

E 
0 

0 

I 

A 

B 

x

y

I

E 

E 
0 

0 

I 

Figure 8.3 Figure 8.4

Now consider the paths associated with I. We claim that there can be no path

with a kink in the shaded area. Suppose that such a path exists, as indicated in

Figure 8.3, with such a kink at A. Consider all issues I∗ that are fully dealt with

up to point B.2 Then by construction, (xI∗ , yI∗) lies at or above point A. This

2In fact, we need the last point below A up to which all issues have been fully addressed. If A
is preceded by an issue in which S claims zero, this point may be between A and B.
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contradicts the fact that there is no I ⊂ R giving rise to a payoff profile in the

shaded area.

As a consequence, every path connecting (xI , yI) to the origin must cross the line

x + y = E to the right of (E − yI , yI) if xI + yI > E (the case depicted in Figure

8.3). The same holds for every path connecting any point above the line x + y = E

to the origin. Hence, vQ(S) ≥ E − yI . Furthermore, there is a path going through

(E − yI , yI), because N\S can guarantee themselves yI by addressing issues I first.

Therefore, vQ(S) = E − yI if xI + yI > E.

Similarly, if xI + yI < E, as depicted in Figure 8.4, every path intersecting the

line x + y = E must do so to the right of (xI , E − xI) and there is a path going

through this point. Hence, in this case vQ(S) = xI .

If xI + yI = E, both sets of arguments can be used. One should also note that

all these arguments still hold in case (xI , yI) or (xI , yI) lie on the line x + y = E

rather than below or above.

Summarising these cases, we obtain

vQ(S) = min{xI , E − yI},

as stated in the algorithm.

8.4 Properties of multi-issue allocation games

In this section we look at some of the properties that multi-issue allocation games

of both types possess. First, we prove that the worth of a coalition in the queue

game is smaller than the worth of that coalition in the corresponding proportional

game. This means that the queue approach is more pessimistic than the proportional

approach.

Proposition 8.4.1 Let (N,E, C) ∈ MIAN be a multi-issue allocation situation

with corresponding games vP and vQ. Then vQ(S) ≤ vP (S) for all S ⊂ N .

Proof: Let S ⊂ N and let τ ◦ ∈ Π(R) be an ordering on the issues where the

maximum in (8.2) is obtained. For any order τ ∈ Π(R), min{cτ(t+1),N\S, E ′} in (8.5)

exceeds
cτ(t+1),N\S

cτ(t+1),N
E ′ in (8.1). So, in particular, this is the case for τ ◦. But then

certainly, maxτ∈Π(R) fQ
N\S(τ) ≥ fP

N\S(τ ◦) and hence, vQ(S) ≤ vP (S). ¤
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As was the case for bankruptcy games with references in the previous chapter, multi-

issue allocation games turn out to be exact.

Theorem 8.4.2 Let (N, E,C) ∈ MIAN . Then both corresponding games vP and

vQ are exact.

Proof: Let S ⊂ N and let τ ◦ ∈ Π(R) and σ◦ ∈ Π(N) be such that fQ
S (σ◦, τ ◦) is

minimal. Define x = (fQ
i (σ◦, τ ◦))i∈N . Then

∑
i∈N xi = E = vQ(N) and

∑
i∈T xi =

fQ
T (σ◦, τ ◦) ≥ minτ∈Π(R) minσ∈Π(N) fQ

T (σ, τ) = vQ(T ) for all coalitions T ⊂ N . So,

x ∈ C(vQ). Furthermore,
∑

i∈S xi = fQ
S (σ◦, τ ◦) = vQ(S). Hence, vQ is exact. The

proof for vP is similar. ¤

In the proof of Theorem 8.4.2 we showed that (fQ
i (σ◦, τ ◦))i∈N is a core element of

the queue game vQ for certain σ◦ ∈ Π(N) and τ ◦ ∈ Π(R). This property can be

extended to all orders on the issues, so for all σ ∈ Π(N), τ ∈ Π(R) we have

(fQ
i (σ, τ))i∈N ∈ C(vQ)

and similarly for the proportional game, for all τ ∈ Π(R),

(fP
i (τ))i∈N ∈ C(vP ).

Theorem 8.4.3 Let v ∈ TUN be a nonnegative exact game. Then there exists

a multi-issue allocation situation (N, E, C) ∈ MIAN such that both corresponding

games vP and vQ equal v.

Proof: If |N | = 1, the result is obvious. Otherwise, define E = v(N) and take

for all S $ N, S 6= ∅ an xS ∈ C(v) such that
∑

i∈S xS
i = v(S). Interpret these

core elements as issues and gather them (as rows) in the (2n − 2)× n claim matrix

C. Because ckN = E for all k ∈ R, no issue is addressed partially and vP and vQ

coincide.

Now, let S ⊂ N . By construction, there is a row k′ ∈ R such that ck′S = v(S)

and because all issues are core elements of v, ckS ≥ v(S) for all k ∈ R. Hence,

vP (S) = minτ∈Π(R) fP
S (τ) = mink∈R ckS = v(S). Therefore, v, vP and vQ coincide.

¤
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From Theorems 8.4.2 and 8.4.3 we conclude that the class of multi-issue allocation

games coincides with the class of nonnegative exact games. Because not every four-

player exact game is convex, it follows from Theorem 8.4.3 that multi-issue allocation

games with more than three players need not be convex.

A well known property of a convex game is that its Shapley value belongs to

the core. Rabie (1981) shows that this does not hold in general for exact games.

However, Theorem 8.4.4 shows that the Shapley value of a nonnegative exact game

belongs to the core cover.

Theorem 8.4.4 Let v ∈ TUN be a nonnegative exact game. Then Φ(v) ∈ CC(v).

Proof: First, use Theorem 8.4.3 to construct a multi-issue allocation situation

(N, E,C) ∈ MIAN such that vP = v. Next, let i ∈ N . Then supperadditivity

implies vP (S) − vP (S\{i}) ≥ vP ({i}) = mi(v
P ) for all S ⊂ N such that i ∈ S.

Furthermore,

vP (S)− vP (S\{i}) =

[
E − max

τ∈Π(R)
fP

N\S(τ)

]
−

[
E − max

τ∈Π(R)
fP

(N\S)∪{i}(τ)

]

= max
τ∈Π(R)

fP
(N\S)∪{i}(τ)− max

τ∈Π(R)
fP

N\S(τ)

≤ max
τ∈Π(R)

fP
N\S(τ) + max

τ∈Π(R)
fP
{i}(τ)− max

τ∈Π(R)
fP

N\S(τ)

= E −
[
E − max

τ∈Π(R)
fP
{i}(τ)

]

= vP (N)− vP (N\{i})
= Mi(v

P ).

Hence, the marginal contribution of i to every coalition S : i ∈ S is bounded by

mi(v
P ) and Mi(v

P ). Because the Shapley value is the average of these marginal

contributions, Φ(vP ) ∈ CC(vP ) and hence, Φ(v) ∈ CC(v). ¤

Sprumont (1990) shows that every convex game has a pmas (see section 4.2). This

does not hold for exact games, as is shown by the following example.

Example 8.4.1 Consider the multi-issue allocation situation with player set N =

{1, . . . , 4}, estate E = 22 and claim matrix

C =

[
6 6 5 3
12 0 2 6

]
.
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The corresponding queue game is as follows:

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N
vQ(S) 6 0 2 3 12 11 9 2 6 8 14 15 16 8 22

To show that vQ has no pmas, suppose (xS)S⊂N,S 6=∅ satisfies (4.1) and (4.2). Then

we subsequently have:

• vQ({1, 3}) = 11 and vQ({1, 3, 4}) = 16 imply x
{1,3,4}
4 ≤ 16− 11 = 5;

• x
{1,3,4}
4 ≤ 5 implies x

{3,4}
4 ≤ 5;

• x
{3,4}
4 ≤ 5 and vQ({3, 4}) = 8 imply x

{3,4}
3 ≥ 3;

• x
{3,4}
3 ≥ 3 and vQ({2, 4}) = 6 imply

∑
i∈{2,3,4} x

{2,3,4}
i ≥ 9.

The last statement contradicts (4.1) and hence, the exact game vQ possesses no

pmas. /

8.5 The run-to-the-bank rule

A multi-issue allocation rule is a function Ψ : MIAN → RN assigning to every

multi-issue allocation situation (N, E,C) ∈ MIAN a vector Ψ(N, E,C) ∈ RN such

that
∑

i∈N Ψi(N, E,C) = E (efficiency) and 0 ≤ Ψi(N, E,C) ≤ cRi for all i ∈ N

(reasonability). We define two rules, called run-to-the-bank rules, based on As-

sumptions 8.2.1 and 8.2.2. These rules are based on the run-to-the-bank rule for

bankruptcy situations (see section 7.2). The proportional run-to-the-bank rule is

defined as

ρP =
1

|N |!
∑

σ∈Π(N)

ρP (σ),

where for all σ ∈ Π(N), ρP (σ) ∈ RN is defined recursively by

ρP
σ(p)(σ) = max

τ∈Π(R)

[
fP

σ(p)(τ)−
p−1∑
q=1

(
ρP

σ(q)(σ)− fP
σ(q)(τ)

)
]

(8.6)

for all p ∈ {1, . . . , n}. The vector ρP (σ) is interpreted as follows. To divide the

estate, a “race” is held between the players and they arrive at the person or institu-

tion administering the estate in the order given by σ. The first player that arrives,
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σ(1), can choose the order in which the issues are dealt with and receives his payoff

accordingly. Of course, he will choose that order τ ∈ Π(R) for which his payoff

fP
σ(1)(τ) is maximal. Next, player σ(2) arrives and he is asked to do the same. How-

ever, if he chooses an order different from the first one, he has to compensate player

σ(1) for the difference between his settled payoff ρP
σ(1)(σ) and his payoff according to

the new order. Taking this into account, the second player will pick that order that

maximises his own payoff minus the corresponding compensation payments. The

same procedure is applied to all subsequent players, each having to compensate all

his predecessors.

The queue run-to-the-bank rule is defined as

ρQ =
1

|N |!
∑

σ∈Π(N)

ρQ(σ),

where for all σ ∈ Π(N), ρQ(σ) ∈ RN is defined recursively by

ρQ
σ(p)(σ) = max

τ∈Π(R)
max

γ∈Π(N)

[
fQ

σ(p)(γ, τ)−
p−1∑
q=1

(
ρQ

σ(q)(σ)− fQ
σ(q)(γ, τ)

)]
(8.7)

for all p ∈ {1, . . . , n}. The interpretation is similar to the proportional case. The

only difference is that the queue payoff function fQ is used rather than the propor-

tional function fP and that in accordance with Assumption 8.2.2, players also have

to specify an order γ on the players. It is immediately clear that it is optimal for

player σ(p), who arrives at the administrator at position p, to choose γ in such a

way that he himself and all preceding players, σ(1), . . . , σ(p − 1), whom he has to

compensate, are in front of the queue. This can be done by setting γ = σ.

Proposition 8.5.1 In (8.7), taking γ = σ is optimal.

As a result of Proposition 8.5.1, (8.7) can be rewritten as

ρQ
σ(p)(σ) = max

τ∈Π(R)

[
fQ

σ(p)(σ, τ)−
p−1∑
q=1

(
ρQ

σ(q)(σ)− fQ
σ(q)(σ, τ)

)]
(8.8)

In order to prove that both run-to-the-bank rules equal the Shapley values of their

respective corresponding games, we first relate them to the marginal vectors. For

this, we define for any order σ ∈ Π(N) the reverse order σ∗ ∈ Π(N) by σ∗(p) =

σ(n− p + 1) for all p ∈ {1, . . . , n}.
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Lemma 8.5.2 Let (N,E, C) ∈ MIAN be a multi-issue allocation situation with

corresponding games vP and vQ. Then ρP (σ) = mσ∗(vP ) and ρQ(σ) = mσ∗(vQ) for

all σ ∈ Π(N).

Proof: We only prove the statement for the queue game; the proof for the pro-

portional game is similar. Let σ ∈ Π(N). Then for all p ∈ {1, . . . n} we have, using

(8.8),

ρQ
σ(p)(σ) = max

τ∈Π(R)

[
fQ

σ(p)(σ, τ)−
p−1∑
q=1

(
ρQ

σ(q)(σ)− fQ
σ(q)(σ, τ)

)]

= max
τ∈Π(R)

fQ
{σ(1),...,σ(p)}(σ, τ)−

p−1∑
q=1

ρQ
σ(q)(σ)

= max
τ∈Π(R)

fQ
{σ(1),...,σ(p)}(σ, τ)− max

τ∈Π(R)
fQ
{σ(1),...,σ(p−1)}(σ, τ)

= E − min
τ∈Π(R)

fQ
{σ(p+1),...,σ(n)}(σ, τ)− E + min

τ∈Π(R)
fQ
{σ(p),...,σ(n)}(σ, τ)

= − min
τ∈Π(R)

fQ
{σ∗(1),...,σ∗(n−p)}(σ, τ) + min

τ∈Π(R)
fQ
{σ∗(1),...,σ∗(n−p+1)}(σ, τ)

= − min
τ∈Π(R)

min
σ̄∈Π(N)

fQ
{σ∗(1),...,σ∗(n−p)}(σ̄, τ) +

min
τ∈Π(R)

min
σ̄∈Π(N)

fQ
{σ∗(1),...,σ∗(n−p+1)}(σ̄, τ)

= −vQ({σ∗(1), . . . , σ∗(n− p)}) + vQ({σ∗(1), . . . , σ∗(n− p + 1)})
= mσ∗

σ∗(n−p+1)(v
Q)

= mσ∗
σ(p)(v

Q),

where the third equality follows from recursively substituting the formulas for

ρQ
σ(q)(σ). ¤

Theorem 8.5.3 Let (N,E, C) ∈ MIAN be a multi-issue allocation situation with

corresponding games vP and vQ. Then ρP = Φ(vP ) and ρQ = Φ(vQ).

Proof: This result follows immediately from Lemma 8.5.2 and from the observation

that {σ∗ |σ ∈ Π(N)} = Π(N). ¤
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8.6 Consistency

O’Neill (1982) characterised his recursive completion method (run-to-the-bank rule)

for bankruptcy situations by means of the property of consistency. A bankruptcy

rule f is called consistent if for every bankruptcy situation (N, E, c) the following

two procedures yield the same outcome:

1. Apply f to the whole bankruptcy situation (N,E, c).

2. For each player j ∈ N , consider the subsituation where this player j receives

his claim (truncated to the estate), min{cj, E}, and the other players N\{j}
divide the remainder of the estate E−min{cj, E} among themselves using the

original claims cN\{j} and the rule f . The solution of the original situation

(N, E, c) is then the average of the solutions of these n subsituations.

So, a bankruptcy rule f is consistent if for each bankruptcy situation (N, E, c) and

each player i ∈ N the following equality holds:

fi(N,E, c) =
1

n


min{ci, E}+

∑

j∈N\{i}
fi(N\{j}, E −min{cj, E}, cN\{j})


 ,

where the first term on the right hand side represents the payoff to player i if he

receives his truncated claim and the other terms correspond to the subsituations in

which the other players play this role.

In this section we generalise this result by O’Neill and characterise the propor-

tional and queue run-to-the-bank rules by means of consistency. Contrary to the

standard bankruptcy framework, however, we cannot simply give a player his claim

and send him away. Not only is it unclear what he should actually receive, but

more fundamentally, by omitting him from the situation, vital information on the

interdependency between the issues is lost.

To solve this, we extend our framework and broaden the domain of these rules

to a larger class of situations, namely multi-issue allocation situations with awards.

The idea behind this construction is that instead of sending a player away, we keep

him in and fix the payoff that he eventually receives (the award). We should stress,

that although this new class has a nice interpretation in itself, it is not directly

intended as an extension of multi-issue allocation situations, but as a (technical)
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framework in which the characterisation of the run-to-the-bank rule by O’Neill can

be generalised in a natural way.

A multi-issue allocation situation with awards is a 4-tuple (N,E,C, µ), where

µ ∈ RF represents some award vector to some specific coalition F ⊂ N , which

has already been agreed upon. The sum of these awards cannot exceed the estate,

so
∑

i∈F µi ≤ E. Furthermore,
∑

i∈F µi = E if F = N . Note that a multi-issue

allocation situation without awards is a special case with F = ∅.
A rule Ψ is a function assigning to every multi-issue allocation situation with

awards (N,E, C, µ) a vector Ψ(N, E,C, µ) ∈ RN such that
∑

i∈N Ψi(N,E, C, µ) = E

and ΨF (N, E, C, µ) = µ. That is, for a rule in this environment it should hold that

every player in F gets exactly his award. Note that contrary to the situation without

awards, we do not impose reasonability3 on Ψ. On this new class of situations we

also define two run-to-the-bank rules. For this, we first fix an order on the players

in F , so let γ ∈ Π(F ). The proportional run-to-the-bank rule with awards is defined

as:

ρP (µ) =
1

|N\F |!
∑

σ∈Πγ(N)

ρP (σ, µ),

where

Πγ(N) =
{
σ ∈ Π(N) | ∀q∈{1,...,|F |} : σ(q) = γ(q)

}

and for all σ ∈ Πγ(N), ρP (σ, µ) ∈ RN is defined recursively by

ρP
σ(p)(σ, µ) = µσ(p)

for all p ∈ {1, . . . , n} such that σ(p) ∈ F and

ρP
σ(p)(σ, µ) = max

τ∈Π(R)

{
fP

σ(p)(τ)−
p−1∑
q=1

[
ρP

σ(q)(σ, µ)− fP
σ(q)(τ)

]
}

for all p ∈ {1, . . . , n} such that σ(p) /∈ F .

Note that the run-to-the-bank rule does not depend on the actual choice of γ.

This definition differs from the run-to-the-bank rule without awards (8.6) in two

respects: every player i ∈ F gets µi rather than the maximum expression in (8.6)

and the players in F have to be compensated (which is accomplished in an order

3To guarantee reasonability of the run-to-the-bank rules with awards as defined below, we would
have to make some unnecessary diverting assumptions. We just note that for the specific multi-
issue allocation situations with awards that are derived from a standard multi-issue allocation
situation using either run-to-the-bank rule, reasonability is satisfied.
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σ ∈ Πγ(N) by putting them at the front). Note that for F = ∅, the two definitions

coincide.

In a similar fashion, we define the queue run-to-the-bank rule with awards:

ρQ(µ) =
1

|N\F |!
∑

σ∈Πγ(N)

ρQ(σ, µ),

where for all σ ∈ Πγ(N), ρQ(σ, µ) ∈ RN is defined recursively by

ρQ
σ(p)(σ, µ) = µσ(p)

for all p ∈ {1, . . . , n} such that σ(p) ∈ F and

ρQ
σ(p)(σ, µ) = max

τ∈Π(R)

{
fQ

σ(p)(σ, τ)−
p−1∑
q=1

[
ρQ

σ(q)(σ, µ)− fQ
σ(q)(σ, τ)

]}

for all p ∈ {1, . . . , n} such that σ(p) /∈ F . Note that this definition generalises (8.8)

rather than (8.7). Proposition 8.5.1 can easily be extended to the situation with

awards, so letting each player choose an order on the players would result in an

equivalent definition.

For all i ∈ N\F and τ ∈ Π(R) we define the remainder functions

rP
i (τ) = fP

F∪{i}(τ)−
∑
j∈F

µj (= fP
i (τ) +

∑
j∈F

[fP
j (τ)− µj])

and

rQ
i (τ) = fQ

F∪{i}(σ, τ)−
∑
j∈F

µj,

where σ ∈ Πγ(N) is such that σ(|F |+ 1) = i. These remainder functions represent

the amount of money player i gets according to order τ , when he has to ensure that

every player j ∈ F gets µj. A rule Ψ is called P-consistent if for all multi-issue

allocation situations with awards (N, E,C, µ) and all i ∈ N\F we have

Ψi(N, E,C, µ) =
1

|N\F |


 max

τ∈Π(R)
rP
i (τ) +

∑

j ∈ N\F
j 6= i

Ψi(N, E,C, µj)


 , (8.9)

where µj ∈ RF∪{j} is such that µj
F = µ and µj

j = maxτ∈Π(R) rP
j (τ). Ψ is Q-consistent

if for all (N, E,C, µ) and all i ∈ N\F
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Ψi(N,E, C, µ) =
1

|N\F |


 max

τ∈Π(R)
rQ
i (τ) +

∑

j ∈ N\F
j 6= i

Ψi(N, E,C, µj)




with µj
j = maxτ∈Π(R) rQ

j (τ). The idea behind consistency in this context is as follows.

Let i be a player in N\F . Then the first term between parentheses is the amount

of money player i gets when he maximises his own payoff by choosing an order on

the issues, keeping in mind the players in F have to receive their awards. Next, let

j ∈ N\F, j 6= i. Now suppose that player j receives his maximal remainder. Then

a new situation arises where player j has been awarded some fixed amount. The

amount of money player i receives in this new situation is given by applying rule Ψ

on the old µ extended with the fixed award to player j. A rule is called consistent if

applying it directly yields the same outcome as averaging over all |N\F | situations

where one of the non-fixed player get their maximum.

Theorem 8.6.1 The proportional run-to-the-bank rule ρP is the unique P-

consistent rule and the queue run-to-the-bank rule ρQ is the unique Q-consistent

rule.

Proof: We only give the proof for ρP . The proof for ρQ goes along similar lines.

First, we prove that ρP satisfies P-consistency. Let i ∈ N\F . Then

ρP
i (µ) =

=
1

|N\F |!
∑

σ∈Πγ(N)

ρP
i (σ, µ)

=
1

|N\F |!
∑

j∈N\F

∑

σ∈Πγ,j(N)

ρP
i (σ, µ)

=
1

|N\F |!
∑

σ∈Πγ,i(N)

max
τ∈Π(R)



fP

i (τ)−
σ−1(i)−1∑

q=1

[
ρP

σ(q)(σ, µ)− fP
σ(q)(τ)

]


 +

1
|N\F |!

∑

j ∈ N\F
j 6= i

∑

σ∈Πγ,j(N)

max
τ∈Π(R)



fP

i (τ)−
σ−1(i)−1∑

q=1

[
ρP

σ(q)(σ, µ)− fP
σ(q)(τ)

]




=
1

|N\F |!
∑

σ∈Πγ,i(N)

max
τ∈Π(R)



fP

F∪{i}(τ)−
∑

j∈F

µj



 +
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1
|N\F |!

∑

j ∈ N\F
j 6= i

∑

σ∈Πγ,j(N)

max
τ∈Π(R)



fP

i (τ)−
σ−1(i)−1∑

q=1

[
ρP

σ(q)(σ, µj)− fP
σ(q)(τ)

]




=
1

|N\F |! (|N\F | − 1)! max
τ∈Π(R)

rP
i (τ) +

1
|N\F |

∑

j ∈ N\F
j 6= i

1
(|N\F | − 1)!

∑

σ∈Πγ,j(N)

ρP
i (µj)

=
1

|N\F |


 max

τ∈Π(R)
rP
i (τ) +

∑

j ∈ N\F
j 6= i

ρP
i (µj)


 ,

where Πγ,j(N) = {σ ∈ Πγ(N) | σ(|F |+ 1) = j} for j ∈ N\F .

Uniqueness of the P-consistent rule is proved by induction on the size of F . Assume

that rule Ψ is P-consistent. For F = N , Ψ(N, E,C, µ) = µ by definition. Next, (8.9)

completely determines the solutions of all situations with |F | = |N | − 1. Repeating

this procedure until F = ∅, we conclude that there is a unique P-consistent rule,

which is the proportional run-to-the-bank rule. ¤





Chapter 9

A composite MIA approach

9.1 Introduction

In the previous chapter, we extended the bankruptcy model to encompass situations

in which the agents can have multiple claims on the estate, each as a result of a

particular issue. For such multi-issue allocation (MIA) situations we proposed an

extension of the run-to-the-bank rule1 as solution for this new class of problems.

As is the case for the original rule, this extended run-to-the-bank rule turns out to

coincide with the Shapley value of the corresponding multi-issue allocation game.

Contrary to bankruptcy games, however, multi-issue allocation games need not

be convex. Consequently, there exist multi-issue allocation situations for which the

run-to-the-bank solution is not a core element of the corresponding game. In this

chapter, which is based on González-Alcón et al. (2003), we extend the run-to-the-

bank rule in a different way, such that it always yields a core element.

Instead of considering the issues and the players combined, as in Chapter 8, in

this chapter we propose a two-stage extension, called the composite run-to-the-bank

rule. First, we explicitly allocate the estate to the issues (according to a marginal

vector), and then, within each issue the money is divided among the agents using

the standard run-to-the-bank rule. An alternative view on composite solutions is

given in Casas-Méndez et al. (2002).

Based on Aumann and Maschler (1985), we define the concept of (self-)duality for

multi-issue allocation situations and show that both the queue run-to-the-bank-rule

and the composite run-to-the-bank rule are self-dual. We characterise the com-

posite extension by means of the property of issue-consistency, which like P- and

1In this chapter, we only refer to the queue approach of the previous chapter.
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Q-consistency in section 8.6 generalises the consistency property that was first used

by O’Neill (1982).

This chapter is organised as follows. In section 2, we define the composite ex-

tension of the run-to-the-bank rule and show that this rule always yields a core

element. In section 3, we define self-duality and prove that both extensions of the

run-to-the-bank rule satisfy this property. Finally, in section 4, we characterise the

composite run-to-the-bank rule by means of issue-consistency and we show that this

rule is estate monotonic.

9.2 The composite run-to-the-bank rule

In this section, we extend the run-to-the-bank rule for bankruptcy situations to

the class of MIA situations. Contrary to the extension in section 8.5, the present

extension, which we call the composite run-to-the-bank rule, involves multiple runs

to the bank, once by the issues and within each issue by the players.

Throughout this chapter, we denote the bankruptcy game corresponding to the

situation (R,E, (ckN)k∈R) by vR
E,C . We denote the vector (cki)i∈N for k ∈ R by Ck.

As stated in section 7.2, the run-to-the-bank rule for bankruptcy games, RTB,

coincides with the Shapley value of the corresponding bankruptcy game and can

thus be expressed as

RTB(N, E, c) =
1

n!

∑

σ∈Π(N)

mσ(vE,c).

Let (N, E,C) ∈ MIAN . For τ ∈ Π(R) and σ ∈ Π(N), we define the composite

marginal vector as2

mmτ,σ(N,E, C) =
∑

k∈R

mσ∗(vxk,Ck
),

where x = mτ∗(vR
E,C). The following lemma follows from Lemma 8.5.2.

Lemma 9.2.1 Let (N, E, c) ∈ BRN and σ ∈ Π(N). Then

mσ(vE,c) = ρ(σ∗).

2Formally, in a bankruptcy situation all claims are positive (see section 7.2). As a result,
(N, xk, Ck) need not be a proper bankruptcy situation. In the analysis of this chapter, we can
ignore this and we can apply (7.1) to obtain a bankruptcy game.
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As a result of this lemma, the composite marginal vector mmτ,σ can be viewed as a

race to the bank, where the issues arrive in order τ and the players in order σ.

The set of all composite marginal vectors is a subset of the core of the corre-

sponding MIA queue game, as is shown in the following proposition.

Proposition 9.2.2 Let (N,E, C) ∈ MIAN . Then

mmτ,σ(N, E,C) ∈ C(vQ)

for all τ ∈ Π(R), σ ∈ Π(N).

Proof: Let τ ∈ Π(R), σ ∈ Π(N) and let z = mmτ,σ(N,E,C). Let x = mτ∗(vR
E,C)

and t = max{t | ∑t
p=1 cτ(p),N ≤ E}. With xk as estate for issue k ∈ R, we have a

collection of bankruptcy situations {(N, xk, Ck)}k∈R. However, at most one of them

is a nontrivial situation: in the situations τ(1), . . . , τ(t) the estate equals the sum of

all the claims and in the situations τ(t+2), . . . , τ(r) the estate equals zero. Let y be

the marginal vector corresponding to σ of the only possible nontrivial bankruptcy

situation (N, xτ(t+1), Cτ(t+1)):

y = mσ∗(vxτ(t+1),Cτ(t+1)
).

We can express vector z as

z = y +
t∑

p=1

Cτ(p).

Let S ⊂ N . Then with E ′ =
∑

i∈N yi, we have

∑
i∈S

zi = g(S, τ(t + 1), σ, E ′) +
t∑

p=1

cτ(p),S

= fQ
S (σ, τ) ≥ vQ(S).

Hence, z ∈ C(vQ). ¤

A general relation of inclusion between the set of marginal vectors of the queue game

and the set of composite marginal vectors cannot be established, as is shown in the

following example.
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Example 9.2.1 Let (N,E, C) ∈ MIAN with N = {1, 2, 3}, E = 10 and

C =

[
9 5 0
3 7 7

]
.

The queue game associated with this situation is

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
vQ(S) 0 0 0 3 3 1 10

The sets of marginal and composite marginal vectors can be easily calculated. The

results are given in the following table.

σ ∈ Π(N) mσ

123 (0, 3, 7)
132 (0, 7, 3)
213 (3, 0, 7)
231 (9, 0, 1)
312 (3, 7, 0)
321 (9, 1, 0)

τ ∈ Π(R) σ ∈ Π(N) mmτ,σ

12 123, 132, 312 (9, 1, 0)
213, 231, 321 (5, 5, 0)

21 123, 213 (3, 7, 0)
132, 312 (3, 0, 7)

231 (0, 7, 3)
321 (0, 3, 7)

The table shows that m231(vQ) is not a composite marginal vector and that

mm12,213(N,E, C) does not belong to the set of marginal vectors of the game vQ. /

We define the composite run-to-the-bank rule, mRTB, by

mRTB(N,E, C) =
1

r!

∑

τ∈Π(R)

∑

k∈R

RTB(N,mτ
k(v

R
E,C), Ck) (9.1)

for all (N,E, C) ∈ MIAN . The mRTB rule can be interpreted as the result of two

races: first, the issues “run to the bank” for the money, and next, there are r races

among the players within each issue. As is the case for the RTB rule for bankruptcy

situations, the claims are satisfied as much as possible by the order of arrival.

The mRTB rule first takes the marginal vectors of the “issue game” vR
E,C . As-

sociated with each marginal vector mτ (vR
E,C) we have r bankruptcy games whose

estates are given by the components of the marginal vector. Next, we take for each

player the sum of the RTB solutions of these r situations. Finally, the average

among all the marginals is computed. It is readily seen that the mRTB rule can be

expressed as

mRTB(N,E, C) =
1

r!

∑

τ∈Π(R)

1

n!

∑

σ∈Π(N)

mmτ,σ(N, E,C). (9.2)
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If we start with a bankruptcy situation (N,E, c) ∈ BRN and construct the corre-

sponding MIA situation (N, E,C) with the claims on the main diagonal of C, then

RTB(N,E, c) = mRTB(N,E, C). So, the composite run-to-the-bank rule is indeed

an extension of the run-to-the-bank rule. However, mRTB does not in general co-

incide with the Shapley value of the game. In fact, the mRTB rule is not even

game-theoretic, ie, two situations leading to the same game might yield different

outcomes.

The composite run-to-the-bank rule provides a way of obtaining an element of

the core of the corresponding queue game without calculating the characteristic

function. This is stated in the following theorem.

Theorem 9.2.3 Let (N,E,C) ∈ MIAN . Then

mRTB(N, E, C) ∈ C(vQ).

Proof: In Proposition 9.2.2, we showed that every composite marginal vector lies

in the core. The mRTB outcome, being the average of these composite marginals

vectors according to equation (9.2), then also is an element of the core, which is a

convex set. ¤

As an alternative to the mRTB rule, another way to extend the RTB rule in a

two-stage way would be to apply the RTB rule twice:
∑

k∈R RTB(N, xk, Ck) with

x = RTB(R, E, (ckN)k∈R) = Φ(vR
E,C). However, this solution can lie outside the core

of the corresponding queue game, as the next example shows.

Example 9.2.2 Consider the MIA situation (N, E,C) ∈ MIAN with N = {1, 2, 3},
E = 51 and

C =




0 2 6
0 1 24
24 2 0


 .

The queue game associated with this situation is

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
vQ(S) 16 3 22 21 46 27 51

We have x = RTB(R,E, (ckN)k∈R) = (16
3
, 67

3
, 70

3
) and

∑
k∈R RTB(N, xk, Ck) =

(67
3
, 5

2
, 157

6
). As 5

2
< 3 = vQ({2}), this solution is not in the core of vQ. /
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9.3 Self-duality

For a MIA situation (N, E,C) we define D(S) = cRS, ie, the total claim of the

players in coalition S, and we define D = D(N). Recall that we assume D ≥ E. To

distinguish between the various games, we denote the queue game corresponding to

(N,E, C) by vQ
E,C .

The proof of the following lemma is partly taken from Wintein (2002).

Lemma 9.3.1 Let (N, E, C) ∈ MIAN . Then for all S ⊂ N ,

vQ
E,C(S) = vQ

D−E,C(N\S) + D(S)−D + E.

Proof: Let S ⊂ N . To calculate the value of vQ
E,C(S), we must find an ordering

on the players σ ∈ Π(N) and an ordering on the issues τ ∈ Π(R) such that the

total amount assigned to coalition S, fQ
S (σ, τ), is minimal. Obviously, σ can be any

ordering in which the players in S are at the end.

In Figure 9.1 we represent all the claims of matrix C in the order indicated by τ

and σ, ie, cτ(1)σ(1), cτ(1)σ(2), . . . , cτ(r)σ(n). The claims associated with players in S are

shaded. The total claim is divided into two parts of lengths E and D − E, as the

figure shows. From the way in which σ and τ are chosen, the dark zone in the E

part is as small as possible, and it is precisely vQ
E,C(S).

cτ(1)σ(1) . . .

. . .

cτ(1)σ(n)

. . . . . .

. . . cτ(r)σ(n)

� -E � -D − E

Figure 9.1: Proof of Lemma 9.3.1

If we consider now the MIA situation (N, D − E, C) and we want to calculate

vQ
D−E,C(N\S), we must find σ′ ∈ Π(N) and τ ′ ∈ Π(R) such that the white zone in

the D − E segment is minimised. The length of this zone is indeed vQ
D−E,C(N\S).

Since this is in a sense the complementary problem of the first one, this minimum

is reached for σ∗ and τ ∗, ie, the reverse orderings of σ and τ .

On the other hand, we have that the E segment is the sum of its white and shaded

parts. The white part within E will be the total white zone D(N\S) minus the
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white zone in the D−E segment. The shaded part of E is vQ
E,C(S), as was indicated

above. So,

E = vQ
E,C(S) + D(N\S)− vQ

D−E,C(N\S).

From the equality D = D(S) + D(N\S), we conclude that the statement holds. ¤

The next lemma gives us the relation between the marginal vectors of the two queue

games with estates E and D − E.

Lemma 9.3.2 Let (N, E,C) ∈ MIAN . Then

mσ(vQ
E,C) = (cRi)i∈N −mσ∗(vQ

D−E,C)

for all σ ∈ Π(N).

Proof: Let σ ∈ Π(N) and p ∈ {1, . . . , n}. Let i = σ(p) and let S be the coalition

{σ(1), . . . , σ(p− 1)}. Then

mσ
i (vQ

E,C) = vQ
E,C(S ∪ {i})− vQ

E,C(S).

From Lemma 9.3.1 we then have

mσ
i (vQ

E,C) = vQ
D−E,C(N\(S ∪ {i})) + D(S ∪ {i})−D + E

−[vQ
D−E,C(N\S) + D(S)−D + E]

= D({i}) + vQ
D−E,C(N\(S ∪ {i}))− vQ

D−E,C(N\S)

= D({i})−mσ∗
i (vQ

D−E,C).

From D({i}) = cRi the result follows. ¤

Following Aumann and Maschler (1985), given a rule f we can define its dual f ∗ by

using f to share not the estate E but the gap D−E. So, each player receives his claim

(the part he would receive if the estate were big enough) minus the corresponding

part of the losses:

f ∗(N, E,C) = (cRi)i∈N − f(N,D − E, C).

A rule is called self-dual if f ∗ = f . We show that both ρQ (defined by (8.8)) and

mRTB are self-dual.

Proposition 9.3.3 The ρQ rule is self-dual.
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Proof: Let (N, E, C) ∈ MIAN . Since ρQ coincides with the Shapley value of the

associated queue game, we have

ρQ(N,E, C) =
1

n!

∑

σ∈Π(N)

mσ(vQ
E,C).

From Lemma 9.3.2 it then follows that

1

n!

∑

σ∈Π(N)

mσ(vQ
E,C) =

1

n!

∑

σ∈Π(N)

[(cRi)i∈N −mσ∗(vQ
D−E,C)]

= (cRi)i∈N − 1

n!

∑

σ∈Π(N)

mσ(vQ
D−E,C)

= (cRi)i∈N − ρQ(N, D − E, C).

This shows that ρQ is self-dual. ¤

As a result of the previous proposition, the RTB rule is self-dual for bankruptcy

situations as well, which was first proved by Curiel (1988).

Proposition 9.3.4 The mRTB rule is self-dual.

Proof: Let (N,E, C) ∈ MIAN . We denote by vR
E and vR

D−E the characteristic

functions of the games induced by the bankruptcy situations (R, E, (ckN)k∈R) and

(R, D − E, (ckN)k∈R), respectively. Then,

mRTB(N,E, C) =
1

r!

∑

τ∈Π(R)

∑

k∈R

RTB(N,mτ
k(v

R
E), Ck)

=
1

r!

∑

τ∈Π(R)

∑

k∈R

RTB(N, ckN −mτ∗
k (vR

D−E), Ck)

=
1

r!

∑

τ∈Π(R)

∑

k∈R

[
Ck −RTB(N, ckN − ckN + mτ∗

k (vR
D−E), Ck)

]

=
∑

k∈R

Ck − 1

r!

∑

τ∈Π(R)

∑

k∈R

RTB(N, mτ
k(v

R
D−E), Ck)

= (cRi)i∈N −mRTB(N, D − E, C),

where for the second equality we use Lemma 9.3.1 and for the third equality we use

self-duality of the RTB rule for bankruptcy situations. Hence, the mRTB rule is

self-dual. ¤
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9.4 Issue consistency and monotonicity

In this section we characterise the composite run-to-the-bank rule as a consistent

extension of the RTB rule for bankruptcy situations to multi-issue allocations sit-

uations. This so-called issue-consistency allows us to easily establish estate mono-

tonicity of the mRTB rule. See section 8.6 for a wider discussion on consistency.

A MIA rule f is called issue-consistent if for each MIA situation (N, E,C) ∈
MIAN the following holds:

f(N, E,C) =
1

r

∑

k∈R

[f(N, min{E, ckN}, Ck)

+f(N, max{E − ckN , 0}, C−k)], (9.3)

where C−k is the claim matrix C from which issue k has been deleted.

The first term of the summation in (9.3) applies the rule f to a one-issue allocation

situation (so basically a bankruptcy situation), while the second term applies f to

a MIA situation with r − 1 issues. So, successively applying this property allows

us to extend any bankruptcy rule to the class of multi-issue allocation situations.

Analogous to the characterisation in section 8.6, every bankruptcy rule has a unique

issue-consistent extension.

Theorem 9.4.1 The mRTB rule is the unique issue-consistent extension of the

RTB rule.

Proof: Let (N, E, C) ∈ MIAN . Then

mRTB(N, E, C) =

=
1

r!

∑

τ∈Π(R)

∑

k∈R

RTB(N,mτ
k(v

R
E,C), Ck)

=
1

r!

∑

k∈R

∑

`∈R

∑

τ ∈ Π(R)
τ(r) = `

RTB(N,mτ
k(v

R
E,C), Ck)

=
1

r!

∑

k∈R

∑

τ ∈ Π(R)
τ(r) = k

RTB(N, mτ
k(v

R
E,C), Ck) +

1

r!

∑

k∈R

∑

`∈R\{k}

∑

τ ∈ Π(R)
τ(r) = k

RTB(N, mτ
` (v

R
E,C), C`)
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=
1

r!
(r − 1)!

∑

k∈R

RTB(N, min{ckN , E}, Ck) +

1

r!
(r − 1)!

∑

k∈R

1

(r − 1)!

∑

τ∈Π(N\{k})

∑

`∈R\{k}
RTB(N,mτ

` (v
R\{k}), C`)

=
1

r

∑

k∈R

mRTB(N, min{ckN , E}, Ck) +

1

r

∑

k∈R

mRTB(N, max{E − ckN , 0}, C−k),

where vR\{k} is the bankruptcy game associated with (R\{k}, max{E −
ckN , 0}, (c`N)`∈R\{k}). Hence, the mRTB rule is issue-consistent. Uniqueness fol-

lows from a similar reasoning as in the proof of Theorem 8.6.1. ¤

Issue-consistency allows us to show that the composite run-to-the-bank rule is estate

monotonic. A MIA rule f is estate monotonic if for every pair of MIA situations

(N,E, C) and (N,E ′, C) with E ′ ≥ E we have

fi(N, E ′, C) ≥ fi(N, E,C)

for all i ∈ N .

Theorem 9.4.2 The mRTB rule is estate monotonic.

Proof: We show that the mRTB rule is estate monotonic by induction on the

number of issues r. If r = 1 then mRTB coincides with RTB and this rule is estate

monotonic on the class of banckruptcy games (cf. Curiel (1988)).

Next, assume that mRTB is estate monotonic for situations with r − 1 issues. Let

C be a claim matrix with r rows. By issue-consistency we have

mRTB(N,E, C) =
1

r

∑

k∈R

[mRTB(N, min{E, ck}, Ck)

+mRTB(N, max{E − ck, 0}, C−k)].

In the first term inside the brackets we basically apply the RTB rule to a bankruptcy

situation. So, by estate monotonicity of the RTB rule, this term increases if the

estate is raised. The second term is the application of mRTB to a (r−1)-issue allo-

cation situation, which by the induction hypothesis satisfies the estate monotonicity

property. Adding up all terms, we have that mRTB is estate monotonic. ¤



Chapter 10

Bankruptcy with a priori unions

10.1 Introduction

In many situations in which agents interact, they do so in groups. Cooperative game

theory studies such situations by taking into account what each particular coalition

of players can achieve on its own. These values of the coalitions are subsequently

taken into account in determining a fair allocation of the value of the grand coalition.

Often, however, some coalitions play a special role, in that they arise in a natural way

from the underlying situation. If these naturally arising groups form a partition of

the grand coalition, they are usually referred to as a priori unions (cf. Owen (1975)).

One interesting class of problems in which the role of a priori unions has been

studied is the class of bankruptcy situations (see section 7.2). In a bankruptcy sit-

uation, there is an estate to be divided among a number of players, whose total

claim exceeds the estate available. In many situations, these players can be divided

into a priori unions, based on the nature or cause of their claims. Eg, when a firm

goes bankrupt, the creditors can usually be grouped in a natural way by distin-

guishing between claims on the basis of outstanding bonds, equity or commercial

transactions.

The main focus in the bankruptcy literature is on finding rules assigning to each

bankruptcy situation an allocation of the estate, which satisfy some appealing prop-

erties. One natural way to analyse the class of bankruptcy situations with a pri-

ori unions is to extend well-known standard bankruptcy rules to this class. Eg,

Casas-Méndez et al. (2003) extend the adjusted proportional rule by considering

a two-stage procedure in which the estate is first divided among the unions, and

subsequently the amount that each union receives is divided among its members.

135
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In this chapter, which is based on Casas-Méndez et al. (2002), we present two

extensions of the constrained equal award (CEA) rule. The first extension involves

a similar two-stage procedure as in Casas-Méndez et al. (2003). We relate this

extension to the CEA solution of a corresponding TU game with a priori unions,

which is inspired by Owen (1977). We provide two characterisations of this two-

stage extension, inspired by previous results by Dagan (1996) and Herrero and Villar

(2002). The second extension of the CEA rule is based on the random arrival rule

introduced in O’Neill (1982) and it is characterised by a consistency property.

The outline of this chapter is as follows. In section 2, we formally define the

class of bankruptcy situations with a priori unions and some related concepts that

are used throughout this chapter. In section 3, the problem of extending standard

bankruptcy rules is addressed and the first extension is presented. In section 4,

we provide the two characterisations of the two-stage extension of the CEA rule.

Section 5 contains the second extension and deals with the concept of consistency.

10.2 Bankruptcy with a priori unions

A bankruptcy situation with a priori unions is a 4-tuple (N, E, c,P) where (N, E, c)

is a standard bankruptcy problem and P = {Pk}k∈R is a partition of the set of

players into unions, R being the set of unions. We denote by BUN the set of all

bankruptcy problems with a priori unions with player set N .

A bankruptcy with a priori unions rule is a function ϕ : BUN → RN that assign

to each (N,E, c,P) ∈ BUN a payoff vector ϕ(N,E, c,P) ∈ RN such that for all

i ∈ N , 0 ≤ ϕi(N, E, c,P) ≤ ci and
∑

i∈N ϕi(N,E, c,P) = E.

For (N,E, c,P) ∈ BUN we define the corresponding bankruptcy situation among

the unions (R, E, cP) ∈ BRN , the so-called quotient problem, where cP = (cPk )k∈R

is the vector of total claims of the unions, so cPk =
∑

i∈Pk
ci for each union Pk of

players. Note that (R, E, cP) is a well defined bankruptcy problem.

A cooperative game with transferable utility with a priori unions is a triple

(N, v,P) where (N, v) is a TU game and P = {Pk}k∈R is a partition of the set

of players. For (N, v,P), we define the corresponding TU game among the unions

(R, vP), the quotient game, by vP(L) = v(∪k∈LPk) for all L ⊂ R.

A bankruptcy situation with a priori unions gives rise in a natural way to a
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multi-issue allocation situation, where the issues correspond to the unions. In order

to analyse such situations, in Chapter 8 we define two corresponding games, the

proportional game and the queue game. In this chapter, we consider a variation

on the former: instead of dividing the estate proportional to the claims within the

final issue to be handled, we apply an arbitrary bankruptcy rule f to this problem.

Note that for all f , the resulting game is exact (which follows from the proof of

Theorem 8.4.2), but not necessarily convex.

The link with multi-issue allocation situations and corresponding games is illus-

trated in the following example, where for the definition of the CEA rule we refer

to section 7.2.

Example 10.2.1 Consider the 4-player bankruptcy problem (N,E, c) ∈ BRN with

E = 10 and c = (6, 2, 8, 5). Suppose players 1 and 2 form a union and players 3 and

4 another one, that is, P = {{1, 2}, {3, 4}}.
This situation gives rise to the 4-player multi-issue allocation situation

(N, E,C) ∈ MIAN with E = 10 and

C =

[
6 2 0 0
0 0 8 5

]
.

Take S = {1, 3}. In order to determine vCEA(S), we first compute, for both τ ∈
Π(R), fCEA

S (τ), the quantity that coalition S receives if the issues are handled in

order τ and the final issue is resolved using CEA:

τ fCEA
S (τ)

(1, 2) 6 + CEA3({3, 4}, 2, (8, 5)) = 7
(2, 1) CEA3({3, 4}, 10, (8, 5)) = 5

So, vCEA(S) = minτ∈Π(R) fCEA
S (τ) = 5. Similarly, taking T = {1, 4}, we obtain

vCEA(T ) = 5, vCEA(S ∪T ) = 8 and vCEA(S ∩T ) = 0. Hence, vCEA(S)+ vCEA(T ) >

vCEA(S ∪ T ) + vCEA(S ∩ T ). So, although vCEA is exact, it is not convex. /

10.3 Extending bankruptcy rules: a two-step pro-

cedure

In this section we consider a way to extend a game-theoretic bankruptcy rule to a rule

for bankruptcy situations with a priori unions. We use the CEA rule to illustrate
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this extension. We also connect our CEA solution for a bankruptcy situation with

a priori unions to the corresponding TU game with a priori unions.

In order to divide the total estate among the players, one approach is first

to divide the estate among the unions and second to divide the amount of each

union among the players in this union. Let f : BRN → RN be a game-theoretic

bankruptcy rule. We define the two-stage extension f̄ : BUN → RN as fol-

lows. Let (N, E, c,P) ∈ BUN be a bankruptcy problem with a priori unions.

Define Ef
k = fk(R, E, cP) for all k ∈ R and next, for all i ∈ Pk, k ∈ R, define

f̄i(N,E, c,P) = fi(Pk, E
f
k , (cj)j∈Pk

).

The CEA rule for bankruptcy situations with a priori unions generalises the stan-

dard CEA rule for bankruptcy situations, in the sense that both CEA(N,E, c,PN)

and CEA(N,E, c,Pn) coincide with CEA(N, E, c), where Pn is the discrete parti-

tion Pn = {{1}, . . . , {n}} and PN is the trivial partition PN = {N}. Also note that

by construction, CEAk(R,E, cP ,PR) = ECEA
k for all k ∈ R. Since (R, E, cP ,PR) is

basically indistinguishable from (R,E, cP), we refer to both situations as the quo-

tient problem associated with (N, E, c,P).

The CEA solution of a bankruptcy situation with a priori unions coincides with

the CEA solution for the corresponding TU game with a priori unions, which we

are going to define next.

First, recall that the utopia vector of a game v ∈ TUN , M(v), is defined by

Mi(v) = v(N) − v(N\{i}) for all i ∈ N . This vector is used to define the CEA

solution of the game, which is defined for all i ∈ N by CEAi(N, v) = min{λ,Mi(v)},
where λ is such that

∑
i∈N min{λ,Mi(v)} = v(N).1 This solution divides the worth

of the total coalition, v(N), among the players in such a way that all of them obtain

the same amount with the restriction that no player can get more than his utopia

payoff. Note that for (N, E, c) ∈ BRN , we have CEA(N, E, c) = CEA(vE,c).

Now, let (N, v,P) be a TU game with a priori unions. The constrained equal

award solution of this game, CEA(N, v,P) is defined in two steps. First, the payoff

to each union Pk ∈ P equals CEAk(R, vP), ie, the constrained equal award solution

of the quotient game. In the second step, the payoff to each union is divided among

its players. To do this, we consider for every player i ∈ N his cooperation possibilities

with the players outside his union. A similar idea is used in Owen (1977), where a

1The CEA rule for TU games is only well-defined for a subclass of such games. If the game
is exact, then the CEA rule is well-defined. The same holds for the CEA rule for games with a
priori unions, which we define later on, where exactness of the underlying game is sufficient.
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modification of the Shapley value for TU games with a priori unions is defined. Let

Pk ∈ P and let i ∈ Pk. The “claim” of player i is defined as his contribution to the

coalition ∪`∈R\{k}P` ∪ {i}, that is, Mi(v,P) = v(∪`∈R\{k}P` ∪ {i}) − v(∪`∈R\{k}P`).

The constrained equal award solution of the game (N, v,P) for player i ∈ Pk, k ∈ R

is then defined by

CEAi(N, v,P) = CEAi(Pk, CEAk(R, vP), (Mj(v,P))j∈Pk
).

The CEA solution of a bankruptcy situation with a priori unions coincides with the

CEA solution of the corresponding game (N, vCEA,P), as is shown in the following

proposition, where vCEA is the multi-issue allocation game obtained by applying the

CEA rule in the last issue.

Proposition 10.3.1 For every (N,E, c,P) ∈ BUN we have that CEA(N, E, c,P) =

CEA(N, vCEA,P).

Proof: Let (N, E, c,P) ∈ BUN . First, it follows of the definition of the game vCEA

(or indeed of vf for any bankruptcy rule f) that

vCEA(∪k∈LPk) = max{E −
∑

i∈N\∪k∈LPk

ci, 0}

for all L ⊂ R and hence, the games (R, (vCEA)P) and (R, vE,cP ) coincide. So,

CEAk(R, (vCEA)P) = CEAk(R, vE,cP ) = CEAk(R, E, cP) = ECEA
k

for all k ∈ R.

Next, for i ∈ Pk,

Mi(v
CEA,P) =

{
CEAi(Pk, E, (cj)j∈Pk

) if E ≤ cPk ,
ci if E > cPk ,

where for both ∪`∈R\{k}P` ∪ {i} and ∪`∈R\{k}P` any worst order on the issues starts

with issue k.

From the previous, we have

CEAi(N,E, c,P) = CEAi(Pk, E
CEA
k , (cj)j∈Pk

)

= CEAi(Pk, E
CEA
k , (Mj(v

CEA,P))j∈Pk
)

= CEAi(Pk, CEAk(R, (vCEA)P), (Mj(v
CEA,P))j∈Pk

)

= CEAi(N, vCEA,P)
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for all i ∈ Pk, where for the second equality, observe that truncating i’s claim to

CEAi(Pk, E, (cj)j∈Pk
) in case E ≤ cPk does not affect his payoff. This concludes the

proof. ¤

Using the associated bankruptcy game rather than the CEA multi-issue allocation

game with a priori unions yields a different outcome, as is illustrated in the following

example.

Example 10.3.1 Consider the 3-player bankruptcy situation (N, E, c) ∈ BRN with

E = 400 and c = (100, 100, 400). Suppose player 1 forms a union and players 2

and 3 form another one, that is, P = {P1, P2} with P1 = {1} and P2 = {2, 3}.
To find the CEA solution of the bankruptcy situation with unions (N, E, c,P),

we first consider the bankruptcy situation (R, E, cP) among the unions. We ob-

tain CEA(R, E, cP) = (100, 300) and then CEA(N, E, c,P) = (100, 100, 200). By

Proposition 10.3.1, we have that CEA(N, vCEA,P) = (100, 100, 200). To find

the CEA solution of the game (N, vE,c,P) we first consider the corresponding

game among the unions (R, vPE,c), which yields CEA(R, vPE,c) = (100, 300). Hence,

CEA1(N, vE,c,P) = 100. To determine the allocation of CEA23(R, vPE,c) to players

2 and 3, we compute the utopia payoffs M2(vE,c,P) = 0 and M3(vE,c,P) = 300.

Hence CEA(N, vE,c,P) = (100, 0, 300) 6= CEA(N, E, c,P). /

10.4 Characterisations of CEA

In this section we use the axiomatic method to support the two-stage procedure

presented in the previous section. We provide two different sets of axioms to char-

acterise the CEA rule, extending two previous characterisations of the CEA rule

for standard bankruptcy problems. Consider the following properties for a rule

ϕ : BUN → RN .

Composition (COMP): For each (N, E, c,P) ∈ BUN , ϕ(N,E, c,P) =

ϕ(N, E ′, c,P) + ϕ(N, E − E ′, c− ϕ(N, E ′, c,P),P) for all 0 ≤ E ′ ≤ E.

This property considers the situation in which after the estate (E ′) has been

divided among the players, this estate is reevaluated and turns out to be a bigger
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amount (E). In these cases, we have two options. We can cancel the initial division

and apply the rule to the new problem, or we can preserve the initial division and

apply the rule to the increment of the estate by considering a new vector of claims,

taking into account the quantities already received. The composition property says

that both options should lead to the same result.

Path independence (PI): For each (N, E, c,P) ∈ BUN , ϕ(N,E, c,P) =

ϕ(N,E, ϕ(N, E ′, c,P),P) for all E ′ ≥ E.

Here, the opposite situation is considered, one where the estate (E) is smaller

than the one initially considered (E ′). Then, we can apply the rule to the new prob-

lem or divide the new estate by taking the initial divisions as claim vector. Path

independence states that both ways of proceeding should result in the same payoffs.

Equal treatment within the unions (ET): For each (N, E, c,P) ∈ BUN

and for each pair of players i, j within a union Pk ∈ P such that ci = cj,

ϕi(N, E, c,P) = ϕj(N, E, c,P).

This property requires that players of the same union with equal claims obtain

equal payoffs.

Quotient problem property (QPP): For each (N,E, c,P) ∈ BUN and for each

union Pk ∈ P ,
∑

i∈Pk
ϕi(N, E, c,P) = ϕk(R, E, cP ,PR).

In a bankruptcy situation with unions we can consider the associated quotient

problem where the unions negotiate about the division of the estate. After this, a

negotiation within every union takes place. The quotient problem property states

that the total payoff to the players of a union in the initial problem must equal the

payoff to this union in the quotient problem. Note that if ϕ is the two-step extension

f̄ of a bankruptcy rule f , then ϕk(R,E, cP ,PR) = Ef
k = fk(R, E, cP).

Invariance under claims truncation within the unions (ICT): For each

(N, E, c,P) ∈ BUN and for every player i in a union Pk ∈ P such that ci >∑
j∈Pk

ϕj(N, E, c,P), we have ϕ(N, E, c,P) = ϕ(N, E, c′,P), where c′j = cj for all

j ∈ N \ {i} and c′i =
∑

j∈Pk
ϕj(N, E, c,P).
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Suppose the claim of a player is greater than the total quantity that his union

gets according to ϕ. Then ICT states that the outcome is not affected if we replace

the claim of this player by the total payoff to his union.

Sustainability of players within the unions (SUS): For each (N,E, c,P) ∈
BUN and for every player i who is sustainable within his union Pk ∈ P , ie,∑

j∈Pk
min{ci, cj} ≤ ϕk(R,E, cP ,PR), we have ϕi(N, E, c,P) = ci.

This property establishes a protective criterion within each union in the sense

that small claims should be completely satisfied. The claim of player i is considered

sustainable within his union if the worth of this union in the quotient problem is

enough to pay each player in this union his claim, truncated to the claim of player

i.

Composition and path independence are in essence identical to the correspond-

ing properties for bankruptcy rules (cf. Young (1988) and Moulin (1987)). Equal

treatment within the unions is a weak version of the equal treatment property for

bankruptcy rules. Invariance under claims truncation within the unions and sus-

tainability of players within the unions are natural extensions of the corresponding

properties for bankruptcy rules to this context of a priori unions. Note that the quo-

tient problem property implies that the rule ϕ must involve some two-step procedure

to obtain the solution.

In the following theorem we present the first characterisation of the CEA rule.

This theorem is inspired by a similar result for the CEA rule for bankruptcy situa-

tions in Dagan (1996).

Theorem 10.4.1 The CEA rule is the unique rule for bankruptcy situations with

a priori unions that satisfies equal treatment within the unions, composition, the

quotient problem property and invariance under claims truncation within the unions.

Proof: First, we show that CEA satisfies these four properties. Equal treatment

within the unions and the quotient problem property follow immediately from the

definitions. To show that CEA satisfies the composition property, let Pk ∈ P and

let i ∈ Pk.
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Then

CEAi(N,E, c,P) = CEAi(Pk, E
CEA
k , (cj)j∈Pk

).

Consider now 0 ≤ E ′ ≤ E. Then

CEAi(N,E ′, c,P) = CEAi(Pk, E
CEA′
k , (cj)j∈Pk

),

with ECEA′
k = CEAk(R, E ′, cP) ≤ ECEA

k . Define c′ = c − CEA(N,E ′, c,P). Then

we have

CEAi(N,E − E ′, c′,P) = CEAi(Pk, CEAk(R,E − E ′, (c′)P), (c′j)j∈Pk
).

Because the constrained equal award rule for bankruptcy situations satisfies com-

position (cf. Dagan (1996)), we have

ECEA
k − ECEA′

k = CEAk(R, E, cP)− CEAk(R, E ′, cP)

= CEAk(R, E − E ′, cP − CEA(R,E ′, cP))

= CEAk(R, E − E ′, (c′)P),

where in the last equality we use QPP. From the previous, it follows that

CEAi(N,E, c,P) =

= CEAi(Pk, E
CEA
k , (cj)j∈Pk

)

= CEAi(Pk, E
CEA′
k , (cj)j∈Pk

) + CEAi(Pk, E
CEA
k − ECEA′

k , (c′j)j∈Pk
)

= CEAi(N, E ′, c,P) + CEAi(Pk, CEAk(R, E − E ′, (c′)P), (c′j)j∈Pk
)

= CEAi(N, E ′, c,P) + CEAi(N, E − E ′, c′,P),

where in the second equality we again use that CEA satisfies composition. Hence,

we conclude that CEA satisfies composition. The proof of invariance under claims

truncation within the unions follows similar lines.

To show the reverse, let ϕ : BUN → RN be a rule satisfying ET, QPP, COMP

and ICT. Let (N,E, c,P) ∈ BUN and consider the quotient problem (R, E, cP ,PR).

Without loss of generality, assume that 0 ≤ cP1 ≤ . . . ≤ cPr . In Proposition 1 of

Dagan (1996) it is established that the constrained equal award rule is the only rule

for bankruptcy situations that satisfies the bankruptcy equivalents of ET, COMP
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and ICT. Since the quotient problem with PR is basically a bankruptcy situation,

it follows that ϕk(R,E, cP ,PR) = ECEA
k for all k ∈ R.

Now, we consider the first union P1 ∈ P . Suppose without loss of generality that

P1 = {1, . . . , n1} and that c11 ≤ . . . ≤ c1n1 .

Step 1. If 0 ≤ E ≤ rc11, then ECEA
1 ≤ c11 and because of ICT, QPP and ET,

ϕi(N, E, c,P) = CEAi(N,E, c,P) for all i ∈ P1.

If rc11 < E ≤ rc11 + rc11(1 − 1
n1

), then equality is established using COMP.

Next, COMP can be used for rc11 + rc11(1 − 1
n1

) < E ≤ rc11 + rc11(1 −
1
n1

) + rc11(1 − 1
n1

)2. Repeating the same construction infinitely many times,

ϕi(N, E, c,P) = CEAi(N,E, c,P) for all i ∈ P1 if 0 ≤ E ≤ rn1c11.

Step 2. If rn1c11 < E ≤ rn1c11+r(c12−c11), by COMP we have ϕ(N, E, c,P) = x+

ϕ(N, E−rn1c11, c−x,P), where as a result of Step 1, xi = ϕi(N, rn1c11, c,P) =

CEAi(N, rn1c11, c,P) = c11 for all i ∈ P1. Furthermore, E − rn1c11 ≤
r(c12− c11). So because of QPP (keeping in mind that between the unions we

have the CEA solution), ICT and ET we have ϕi(N, E − rn1c11, c − x,P) =

CEAi(N, E − rn1c11, c − x,P) for all i ∈ P1 and hence, ϕi(N, E, c,P) =

CEAi(N, E, c,P) for all i ∈ P1.

Using a similar repetitive procedure as in Step 1, we obtain ϕi(N, E, c,P) =

CEAi(N, E, c,P) for all i ∈ P1 if 0 ≤ E ≤ rn1c11 + r(n1 − 1)(c12 − c11).

Repeating the same arguments, we conclude ϕi(N, E, c,P) = CEAi(N, E, c,P) for

all i ∈ P1 if 0 ≤ E ≤ rn1c11 + r(n1 − 1)(c12 − c11) + . . . + r(c1n1 − c1,n1−1) =

r(c11 + . . . + c1n1) = rcP1 . It then follows from ϕ1(R,E, cP ,PR) = ECEA
1 and QPP

that ϕi(N, E, c,P) = CEAi(N,E, c,P) for all 0 ≤ E ≤ c(N).

Now, we consider the second union P2 ∈ P . We distinguish between two cases.

If E ≤ rcP1 , then we can use the same arguments as in the first union to obtain

ϕi(N, E, c,P) = CEAi(N, E, c,P) for all i ∈ P2.

So, assume that E > rcP1 . Because ϕ satisfies COMP, we have

ϕ(N, E, c,P) = ϕ(N, rcP1 , c,P) + ϕ(N,E − rcP1 , c− x,P),

where x = ϕ(N, rcP1 , c,P). By the previous case, ϕi(N, rcP1 , c,P) =

CEAi(N, rcP1 , c,P) for all i ∈ P2. With the second term, ϕ(N, E−rcP1 , c−x,P), we

proceed as with the first union with estate E − rcP1 and claims c− x and we obtain

ϕi(N, E − rcP1 , c− x,P) = CEAi(N, E − rcP1 , c− x,P) for all i ∈ P2. Note that in
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the problem (N, E− rcP1 , c−x,P) all the members of P1 obtain zero. Because CEA

satisfies COMP, we have ϕi(N, E, c,P) = CEAi(N,E, c,P) for all i ∈ P2.

By repeating the same argument for all the unions, the statement follows. ¤

Our second characterisation is based on Herrero and Villar (2002). In order to give

this result, we first present some lemmas.

Lemma 10.4.2 If ϕ : BUN → RN is a rule that satisfies path independence and

sustainability of players within the unions then for every (N, E, c,P) ∈ BUN we

have that ϕk(R,E, cP ,PR) = ECEA
k for all k ∈ R.

Proof: Let ϕ : BUN → RN be a rule satisfying PI and SUS and let (N,E, c,P) ∈
BUN . Consider the associated quotient problem (R,E, cP ,PR). Theorem 1 in Her-

rero and Villar (2002) states that the constrained equal award rule is the only rule

for bankruptcy situations that satisfies the bankruptcy equivalents of path indepen-

dence and sustainability. From this, the statement readily follows. ¤

Lemma 1 in Herrero and Villar (2002) states that if a bankruptcy rule satisfies path

independence and sustainability, then it satisfies equal treatment of equals. In a

similar way we can establish the next result for a rule for bankruptcy situations

with a priori unions.

Lemma 10.4.3 If a rule for bankruptcy problems with a priori unions satisfies the

quotient problem property, path independence and sustainability within the unions,

then it satisfies equal treatment within the unions.

Now we can give our second axiomatic characterisation of the CEA rule.

Theorem 10.4.4 The CEA rule is the unique rule for bankruptcy problems with

a priori unions that satisfies path independence, sustainability of players within the

unions and the quotient problem property.

Proof: It is readily seen that CEA satisfies sustainability of players within the

unions and the quotient problem property. The proof for path independence follows

similar lines to the proof for composition and therefore we omit it.
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Next, let ϕ : BUN → RN be a rule for BUN satisfying QPP, PI and SUS and

let (N, E, c,P) ∈ BUN . Let Pk ∈ P . We have to show that ϕi(N, E, c,P) =

CEAi(N,E, c,P) for all i ∈ Pk. As a result of Lemma 10.4.2 and QPP, we have∑
i∈Pk

= ϕi(N, E, c,P) = ECEA
k . We use the following notation: nk

1 = maxi∈Pk
ci,

Nk
1 = {i ∈ Pk | ci = nk

1}, nk
2 = maxi∈Pk\Nk

1
ci, Nk

2 = {i ∈ Pk | ci = nk
2}.

Step 1. Suppose all claims in Pk are sustainable. Then cPk = ECEA
k and because ϕ

satisfies SUS, ϕi(N, E, c,P) = ci = CEAi(N, E, c,P) for all i ∈ Pk.

Step 2. Suppose only the claims of the players in Pk\Nk
1 are sustainable in Pk.

(If Pk = Nk
1 , then we can immediately apply ET.) Then ϕi(N, E, c,P) = ci

for all i ∈ Pk\Nk
1 and as a result of ET (using Lemma 10.4.3), the members

of Nk
1 all receive the same amount, which is at least nk

2 because this claim is

sustainable. Using QPP, we obtain ϕi(N,E, c,P) = CEAi(N,E, c,P) for all

i ∈ Pk.

Step 3. Next, suppose only the claims of the players in Pk\(Nk
1 ∪Nk

2 ) are sustainable

in Pk. Let E ′ > E be such that ϕk(R, E ′, cP ,PR) is the minimum quantity

that sustains the claims of Pk\Nk
1 within union Pk, which is possible because

of Lemma 10.4.2 and the basic properties of CEA. Let c′ = ϕ(N,E ′, c,P).

By Step 1, c′i = ci for all i ∈ Pk\Nk
1 and because we chose E ′ minimal,

c′i = c′j for all i, j ∈ Nk
1 ∪ Nk

2 . Because ϕ and CEA satisfy PI, we have

ϕi(N, E, c,P) = ϕi(N,E, c′,P) and CEAi(N, E, c,P) = CEAi(N,E, c′,P)

for all i ∈ N . By Step 1, ϕi(N, E, c′,P) = CEAi(N, E, c′,P) for all i ∈ Pk

and hence, ϕi(N,E, c,P) = CEAi(N, E, c,P) for all i ∈ Pk.

Repeating this procedure, we obtain ϕi(N, E, c,P) = CEAi(N, E, c,P) for all i ∈
Pk. ¤

10.5 Consistent two-step rules

In this section we define the second two-step extension of bankruptcy rules to

bankruptcy situations with a priori unions. As in section 3, we use the CEA rule

to illustrate this new extension and hence we obtain a second extension of the CEA

rule for bankruptcy situations to bankruptcy situations with a priori unions, which

we call RACEA. We also introduce a property of consistency which we subsequently

use to characterise this extension.
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Let f : BRN → RN be a game-theoretic bankruptcy rule and let (N, E, c,P) ∈
BUN . We define the f -random arrival rule, RAf : BUN → RN , in the following

way:

RAf
i (N, E, c,P) =

1

r!


 ∑

τ∈Π(R)

fi(Pk, Eτ , (cj)j∈Pk
)




for all i ∈ Pk, where Eτ = max{min{cPk , E −∑
`∈R,τ−1(`)<τ−1(k) cP` }, 0}.

The interpretation of this rule is similar to that of other solutions inspired by

ideas of random arrival (cf. O’Neill (1982)). Here, we assume that the claims of the

different unions are satisfied following a fixed order. If at the moment to allocate

money to a particular union, the remaining estate is not enough to satisfy its total

claim, we use the rule f to distribute the money available within this union. The

f -random arrival rule allocates to a player the average of the amounts he obtains

according to the previous procedure over all the possible orders on the unions.

Note that if P = Pn, then we have RAf (N, E, c,Pn) = RTB(N, E, c), that is,

in this boundary case, RAf coincides with the run-to-the-bank rule for bankruptcy

problems for every bankruptcy rule f . If P = PN , then because f is game-theoretic

the f -random arrival rule coincides with the rule f .

In the next example, we illustrate the CEA-random arrival rule.

Example 10.5.1 We compute RACEA in the bankruptcy situation with a priori

unions of example 10.2.1. If the claims of the union P1 are satisfied first, then the

players obtain (100, 100, 200), whereas if the claims of the union P2 are satisfied first

the players obtain (0, 100, 300). Computing the average of the previous amounts,

we obtain RACEA(N, E, c,P) = (50, 100, 250). Note that RACEA(N, E, c,P) differs

from both CEA(N, E, c,P) and CEA(N, vE,c,P). /

Now, we define the property of consistency for bankruptcy with a priori unions rules

which resembles the property of issue-consistency described in section 9.4. A rule

ϕ : BUN → RN is consistent if for every (N,E, c,P) ∈ BUN , for each union Pk ∈ P
and for each player i ∈ Pk we have

ϕi(N,E, c,P) =
1
r

[
ϕi(Pk, E

′, (cj)j∈Pk
,PPk) +

∑
`∈R,` 6=k ϕi(N\P`, E−`, c−`,P−`)

]
,

where E ′ = min{E, cPk }, E−` = max{E − cP` , 0}, c−` = (cj)j∈N\P`
and P−` is the

partition of the set N\P` induced by P .
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So, a rule is consistent if in a bankruptcy problem with a priori unions it allocates

to a player the average of what he gets when the rule is applied to the problem

restricted to his own union and the solutions of the r − 1 bankruptcy situations in

which the estate is the amount that remains when each of the other unions gets

its maximum. Note that if P = Pn, this definition of consistency corresponds to

O’Neill consistency as defined in section 8.6.

Let f : BRN → RN be a game-theoretic bankruptcy rule. We say that a

consistent rule ϕ : BUN → RN is f -consistent if for every bankruptcy problem

(N,E, c) ∈ BRN we have that ϕ(N, E, c,PN) = f(N, E, c). That is, a rule is f -

consistent if it is consistent and it coincides with f when the a priori unions structure

P is the boundary system PN .

The next theorem establishes, for a fixed bankruptcy rule f , the existence and

uniqueness of an f -consistent rule. This result extends the O’Neill result of existence

and uniqueness of a bankruptcy consistent rule (the run-to-the-bank rule).

Theorem 10.5.1 For each game-theoretic bankruptcy rule f : BRN → RN , the

f -random arrival rule RAf is the unique f -consistent rule for bankruptcy situations

with a priori unions.

Proof: Let f : BRN → RN be a game-theoretic bankruptcy rule. First we

show that the f -random arrival rule, RAf , is f -consistent. We know that for ev-

ery bankruptcy problem (N, E, c) ∈ BRN , RAf (N, E, c,PN) = f(N,E, c). So,

it remains to be shown that RAf is consistent. Let (N,E, c,P) ∈ BUN and let

i ∈ Pk, k ∈ R. Define Eσ, E ′ and E−` as before and E−`,τ = max{min{cPk , E−` −∑
t∈R\{`}:τ−1(t)<τ−1(k) cPt }, 0} for all τ ∈ Π(R), ` ∈ R. Then,

RAf
i (N,E, c,P) =

1

r!

∑

τ∈Π(R)

fi(Pk, Eτ , (cj)j∈Pk
)

=
1

r!

[
(r − 1)!fi(Pk, E

′, (cj)j∈Pk
)

+
∑

`∈R,` 6=k

∑

τ∈Π(R\{`})
fi(Pk, E−`,τ , (cj)j∈Pk

)
]

=
1

r

[
fi(Pk, E

′, (cj)j∈Pk
)

+
∑

`∈R,` 6=k

1

(r − 1)!

∑

τ∈Π(R\{`})
fi(Pk, E−`,τ , (cj)j∈Pk

)
]
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=
1

r

[
RAf

i (Pk, E
′, (cj)j∈Pk

,PPk)

+
∑

`∈R, ` 6=k

RAf
i (N\P`, max{E − cP` , 0}, c−`,P−`)

]
.

Hence, RAf is consistent and therefore f -consistent.

Uniqueness of the f -consistent rule follows from a similar recursive argument as in

the proof of Theorem 8.6.1. ¤

O’Neill (1982) shows that the random arrival (run-to-the-bank) solution of a

bankruptcy situation coincides with the Shapley value of the corresponding

bankruptcy game. The next theorem extends this result by O’Neill to our con-

text, in the sense that the RA-random arrival rule coincides with the Owen value

(cf. Owen (1977)) of the corresponding bankruptcy game with a priori unions. We

omit the proof, which follows a similar line to the proof of the preceding theorem.

Theorem 10.5.2 Let (N,E, c,P) ∈ BUN . Then

RARA(N, E, c,P) = Ow(N, vE,c,P).

Now, from the previous two theorems, we immediately obtain the following result.

Theorem 10.5.3 The only rule for bankruptcy situations with a priori unions sat-

isfying random arrival-consistency is the Owen value of the associated bankruptcy

games with a priori unions.

In Winter (1992) and Hamiache (1999), the Owen value is axiomatically charac-

terised on the class of cooperative games with a priori unions by using two different

properties of consistency. Note that in the current chapter, we characterise the Owen

value on the class of bankruptcy situations with a priori unions, using a different

consistency property which extends the O’Neill consistency property for bankruptcy

situations.





Chapter 11

A characterisation of the τ value

11.1 Introduction

Most game-theoretic solution concepts that have been proposed in the literature are

defined on the basis of or characterised by properties. These properties are usually

formulated in terms of individual payoffs and reflect notions like monotonicity and

rationality. For some values, there exist additional characterisations in terms of

geometry. The best-known example is the Shapley value, which is the barycentre of

the extreme points of the Weber set (taking multiplicities into account).

For some classes of games, there exist nice geometric expressions for the compro-

mise value. In particular, the compromise value is the barycentre of the core cover

in big boss games (cf. Muto et al. (1988)) and 1-convex games (cf. Driessen (1988)).

In this chapter, which is based on González-Diaz et al. (2003), we extend the

APROP rule for bankruptcy situations to the whole class of compromise admissible

games. This extended rule, which we call τ ∗, turns out to be the barycentre of the

edges of the core cover (taking multiplicities into account). Since this rule coincides

with the compromise value if, after normalising such that each player’s minimal right

equals zero, each player’s utopia payoff is at most the value of the grand coalition,

our main result immediately provides a characterisation of the compromise value on

this class of games.

This chapter is organised as follows. In section 2, we extend the APROP rule to

the class of compromise admissible games and define the barycentre ζ of the edges

of the core cover. In section 3, we state our main result and give an overview of the

proof, which consists of six main steps. Finally, in section 4, we prove our result.

151



152 CHAPTER 11. A CHARACTERISATION OF THE τ VALUE

11.2 The τ ∗ value

The literature offers many different bankruptcy rules (see section 7.2) and hence,

indirectly, rules for bankruptcy games. One interesting question is how these can be

extended in a natural way to the whole class of compromise admissible games. In

this chapter, we consider the proportional rule and the adjusted proportional rule1.

Recall that the proportional rule PROP simply divides the estate proportional to

the claims:

PROPi(E, c) =
ci∑

j∈N cj

E

for all (N,E, c) ∈ BRN and i ∈ N . The adjusted proportional rule APROP first

gives each player i ∈ N his minimal right mi(E, c) = max{E −∑
j∈N\{i} cj, 0} and

the remainder is divided using the proportional rule, where each player’s claim is

truncated to the estate left:

APROP (E, c) = m(E, c) + PROP (E ′, c′),

where E ′ = E −∑
i∈N mi(E, c) and for all i ∈ N , c′i = min{ci −mi(E, c), E ′}.

The compromise value can be seen as an extension of the PROP rule:

τ(v) = m(v) + PROP (v(N)−
∑
i∈N

mi(v),M(v)−m(v)).

Note that it follows from the definition of compromise admissibility that the argu-

ment of PROP is indeed a bankruptcy situation.

Similarly, we can extend the APROP rule:

τ ∗(v) = m(v) + APROP (v(N)−
∑
i∈N

mi(v),M(v)−m(v)).

To simplify the expression for τ ∗, we show that the minimum rights in the associated

bankruptcy situation equal 0. Let v ∈ CAN , E = v(N)−∑
i∈N mi(v), c = M(v)−

m(v) and let i ∈ N . Then

E −
∑

j∈N\{i}
cj = v(N)−

∑
i∈N

mi(v)−
∑

j∈N\{i}
(Mj(v)−mj(v))

= v(N)−mi(v)−
∑

j∈N\{i}
Mj(v)

≤ 0,

1The extension of the Talmud rule is discussed in Quant et al. (2003), while in Quant et al.
(2004) a more general framework is considered, including the run-to-the-bank rule, the constrained
equal award rule and the constrained equal loss rule.



11.2. The τ ∗ value 153

since mi(v) ≥ v(N)−∑
j∈N\{i} Mj(v). Hence, mi(E, c) = max{E−∑

j∈N\{i} cj, 0} =

0. As a result, we have

τ ∗(v) = m(v) + PROP (E ′, c′) (11.1)

with E ′ = v(N)−∑
i∈N mi(v) and c′i = min{Mi(v)−mi(v), E ′} for all i ∈ N .

It follows that for a game v ∈ CAN with Mi(v) −mi(v) ≤ v(N) −∑
j∈N mj(v)

for all i ∈ N , τ ∗ coincides with the compromise value τ .

The extended rule τ ∗ turns out to be a kind of barycentre of the core cover,

which is the main result of this chapter. To define this barycentre rule ζ, we need

to introduce some more concepts. For a permutation2 σ ∈ Π(N), σi,j denotes the

permutation obtained from σ by switching players i and j. Two permutations σ and

σσ(p),σ(p+1) are called permutation neighbours. The set of permutation neighbours of

σ is denoted by Πσ(N).

The core cover is a polytope whose extreme points are called larginal vectors or

larginals. The larginal `σ ∈ RN corresponding to order σ ∈ Π(N) (cf. Quant et al.

(2003)) is given by

`σ
σ(p)(v) =





Mσ(p)(v) if
∑p

k=1 Mσ(k)(v) +
∑n

k=p+1 mσ(k)(v) ≤ v(N),

mσ(p)(v) if
∑p−1

k=1 Mσ(k)(v) +
∑n

k=p mσ(k)(v) > v(N),

v(N)−∑p−1
k=1 Mσ(k)(v)−∑n

k=p+1 mσ(k)(v) otherwise

for all p ∈ {1, . . . , n}.
Note that two permutations that are neighbours yield larginals which are adjacent

extreme points of the core cover (possibly coinciding), which we subsequently also

call permutation neighbours.

We define the ζ rule as a weighted average of the larginal vectors:3

ζ(v) =

∑
σ∈Π(N) wσ(v)`σ(v)∑

σ∈Π(N) wσ(v)
, (11.2)

where

wσ(v) =
1√
2

∑

τ∈Πσ(N)

d(`σ(v), `τ (v))

2In this chapter, we use the term permutation rather than ordering for an element of Π(N)
3In the degenerate case where M = m, the core cover consists of a single point, in which case we

define ζ to be this point. Otherwise, there are at least two different larginals and the denominator
is positive.
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equals the sum of the Euclidean distances between `σ(v) and all its permutation

neighbours, divided by the common factor
√

2 to simplify later expressions. The

ζ value can be viewed as the barycentre of the edges of the core cover, taking

multiplicities into account.

To simplify the proofs later on by getting rid of the minimum rights and capping

the utopia payoffs, we first show that both τ ∗ and ζ satisfy the properties (SEQ) and

(RTRUNC). Two games v and v̂ are called strategically equivalent if there exists a

real number k > 0 and a vector a ∈ RN such that for all S ⊂ N ,

v̂(S) = kv(S) + a(S). (11.3)

A function f : CAN → RN is relatively invariant with respect to strategic equivalence

(SEQ) if for all v, v̂ ∈ CAN such that for all S ⊂ N (11.3) holds for some k > 0, a ∈
RN , we have

f(v̂) = kf(v) + a.

It is well-known that the utopia vector M and the minimum right vector m both

satisfy (SEQ).

Proposition 11.2.1 The τ ∗ rule and the ζ rule satisfy (SEQ).

Proof: The proof for τ ∗ is straightforward and therefore omitted.

It readily follows from (SEQ) of m and M that `σ also satisfies (SEQ) for all σ ∈
Π(N). Let v, v̂ ∈ CAN be such that for some k > 0, a ∈ RN (11.3) holds for all

S ⊂ N and let σ ∈ Π(N). Then

wσ(v̂) =
1√
2

∑

τ∈Πσ(N)

d(`σ(v̂), `τ (v̂))

=
1√
2

∑

τ∈Πσ(N)

d(k`σ(v) + a, k`τ (v) + a)

= k
1√
2

∑

τ∈Πσ(N)

d(`σ(v), `τ (v))

= kwσ(v)

Hence,
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ζ(v̂) =

∑
σ∈Π(N) wσ(v̂)`σ(v̂)∑

σ∈Π(N) wσ(v̂)

=
k

∑
σ∈Π(N) wσ(v)[k`σ(v) + a]

k
∑

σ∈Π(N) wσ(v)

= kζ(v) + a.

And so, ζ satisfies (SEQ). ¤

A rule f : CAN → RN satisfies the restricted truncation property (RTRUNC) if for

all v ∈ CAN with m(v) = 0 it holds that for all v̂ ∈ CAN with v̂(N) = v(N),

m(v̂) = 0 and Mi(v̂) = min{Mi(v), v(N)} we have f(v̂) = f(v). The idea behind

(RTRUNC) is that if a player’s utopia value (or, in bankruptcy terms, his claim) is

higher than the value of the grand coalition (the estate), his payoff according to f

should not be influenced by truncating this claim.

Proposition 11.2.2 The τ ∗ rule and the ζ rule satisfy (RTRUNC).

Proof: Let v ∈ CAN with m(v) = 0. Then (11.1) reduces to

τ ∗(v) = PROP (v(N), (min{Mi(v), v(N)})i∈N).

From this it immediately follows that τ ∗ satisfies (RTRUNC).

For the ζ rule, it suffices to note that truncating the utopia vector has no influence

on the larginal vectors. ¤

11.3 Main result

In this section, we present the main result of this chapter: equality between τ ∗ and

ζ on CAN . After dealing with some simple cases, we present a six step outline of

the proof, which we give in the next section.

Theorem 11.3.1 Let v ∈ CAN . Then

τ ∗(v) = ζ(v).

As a result of Proposition 11.2.1, it suffices to show equality for every game v ∈ CAN

with m(v) = 0. Next, we can use Proposition 11.2.2 and conclude that we have to
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show that for all v ∈ CAN with m(v) = 0 and Mi(v) ≤ v(N)4 for all i ∈ N we have5

PROP (v(N),M(v)) =

∑
σ∈Π(N) wσ(v)`σ(v)∑

σ∈Π(N) wσ(v)
.

In case there are only two players, equality between τ ∗ and ζ follows from M1(v) =

M2(v) = v(N).

If Mi(v) = 0 for a player i ∈ N , then we have τ ∗i (v) = ζi(v) = 0. Fur-

thermore, for each σ ∈ Π(N), the payoff to the players in N\{i} according

to `σ(v) equals their payoff in the situation without player i6 according to the

larginal corresponding to the restricted permutation σN\{i} ∈ Π(N\{i}), defined

by σ−1
N\{i}(h) < σ−1

N\{i}(j) ⇔ σ−1(h) < σ−1(j) for all h, j ∈ N\{i}. It is readily veri-

fied that also the total weight of each larginal (taking multiplicities into account) is

the same in the game with and without player i. Hence, we can omit player i from

the game and establish equality between τ ∗ and ζ for the remaining players.7

We establish equality between τ ∗ and ζ by combining the permutations in the

numerator and denominator in (11.2) into so-called chains. In the denominator,

these chains allow us to combine terms in such a way that the total weight can be

expressed as a simple function of M(v). In the numerator, we construct an iterative

procedure to find an expression for the weighted larginals, in which the chains allow

us to keep track of changes that occur from one iteration to the next.

The proof of Theorem 11.3.1 consists of six steps:

1. We first find an expression for the weight of each permutation. This is done

by introducing the concept of pivot and classifying each permutation in terms

of its pivot and its neighbours’ pivots.

2. Using the concept of pivot, we introduce chains, which constitute a partition

of the set of all permutations. The results of the previous step are then used

to compute the total weight of each chain.

4Note that the condition Mi(v) ≤ v(N) is necessary and sufficient to have Mi(v) =
maxσ∈Π(N) `σ

i (v). Only in this case, the utopia vector can be reconstructed from the core cover.
5The denominator is zero if and only if M(v) = 0 (= m(v)). In this degenerate case equality

between τ∗ and ζ is trivial and we therefore assume M(v) 	 0.
6Ie, the situation with player set N\{i}, utopia vector MN\{i}(v) and the same amount v(N)

to be distributed.
7Geometrically, the core cover, which lies in the hyperplane Mi(v) = 0, is projected onto a

space which is one dimension lower.
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3. We define a family of auxiliary functions f ij and gij, which are used to show

that each player “belongs” to the same number of chains. As a result, we use

our expression of the previous step to compute the total of all the weights, ie,

the denominator in (11.2).

4. In the numerator, we partition the set of chains on the basis of the first player

in each permutation. Within each part, we compute the total weighted payoff

to all the players. For the first player, this total weighted payoff can easily be

computed.

5. The expression for the payoffs to the other players is proved using an iterative

argument, varying the utopia vector while keeping v(N) constant. We start

with a utopia vector for which our expression is trivial and lower this vector

step by step until we reach M(v). In each step of the iteration, (generically)

only two chains change and using this, we show that the total weighted payoff

to each player who is not first does not change as function of the utopia vector.

6. Combining the previous three steps, we derive an expression for ζ and show

that this equals τ ∗.

11.4 Proof of main result

Throughout this section, let v ∈ CAN be such that |N | ≥ 3, m(v) = 0, M(v) > 0,

and v(N) ≥ Mi(v) for all i ∈ N . For Theorem 11.3.1 is suffices to show that for this

v we have

PROP (v(N),M(v)) =

∑
σ∈Π(N) wσ(v)`σ(v)∑

σ∈Π(N) wσ(v)
.

Since v is fixed for the remainder of this section, we suppress it as argument and

write M rather than M(v), etc. The weight wσ(v) is denoted by w(σ).

Step 1: pivots

Let σ ∈ Π(N). Player σ(p) with p ≥ 2 is called the pivot in `σ if `σ
σ(p−1) = Mσ(p−1),

`σ
σ(p) > 0 and `σ

σ(p+1) = 0. The pivot of a larginal is the player who gets a lower

amount according this larginal if the amount v(N) is decreased slightly. In the

boundary case where Mσ(1) = v(N), v(N) cannot be decreased without violating

the condition Mσ(1) ≤ v(N). In this case, player σ(2) is defined to be the pivot,
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being the player who gets a higher amount if v(N) is increased slightly. Note that

m = 0 implies that
∑

j∈N\{i} Mj ≥ v(N) for all i ∈ N and hence, player σ(n) can

never be the pivot.

In the following example, we introduce a game which we use throughout this

section to illustrate the various concepts.

Example 11.4.1 Consider the game (N, v) with N = {1, . . . , 5}, v(N) = 10 and

M = (5, 7, 1, 3, 4). For this game, we have τ ∗ = ζ = 1
2
M . Take σ1 to be the identity

permutation, ie, σ1(i) = i for all i ∈ N . Then

`σ1 = (5, 5, 0, 0, 0)

and player 2 is the pivot. /

For a permutation σ ∈ Π(N), we define pσ to be the position at which the pivot8

is located. We define σL = σσ(pσ−1),σ(pσ) to be the left neighbour of σ and σR =

σσ(pσ),σ(pσ+1) to be the right neighbour of σ. It follows from the definition of pivot

that the left and right neighbours of `σ are the only two permutation neighbours

that can give rise to a larginal different from `σ.

Recall that the weight of `σ, w(σ), equals the sum of the (Euclidean) distances

between `σ and all its permutation neighbours. In line with the previous paragraph,

we only have to take the left and right neighbours into account. So,

w(σ) =
1√
2

[
d(`σ, `σL

) + d(`σ, `σR

)
]
.

We classify the larginals into four categories, depending on the pivot in the left and

right neighbours. Let σ = (. . . , h, i, j, . . .) be a permutation with pivot i. Then the

four types are given in the following table:

Type Pivot in σL Pivot in σ Pivot in σR

PPP i i i
−PP h i i
PP− i i j
−P− h i j

We can now determine the weight of each larginal, depending on its type. Take

σ ∈ Π(N) to be the identity permutation and assume that `σ is of type PP− and

has pivot i. Then

8As with neighbour, we use the term pivot as property of a permutation as well as the corre-
sponding larginal.
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`σ = (M1, . . . , Mi−2, Mi−1, v(N)−
i−1∑
j=1

Mj, 0, . . . , 0),

`σL

= (M1, . . . , Mi−2, 0, v(N)−
i−2∑
j=1

Mj, 0, . . . , 0),

`σR

= (M1, . . . , Mi−2, Mi−1, 0, v(N)−
i−1∑
j=1

Mj, 0, . . . , 0).

So,

d(`σ, `σL

) =
√

2M2
i−1 =

√
2Mi−1,

d(`σ, `σR

) =

√√√√2(v(N)−
i−1∑
j=1

Mj)2 =
√

2(v(N)−
i−1∑
j=1

Mj),

w(σ) = (v(N)−
i−2∑
j=1

Mj).

Doing these calculations for all types and arbitrary σ ∈ Π(N), we obtain the follow-

ing weights:

Type w(σ)
PPP Mσ(pσ−1) + Mσ(pσ+1)

−PP
∑pσ+1

k=1 Mσ(k) − v(N)

PP− v(N)−∑pσ−2
k=1 Mσ(k)

−P− Mσ(pσ)

Example 11.4.2 With σ1 the identity permutation, we have (the player with ˆ is

the pivot):

σ1 = (1, 2̂, 3, 4, 5) `σ1 = (5, 5, 0, 0, 0)

σL
1 = (2, 1̂, 3, 4, 5) `σL

1 = (3, 7, 0, 0, 0)

σR
1 = (1, 3, 2̂, 4, 5) `σR

1 = (5, 4, 1, 0, 0)

So, `σ1 is of type −PP . The weight of σ1 equals

w(σ1) =
1√
2

[
d(σ1, σ

L
1 ) + d(σ1, σ

R
1 )

]

= 2 + 1

= 3.

Indeed, we have w(σ1) =
∑pσ1+1

k=1 Mσ1(k) − v(N) = M1 + M2 + M3 − v(N) = 5 + 7 +

1− 10 = 3, as the table shows. /



160 CHAPTER 11. A CHARACTERISATION OF THE τ VALUE

Step 2: chains

A chain of length q and with pivot i is a set of q permutations Γ = {σ1, . . . , σq} such

that

• (σm)R = σm+1 for all m ∈ {1, . . . , q − 1},

• i is the pivot in σm for all m ∈ {1, . . . , q},

• i is not the pivot in σL
1 and σR

q .

If q = 1, then it follows from the definitions of the four types that σ1 is of type −P−.

If q > 1, then σ1 is of type −PP , σm is of type PPP for all m ∈ {2, . . . , q − 1}
and σq is of type PP−. Observe that the set of all chains, which we denote by C,

constitutes a partition of the set of permutations Π(N).

Denoting by σ− the permutation on the n−1 players obtained from σ by removing

the pivot, we characterise the chains in the following lemma.

Lemma 11.4.1 Two permutations σ1, σ2 ∈ Π(N) are in the same chain if and only

if σ−1 = σ−2 .

Given the weights of the larginal vectors, depending on their type, we can easily

compute the weight of a chain Γ, which is simply defined as the total weight of its

elements, ie, w(Γ) =
∑

σ∈Γ w(σ).

Lemma 11.4.2 Let Γ = {σ1, . . . , σq} ∈ C. Then

w(Γ) =

pσ1+q−1∑

k=pσ1

Mσ1(k).

Proof: Denoting p = pσ1 , we have (for q ≥ 5; for smaller chains the proof is

similar):

w(σ1) =
∑p−1

k=1 Mσ1(k) − v(N) + Mσ1(p) + Mσ1(p+1)

w(σ2) = + Mσ1(p+1) + Mσ1(p+2)

w(σ3) = + Mσ1(p+2) + Mσ1(p+3)
... =

...
...

w(σq−1) = + Mσ1(p+q−2) + Mσ1(p+q−1)

w(σq) = −∑p−1
k=1 Mσ1(k) + v(N) − ∑p+q−2

k=p+1 Mσ1(k) +

w(Γ) = Mσ1(p) +
∑p+q−1

k=p+1 Mσ1(k)
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¤

We say that player i ∈ N belongs to chain Γ = {σ1, . . . , σq} if i ∈
{σ1(pσ1), . . . , σ1(pσ1 +q−1)}, ie, if his position is not constant throughout the chain.

Alternatively, a player is said to belong to a chain if his utopia payoff contributes to

its weight. We define C(i) to be the set of chains to which i belongs. By P (i) ⊂ C(i)

we denote the set of chains in which i is the pivot and by P̄ (i) = C(i)\P (i) its

complement. For each Λ ∈ P̄ (i), we denote the permutation in Λ in which i is

immediately before the pivot by λbi and the permutation in which i is immediately

after the pivot by λai.

Example 11.4.3 Since player 2 is not the pivot in σL
1 , σ1 is the first permutation

of a chain. This chain Γ consists of σ1, σ2 = σR
1 and σ3 = σR

2 , all having player 2 as

pivot. In line with Lemma 11.4.1, we have σ−1 = σ−2 = σ−3 = (1, 3, 4, 5). Players 2, 3

and 4 belong to Γ and w(Γ) = M2 + M3 + M4 = 11. /

Step 3: denominator

In this step, we derive an expression for the denominator in (11.2). We do this by

showing that each player belongs to the same number of chains, ie,

|C(i)| = |C(j)| (11.4)

for all i, j ∈ N . If Mi = Mj, then this is trivial, so throughout this step, let i, j ∈ N

be such that Mi > Mj. We prove only one part of (11.4):

|P (j)|+ |P̄ (j)| ≤ |P (i)|+ |P̄ (i)|. (11.5)

The proof of the reverse inequality goes along similar lines, as will be indicated later

on.

An immediate consequence of Lemma 11.4.4 below is that |P (i)| ≥ |P (j)| and

|P̄ (j)| ≥ |P̄ (i)|. In Proposition 11.4.5 below we partner all the chains in P (j) to

some of the chains in P (i) and we partner all the chains P̄ (i) to some of the chains

in P̄ (j). We then show that for every chain in P̄ (j) which has no partner in P̄ (i),

we can find a chain in P (i) which has no partner in P (j). From this, (11.5) follows.

To partner the various chains, we define two auxiliary functions. First, we define

f ij:
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P (j)
f ij→ P (i)

∆ 7→ f ij(∆) = Λ

where ∆ = {δ1, . . . , δq} and Λ is the chain containing δi,j
1 . Note that the function

f ij is well-defined: since Mi > Mj, player i is indeed the pivot in δi,j
1 and hence, in

Λ.

Similarly, we define the function gij:

P̄ (i)
gij→ P̄ (j)

Λ 7→ gij(Λ) = ∆

where for all Λ ∈ P̄ (i), ∆ is the chain containing λi,j
bi .9

In the following lemma, we show that gij is well-defined, ie, that the chain ∆

thus constructed is indeed an element of the range of gij, P̄ (j).

Lemma 11.4.3 The function gij is well-defined.

Proof: Denote the pivot player in λbi (and hence, λai) by h. Observe that as

a result of Mi > Mj, player h cannot coincide with j. Distinguish between the

following two cases:

• i is before j in λbi:

λai = (. . . , ĥ, i, . . . , j, . . .) λi,j
ai = (. . . , ĥ, j, . . . , i, . . .)

λbi = (. . . , i, ĥ, . . . , j, . . .) λi,j
bi = (. . . , j, ĥ, . . . , i, . . .)

Since h is the pivot in λai, it immediately follows that h is also the pivot in

λi,j
ai . Player j cannot be the pivot in λi,j

bi , because i is before the pivot in λbi

and Mi > Mj. Combining this with the fact that h is the pivot in λi,j
ai , h is

also the pivot in λi,j
bi . But then λi,j

ai belongs to the same chain ∆ as λi,j
bi . From

this, ∆ ∈ C(j), and because j is not the pivot in ∆, ∆ ∈ P̄ (j).

• j is before i in λbi:

9By λi,j
bi we mean (λbi)i,j , ie, the permutation which is obtained by switching i and j in the

permutation in Λ where i is immediately before the pivot.
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λai = (. . . , j, . . . , ĥ, i, . . .) λi,j
ai = (. . . , i, . . . , ĥ, j, . . .)

λbi = (. . . , j, . . . , i, ĥ, . . .) λi,j
bi = (. . . , i, . . . , j, ĥ, . . .)

Since h is the pivot in λbi, we immediately have that h is the pivot in λi,j
bi .

Because of this, the pivot in λi,j
ai cannot be before h. It can also not be after

h, because h is the pivot in λai and Mi > Mj. By the same argument as in

the first case, ∆ ∈ P̄ (j).

From these two cases, we conclude that gij is well-defined. ¤

For our partnering argument to hold, we need that the functions f ij and gij are

injective. This is shown in the following lemma.

Lemma 11.4.4 The functions f ij and gij are injective.

Proof: To see that f ij is injective, let ∆, ∆̃ ∈ P (j) be such that f ij(∆) = f ij(∆̃).

By construction, i is the pivot in both f ij(∆) and f ij(∆̃), so i is the pivot in both

δi,j
1 and δ̃i,j

1 . Since by assumption these permutations are in the same chain, by

Lemma 11.4.1 we have (δi,j
1 )− = (δ̃i,j

1 )−. But since j is the pivot in both δ1 and δ̃1,

it follows that δ−1 = δ̃−1 . So, δ1 and δ̃1 are in the same chain and ∆ = ∆̃.

For injectivity of gij, let Λ, Λ̃ ∈ P̄ (i) be such that gij(Λ) = gij(Λ̃). Then λi,j
bi and

λ̃i,j
bi are in the same chain. By the proof of Lemma 11.4.3, j is just before the pivot

in both permutations and hence, λi,j
bi = λ̃i,j

bi . From this, we conclude λbi = λ̃bi and

Λ = Λ̃. ¤

From Lemma 11.4.4, we conclude

|P (j)| ≤ |P (i)|

and

|P̄ (i)| ≤ |P̄ (j)|.

With these inequalities, we can now apply our partnering argument to prove that

each player belongs to the same number of chains.

Proposition 11.4.5 Let i, j ∈ N . Then |C(i)| = |C(j)|.
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Proof: If Mi = Mj, then the statement is trivial. Hence, assume without loss of

generality that Mi > Mj.

We only show (11.5). Let ∆ ∈ P̄ (j) be such that there exists no Λ ∈ P̄ (i) with

gij(Λ) = ∆. Denote the pivot in ∆ by h and distinguish between the following three

cases:

• h 6= i and i is after j in δbj:

δaj = (. . . , ĥ, j, . . . , i, . . .) δi,j
aj = (. . . , ĥ, i, . . . , j, . . .)

δbj = (. . . , j, ĥ, . . . , i, . . .) δi,j
bj = (. . . , î, h, . . . , j, . . .)

Of course, h is also the pivot in δi,j
aj . If h were the pivot in δi,j

bj , then δi,j
aj and

δi,j
bj would be element of the same chain Λ ∈ P̄ (i). But then gij(Λ) = ∆, which

is impossible by assumption. Since Mi > Mj, player i must be the pivot in

δi,j
bj . The chain to which δi,j

bj belongs cannot be an image under f ij, since it is

obtained by switching i and j in a permutation in which j is not the pivot.

Furthermore, two different starting chains ∆, ∆̃ ∈ P̄ (j) cannot give rise to one

single chain containing both δi,j
bj and δ̃i,j

bj , because both permutations are of

type PP− or −P− and there can be only one such permutation in a chain.

• h 6= i and i is before j in δbj:

δaj = (. . . , i, . . . , ĥ, j, . . .) δi,j
aj = (. . . , j, . . . , h, î, . . .)

δbj = (. . . , i, . . . , j, ĥ, . . .) δi,j
bj = (. . . , j, . . . , i, ĥ, . . .)

Again, it easily follows that h is pivot in δi,j
bj and by the same argument as

in the first case, i must be pivot in δi,j
aj . Also, the chain to which δi,j

aj belongs

cannot be an image under f ij and two different starting chains ∆, ∆̃ ∈ P̄ (j)

cannot give rise to one single chain containing both δi,j
aj and δ̃i,j

aj , because both

permutations are of type −PP or −P−. Moreover, the chains constructed in

this second case, containing δi,j
aj , must differ from the chains constructed in the

first case, containing δi,j
bj , as a result of the relative positions of h and j.

• h = i:

δaj = (. . . , î, j, . . .) δi,j
aj = (. . . , j, î, . . .)

δbj = (. . . , j, î, . . .) δi,j
bj = (. . . , î, j, . . .)
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Obviously, i is the pivot in both δi,j
aj and δi,j

bj . So, these two permutations belong

to the same chain Λ ∈ P (i). Again Λ cannot be an image under f ij, and since

Λ = ∆, different starting chains give rise to different Λ’s. Finally, the chains

constructed in this case must differ from the chains in the first two cases,

because the new ones are elements of P̄ (j), whereas the chains constructed in

the first two cases are elements of C\C(j).

Combining the three cases, for every element of P̄ (j) that is not an image under

gij of any chain in P̄ (i), we have found a different element of P (i) that is not

an image under f ij of any chain in P (j). Together with Lemma 11.4.4, we have

|P (j)|+ |P̄ (j)| ≤ |P (i)|+ |P̄ (i)|.
Similarly, by taking Λ ∈ P (i) such that there exists no ∆ ∈ P (j) with Λ = f ij(∆),

one can prove the reverse inequality of (11.5). Combining the two inequalities, we

conclude |C(i)| = |C(j)|. ¤

Using the previous proposition, we can compute the total weight of all larginals.

Proposition 11.4.6
∑

σ∈Π(N) w(σ) = (n− 1)!
∑

i∈N Mi.

Proof: First note that for every chain Γ ∈ C, we have |Γ| = |{j ∈ N |Γ ∈ C(j)}|.
As a result of Proposition 11.4.5, we have

∑
Γ∈C |{j ∈ N |Γ ∈ C(j)}| = n|C(i)| for

all i ∈ N . But then, since
∑

Γ∈C |Γ| = n!, we conclude that |C(i)| = n!
n

= (n−1)! for

all i ∈ N , so each player belongs to (n−1)! chains. Then the statement immediately

follows from Lemma 11.4.2. ¤

Step 4: numerator, first player

Now we turn our attention to the numerator of (11.2). For this, we partition the set

of chains into subsets with the same starting player:

Ck = {{σ1, . . . , σq} ∈ C | σ1(1) = k}.

Note that since player k is by definition never the pivot in σ1, he is also the first

player in σ2, . . . , σq. It is easily verified that {Ck}k∈N is indeed a partition of C.

For a chain Γ = {σ1, . . . , σq} ∈ C, we define LΓ to be the weighted sum of its

corresponding larginals:



166 CHAPTER 11. A CHARACTERISATION OF THE τ VALUE

LΓ =

q∑

k=1

w(σk)`
σk .

We compute the numerator in (11.2) by combining the permutations that belong

to the same Ck, k ∈ N , deriving an expression for
∑

Γ∈Ck
LΓ

i for each player i ∈ N .

In this step, we consider the special case where i = k, while in the next step we

compute the payoff to the other players.

Lemma 11.4.7 For all i ∈ N ,
∑

Γ∈Ci
LΓ

i = (n− 2)!Mi

∑
j∈N\{i} Mj.

Proof: In a similar way as in Proposition 11.4.5, one can show that |Ci ∩ C(j)| =
|Ci ∩ C(k)| for all j, k ∈ N\{i}. Analogous to Proposition 11.4.6, we then have∑

σ∈Π(N):σ(1)=i w(σ) = (n − 2)!
∑

j∈N\{i} Mj. Since player i always gets Mi at the

first position, the statement follows. ¤

Step 5: numerator, other players

In this step, we finish the expression for the numerator in (11.2) by computing∑
Γ∈Ck

LΓ
i for all i ∈ N, i 6= k. First, in a similar way as in Lemma 11.4.2, one can

compute the total weighted larginal for each chain, as is done in the next lemma.

Lemma 11.4.8 Let Γ = {σ1, . . . , σq} ∈ P (i). Then for j = σ1(s) we have

LΓ
j =





w(Γ)Mj if s < pσ1 ,

(v(N)−∑pσ1−1

k=1 Mσ1(k))Mj if j = i,

(v(N)−∑s−1
k=1,k 6=pσ1

Mσ1(k) +
∑pσ1+q−1

k=s+1 Mσ1(k))Mj if Γ ∈ P̄ (j),

0 if s > pσ1 + q − 1.

Example 11.4.4 Of course, LΓ
1 = w(Γ)M1 = 11 · 5 = 55 and LΓ

5 = 0. For player 2,

the pivot, we have

LΓ
2 = w(σ1)(v(N)−M1) + w(σ2)(v(N)−M1 −M3)

+w(σ3)(v(N)−M1 −M3 −M4)

= 3 · (10− 5) + 4 · (10− 5− 1) + 4 · (10− 5− 1− 3)

= 35.
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Indeed, this equals (v(N) − ∑pσ1−1

k=1 Mσ1(k))M2 = (10 − 5) · 7, as stated in

Lemma 11.4.8.

For player 3, who belongs to Γ but is not the pivot, we have

LΓ
3 = w(σ1) · 0 + w(σ2)M3 + w(σ3)M3

= 0 + 4 · 1 + 4 · 1
= 8,

which equals the expression in Lemma 11.4.8. For player 4, the computation is

similar. /

Lemma 11.4.9 For all i, k ∈ N, i 6= k, we have
∑

Γ∈Ck
LΓ

i = (n−2)!(v(N)−Mk)Mi.

Proof: We prove the assertion using an iterative procedure, varying the utopia

payoffs while keeping v(N) constant. We denote the utopia vector in iteration t by

M t and throughout the procedure, this vector satisfies all our assumptions. We first

show that the statement holds for M1 = (v(N), . . . , v(N)) ≥ M . Then we iteratively

reduce the components of the utopia vector one by one until we, after finitely many

steps, end up in M . For every M t, we show that for the corresponding (induced) set

of chains, the total weighted payoff to i,
∑

Γ∈Ck
LΓ,t

i , equals (n− 2)!(v(N)−M t
k)M

t
i .

Step 1

Take M1 = (v(N), . . . , v(N)). Then all the chains consist of one permutation, in

which the second player is the pivot. Player i gets 0 if he is after the pivot and

v(N) − M1
k if he is the pivot. There are (n − 2)! chains in Ck in which the latter

occurs, each having weight M1
i . Hence,

∑
Γ∈Ck

LΓ,1
i = (n− 2)!(v(N)−M1

k )M1
i .

Step t

Suppose the statement holds for utopia vector M t−1. If M t−1 = M , then we are

finished. Otherwise, there exists a j ∈ N such that M t−1
j > Mj. We now reduce j’s

utopia payoff until one of the chains changes, or until Mj is reached.

A chain changes if in one of its permutations, the pivot changes. Obviously, this

can only happen if player j is the pivot or before the pivot. Because in the first



168 CHAPTER 11. A CHARACTERISATION OF THE τ VALUE

permutation of each chain the gap between what the pivot gets and his utopia payoff

is smallest, this permutation is the first to change. Denoting this gap corresponding

to σ ∈ Π(N) by γ(σ), ie,

γ(σ) = M t−1
σ(pσ) − (v(N)−

pσ−1∑

k=1

M t−1
σ(k)),

the first chain changes when j’s utopia payoff is decreased by

γ = min{γ(σ1) | {σ1, . . . , σq} ∈ Ck, σ
−1
1 (j) ≤ pσ1}. (11.6)

Assume for the moment that the corresponding argument contains one element and

denote its first permutation by σ̂.

If γ ≥ M t−1
j − Mj, then decreasing j’s utopia payoff from M t−1

j to Mj does not

result in any change in the chains. In this case, the statement holds for M t
j defined

by M t
j = Mj,M

t
h = M t−1

h for all h ∈ N\{j} and we proceed to step t + 1.

Otherwise, take M t
h = M t−1

h for all h ∈ N\{j} and M t
j = M t−1

j − (γ + ε), where

ε > 0 is chosen small enough such that σ̂ is the only permutation in which the pivot

changes. In particular, the pivot remains the same in the second permutation of the

same chain and in the first permutations of all the other chains.

As mentioned before, σ̂ is the first in a chain, say Γ ∈ Ck. So, σ̂ must be either of

type −P− or −PP . Define s = σ̂−1(i) and distinguish between the two cases:

• σ̂ is of type −P−:

σ̂R is part of another chain, say ∆ ∈ Ck with length q. Then the players

σ̂(pσ̂ − q + 1), . . . , σ̂(pσ̂ − 1) and σ̂(pσ̂ + 1) belong to ∆. When the pivot

changes in σ̂, this permutation joins ∆, as type PP−, forming chain ∆∪{σ̂}.
Hence, chain Γ = {σ̂} disappears and the length of ∆ is increased by one, while

the other chains are not affected. So, it suffices to show that LΓ,t−1
i + L∆,t−1

i

as function of M t−1 equals L
∆∪{σ̂},t
i as function of M t. Using Lemma 11.4.8,

we have:

– 1 < s < pσ̂ − q + 1:

LΓ,t−1
i = M t−1

σ̂(pσ̂)M
t−1
i (i is before Γ),

L∆,t−1
i = (M t−1

σ̂(pσ̂+1) +

pσ̂−1∑

`=pσ̂−q+1

M t−1
σ̂(`))M

t−1
i (i is before ∆),

L
∆∪{σ̂},t
i = (

pσ̂+1∑

`=pσ̂−q+1

M t
σ̂(`))M

t
i (i is before ∆ ∪ {σ̂}).
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– s = pσ̂:

LΓ,t−1
i = (v(N)−

pσ̂−1∑

`=1

M t−1
σ̂(`))M

t−1
i (Γ ∈ P (i)),

L∆,t−1
i = 0 (i is after ∆),

L
∆∪{σ̂},t
i = (v(N)−

pσ̂−1∑

`=1

M t
σ̂(`))M

t
i (i is “last” in ∆ ∪ {σ̂}).

– pσ̂ − q + 1 ≤ s < pσ̂:

LΓ,t−1
i = M t−1

σ̂(pσ̂)M
t−1
i (i is before Γ),

L∆,t−1
i = (v(N)−

s−1∑

`=1

M t−1
σ̂(`) +

pσ̂−1∑

`=s+1

M t−1
σ̂(`))M

t−1
i (∆ ∈ P̄ (i)),

L
∆∪{σ̂},t
i = (v(N)−

s−1∑

`=1

M t
σ̂(`) +

pσ̂∑

`=s+1

M t
σ̂(`))M

t
i (∆ ∪ {σ̂} ∈ P̄ (i)).

– s = pσ̂ + 1:

LΓ,t−1
i = 0 (i is after Γ),

L∆,t−1
i = (v(N)−

pσ̂−q∑

`=1

M t−1
σ̂(`))M

t−1
i (∆ ∈ P (i)),

L
∆∪{σ̂},t
i = (v(N)−

pσ̂−q∑

`=1

M t
σ̂(`))M

t
i (∆ ∪ {σ̂} ∈ P (i)).

– s > pσ̂ + 1:

LΓ,t−1
i = L∆,t−1

i = L
∆∪{σ̂},t
i = 0 (i is after all three chains).
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It is readily checked that in all cases, LΓ,t−1
i +L∆,t−1

i as function of M t−1 equals

L
∆∪{σ̂},t
i as function of M t.

• σ̂ is −PP :

σ̂R belongs to the same chain as σ̂. When the pivot changes in σ̂, this per-

mutation will form a new chain of length one. In the same manner as in the

previous case, we can show that the total weighted payoff to i as function of

the utopia vector in these two chains remains the same.

So, from these two cases, we conclude
∑

Γ∈Ck
LΓ,t

i = (n−2)!(v(N)−M t
k)M

t
i . Proceed

to step t + 1.

We assumed that the minimal gap in (11.6) is obtained for a unique permutation,

σ̂. Suppose now that there exists another permutation, σ̃, with this minimal gap.

Because the utopia payoffs are assumed to be strictly positive, σ̃ cannot be in the

same chain (Γ) as σ̂, but must be the first permutation of another chain (Γ̃). It

readily follows from the construction that also the two corresponding “neighbouring”

chains ∆ and ∆̃ are different, and moreover, they differ from Γ and Γ̃. Hence, we

can consider the analysis in step t for σ̂ and σ̃ separately to prove the statement.

Finally, our procedure stops after finitely many steps, because in all the changes,

the pivot concerned moves towards the back of a permutation. ¤

Step 6: final

In this final step, we combine our previous results to prove the main theorem.

Proof of Theorem 11.3.1: Let i ∈ N . Then applying Lemmas 11.4.7 and 11.4.9

yields

∑

σ∈Π(N)

w(σ)`σ
i =

∑
Γ∈C

LΓ
i

=
∑

k∈N\{i}

∑
Γ∈Ck

LΓ
i +

∑
Γ∈Ci

LΓ
i

=
∑

k∈N\{i}
(n− 2)!(v(N)−Mk)Mi + (n− 2)!Mi

∑

k∈N\{i}
Mk

= (n− 1)!v(N)Mi.
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Then, using Proposition 11.4.6, we have

ζi =

∑
σ∈Π(N) w(σ)`σ

i∑
σ∈Π(N) w(σ)

=
(n− 1)!v(N)Mi

(n− 1)!
∑

j∈N Mj

=
v(N)∑
j∈N Mj

Mi.

Hence, τ ∗ = ζ. ¤

As stated in section 2, for the class of compromise admissible games in which,

after normalising such that the minimal rights vector equals zero, each player’s

utopia payoff is at most the value of the grand coalition, the τ ∗ value coincides with

the compromise value. As a result, Theorem 11.3.1 gives a geometric characterisation

of the latter on this class of games.
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Levinský, R. (2000). On the power in decision making. Ph. D. thesis, Center for

Economic and Graduate Education, Prague.

Littlechild, S. and G. Owen (1973). A simple expression for the Shapley value in a

special case. Management Science, 20, 370–372.

Maschler, M., B. Peleg, and L. Shapley (1972). The kernel and bargaining set of

convex games. International Journal of Game Theory , 2, 73–93.



176 BIBLIOGRAPHY

Maschler, M., J. Potters, and S. Tijs (1992). The general nucleolus and the reduced

game property. International Journal of Game Theory , 21, 85–106.

Moore, J. (1968). An n-job, one machine sequencing algorithm for minimising the

number of late jobs. Management Science, 15, 102–109.

Moulin, H. (1987). Equal or proportional division of a surplus, and other methods.

International Journal of Game Theory , 16, 161–186.

Moulin, H. (1988). Axioms of cooperative decision making. Econometric Society

Monographs. Cambridge: Cambridge University Press.

Moulin, H. (1989). Cores and large cores when population varies. Mimeo, Depart-

ment of Economics, Duke University.

Moulin, H. (2000). Priority rules and other asymmetric rationing models. Econo-

metrica, 68, 643–684.

Muto, S., M. Nakayama, J. Potters, and S. Tijs (1988). On big boss games. Economic

Studies Quarterly , 39, 303–321.

Myerson, R. (1977). Graphs and cooperation in games. Mathematics of Operations

Research, 2, 225–229.

Neumann, J. von and O. Morgenstern (1944). Theory of games and economic be-

havior. Princeton: Princeton University Press.

Nouweland, A. van den and P. Borm (1991). On the convexity of communication

games. International Journal of Game Theory , 19, 421–430.

O’Neill, B. (1982). A problem of rights arbitration from the Talmud. Mathematical

Social Sciences , 2, 345–371.

Otten, G. (1995). On decision making in cooperative situations. Ph. D. thesis,

Tilburg University, Tilburg, The Netherlands.

Otten, G., P. Borm, B. Peleg, and S. Tijs (1998). The MC-value for monotonic

NTU-Games. International Journal of Game Theory , 27, 37–47.

Owen, G. (1975). On the core of linear production games. Mathematical Program-

ming , 9, 358–370.

Owen, G. (1977). Values of games with a priori unions. In: R. Henn and

O. Moeschlin (Eds.), Mathematical economics and game theory, pp. 76–88. Hei-

delberg: Springer-Verlag.



BIBLIOGRAPHY 177

Predtetchinski, A. and P. Herings (2003). A necessary and sufficient condition for

the non-emptiness of the core of a non-transferable utility game. METEOR Re-

search Memorandum 016, Maastricht University, Maastricht, The Netherlands.

(To appear in Journal of Economic Theory).

Pulido, M. (2001). Estructuras de coaliciones y aplicaciones de la teoŕıa de juegos.
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Tijs, S., A. Meca, and M. López (2000). Benefit sharing in holding situations. CIO

Discussion Paper I-2000-01, Universidad Miguel Hernández, Elche, Spain. (To

appear in European Journal of Operational Research).

Timmer, J., P. Borm, and S. Tijs (2000). Convexity in stochastic cooperative sit-

uations. CentER Discussion Paper 2000-04, Tilburg University, Tilburg, The

Netherlands. (To appear in International Game Theory Review).

Velzen, B. van and H. Hamers (2003). On the balancedness of relaxed sequencing

games. Mathematical Methods of Operations Research, 57, 287–297.

Vilkov, V. (1977). Convex games without side payments. Vestnik Leningradskiva

Universitata, 7, 21–24. (In Russian).

Wintein, S. (2002). Multiple fund investment: a game theoretic approach. Master’s

thesis, Department of Econometrics and Operations Research, Tilburg Univer-

sity, Tilburg.

Wintein, S., P. Borm, R. Hendrickx, and M. Quant (2002). Multiple fund invest-

ment situations and related games. CentER Discussion Paper 2002–109, Tilburg

University, Tilburg, The Netherlands.

Winter, E. (1992). The consistency and potential for values with coalition structures.

Games and Economic Behavior , 4, 132–144.

Yi, S. (1997). Stable coalition structures with externalities. Games and Economic

Behavior , 20, 201–237.

Young, H. (1985). Monotonic solutions of cooperative games. International Journal

of Game Theory , 14, 65–72.

Young, H. (1988). Distributive Justice in Taxation. Journal of Economic Theory , 48,

321–335.

Young, H. (1994). Equity, in theory and practice. Princeton: Princeton University

Press.





Samenwerking en verdeling

Samenvatting

Dit proefschrift behandelt een aantal onderwerpen uit de coöperatieve speltheorie.

Deze stroming binnen de economische wetenschappen heeft als doel om economische

samenwerking formeel wiskundig te modelleren (als een zogeheten spel) om zo tot

een “eerlijke” verdeling van de vruchten van die samenwerking te komen. Het is

duidelijk dat de vraag of en hoe economische agenten (bijvoorbeeld consumenten

of bedrijven) samenwerken niet los gezien kan worden van de vraag wat die samen-

werking uiteindelijk voor iedereen oplevert: in beide richtingen bëınvloeden de twee

analyses elkaar.

De meest populaire tak van sport binnen de coöperatieve theorie is het zoge-

naamde transferable utility (TU) model. Dit eenvoudige model heeft als centrale

eigenschap dat op het moment dat er iets verdeeld moet worden, de betrokken

agenten de te verdelen objecten gelijk waarderen. Dit is alleszins een redelijke aan-

name als de te verdelen pot alleen maar bestaat uit geld en de meeste TU-literatuur

richt zich dan ook op situaties waarin de vruchten van samenwerking op een door

alle betrokkenen aanvaarde manier uitgedrukt kunnen worden in geld.

Wanneer het fysieke goederen betreft die verdeeld moeten worden, of abstracte

goederen zoals bepaalde rechten, kan de waardering voor deze goederen door de

verschillende agenten uiteenlopen, en is het TU-model niet toepasbaar. Om dit

te ondervangen is een wat rijker model ontwikkeld dat uitgaat van nontransferable

utility (NTU).

Hoofdstuk 3 behandelt het belangrijke begrip convexiteit. Kortweg heet een spel

convex als samenwerken met een grotere groep meer extra opbrengsten genereert

dan samenwerken met een kleinere groep. Als gevolg hiervan wil in een convex spel

iedereen met elkaar samenwerken, wat de analyse van zulke spelen vereenvoudigt.

Convexiteit voor TU spelen is al intensief onderzocht en heeft geleid tot veel be-

181



182 SAMENVATTING

langrijke resultaten. Voor NTU ligt de zaak wat gecompliceerder. De literatuur

biedt enkele uitbreidingen van de convexiteitsanalyse naar deze context, maar deze

zijn lastig te interpreteren en toe te passen. De bijdrage van dit proefschrift is een

systematische analyse van de verschillende vormen van convexiteit in het geval van

NTU.

Een gedeelte van de voorgaande analyse wordt toegepast in Hoofdstuk 4, waar

het begrip monotoniciteit centraal staat. Monotoniciteit is een breed begrip en

komt erop neer dat als er in een coöperatieve situatie een verandering optreedt

zodat de groep als geheel er beter op wordt, iedere agent apart daarvan ook moet

kunnen profiteren. Het eerste deel van het hoofdstuk behandelt deze problematiek

in zijn algemeenheid (in termen van een zogenaamde pmas) voor het NTU-geval.

Het tweede deel behandelt machinevolgordeproblemen. Stel hierbij een machine

voor, die een aantal taken moet uitvoeren die beheerd worden door verschillende

spelers. Deze spelers staan te wachten totdat zij aan de beurt zijn en willen zo

snel mogelijk geholpen worden. Omdat niet alle taken even urgent zijn, kunnen er

kosten bespaard worden door toe te staan dat bepaalde spelers van plaats wisselen,

waarbij de benadeelden natuurlijk voldoende gecompenseerd worden. In dit kader

wordt de zogenaamde uitvalmonotoniciteit gëıntroduceerd en onderzocht: op het

moment dat een bepaalde speler de wachtrij verlaat, zal de zaak zo geregeld moeten

worden dat iedere andere speler erop vooruit gaat, met daarbij de extra eis dat er

niet ineens een groepje spelers geprikkeld wordt om de samenwerking op te zeggen.

Voor eenvoudige gevallen blijkt dit altijd bewerkstelligd te kunnen worden, maar bij

wat complexere kostenstructuren blijkt dit niet altijd mogelijk.

Hoofdstuk 5 gaat over coöperatieve spelen waarin de communicatie tussen de ver-

schillende spelers onderhevig is aan restricties. Hierdoor kunnen bepaalde groepen

niet optimaal samenwerken en zal daar bij de modellering rekening mee moeten wor-

den gehouden. De belangrijkste vraag die hier wordt beantwoord heeft betrekking

op overerving: in hoeverre worden de eigenschappen (zoals convexiteit) waaraan een

bepaalde klasse van NTU spelen voldoet bëınvloed door de communicatierestricties

en waar moeten die restricties aan voldoen zodat het voor de verdere analyse geen

wezenlijk verschil maakt?

In de standaard coöperatieve theorie richt de analyse zich op de gevolgen van

samenwerking voor degenen die daadwerkelijk samenwerken. De gevolgen voor de-

genen die besluiten om niet mee te doen worden hierbij buiten beschouwing gelaten

met de gedachte dat die het verdelingsvraagstuk binnen de groep niet bëınvloeden.
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Een effect dat hierbij niet wordt meegenomen is dat deze zogenoemde spillovers

wezenlijke prikkels kunnen vormen voor spelers in de beslissing om al dan niet mee

te doen. Dit strategische aspect staat centraal in het spillovermodel, dat gepresen-

teerd wordt in Hoofdstuk 6. Dit nieuwe model wordt gëıllustreerd aan de hand van

een coalitieformatieprobleem en een netwerkprobleem.

Hoofdstuk 7 is het eerste in een reeks van vier hoofdstukken die in het teken staan

van bankroetproblemen. Bankroetprobleem is een algemene (ietwat misleidende) be-

naming voor het meest eenvoudige type verdeelprobleem: er is een hoeveelheid geld

beschikbaar die verdeeld moet worden onder een aantal spelers, die allen een gegeven

claim hebben op dit bedrag – denk hierbij aan een faillissement, waarbij de rest-

waarde van het geliquideerde bedrijf onder de schuldeisers moet worden verdeeld.

In het algemeen zal er meer geclaimd worden dan er beschikbaar is, zodat er aller-

lei criteria bedacht moeten worden op basis waarvan het geld eerlijk verdeeld kan

worden. De bijdrage in dit hoofdstuk heeft betrekking op referenties: naast de ge-

bruikelijke claims is er nog een apart referentiekader (bijvoorbeeld ten gevolge van

wet- of regelgeving) dat bij de verdeling in ogenschouw dient te worden genomen.

De voorgestelde oplossingsmethode is gebaseerd op een compromis-principe.

In Hoofdstuk 8 wordt een substantiële uitbreiding op het bankroetmodel gepre-

senteerd. In plaats van een enkele claim heeft iedere speler een heel scala aan claims

die gedifferentieerd zijn naar verschillende issues. Bij een failissement kan gedacht

worden aan claims op basis van openstaande obligaties, leverancierskrediet, opties of

andere financiële verplichtingen. Bij het verdelingsprobleem kan vervolgens rekening

worden gehouden met de aard van de verschillende claims. Voor het resulterende

model wordt een oplossing voorgesteld die gebruik maakt van het principe van consis-

tentie, wat erop neerkomt dat grote problemen in essentie op dezelfde wijze opgelost

dienen te worden als kleinere problemen. In Hoofdstuk 9 wordt een andere kijk op

dit multi-issue model gegeven, gebaseerd op een alternatief consistentie-idee.

In veel economische situaties kunnen de participerende spelers op natuurlijke

wijze onderverdeeld worden in onderling disjuncte groepen van spelers met dezelfde

karakteristieken. Hoofdstuk 10 behandelt bankroetsituaties waarin dit het geval

is. Aan de hand van een bekend oplossingsconcept voor standaard bankroetproble-

men wordt een aantal methoden gepresenteerd om met deze a priori groeperingen

rekening te houden.

Dit proefschrift besluit met Hoofdstuk 11, waarin een meetkundige interpretatie

van een veelgebruikte compromis-oplossingsmethode centraal staat. Dit verrassende
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theoretische resultaat heeft technisch heel wat voeten in de aarde en het overgrote

deel van dit hoofdstuk is dan ook gewijd aan het bewijs hiervan.
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