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Abstract
We consider a linear price setting duopoly game with di¤erentiated products and de-
termine endogenously which of the players will lead and which one will follow. While
the follower role is most attractive for each …rm, we show that waiting is more risky for
the low cost …rm so that, consequently, risk dominance considerations, as in Harsanyi
and Selten (1988), allow the conclusion that only the high cost …rm will choose to
wait. Hence, the low cost …rm will emerge as the endogenous price leader. Journal of
Economic Literature Classi…cation Numbers: C72, D43.
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1 Introduction

Standard game theoretic models of oligopoly situations impose the order of the moves
exogenously, an assumption that was already criticized in Von Stackelberg (1934), well
before game theory invaded the …eld of industrial organization. Von Stackelberg pointed
out that players have preferences over which role (leader or follower) to play in the game
and he argued that a stable equilibrium would result only if the actual role assignment
would be consistent with these preferences. As Von Stackelberg argued, in many situa-
tions both duopolists prefer the same role so that a stable situation does not appear to
exist.

In the case of quantity competition, the typical situation is that the position of leader
is most preferred and that the follower’s position is least desirable, with simultaneous
moves resulting in intermediate payo¤s. Hence, in this situation a …ght - a Stackelberg
war - might arise as to which of the players will assume the leadership role. In an earlier
paper in this journal (Van Damme and Hurkens, 1999) we addressed the question of
which player will succeed in obtaining this most privileged position. We focused on the
case of homogeneous products with linear demand and constant marginal cost, with one
…rm being a more e¢cient producer than the other. Using an endogeneous timing game
introduced in Hamilton and Slutsky (1990), we showed that committing to move early
is more risky for the high cost …rm, hence, that risk dominance considerations (Harsanyi
and Selten, 1988) imply that the e¢cient …rm will take up the leadership position.

In the present paper we address the same question in the context of price competition
in a duopoly with di¤erentiated substitutable products, linear and symmetric demand,
and constant marginal cost. Again we assume that one …rm is more e¢cient than the

other and has lower marginal cost. The question is whether also in this case the more
e¢cient …rm will emerge as the leader in the game.

Price competition, however, is fundamentally di¤erent from quantity competition in that
the leadership role now is not the most preferred one. While it is indeed true that, under
general conditions, a price duopolist prefers to move …rst to moving simultaneously, a
player can bene…t even more if he can move last. (See Boyer and Moreaux, 1987;
Dowrick, 1986; and Gal-Or, 1985). The basic intuition can be easily seen when …rms
are identical. First of all one notices that the price of the leader pL is larger than the
Nash equilibrium price pN since the leader’s total pro…t, taking into account the rival’s
optimal reaction, is increasing in his price at the Nash equilibrium. Since the follower’s
reaction curve is ‡atter than the 45 degree line, the follower’s price pF is smaller than
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pL. Consequently, ¼F (pL; pF) > ¼F (pL; pL) = ¼L(pL; pL) > ¼L(pL; pF) > ¼L(pN ; pN).
(The …rst inequality follows since pF is on the follower’s reaction curve, the second since
the leader pro…ts from a higher price of the follower, and the last since the leader could
have chosen pN instead of pL.) Hence, if …rms are identical, each …rm prefers following
above leading, while any sequential order is preferred above moving simultaneously.
By continuity, these preferences remain when di¤erences between the …rms are not too
large.1

As in our earlier paper, we use the ”action commitment” model from Hamilton and
Slutsky (1990) to determine which player will get which role. The model allows …rms
to choose a price either early or late; choices within a period are simultaneous, but if
one …rm moves early and the other moves late, the latter is informed about the former’s
price before making its choice. Since following confers advantages, it follows that the
game has two pure equilibria corresponding to the two possible sequential orderings of
the moves, with players having opposite preferences about these equilibria. In our view,
the question of who will take up the most preferred role amounts to solving the problem
of which player is willing to take the largest risk in waiting and we formally answer
this question by using the risk-dominance concept from Harsanyi and Selten (1988).

The surprising conclusion is that waiting is more risky for the low cost …rm, hence, the
e¢cient …rm will emerge as the price leader and the less e¢cient …rm will take up the
more favorable follower role. Relating this result to our earlier paper, we see that the
identity of the leader is independent of whether prices or quantities are the strategic
variables.

The basic intuition for our main result derives from the fact that the high cost …rm has
more to gain from moving last. As each …rm prefers to follow, it is natural to assume
that each player initially expects the other to hold out. Players cannot maintain these
expectations, however, as both players holding out is not a Nash equilibrium. Hence,
each player is forced to adjust his expectations and he will represent his uncertainty by
a mixed strategy that assigns some weight to the opponent committing to a (possibly
random) price and that puts the complementary weight on the opponent waiting. As
the high cost …rm gains more from waiting, it is more insisting on this position. To put
it di¤erently, as long as the low cost …rm …nds it attractive to wait, the high cost …rm
…nds this attractive as well. Hence, given that one …rm has to give in, this will be the
low cost …rm. The high cost …rm will thus obtain the most preferred position.
Our paper thus provides a game theoretic justi…cation for price leadership by the e¢-
cient or dominant …rm. The traditional industrial organization literature has emphasized
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price leadership in general and leadership by the dominant …rm in particular. It argues
that leadership allows …rms to better coordinate their prices and that it results in higher
prices and lower consumer surplus, thus raising possible antitrust concerns. However,
that literature is not so clear on which …rm will take up the leadership role. For example,
Markham (1951) in his seminal paper concluded on the one hand that “... price ‘leader-
ship’ in a dominant …rm market is not simply a modus operandi designed to circumvent
price competition among rival sellers but is instead an inevitable consequence of the
industry’s structure,” while on the other hand he stated that “... in a large number of
industries which do not contain a partial monopolist, the price leader is frequently but
not always the largest …rm.” Similarly, Scherer and Ross (1990) list as distinguishing
characteristics of (barometric) price leadership “... occasional changes in the identity of
the price leader (who is likely in any case to be one of the largest sellers).” We believe
that the risk considerations that we stress in our paper might shed some light on these
issues of price leadership in practice.

The remainder of this paper is organized as follows. The underlying duopoly game as
well as the action commitment game from Hamilton and Slutsky (1990) are described in
Section 2, where also the relevant notation is introduced. Section 3 describes the speci…cs
of the risk dominance concept (Harsanyi and Selten, 1988) as it applies to this context.
The main results are derived in Section 4. Section 5 shows that a shortcut, based
on risk-dominance in the restricted game where each player can only choose between
committing to his leader price and waiting, would have given the wrong result, and
argues that this is because the restricted game does not provide a faithful description
of the actual risks involved. Section 6 o¤ers a brief conclusion.

2 The Model

The underlying linear price setting duopoly game is as follows. There are two …rms, 1
and 2. Firm i produces product i at a constant marginal cost ci ¸ 0. The goods are
imperfect substitutes and the demand for good i is given by

Di(pi; pj) = max f1¡ pi + apj; 0g ;

where 0 < a < 1. Firms choose prices simultaneously and the pro…t of …rm i is given
by ui(pi; pj) = (pi ¡ ci)Di(pi; pj). We assume that 1 > c1 > c2 > 0, hence …rm 2 is more
e¢cient than …rm 1. The best reply of player j against the price pi of player i is unique
and is given by
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bj(pi) =
1 + api + cj

2
: (2.1)

The unique maximizer of the function pi 7! ui(pi; bj(pi)) is denoted by pLi (…rm i’s
leader price). We also write pFj for the price that j will choose as a price follower,
pFj = bj(pLi ), and Li = ui(pLi ; pFj ) and Fi = ui(pFi ; pLj ). We write (pN1 ; pN2 ) for the unique
Nash equilibrium of the game and denote player i’s payo¤ in this equilibrium by Ni.

For later reference we note that

pLi = 2 + a + acj + (2¡ a2)ci
2(2¡ a2) (2.2a)

pFi = 4 +2a ¡ a2 + (4¡ a2)ci + (2a¡ a3)cj
4(2¡ a2) (2.2b)

pNi =
2+ a+ acj + 2ci

4 ¡ a2 (2.2c)

and

Li =
(2 + a + acj + (a2 ¡ 2)ci)2

8(2¡ a2) (2.3a)

Fi =
(4 + 2a¡ a2 + (2a ¡ a3)cj + (3a2 ¡ 4)ci)2

16(2¡ a2)2 (2.3b)

Ni =
(2 + a + acj + (a2 ¡ 2)ci)2

(4¡ a2)2 (2.3c)

One easily veri…es that pL1 > pL2 and pF1 > pF2 . It also readily follows that

pLi > pFi > pNi (i = 1; 2)

Fi > Li > Ni: (i = 1; 2)

Hence, each player has an incentive to commit himself (compared to the simultaneous
play equilibrium) but prefers to follow. Straightforward computations show that F1 ¡
L1 > F2 ¡ L2, hence the high cost …rm bene…ts more from being the follower than the
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low cost …rm. Obviously, the above inequality is equivalent to L2+F1 > L1+F2, hence
total pro…ts are larger when the e¢cient …rm leads. The question we address in this
paper is whether the players will succeed in reaching that “e¢cient” ordering of the
moves.
To investigate which player will dare to wait when both players have the opportunity
to do so, we make use of the two-period action commitment game that was proposed in
Hamilton and Slutsky (1990). The rules are as follows. There are two periods and each
player has to choose a price in exactly one of these periods. Within a period, choices
are simultaneous, but, if a player does not choose to move in period 1, then in period 2
this player is informed about which action his opponent chose in period 1. This game
has proper subgames at t = 2 and our assumptions imply that all of these have unique
equilibria. We will analyze the reduced game, g2, that results when these subgames
are replaced by their equilibrium values. Formally, the strategy set of player i in g2 is
R+ [ fwig and the payo¤ function is given by

ui(pi; pj) = (pi ¡ ci)(1¡ pi + apj) (2.4)

ui(pi; wj) = (pi ¡ ci)(1¡ pi + a(1 + api + cj)=2) (2.5)

ui(wi; pj) = (1 + apj ¡ ci)2=4 (2.6)

ui(wi; wj) = Ni (2.7)

Note that ui is strictly concave in pi. It is easily seen that g2 has three Nash equilibria
in pure strategies: Either each player i commits to his Nash price pNi in the …rst period,

or one player i commits to his leader price pLi and the other player waits till the second
period. Mixed equilibria will not be considered2, but mixed strategies will play an
important role. They represent uncertainty about whether a player will commit himself
and to which price. Let mj be a mixed strategy of player j in the game g2. Because
of the linear-quadratic speci…cation of the game, there are only three “characteristics”
of mj that are relevant to player i, viz. wj the probability that player j waits, ¹j the
average price to which j commits himself given that he commits, and ºj, the variance
of this price. Speci…cally, it easily follows from (2.4)-(2.7) that the expected payo¤ of
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player i against a mixed strategy mj with characteristics (wj; ¹j; ºj) is given by

ui(pi;mj) = (1¡ wj)(pi ¡ ci)(1 ¡ pi + a¹j)
+wj(pi ¡ ci)(1¡ pi + a(1 + api + cj)=2) (2.8)

ui(wi;mj) = (1¡ wj)[a2ºj=4 + (1 + a¹j ¡ ci)2=4]
+wj[(2 + a + acj + (a2 ¡ 2)ci)=(4¡ a2)]2 (2.9)

Note that (2.8) and (2.9) show that uncertainty concerning the price to which j will
commit himself makes it more attractive for player i to wait: ºj contributes positively
to (2.9) and it does not play a role in (2.8). On the other hand, increasing wj clearly
increases the incentive for player i to commit himself. Finally, increasing ¹j increases
the incentive for player i to commit himself, because of the positive e¤ect on i’s demand.

3 Risk Dominance and the Tracing Procedure

The concept of risk dominance captures the intuitive idea that, when players do not
know which of two equilibria should be played, they will measure the risk involved in
playing each of these equilibria and they will coordinate expectations on the less risky
one, i.e. on the risk dominant equilibrium of the pair. The formal de…nition of risk
dominance involves the bicentric prior and the tracing procedure. The bicentric prior
describes the players’ initial assessment about the situation. If this initial assessment
is not an equilibrium of the game, it cannot constitute the players’ …nal view and the
players have to adjust their plans and expectations until they are in equilibrium. The
tracing procedure is a formal model of this adjustment process; it models the thought
process of players who, by deductive personal re‡ection, try to …gure out what to do
in this situation. Below we describe the mechanics of the tracing procedure as well as
how, according to Harsanyi and Selten (1988), the initial prior should be constructed.

3.1 Bicentric Prior

Let g = (S1; S2; u1; u2) be a 2-person game and let s and s0 be two equilibria of this
game. Harsanyi and Selten (1988) argue that when players are uncertain about which
of these two equilibria should be played, their initial beliefs should be constructed as
follows. Player j, being Bayesian, will assign a subjective probability zj to i playing si
and he will assign the complementary probability z0j = 1¡ zj to i playing s0i. With these
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beliefs, player j will play the best response against the mixed strategy zjsi + z0js0i of
player i, which we denote by bj(zj).3 Player j, knowing his prior zj, knows which action
he will play. Player i, however, does not know zj exactly and, therefore, cannot predict
exactly what j will do. Applying the principle of insu¢cient reason, Harsanyi and Selten
(1988) argue that i will consider zj to be uniformly distributed on [0; 1]. Writing Zj for
a uniformly distributed random variable on [0; 1], player i will, therefore, believe that
he is facing the mixed strategy

mj = bj(Zj) (3.1)

and this mixed strategy mj of player j is player i’s prior belief about j’s behavior in
the situation at hand. Similarly, mi = bi(Zi), where Z1 and Z2 are independent, is the
prior belief of player j , and the mixed strategy pairm = (m1;m2) is called the bicentric
prior associated with the pair (s; s0).

3.2 Tracing Procedure

Mathematically, the tracing procedure is a map converting initial beliefs into equilibria
of the game. Let mi be a mixed strategy of player i in g (i = 1; 2). The strategy mi
represents the initial uncertainty of player j about i’s behavior. For t 2 [0; 1] we de…ne
the game gt;m = (S1; S2; ut;m1 ; u

t;m
2 ) in which the payo¤ functions are given by

ut;mi (si; sj) = (1¡ t)ui(si;mj) + tui(si; sj): (3.2)

Hence, for t = 1, this game gt;m coincides with the original game g, while for t = 0 we
have a trivial game in which each player’s payo¤ depends only on his own action and
his own prior beliefs.4 Write ¡m for the graph of the equilibrium correspondence, i.e.

¡m = f(t; s) : t 2 [0; 1]; s is an equilibrium of gt;mg:

It can be shown that, if g is a generic …nite game, then, for almost any prior m, this
graph ¡m contains a unique distinguished curve that connects the unique equilibrium
s0;m of g0;m with an equilibrium s1;m of g1;m. (See Schanuel et al., 1991, for details.)
The equilibrium s1;m is called the linear trace of m. If players’ initial beliefs are given
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by m and if players’ reasoning process corresponds to that as modeled by the tracing
procedure, then players’ expectations will converge on the equilibrium s1;m of g. Below,
we will apply the tracing procedure to the in…nite game g2 that was described in the
previous section. For such games, no generalizations of the Schanuel et al. (1991) results
have been established yet, but as we will see in the following section, there indeed exists
a unique distinguished curve in the special case analyzed here. Hence, the non-…niteness
of the game g2 will create no special problems.

3.3 Risk Dominance

Risk dominance is de…ned as follows. Consider two equilibria, s and s0 of g. Use the
construction described in subsection 3.1 to determine the bicentric prior, m, associated
with the pair (s; s0). Then apply the tracing procedure of subsection 3.2 to m, i.e.
compute the linear trace of this prior, s1;m. We now say that s risk dominates s0 if
s1;m = s. Similarly, s0 risk dominates s if s1;m = s0. In case the outcome of the tracing
procedure is an equilibrium di¤erent from s or s0, then neither of the equilibria risk
dominates the other. Below we show that the latter situation will not occur in our
2-stage action commitment game, provided that the costs of the …rms are di¤erent.

4 Commitment and Risk Dominance

In this section, we prove our main results. Let g2 be the endogenous commitment game
from Section 2. Write Si for the pure equilibrium in which player i commits to his leader
price in period 1, Si = (pLi ; wj), and write B for the equilibrium in which each player
commits to his Bertrand price in period 1, B = (pN1 ; pN2 ). We show that both price leader
equilibria risk dominate the Bertrand equilibrium and that S2 risk dominates S1 when
c2 < c1. The …rst result is quite intuitive: Committing to pNi is a weakly dominated
strategy and playing a weakly dominated strategy is risky. The proof of this result is
correspondingly easy and can be found in Appendix A1.

Proposition 1 In g2, the price leader equilibrium Si risk dominates the Nash equilibrium
B (i = 1; 2).

We now turn to the risk comparison of the two price leader equilibria. We …rst show
that, when confronted with the problem to coordinate on S1 or S2, each player’s prior
belief is that the other player will commit to a random price. Let player j believe that i
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commits to pLi with probability z and that i waits with probability 1¡z. Waiting yields

uj(wj; zpLi + (1¡ z)wi) = zFj + (1¡ z)Nj:

Since the mapping p 7! uj(p; bi(p)) is concave and attains its maximum at pLj , and since

pFj 2 (pNj ; pLj ), we have

uj(pFj ; bi(pFj )) > uj(pNj ; bi(pNj )) = Nj;

so that

uj(pFj ; zp
L
i + (1¡ z)wi) > uj(wj; zpLi + (1¡ z)wi):

Therefore, committing to pFj yields higher payo¤ than waiting, and it follows that each
player will believe that the opponent will commit with probability 1. To determine the
price that j will commit to, note that committing to price pj yields

uj(pj; zpLi + (1 ¡ z)wi) = (pj ¡ cj)[1¡ pj + a(zpLi + (1 ¡ z)(1 + apj + ci)=2)]:

Given z, the optimal commitment price pj(z) of player j must satisfy the …rst order
condition @uj(pj; zpLi + (1¡ z)wi)=@pj = 0, and is, hence, given by

pj(z) =
(1¡ z)(2 ¡ a2)pLj +2zpFj

2¡ a2(1¡ z) : (4.1)

Note that p1(z) > p2(z) for all z 2 [0; 1], since pL1 > pL2 and pF1 > pF2 . This means that
…rm 1 expects …rm 2 to commit to a low price, while …rm 2 expects …rm 1 to commit
to a high price. From

p0j(z) =
2(2¡ a2)(pFj ¡ pLj )
(2 ¡ a2(1 ¡ z))2 ;

one easily veri…es that p02(z) < p01(z) < 0 since pF2 ¡ pL2 < pF1 ¡ pL1 < 0. Hence, …rm
2’s price is expected to vary more than …rm 1’s price. (See Appendix A2 for a formal
proof.) We summarize these results in Lemma 1.

Lemma 1 Player i’s bicentric prior mj is that j will commit to a random price pj(z)
with expectation ¹j and variance ºj, where ¹j 2

¡
pFj ; pLj

¢
and ºj > 0. Moreover, we

have ¹1 > ¹2 and º1 < º2.
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Now, let us turn to the tracing procedure. The starting point (the initial equilibrium)
corresponds to the best reply against the prior. Since both players expect the other to
commit with probability one and are uncertain about this committed price, the unique
best reply for both players is to wait. As t increases, player i attaches more and more
weight (namely t) to the event that player j will wait. At some critical point ¹ti it must
become pro…table to commit and take the leader role. Lemma 1 and the equations (2.8)
and (2.9) provide the intuition that the low cost …rm will switch before the high cost
…rm will, i.e. that ¹t1 > ¹t2: since player 1 (the high cost …rm) commits to a higher and
less variable price, it is relatively more attractive for …rm 2 to commit to a price. We
elaborate below and relegate the formal proof to Appendix A3.
Recall from Section 2 that the expected payo¤ of player i depends only on his action
and the three important characteristics of the opponent’s (mixed) strategy, viz. the
probability that the other player waits, the average price of the opponent if he commits,
and the variance of that price. As long as no player switches away from waiting the
tracing procedure will adjust only the probability that the other waits: the average
commitment price and the variation of this price do not change. Hence, the expectation
of player i at time t, given that no one has switched yet, is given by the mixed strategy

mtj = (1¡t)mj+ twj. Identifying this mixed strategy with its important characteristics,
write mtj = (t; ¹j; ºj). The expected payo¤ for player i from committing and waiting is
given in (2.8) and (2.9), respectively. Formt = (t; ¹; º) de…ne the gain from committing
for i as

gi(mt) = max
pi
ui(pi;mt)¡ ui(wi;mt):

We will show that …rm 2 always has a higher incentive to commit himself than …rm 1,
i.e. that g2(mt1) > g1(mt2) for all t. Since the gain of committing is negative at t = 0
and positive at t = 1, this implies that …rm 2 will switch before …rm 1 does.
The formal proof is divided into three steps and is given in Appendix A3. We now
provide intuition for each step. In the …rst step we show that the gain from committing
is increasing in the opponent’s price. From equations (2.4) and (2.6) it follows in a
straightforward manner that

@ui(pi; pj)
@pj

= a(pi ¡ ci)

and

@ui(wi; pj)
@pj

= a(bi(pj)¡ ci);
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i.e. the marginal e¤ect on i’s pro…t of an increase in j’s price is equal to the price-cost
margin multiplied with the marginal increase in demand. Since j will never commit to
a price above pLj , bi(pj) < pFi . On the other hand, if …rm i commits himself he will
(optimally) commit to a price above pFi . The e¤ect of an increase in pj is thus larger
when i commits himself than when he waits.
Secondly, the gain from committing is decreasing in the variability of the price of the
opponent. This is very intuitive. We know from Lemma 1 that º1 < º2 so that …rm 1
is more uncertain about the price …rm 2 will commit himself to. Clearly, this gives him
more reason to wait and less to commit.
Finally, we show that the low cost …rm has more incentive to commit than a high cost
…rm even if they have exactly the same expectation about the commitment price of the
opponent. This follows from the fact that the high cost …rm gains more from being the
follower than the low cost …rm, i.e. that F1 ¡ L1 > F2 ¡ L2. The above steps can now
be combined to show that, with ¹k and ºk as in Lemma 1 we get

g2(t; ¹1; º1) > g2(t; ¹2; º1) > g2(t; ¹2; º2) > g1(t; ¹2; º2): (4.2)

The above inequalities imply that at any point in the tracing procedure player 2 gains
more from committing than …rm 1, and, therefore, it must be player 2 who will decide
to switch …rst, i.e. ¹t1 > ¹t2. Thus, both players wait till ¹t2 at which point player 2 is
exactly indi¤erent between waiting and committing optimally (to ~p2(¹t2)). The graph

of the equilibrium correspondence exhibits a “vertical” segment at t2. Any pair of
strategies in which …rm 1 waits and …rm 2 mixes between waiting (with probability w)
and committing to ~p2(¹t2) (with probability 1 ¡ w) is an equilibrium of g¹t2 ;m : Firm 2
is indi¤erent and any mixture is therefore a best reply. Firm 1 strictly prefers to wait
when w = 1 (since g1(m

¹t2
2 ) < g2(m

¹t2
1 ) = 0) and also when w = 0 (since then …rm 2

commits for sure to a random price). Because of linearity (in w) …rm 1 prefers to wait
for any w 2 [0; 1]. From ¹t2 onward, player 2 commits with probability 1 (but changes
the commitment price continuously) and player 2 waits with probability 1. Therefore,
the tracing procedure ends up in an equilibrium where player 2 commits and player 1
waits, i.e. at S2. This concludes the proof of Proposition 2.

Proposition 2 The price leader equilibrium S2 in which the low cost …rm leads risk
dominates the one in which the high cost …rm leads.

By combining the Propositions 1 and 2 we, therefore, obtain our main result:
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Theorem 1 The price leader equilibrium in which the e¢cient …rm leads and the ine¢-
cient …rm follows is the risk dominant equilibrium of the endogenous price commitment
game.

Note that, if the costs of …rm 1 are not much higher than the costs of …rm 2, then
F1 > L2, i.e. the high cost …rm makes higher pro…ts (as a price follower) in the risk
dominant equilibrium than the e¢cient …rm (as a price leader). This seems curious
and counterintuitive at …rst sight since it could give incentives to the low cost …rm to
increase its cost (if he would be able to do that in a credible way). However, given the
cost structure, waiting is less risky for a high cost …rm than for a low cost …rm, and the
ine¢cient …rm pro…ts from its “weak” position.

5 Risk Dominance in the Reduced Game

It is well known that risk dominance allows a very simple characterization for 2 £ 2
games with two Nash equilibria: the risk dominant equilibrium is that one for which
the product of the deviation losses is largest. Consequently, if risk dominance could
always be decided on the basis of the reduced game spanned by the two equilibria
under consideration (and if the resulting relation would be transitive), then the solution
could be found by straightforward computations. Unfortunately, this happy state of
a¤airs does not prevail in general. The two concepts do not always generate the same
solution and it is well-known that the Nash product of the deviation losses may be a bad
description of the underlying risk situation in general. (See, Carlsson and Van Damme
(1993) for a simple example.) This is also true for the game analyzed in this paper as
the reduced game analysis produces exactly the opposite result from that obtained by
applying the tracing procedure to the full game. The calculations are straightforward
and can be found in the working paper version of this paper, Van Damme and Hurkens

(2001). We will here provide the intuition for why the reduced game describes the
underlying risks so badly in the case of price competition with substitutable products.
Let us start by comparing how the bicentric priors are constructed in the full and the
reduced game. Recall from the previous section that when …rm i is uncertain whether
…rm j commits or waits, it is optimal for this …rm to commit to a price between the
leader price and the follower price. The bicentric prior in the full game has therefore
both …rms believing that the other will commit, although they are not sure to which
price exactly. In the reduced game, however, committing to an intermediate price is
not possible, and waiting becomes optimal when one expects the rival to commit with
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high probability. Consequently, the bicentric prior of the reduced game attaches positive
weight to opponent j committing to pLj as well as to j waiting, with the e¢cient …rm
being more likely to wait.
Given that the bicentric priors are qualitatively di¤erent in the two approaches, it is
not surprising that the tracing procedure may map these priors into di¤erent equilibria.
Indeed, in the reduced game the best reply against the prior is for the e¢cient …rm to
wait and for the ine¢cient …rm to commit and these actions remain optimal throughout
the tracing procedure. Hence, the reduced game produces the equilibrium in which the
ine¢cient …rm will lead. As we have seen above, the full game produces the opposite
Stackelberg equilibrium.
It is worthwhile to point out that the di¤erence between the two approaches lies not
only in the di¤erent bicentric priors. Even if we would construct the bicentric prior
based on the full game, but again use the 2£ 2 game to determine who will switch …rst
and become the price leader, we will get the wrong result. If …rms can only commit
to the leader price, the high cost …rm would switch …rst. However, …rms would switch
earlier if they could use a safer strategy, like committing to the follower price. Given
that opportunity, the low cost …rm will switch …rst and become the price leader. For

further details we again refer the reader to the working paper version of this paper.

6 Conclusion

In this paper we studied the strategic choice of whether to lead or to follow in a duopoly
price competition game with symmetrically horizontally di¤erentiated products and
where the …rms di¤er in their marginal costs. We analysed a model in which …rms
can decide to move early or late and, by using the risk dominance criterion, we were

able to show that the e¢cient …rm will act as a price leader and that the ine¢cient …rm
will occupy the more preferred role. Note that this does not necessarily imply that the
largest …rm will lead. The e¢cient …rm has the largest market share if and only if he
charges the lowest price and whether this holds depends on the extent to which the costs
di¤er. If the cost di¤erence is small the e¢cient leader will have the higher price (hence
the smaller market share) and if the di¤erence is large it will have the lowest price (and
the larger market share). So our results are in line with the empirical observation that
the price leader is often, but not always, the larger …rm.5

As compared to the alternative candidate solution, where the least e¢cient …rm leads,
the total pro…ts in the risk dominant equilibrium are higher (since L2+ F1 > L1 +F2),
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the division of the pro…ts is more equal ( jL1 ¡ F2j < jL2 ¡ F1j ) and consumer surplus
is lower. To see why the latter holds, consider …rst the case where pL1 > pF1 > pL2 > pF2 .
Since pL2 ¡ pF2 > pL1 ¡ pF1 one sees that when we go from S2 to S1, the price decrease of
good 2 is larger than the price increase of good 1. Since consumers buy more of good 2
than of good 1, this means that the bundle consumed under S2 can be bought under S1
for less money, which of course implies that consumers are better o¤ when …rm 1 is the
leader. The argument for the other case where pL1 > pL2 > pF1 > pF2 is similar. First note
that the goods are completely symmetric so that consumers are indi¤erent between the
situation of S2 and the situation in which …rm 1 charges pL2 and …rm 2 charges pF1 . If
we compare the latter situation with S1 we see that, since pF1 ¡ pF2 > pL1 ¡ pL2 , the price
decrease of good 2 is larger than the price increase of good 1 so that again consumers
prefer …rm 1 to lead.

The conclusion that the e¢cient …rm will move …rst appears to be robust. In our com-
panion paper (Van Damme and Hurkens, 1999) we derive it for the case of quantity com-
petition, Deneckere and Kovenock (1992) obtained it for the case of capacity-constrained
price competition and homogeneous goods, and Cabrales et al. (2000) derived the result
for the case of vertical product di¤erentiation, where …rms …rst choose qualities and next

compete in prices. This latter paper also makes use of the concept of risk dominance,
but it does not derive the result analytically; instead the authors resort to numerical
computations and simulations. To our knowledge, the present paper, together with its
companion on quantity competition, are the …rst applications of the (linear) tracing
procedure to games where the strategy spaces are not …nite. We have seen that, al-
though there may be some computational complexities, no new conceptual di¢culties
are encountered. Of course, more important than this methodological aspect is the ap-
parant robustness result itself, which might provide the theoretical underpinning for the
observed phenomenon in practise that frequently the dominant …rm indeed acts as the
leader (Scherer and Ross, 1990).

Note that we did not provide the solution of the endogenous timing game for the case
where both …rms have the same marginal costs. The reader might conjecture that in that
case the Bertrand equilibrium would be selected, i.e. that …rms would move simultane-
ously, and indeed that is correct. Clearly, if the …rms are completely symmetric, none
of the price leader equilibria can risk dominate the other as the solution of a symmetric
game has to be symmetric. Similarly, none of the asymmetric mixed strategy equilibria
can be the solution and since there are no symmetric mixed equilibria (as shown in Sect.
2), the solution has to be the Bertrand equilibrium. However, providing a formal direct
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proof is di¢cult. Harsanyi and Selten (1988) show that in the symmetric case the solu-
tion of the game is the linear trace of the barycentric prior 1

2p
L
i + 1

2wi; provided the linear
tracing procedure is well-de…ned. In Appendix A4, however, we show that the linear
trace of this prior cannot be the Bertrand equilibrium. The intuition that we do not
end up at the Bertrand equilibrium is simple: if the tracing path would converge there,
then each player would have an incentive to wait (because each …rm would expect the
other to commit to a random price) and that cannot be an equilibrium. It follows that
the linear tracing procedure cannot be well-de…ned in this case and that the logarithmic
tracing procedure has to be used.

We conclude by noting that the main result of this paper does not depend on the
assumption that there are only two points in time when the prices can potentially be
chosen. Assume that the market opens at time t = 0, but that …rms could …x their
price at any time point t = 0;¡1;¡2; :::;¡T , with players being committed to a price
once it has been chosen and with players being fully informed about the past history.6

The solution may be determined by backwards induction, i.e. by applying the subgame
consistency principle from Harsanyi and Selten (1988). It is common knowledge that,
once the game reaches time t = ¡1 with no commitments being made, the e¢cient …rm

will commit to pL2 while the high cost …rm will wait. Knowing this, at t < ¡1, both
players …nd it in their interest to wait. The predicted outcome, hence, is not sensitive
to the number of commitment periods: both …rms will make their price announcements
only shortly before the market opens, with the e¢cient …rm making the announcement
slightly earlier.
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Appendix

A1

Proof of Proposition 1.
Without loss of generality, we just prove that S1 risk dominates B. We …rst compute the
bicentric prior that is relevant for this risk comparison, starting with the prior beliefs of
player 1.
Let player 2 believe that 1 plays z2S11 + (1 ¡ z2)B1 = z2pL1 + (1¡ z2)pN1 . Obviously, if
z2 2 (0; 1), then the unique best response of player 2 is to wait, b2(z2) = w2. Hence, the
prior belief of player 1 is that player 2 will wait with probability 1, m2 = w2.
Next, let player 1 believe that 2 plays z1S12+(1¡z1)B2 = z1w2+(1¡ z1)pN2 . Obviously,
waiting yields player 1 the Nash payo¤ N1 as in (2.3c), irrespective of the value of z1.
When z1 > 0 then committing to a price that is (slightly) above pN1 yields a strictly
higher payo¤, hence, the best response is to commit to a certain price p1(z1), b1(z1) =
p1(z1). The reader easily veri…es that p1(z1) increases with z1 and that p1(1) = pL1 .

Consequently, if m1 is the prior belief of player 2 then for the characteristics (w1; ¹1; º1)
of m1 we have: w1 = 0; ¹1 > pN1 ; º1 > 0.
Now, let us turn to the tracing procedure. The starting point corresponds to the best
replies against the prior. Obviously, the unique best response against m2 is for player
1 to commit to pL1 , while player 2’s unique best response against m1 is to wait. Hence,
the unique equilibrium at t = 0 is S1. Since S1 is an equilibrium of the original game, it
is an equilibrium for any t 2 [0; 1]. Consequently, the distinguished curve in the graph
¡m is the curve f(t; S1) : t 2 [0; 1]g and S1 risk dominates B. ¤

A2

Let Z » Un(0; 1), Zi = pi(Z) and ºi = Var(Zi). We need to prove º1 < º2. We will
only use that p02(z) < p01(z) < 0.
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º1 ¡ º2 =
Z 1

0
p1(z)2dz ¡ [

Z 1

0
p1(z)dz]2 ¡

Z 1

0
p2(z)2dz + [

Z 1

0
p2(z)dz]2

=
Z 1

0
[p1(z)2 ¡ p2(z)2]dz ¡ (¹21 ¡ ¹22)

=
Z 1

0
[(p1(z) ¡ p2(z))(p1(z) + p2(z))]dz ¡ (¹1 ¡ ¹2)(¹1 + ¹2)

=
Z 1

0
[p1(z) ¡ p2(z)][p1(z) + p2(z) ¡ ¹1 ¡ ¹2]dz

=
·
(p1(z) ¡ p2(z))(

Z z

0
[p1(t) + p2(t)¡ ¹1 ¡¹2]dt)

¸1

0

¡
Z 1

0
[p01(z) ¡ p02(z)][

Z z

0
(p1(t) + p2(t) ¡ ¹1 ¡ ¹2)dt]dz

= 0¡
Z 1

0
[p01(z)¡ p02(z)][

Z z

0
(p1(t) + p2(t) ¡ ¹1 ¡ ¹2)dt]dz

The …rst factor within the integral is positive. It su¢ces to show that the second factor
is also nonnegative. Well, the second factor is equal to zero for z = 0 and for z = 1.
The result follows once we have shown that the second factor is a concave function of
z. The …rst derivative of the second factor (with respect to z) is

¡¹1 + p1(z) ¡¹2 + p2(z)

and the second derivative is

p01(z) + p
0
2(z) < 0:

¤

A3

We prove the three inequalities in (4.2).

(i) g2(t; ¹1; º1) > g2(t; ¹2;º1).
Proof. Given expectations mt = (t; ¹; º), the optimal commitment price, ~pi(t) can be
easily computed. The computations are almost identical to the derivation of pj(z) in
(4.1), and one …nds

~pi(t) =
2(1¡ t)bi(¹) + t(2¡ a2)pLi

2¡ a2t : (A.1)
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If ¹ < pLj then bi(¹) < pFi < pLi and it follows that ~pi(t) ¸ bi(¹). Using the theorem of
the maximum, one now easily veri…es that

@gi(mt)
@¹

= a(1 ¡ t)(~pi(t)¡ bi(¹)) ¸ 0: (A.2)

Since pL1 > ¹1 > ¹2 we have that ~p2(t) ¸ b2(¹1) ¸ b2(¹2). It follows from (A.2) that

g2(t; ¹1; º1) > g2(t; ¹2; º1):

¤

(ii) g2(t; ¹2; º1) > g2(t; ¹2; º2).
Proof. Again using the theorem of the maximum, one …nds

@gi(mt)
@º

= ¡(1¡ t)a2=4 < 0: (A.3)

Since º1 < º2, it follows from (A.3) that

g2(t; ¹2; º1) > g2(t; ¹2; º2):

¤

(iii) g2(t; ¹2; º2) > g1(t; ¹2; º2).
Proof.

@gi(t; ¹; º)
@ci

= ¡(1¡ t)(1¡ ~pi(t) + a¹) ¡ t(1 ¡ ~pi(t) + a(1 + a~pi(t) + cj)=2)

+(1 ¡ t)(1 + a¹¡ ci)=2¡ t@Ni
@ci

= ~pi(t) ¡ bi(¹) + t
½
a¹¡ 1 + ci ¡ a(1 + a~pi(t) + cj)

2 ¡ @Ni@ci

¾

Taking the derivative of the right-hand side with respect to t yields

d
dt

µ
@gi
@ci

¶
= (1 ¡ a2t=2)~p0(t) + a¹¡ 1 + ci ¡ a(1 + a~pi(t) + cj)

2
¡ @Ni
@ci

=
a(¡16 + 8a2 ¡ 2a3 ¡ 2a4 +2a3ci ¡ a5ci ¡ a4cj)

4(4¡ a2)2 < 0

Hence,

@gi
@ci

(t; ¹; º) · @gi
@ci

(0; ¹; º) = 0:
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@gi(t; ¹; º)
@cj

= t(~pi(t)¡ ci)a=2¡ t@Ni
@cj

= t(~pi(t)¡ ci)a=2¡ 2at(p
N
i ¡ ci)
4¡ a2

=
at

2(4¡ a2)
©
(4¡ a2)(~pi(t) ¡ ci)¡ 4(pNi ¡ ci)

ª

> at
2(4¡ a2)

©
(4¡ a2)((bi(¹)¡ ci) ¡ 4(pNi ¡ ci)

ª

=
at

2(4¡ a2) (a
2ci + 4(bi(¹)¡ pNi )) > 0

The gain of committing for player i is decreasing in ci and increasing in cj. Hence,

g2(m2jc1; c2) ¸ g2(m2jc2; c1) = g1(m2jc1; c2) = g1(m2):

¤

A4

We show that when …rms have identical costs the linear trace of the barycentric prior is
not the pure equilibrium in which …rms commit themselves to the Bertrand equilibrium.
Let m = 1

2p
L+ 1

2w be the barycentric prior. Suppose that for t su¢ciently close to 1 the
equilibrium of gt;m is x(t) = (1¡w(t))p(t)+w(t)w, i.e. each …rm waits with probability
w(t) and commits with probability (1¡ w(t)) to p(t). Hence, at t players’ expectations
are given by mt = (1¡ t)m+ tx(t). Consider the derivative with respect to t of the gain
function g(mt). Because of the envelope theorem the e¤ect of the (optimal) commitment
price cancels out and we obtain

d
dt
g(mt) = @g(mt)

@t
+ @g(m

t)
@w

w0(t)

= (p(t) ¡ c)a
½

¡1
2
pL¡ 1

2
1 + ap(t) + c

2
+ (1¡ w(t))p(t) +w(t)1 + ap(t) + c

2

+tw0(t)(
1 + ap(t) + c

2
¡ p(t))

¾

+1
2
F + 1

2
(1 + ap(t)¡ c

2
)2 ¡ (1 ¡ w(t))(1 + ap(t)¡ c

2
)2 ¡ w(t)N

¡tw0(t)(N ¡ (1 + ap(t)¡ c
2

)2)
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If at t = 1 we would have w(1) = 0 and p(1) = pN then
µ
d
dt
g(mt)

¶

jt=1
= (pN ¡ c)a(¡1

2
pL ¡ 1

2
pN + pN) +

1
2
F +

1
2
N ¡N

=
1
2
(a(pN ¡ c)(pN ¡ pL) + F ¡N)

= 1
4
a(pL ¡ pN)(pF ¡ pN) > 0

Since at t = 1 the gain to commit is zero, this means that …rms will strictly prefer
to wait at t < 1. Hence, the outcome of the linear tracing procedure cannot be the
Bertrand equilibrium. ¤
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Footnotes

1. Preferences of players may, however, be perfectly aligned when there are capacity
constraints, since limited capacity reduces the follower’s incentive to undercut the
leader’s price. Deneckere and Kovencock (1992), Furth and Kovenock (1992) and
Canoy (1996) show, in a variety of circumstances, that both …rms prefer the large
…rm to lead in this case, provided that capacities are su¢ciently asymmetric.

2. In the working paper version of this paper (Van Damme and Hurkens, 2001) we
show that there are no equilibria in which both players mix. There are equilibria
in which one of the players mixes between committing and waiting, while the other
commits. These mixed equilibria will not be considered in this paper, the reason
being that we want to stick as close as possible to the general solution procedure
outlined in Harsanyi and Selten (1988), a procedure that gives precedence to pure
equilibria whenever possible.

3. In general player j may have multiple best replies in which case he should play all
of them with equal probability. However, in our setting with strictly quasi-concave
pro…t functions this happens with zero probability, so we may ignore multiple best
replies.

4. Loosely speaking the parameter t might be thought of as time. With this inter-
pretation, player i assigns weight 1 ¡ t to his prior beliefs at time t, while he
gives weight t to the reasoning process at this point in time, at time t = 1, when
the players’ actions are in equilibrium, the player fully trusts the outcome of the
reasoning process.

5. If the ine¢cient …rm were to lead, it would certainly have the smaller market share
because it sets the highest price, pL1 > pF2 .

6. This game is analyzed by Robson (1990), where however it is assumed that moving
early is associated with higher cost: each …rm incurs additional cost c(t) when it
moves at time t, where c(¢) is decreasing and converging to 1 as t tends to ¡1.
It is easily seen that, provided c(t) ¡ c(t + 1) is su¢ciently small, the game only
has equilibria in which players move in di¤erent periods. If both players prefer
to lead then in the unique subgame perfect equilibrium that player i for which
Li ¡ Fi is largest will emerge as the leader and he will commit approximately at
the time where Lj ¡Fj = c(t). If both players prefer to follow (as in the model of
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the present paper), the game has two subgame perfect equilibria: one player will
commit at t = ¡1, while the other will wait till t = 0. In this case Robson (1990)
cannot determine which of these equilibria will result.


