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Chapter 1

Introduction

The work presented in this dissertation encompasses a wide range of topics within

the general field of finance. It is a collection of studies on investment decisions and

asset pricing issues, each motivated by its own specific considerations. The diver-

sity of topics covered in the thesis is illustrated by the variety of financial assets

and investment opportunities analyzed, which range from exchange-traded instru-

ments such as stocks, bonds, and futures contracts, to over-the-counter derivatives

and non-traded assets such as real options. Such diversity does not justify a uni-

fying introductory chapter which would only repeat standard textbook material.

The remainder of this introduction confines itself to presenting an overview of the

contributions of each chapter.

Chapter 2, titled Risk Aversion, Price Uncertainty, and Irreversible Investments,

provides a generalization of the theory of irreversible investment under uncertainty,

or real options theory, by allowing for risk averse investors in the absence of complete

markets. Until now this theory has only been developed in the cases of risk neutral-

ity, or risk aversion in combination with complete markets; see the seminal work by

McDonald and Siegel (1985, 1986) and Dixit and Pindyck (1994) for an overview.

Within a general setting, we prove the existence of a unique critical output price

that distinguishes price regions in which it is optimal for a risk averse investor to

invest and price regions in which one should refrain from investing. We use a class

of utility functions that exhibit non-increasing absolute risk aversion to examine

1



2 Introduction

the effects of risk aversion, price uncertainty, and other parameters on the optimal

investment decision.

We find that, as one may expect, risk aversion reduces investment. Contrary to

the risk neutral model, however, our results show that under risk aversion the invest-

ment threshold increases more than linearly with the investment outlay. Moreover,

we show that a rise in price uncertainty increases the value of deferring irreversible

investments. This effect is stronger for high levels of risk aversion. In addition,

we provide, for the first time, closed-form comparative statics formulas for the risk

neutral investor.

Chapter 3, titled Economic Hedging Portfolios, studies portfolios that investors

hold to hedge economic risks. Using a model of state-dependent utility, we show

that agents’ economic hedging portfolios can be obtained by an intuitively appeal-

ing, risk aversion-weighted approximate replication of the economic risk variables

using the investment opportunity set. This approach extends the usual unweighted

hedging scheme obtained in the traditional mean-variance framework analyzed in,

e.g., Mayers (1972) and Anderson and Danthine (1980, 1981).

Using an investment opportunity set of stock and bond portfolios, we show that

agents across a broad range of levels of risk aversion are willing to pay significant

compensations for hedges against inflation risk, real interest-rate risk, and dividend-

yield risk. Furthermore, our results show that all economic risk variables we consider

require significant hedging positions in one or more securities. Moreover, we analyze

investors’ speculative positions and find that hedges against economic risks may

potentially explain the anomalies that have been found in stock markets as well as

the term and default premiums in bond markets; see Fama and French (1992, 1993,

1995).

In Chapter 4, titled Multivariate Option Pricing Using Dynamic Copula Models,

we examine the price behavior of multivariate options in the presence of association

between the underlying assets. Multivariate options are derivatives written on two

or more underlying assets, usually taking the form of calls (or puts) that give the

right to buy (or sell) the best or worst performer of the underlyings. We model the

association between the underlyings using parametric families of copulas which offer

various alternatives to the commonly assumed normal dependence structure.
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Contrary to earlier works on multivariate option pricing, the dependence struc-

ture is not treated as fixed, but as possibly varying over time. Incorporating the

notion of “correlation breakdowns” (see, e.g., Boyer, Gibson and Loretan (1999)

and Patton (2002a, 2002b)), the dependence between the underlyings is assumed to

vary over time as a function of the volatilities of the assets. These dynamic cop-

ula models are applied to better-of-two-markets and worse-of-two-markets options

on the S&P 500 and Nasdaq indexes. Results show that option prices implied by

dynamic copula models differ substantially from prices implied by models that fix

the dependence between the underlyings, particularly in times of high volatilities.

Furthermore, the normal copula produces option prices that differ significantly from

non-normal copula prices, irrespective of initial volatility levels. Within the class of

non-normal copula families considered, option prices are robust with respect to the

copula choice.

Chapter 5, titled An Anatomy of Futures Returns: Risk Premiums and Trading

Strategies, analyzes trading strategies which capture the various risk premiums that

have been distinguished in futures markets and documented by, e.g., Fama (1984),

Fama and French (1987), Bessembinder (1992), Bessembinder and Chan (1992),

Carter, Rausser and Schmitz (1983), and DeRoon, Nijman and Veld (1998, 2000).

On the basis of a simple decomposition of futures returns, we show that the return on

a short-term futures contract measures the spot-futures premium, while spreading

strategies that go long in long-term contracts and short in short-term contracts

isolate the term premiums. Using a broad cross-section of U.S. commodity and

financial futures markets and a wide range of delivery horizons, we examine the

components of futures risk premiums empirically by means of “passive” trading

strategies which fix positions over time, and “active” trading strategies along the

lines of Jegadeesh and Titman (1993) and Fama and French (1992, 1995), which

allow for dynamic trading and are designed to exploit the predictable variation in

futures returns.

We find that passive, short-term strategies do not yield abnormal returns, in

contrast to passive spreading strategies, implying the presence of non-zero term pre-

miums. Furthermore, we find that the term structure of futures yields has strong

explanatory power for both spot and term premiums, which can be exploited using
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active trading strategies that go long in low-yield markets and short in high-yield

markets. The profitability of these yield-based trading strategies is not due to sys-

tematic risk. However, we show that transaction costs may eliminate these gains,

in particular for the spreading strategies which capture short-term premiums.

Furthermore, we find that spreading returns are predictable by net hedge de-

mand, which we show can be also exploited by active trading, but only if trans-

action costs are relatively low. Finally, we document significant momentum in fu-

tures markets. However, we find no evidence that momentum strategies outperform

benchmark portfolios.

A last precursory note concerns the intellectual property of the work presented in

this dissertation. The chapters to follow are based on co-authored papers. This also

explains the use of the first person plural throughout the dissertation.1 Chapter 2 is

based on a paper with Peter Kort and Kuno Huisman. Chapter 3 is based on joint

work with Frans de Roon and Bas Werker. Chapter 4 originated from joint work

with Christian Genest and Bas Werker. Finally, Chapter 5 is based on work with

Frans de Roon and Theo Nijman.

1An exception is Chapter 4, which, due to the strong feelings of one of its conceivers, avoids

first person writing altogether.



Chapter 2

Risk Aversion, Price Uncertainty,

and Irreversible Investments

2.1 Introduction

How should investors decide whether and when to invest in uncertain, irreversible

projects in the case of incomplete markets? And what is the effect of risk aversion

on investment behavior? This chapter addresses these questions in the context of

the real options theory developed by McDonald and Siegel (1985, 1986). They show

that the conventional net present value rule to decide whether or not to invest in

some uncertain project ignores the option value of postponing the investment.

Dixit and Pindyck (1994) give a textbook treatment of this new investment the-

ory. They describe two closely related but essentially different mathematical tools to

model investment decisions: dynamic programming and contingent claims analysis.

The latter endogenously determines an investor’s discount rate as an implication of

the overall capital market equilibrium. Both risk neutrality and risk aversion can

be dealt with within the contingent claims approach, but the approach requires the

existence of a sufficiently rich set of markets of risky assets so that a dynamic port-

folio of traded assets exactly replicates the payoff of the investment that is to be

valued. This assumption of complete markets is in reality quite strong, especially for

investments in non-traded assets such as investments in marketing or advertising,

or the development of new products (see, e.g., Magill and Quinzii (1995)). Dynamic

5



6 Risk Aversion, Price Uncertainty, and Irreversible Investments

programming, however, makes no such demand; if risk cannot be traded in markets,

the investor’s objective function can simply reflect the decision maker’s valuation

of risk. Until now, dynamic programming has only been applied to the problem of

irreversibility under the assumption of risk neutrality.

In this chapter we consider the economically relevant problem faced by risk averse

investors who contemplate an irreversible investment in an asset whose payoff cannot

be replicated by a dynamic portfolio of traded securities. Hence, in this (realistic)

situation of incomplete markets, we are not able to use contingent claims analysis

as a tool to solve the investment problem. Instead, we apply dynamic programming

to an objective function that reflects risk aversion.

The purpose of this study is to generalize the approach of McDonald and Siegel

(1986) and Dixit and Pindyck (1994) by allowing for risk aversion in an environment

of incomplete markets. Our aim is to find out how the optimal investment decision

is affected by risk aversion, investment size, price uncertainty, and other parameters.

Our main results are the following. First of all we prove that, within a general

setting, a unique critical price level exists for which the risk averse investor is indif-

ferent between investing and not investing. Second, we introduce a class of utility

functions with the desirable property of non-increasing absolute risk aversion to ex-

amine the comparative statics of this critical price level with respect to risk aversion,

investment size, price uncertainty, and other parameters. We find that risk aversion

reduces investment, particularly if the investment size is large. Moreover, we find

that a rise in uncertainty increases the value of deferring irreversible investments.

This effect is stronger for high levels of risk aversion.

The remainder of the chapter is organized as follows. Section 2.2 formulates the

investment problem. Section 2.3 describes the general solution of the investment

problem. In Section 2.4 we introduce a class of utility functions which exhibit the

desirable property of non-increasing absolute risk aversion. This class of utility

functions allows us to numerically examine the comparative statics of the critical

price level under risk aversion in Section 2.5. In addition, we provide analytical

comparative statics formulas for the risk neutral investor. Section 5.6 concludes.
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2.2 The investment problem

We use a set-up along the lines of Dixit and Pindyck (1994, pp. 185–186). Consider

an infinitely-lived investor contemplating an irreversible, discrete investment oppor-

tunity with sunk cost I > 0. For simplicity we assume that once the investment is

made, it produces one unit of output flow into the indefinite future with no variable

costs of production. The output price Pt is assumed to follow a geometric Brownian

motion,

dPt = αPtdt + σPtdzt, (2.1)

where σ > 0 and zt is a standard Wiener process. Let P0 = P ≥ 0 denote the current

output price. The required amount of money I is borrowed at an instantaneous

riskless rate of interest r > 0 which we assume to be constant and larger than α.

Thus, if the investor decides to invest at time t = 0, then the instantaneous net cash

flow accruing from the project at any time t ≥ 0 is

ncft ≡ Pt − rI.

Note that since P ≥ 0, the range of possible values for ncf is [−rI,∞).

We assume that the investor’s preferences are intertemporally additive, and

that they can be represented by an increasing, twice differentiable von Neumann-

Morgenstern utility function u (·) which is defined over the instantaneous net cash

flows and independent of time, u : [−rI,∞) → IR. Furthermore, we assume that

utility flows are discounted at the riskless rate of return r. We shall consider both

situations in which u reflects risk neutrality and situations in which u reflects risk

aversion.

Our goal is to determine whether and when the investor should invest in the

project. In making this investment decision it is important to not only take into

account the expected utility of the net cash flows produced by the project, but also

the real option value embedded in its irreversible nature. Once the investment has

been made, it cannot be undone should prospects change for the worse. By deferring

the investment, however, the investor can await new information that affects the

desirability of the expenditure.
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2.3 Valuing the investment opportunity

If the investor decides to invest at t = 0, the expected utility of the net cash flows

produced by the project is given by

V (P ) = E

∫ ∞

t=0

e−rtu(ncft)dt.

As indicated by the notation, V depends on the current output price P of the project.

According to the classical net present value (npv) rule, the investor would have to

invest at t = 0 if P were such that V (P ) is positive, and refrain from investing

otherwise. However, this approach disregards the option value of postponing the

irreversible investment at time t = 0. Let C(P ) denote this option value. It is

determined by the following Bellman equation:

C(P ) = u(0)dt + e−rdtE {C(P + dPt)} , (2.2)

that is, the option value of deferring the investment is equal to the sum of the

utility of waiting during a time interval [0, dt] in which no cash flow occurs, and the

discounted expected future utility of waiting.

Without loss of generality we assume that u(0) = 0, thereby in effect associating

net cash inflows with positive utility levels, and net cash outflows with negative

utility levels. Using this convention, we apply Itô’s Lemma to rewrite the right-

hand side of (2.2) as1

C(P ) +

[

1

2
σ2P 2C ′′(P ) + αPC ′(P ) − rC(P )

]

dt + o(dt).

Substitution of this expression into (2.2), dividing by dt, and letting dt approach zero

yields a second-order differential equation which is solved by C(P ) = A1P
β1+A2P

β2 ,

where A1 and A2 are integration constants, and β1 > 1 and β2 < 0 are the roots of

the quadratic equation 1
2
σ2β(β−1)+αβ−r = 0. Clearly, the option to postpone the

investment is worthless if the current output price is zero, i.e., C(0) = 0. Therefore

A2 must be zero, and hence,

C(P ) = A1P
β1 . (2.3)

Note that C(P ) is increasing and convex in P .

1A quantity is said to be o(dt) if o(dt)/dt → 0 as dt ↓ 0.
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We can now characterize the optimal investment decision. The investor should

undertake the investment if the expected utility of the cash flows accruing from

the project exceeds the value of delaying it; otherwise, he should postpone the

investment. Let P ∗ be the output price for which the investor is indifferent between

investment and delay. Then

V (P ∗) = C(P ∗). (2.4a)

Eq. (2.4a) is referred to as the value-matching condition. Furthermore, V and C

should meet tangentially at P ∗, that is,

V ′(P ∗) = C ′(P ∗), (2.4b)

where V ′ and C ′ denote the partial derivatives of V and C with respect to P ,

respectively. Eq. (2.4b) is called the high-order contact or smooth-pasting condition.

See Dixit and Pindyck (1994, pp. 130–132) for a discussion on smooth pasting.

Concerning existence and uniqueness of P ∗, we were able to prove the following

proposition.

Proposition 1 Consider an investor who is either risk neutral or risk averse within

the model outlined above. Then it holds that:

1. If there exists an output price P ∗ satisfying (2.4a) and (2.4b), it is unique.

2. Existence of P ∗ is guaranteed if the utility function is unbounded.

Proof 1 See Appendix A.

Proposition 1 states that the existence of a critical output price implies its

uniqueness. Hence, if there exists a critical output price, the optimal investment

decision is tantamount to a simple investment rule: invest if P > P ∗ and wait if

P < P ∗. If no critical output price exists, it is optimal never to invest, however high

the current price level.

Figure 2.1 illustrates the investment decision graphically. It depicts V and C

as functions of P . The critical output price is located at the point where V and C

intersect. The functions are also tangent at this point. If the current output price

is below this threshold, the investor defers the investment, and its value is equal to
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PSfrag replacements

Project value C(P )

C(P )

V (P )

V (P )

P ∗
0

V (P ∗)

u(−rI)/r

PPnpv

Figure 2.1: Graphical illustration of the optimal investment decision. The solid

graph depicts V as a function of P . The dashed curve is C as a function of P .

The critical output price P ∗ is located at the point where V and C are tangent

and intersect. The npv critical price is located at the point where V intersects the

P -axis.
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the option value. If the current output price exceeds the threshold, the investment

will be made, and its value is equal to the expected utility of its net cash flows.

Note that the npv critical output price (Pnpv) is located at the point where the

expected utility of the net cash flows produced by the project is equal to zero, i.e.,

V (Pnpv) = 0. In fact, this is the relevant threshold if the investment project were

reversible or when the investment decision is a now-or-never option. Clearly, the

npv threshold is always smaller than the critical output price under irreversibility.

2.4 An example

In order to analyze the effects of changes in investors’ attitudes toward risk on the

optimal investment decision, we introduce the following utility function:

u(x) = (s − η)x + η(1 − e−x), (2.5)

where s > 0 and η ∈ [0, s]. This utility function is constructed as a linear combina-

tion of a risk neutral utility function and a constant absolute risk aversion (CARA)

utility function with unit Arrow-Pratt measure (see, e.g., Mas-Colell, Whinston and

Green (1995)). It is increasing and concave (for η 6= 0), and it meets the imposed

normalization u(0) = 0. Moreover, it has the attractive feature that it incorporates

risk neutrality as a special case (for η = 0). Hence, it allows us to compare the case

of risk neutrality to the case of risk aversion.

Another important property of the utility function considered is that it exhibits

non-increasing absolute risk aversion. The hypothesis of non-increasing absolute

risk aversion was already propounded by Arrow (1970). It is supported by the

empirical observation that the willingness to take small bets increases as individuals

get wealthier. For η 6= 0, the Arrow-Pratt measure of absolute risk aversion is given

by

RA(x) = −u′′(x)

u′(x)
=

1

1 + s−η

η
ex

, (2.6)

which is indeed decreasing in x. Another consequence of Eq. (2.6) is that the

parameter η may be interpreted as a measure of the degree of risk aversion of the

investor, since RA(x) is increasing in η for all x.
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Under this specification, the expected utility of net cash flows resulting from

investing is given by

V (P ) = (s − η)

[

P

r − α
− I

]

+ η

[

1

r
− erIG(P )

]

,

where

G(P ) ≡ E

∫ ∞

t=0

e−rte−Ptdt.

An explicit expression for G(P ) can be obtained by writing down the dynamic

programming-like recursion expression (cf. Dixit and Pindyck (1994, pp. 315–316)):

G(P ) = e−P dt + e−rdtE {G(P + dPt)}

= G(P ) +

[

1

2
σ2P 2G′′(P ) + αPG′(P ) − rG(P ) + e−P

]

dt + o(dt),

which implies a second-order differential equation whose solution reads

G(P ) =
1

r
× P β1Ψ1(P ) + P β2Ψ2(P )

1/β1 − 1/β2

,

where

Ψ1(P ) ≡
∫ D1

ν=P

ν−β1−1e−νdν

Ψ2(P ) ≡
∫ P

ν=D2

ν−β2−1e−νdν,

with integration constants D1 ≥ 0 and D2 ≥ 0. In Appendix B it is shown that

D1 = ∞ and D2 = 0.

While the utility function considered allows for an explicit expression for V (P ),

the corresponding critical output price P ∗ cannot be solved for analytically. How-

ever, it can easily be computed numerically by means of traditional search algorithms

given the parameters of the model. Note in particular that if η = 0, that is if the

investor is risk neutral, then P ∗ is equal to the investment threshold discussed in

Dixit and Pindyck (1994, p. 186):

P ∗ =
β1

β1 − 1
(r − α)I. (2.7)
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2.5 Comparative statics

In this section we examine the influence of the parameters of the model on the

investment decision. First we derive the comparative statics for the risk neutral case.

Subsequently we analyze the comparative statics for the utility function introduced

in Section 2.4.

2.5.1 Risk neutrality

We start by examining the effect of a change in the investment cost I on the critical

output price under risk neutrality. Recall that the critical output price is given by

(2.7) in the risk neutral case. A first, trivial observation is that P ∗ is proportionally

increasing with the investment cost I. Next, consider the other parameters of the

model: α, r, and σ2. The partial derivative of P ∗ with respect to x ∈ {α, r, σ2} is

equal to

∂P∗
∂x

=
I

β1 − 1

[

β1
∂(r − α)

∂x
− r − α

β1 − 1

∂β1

∂x

]

.

Using 1
2
σ2βi(βi − 1) = r − αβi for i = 1, 2, we find

∂β1

∂x
=



















− β1
1

2
σ2(β1−β2)

for x = α

1
1

2
σ2(β1−β2)

for x = r

− r−αβ1
1

2
σ4(β1−β2)

for x = σ2,

and, hence, the comparative statics in the risk neutral case are given by

∂P ∗

∂α
= − β1

β1 − β2

I

∂P ∗

∂r
=

1 + β1 − β2

β1 − β2

I

∂P ∗

∂σ2
=

1

2
β1

1 − β2

β1 − β2

I.

To the best of our knowledge, this is the first time these comparative statics results

have been analytically derived; Dixit and Pindyck only compute them numerically

for certain sets of parameter values.
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In particular, we find the following bounds on the partial derivatives:

−I < ∂P ∗

∂α
< 0

0 < I < ∂P ∗

∂r
< 1+β1

β1
I

0 < 1
2
I < ∂P ∗

∂σ2 .

Thus, in the risk neutral model, an increase in the drift term α always reduces

the critical output price. That is, the utility of postponing the investment always

decreases because its growth rate is higher. In contrast, an increase in the interest or

discount rate raises the critical output price. Apparently, the discouraging effects of

a rise in interest payments and a reduction in present value dominate the accelerating

effect of higher impatience on investment. Moreover, the effect of a change in the

interest rate on the critical output price is always greater than on the npv critical

price. Furthermore, an increase in the volatility also raises the investment threshold:

uncertainty adds to the value of waiting.

2.5.2 Risk aversion

We now analyze the comparative statics under risk aversion using the utility function

defined in Section 2.4. In order to assess the impact of a change of a parameter x

on the threshold price, it is useful to define ϕ(P ) ≡ β1V (P )− PV ′(P ). From (2.3),

(2.4a), and (2.4b) we have ϕ(P ∗) = 0. Total differentiation of ϕ(P ∗) = 0 gives

∂ϕ

∂P

∂P ∗

∂x
+

∂ϕ

∂x
= 0,

where all partial derivatives are evaluated at P ∗. This implies that the influence of

a change in parameter x on P ∗ is measured by

∂P ∗

∂x
= − 1

ϕ′ (P ∗)

∂ϕ (P )

∂x

∣

∣

∣

∣

P=P ∗

.

As pointed out in Appendix A, the function ϕ is strictly increasing on [0,∞), so

ϕ′(P ∗) > 0. Hence, the sign of the partial derivative of P ∗ with respect to x is

opposite to the sign of the partial derivative of ϕ with respect to x evaluated at P ∗.

As in the risk neutral case, we start by analyzing the effect of a change in the

investment cost on the threshold price. Monotonicity and concavity of u are sufficient
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Figure 2.2: P ∗/rI as a function of η for I ∈ {1, 3, 5, 7, 9}, α = 0, r = 0.05, σ = 0.1,

and s = 1.

to show that—not surprisingly—an increase in I raises the threshold price, while a

decrease in I reduces it:

∂ϕ(P )

∂I
= −rE

∫ ∞

t=0

e−rt[β1u
′(Pt − rI) − Ptu

′′(Pt − rI)]dt < 0,

and, hence, ∂P ∗/ ∂I > 0.

Such general statements are not possible with respect to the other parameters in

the model, not even in the case of the utility function in Section 2.4. Therefore, we

conduct a number of numerical analyses to find out the influence of these parameters

on the optimal investment decision using this utility function. In particular, we are

interested in the influence of a change in risk aversion.

Unless mentioned otherwise, we set α = 0, r = 0.05, σ = 0.1, and s = 1.

Figure 2.2 shows the threshold price to interest payment ratio P ∗/ rI as a function

of the risk aversion parameter η for different values of the investment cost. For η = 0

the risk neutral case applies. In this case the threshold price is proportional to the

investment cost. This implies that, for a given interest rate, the fraction P ∗/ rI is

constant for different levels of I, which explains that in Figure 2.2 all curves coincide

at η = 0. Figure 2.2 further shows that, for given I, P ∗ increases with η. This means
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Figure 2.3: P ∗/ Pnpv as a function of η for I ∈ {1, 3, 5, 7, 9}, α = 0, r = 0.05,

σ = 0.1, and s = 1.

that, the more risk averse the investor is, the higher must be the output price for

investment to be optimal. We conclude that a risk averse investor is more cautious

to invest. Moreover, this effect is reinforced by the size of the investment. This can

be explained by the fact that concavity of the utility function implies that as the

investment cost goes up, the disutility of a large negative cash flow becomes more

and more important. Consequently, the larger the investment outlay, the more the

investor needs to be compensated for by a higher critical output price relative to

interest payments.

Figure 2.3 demonstrates that the wedge between P ∗ and the npv critical out-

put price decreases with η. This means that the difference between the optimal

investment decision and the decision based on the npv criterion shrinks the more

risk averse the investor is. Hence, the error made by applying the npv rule, or,

equivalently, the importance of irreversibility, becomes smaller under risk aversion.

Again, the larger the investment cost, the stronger this effect becomes. The reason

is that the large disutility of large investments plays a major role in case of a concave

utility function, and this dominant factor affects P ∗ and Pnpv.

Figure 2.4 shows P ∗ as a function of r. From this figure it can be concluded
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that—as in the risk neutral case—the critical output price increases with r implying

that it is less attractive to invest if the discount rate is larger. Another thing that

emerges from Figure 2.4 is that risk aversion reinforces the influence of r on P ∗.

The reason is that, similarly to the dependence of the investor’s utility on I, the

disutility of large net cash outflows becomes more and more important for higher

values of η.

Finally, we examine the effect of a change in price uncertainty on the investment

decision. Figure 2.5 plots P ∗/ rI as a function of σ for different levels of risk aversion.

Clearly, an increase in the volatility of the output price causes the threshold price to

grow. After all, the more uncertain the future revenues are, the more it pays to wait

for more information concerning the development of output prices. Figure 2.5 shows

that this effect intensifies under risk aversion. Interestingly, the effect becomes huge

for high levels of risk aversion. Figure 2.6 demonstrates that the wedge between P ∗

and the npv critical output price widens with an increase in σ. Hence, the error made

by deciding according to the npv rule exacerbates as price uncertainty rises. The

figure shows that this effect can be quite substantial, but, as we already concluded

from Figure 2.3, the effect is weaker when the level of risk aversion is higher.
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2.6 Conclusion

In this study we generalize the theory of irreversible investment under uncertainty

by allowing for risk averse investors in a situation of incomplete markets. The

model we use is similar to that of Dixit and Pindyck (1994, pp. 185–186), the

only difference being that in their set-up the investment expenditure is immediately

incurred, whereas in our model there is a flow of interest payments over the lifespan

of the project. It is this adaptation that allows us to extend their model beyond

risk neutrality using utility functions.

We have introduced a class of utility functions with non-increasing absolute

risk aversion to examine the effects of risk aversion, price uncertainty, and other

parameters on the optimal investment decision. We find that risk aversion reduces

investment, particularly if the investment size is large. Moreover, we find that a rise

in uncertainty increases the value of deferring irreversible investments, especially for

high levels of risk aversion. Furthermore, we find that applying the net present value

rule leads to better (although not optimal) decisions when the level of risk aversion

is high. In addition, we provide closed-form comparative statics formulas for the

risk neutral investor.

Finally, departing from the realistic situation of risk averse firms operating in

an incomplete market setting, we list some ideas for further research. One of our

main results is that risk aversion reduces the gap between the optimal decision and

investing according to the net present value rule. Traditional real options theory

shows that the gap is there because the option to wait for more information is

valuable. Apparently, this option value is of less importance under risk aversion.

It would be interesting to find out whether the gap shrinks even more when the

behavior of competitors is taken into account, so that the incentive to preempt

rivals will also play a role.

A second topic relates to investments in R&D. Since R&D investments create

options (e.g., to produce cheaper or to commercialize patents), and option values

increase with uncertainty, it is known from the real options literature (e.g., Dixit and

Pindyck (1995)) that the incentive to invest in R&D goes up with uncertainty. It

would be interesting to see to what extent this result still holds within our framework

of risk aversion combined with incomplete markets.
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A Proof of Proposition 1

In this appendix we show that there is a single, strictly positive critical output

price (if it exists at all), whether the investor is risk neutral or risk averse. Risk

aversion corresponds to a concave utility function; see, e.g., Mas-Colell et al. (1995,

p. 187). This is equivalent to u′′ < 0 since u is twice differentiable. Risk neutrality

corresponds to a linear utility function. In that case, u′′ = 0. In either case, we have

u′ > 0 and u′′ ≤ 0.

Assume there is a P ∗ ∈ [0,∞) such that (2.4a) and (2.4b) hold. Define ϕ :

[0,∞) → IR, ϕ(P ) ≡ β1V (P ) − PV ′(P ). Then, by construction, ϕ(P ∗) = 0. Note

that ϕ is strictly increasing on [0,∞):

ϕ′(P ) = (β1 − 1)V ′(P ) − PV ′′(P )

= E

∫ ∞

t=0

e−rt[(β1 − 1)u′(ncft) − Ptu
′′(ncft)]

Pt

P
dt

is positive since β1 > 1, u′ > 0, and u′′ ≤ 0. Note furthermore, that ϕ(0) =

β1u(−rI)/ r < β1u(0)/ r = 0 since u′ > 0. Then, by continuity of the function ϕ,

P ∗ > 0 and unique.

A sufficient condition for existence of P ∗ is unboundedness of the utility function.

To see this, note that

ϕ(P )

P
= E

∫ ∞

t=0

e−rt

[

β1
u(ncft)

Pt

− u′(ncft)

]

Pt

P
dt.

As P → ∞, this ratio converges to β1−1
r−α

limx→∞ u′(x) which is positive if u is

unbounded from above. Consequently, limP→∞ ϕ(P ) > 0, which, together with

ϕ(0) < 0, ensures there exists a P ∗ ∈ (0,∞) such that ϕ(P ∗) = 0.

B Determination of D1 and D2

To determine the integration constant D1 ≥ 0, first note from the definition of G

that limP→∞ G(P ) = 0. This implies

lim
P→∞

[

P β1Ψ1(P ) + P β2Ψ2(P )
]

= 0. (2.8)
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Notice that limP→∞ P β2 = 0 since β2 < 0, and limP→∞ Ψ2(P ) =
∫∞

ν=D2
ν−β2−1e−νdν ≤

∫∞

ν=0
ν−β2−1e−νdν = Γ(−β2) which is finite because β2 < 0.2 As a consequence,

limP→∞ P β2Ψ2(P ) = 0. Therefore, in view of (2.8), it should hold that

lim
P→∞

P β1Ψ1(P ) = 0. (2.9)

Suppose that D1 < ∞. Then limP→∞ Ψ1(P ) = −
∫∞

ν=D1
ν−β1−1e−νdν < 0. Also,

limP→∞ P β1 = ∞ since β1 > 0. Hence, limP→∞ P β1Ψ1(P ) = −∞, which contradicts

(2.9). Therefore, a necessary condition for (2.9) to hold is that D1 = ∞. To see

that this condition is also sufficient, consider

lim
P→∞

P β1Ψ1(P ) = lim
P→∞

∫∞

ν=P
ν−β1−1e−νdν

P−β1

.

We can apply l’Hôpital’s rule to this limit, for limP→∞

∫∞

ν=P
ν−β1−1e−νdν = 0 and

limP→∞ P−β1 = 0:

lim
P→∞

P β1Ψ1(P ) = lim
P→∞

−P−β1−1e−P

−β1P−β1−1

= 0,

so that, indeed, D1 = ∞ is sufficient for (2.9), and thus (2.8) holds.

As for the other integration constant D2 ≥ 0, a similar reasoning holds. First,

observe from the definition of G that limP↓0 G(P ) = 1
r
. This implies

lim
P↓0

[

P β1Ψ1(P ) + P β2Ψ2(P )
]

=
1

β1

− 1

β2

. (2.10)

Now that we know D1 = ∞, consider

lim
P↓0

P β1Ψ1(P ) = lim
P↓0

∫∞

ν=P
ν−β1−1e−νdν

P−β1

,

to which we can apply l’Hôpital’s rule, because of the fact that limP↓0 P−β1 and

limP↓0

∫∞

ν=P
ν−β1−1e−νdν =

∫∞

ν=0
ν−β1−1e−νdν = Γ(−β1) are both equal to ∞ since

β1 is positive:

lim
P↓0

P β1Ψ1(P ) = lim
P↓0

−P−β1−1e−P

−β1P−β1−1

=
1

β1

.

2Γ(·) denotes the Euler gamma function, Γ(a) ≡
∫

∞

ν=0
νa−1e−νdν, a ∈ IR.
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Therefore, in view of (2.10), it should hold that

lim
P↓0

P β2Ψ2(P ) = − 1

β2

. (2.11)

Suppose D2 > 0. Then limP↓0 Ψ2(P ) = −
∫ D2

ν=0
ν−β2−1e−νdν < 0. In addition,

limP↓0 P β2 = ∞. Hence, limP↓0 P β2Ψ2(P ) = −∞, which contradicts (2.11). There-

fore, a necessary condition for (2.11) to hold is that D2 = 0. To see that this is also

sufficient, consider

lim
P↓0

P β2Ψ2(P ) = lim
P↓0

∫ P

ν=0
ν−β2−1e−νdν

P−β2

.

Again, l’Hôpital’s rule can be applied, because limP↓0

∫ P

ν=0
ν−β2−1e−νdν = 0 and

limP↓0 P−β2 = 0:

lim
P↓0

P β2Ψ2(P ) = lim
P↓0

P−β2−1e−P

−β2P−β2−1

= − 1

β2

,

so that, indeed, D2 = 0 is sufficient for (2.11), and thus (2.10) holds.



Chapter 3

Economic Hedging Portfolios

3.1 Introduction

The purpose of the study presented in this chapter is to estimate and interpret the

composition of hedging portfolios that investors hold on account of various economic

risks. Furthermore, the study estimates and tests the significance of the hedging

costs associated with these economic hedging portfolios.

We use a model of state-dependent preferences to show that economic hedging

portfolios can be obtained as combinations of traded assets which mimic as far as

possible the economic risk variables to which investors are exposed. The weights in

these mimicking portfolios turn out to be a function of the level of risk aversion of

investors. The weighting scheme implies that the composition of economic hedging

portfolios is investor-specific, as is the associated premium investors pay—at least,

if the risk variables under consideration cannot be perfectly replicated. This will,

of course, typically be the case, as we generally observe an incomplete securities

market, which makes it impossible to hedge all sources of risk perfectly.

Portfolios and premiums associated with economic risks have been studied by

several authors in various contexts. For example, Breeden, Gibbons and Litzen-

berger (1989) test the consumption-based CAPM using a portfolio that has maxi-

mum correlation with consumption growth. Vassalou (2003) constructs a mimicking

portfolio to proxy news related to future GDP growth to explain the cross-section of

equity returns. Balduzzi and Kallal (1997) tighten the variance bounds of Hansen

23
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and Jagannathan (1991) using hedging portfolios for various economic risk variables.

And Balduzzi and Robotti (2001) use the minimum-variance kernel of Hansen and

Jagannathan to estimate economic risk premiums.

In all of these papers, the mimicking portfolios are constructed by means of an

ordinary least squares projection of the risk variables on a set of security returns.

As a consequence, portfolio weights and hedging costs are identical for all agents

in these studies. In this study, however, hedging is achieved by a weighted least

squares projection of the risk variables on the security returns, in which the weights

depend on investors’ appetite for risk, making the composition of hedging portfolios

and the implied cost of hedging individual specific.

We derive these risk aversion-weighted hedging portfolios from a model of state-

dependent preferences, in which economic risk variables enter the investor’s utility

function in addition to the return on financial wealth. In this framework, we define

an investor’s economic hedging portfolio as the difference between the expected

utility maximizing investment portfolio and a portfolio constructed on the basis of

the return on financial wealth only, i.e., in the absence of economic risk exposures.

Using a linear approximation of the investor’s first order optimality conditions, we

show that the resulting hedging portfolio weights are in fact approximately equal

to the regression coefficients in a weighted least squares regression of the economic

risk variable on the available asset returns, in which the weights are proportional to

the second derivative of the utility function.1 The implied hedging cost is then the

compensation investors are willing to pay for investing in a hedged position instead

of a zero-exposure portfolio, in terms of expected return forgone.

Our approach is related to the literature on nonmarketable risks. Nonmarketable

risks arise from positions in nontraded claims such as human capital (Mayers 1972)

and commodities (Stoll 1979). As is well-known from mean-variance investment

analysis with nonmarketable risks, an investor’s optimal portfolio holdings can be

split up into speculative demand (i.e., the standard Markowitz portfolio choice) and

hedging demand due to the nonmarketable risks to which the investor is exposed.

This hedging demand is an ordinary least squares projection of the nontraded risk

1Similar ideas have been applied by DeRoon, Nijman and Werker (2003) in the context of

currency hedging for international stock portfolios.
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onto the traded security returns. In fact, a more general utility framework would

produce a non-orthogonal projection similar to the one in our state-dependent utility

approach.

In the empirical analysis, we focus on economic risk variables that have been

found to command risk premiums in empirical studies of multi-beta and of multi-

factor models. We consider the inflation rate, real interest rate, term spread, default

spread, dividend yield, and consumption growth. Similar variables have been used

by, for instance, Chen, Roll and Ross (1986), Burmeister and McElroy (1988), Ferson

and Harvey (1991), Campbell (1996), and Balduzzi and Kallal (1997). The possibil-

ities for hedging these economic risks will, of course, depend on which traded assets

are included in the analysis. We focus on a number of equity and bond factors of

which it is well-known that they induce significant risk premiums. We include the

Fama-French-Carhart factors in our set of securities to represent the stock market,

and we use a two-factor model to represent the bond market. Using these priced

risk factors, of several of which it is as yet not clear how they are related to eco-

nomic fundamentals, allows us to explore the possibility that they are induced by

an underlying hedging demand for economic risks.

We find that several stock-market and bond-market portfolios provide hedges

for economic risks for a wide range of levels of risk aversion. In particular, inflation

risk and real interest-rate risk can be partially hedged using corporate bonds; the

term factor provides a good hedge for term-structure risk; and default risk can

be partially hedged using bond portfolios. Bond portfolios, in combination with

the equity market and momentum portfolios, also provide a good hedge against

dividend-yield risk. Finally, the size portfolio appears to be useful for hedging

consumption-growth risk.

Not all hedging instruments are equally useful in every situation, however. For

some levels of risk aversion, portfolio adjustments are required in a particular secu-

rity, while for other levels, no such adjustments are needed. For instance, a relatively

risk tolerant investor may hedge against inflation risk by taking a short position

in the momentum portfolio, while this is not true for relatively risk averse agents.

Hence, introducing a risk aversion-dependent weighting scheme in the hedging prob-

lem can indeed lead to different hedging instruments being important for different
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types of investors, which is in contrast with what the more restrictive mean-variance

analysis predicts.

Furthermore, we find that both inflation risk, real interest risk, and dividend-

yield risk imply statistically and economically significant hedging costs, while there

is no evidence of a compensation for hedging default risk, consumption-growth risk,

or term-structure risk.

Finally, using a decomposition of investment portfolios into speculative and hedg-

ing demand, we find that deviations from two-fund separation, i.e. investments in

only the risk-free asset and the market portfolio, can be attributed to hedges against

economic risks. Our results show that the size factor can be attributed to hedges

against consumption-growth risk; that the term factor in bond markets is related

to hedges against real interest-rate, term-structure, default, and dividend-yield risk;

and that the default factor in bond markets is related to hedges against default,

dividend-yield, and consumption-growth risk. However, a complete explanation of

anomalies remains elusive, as we find that part of investors’ demand for assets is

due to speculative motives.

The structure of the remainder of the chapter is as follows. Section 3.2 describes

the model and its implications for investors’ hedging demand due to economic risks

as well as the associated risk premiums. In Section 5.3 we discuss the data on secu-

rities returns and economic risk variables which are used in Section 4.3 to estimate

and test the significance of risk premiums and hedging portfolios associated with

economic risks. Furthermore, we investigate whether hedging motives can explain

the premiums on the Fama-French portfolios. Section 5.6 concludes.

3.2 Hedging economic risks

Assume that K risky securities are traded, and a risk-free one. Let Rt denote the

K-vector of gross returns on the risky securities from date t − 1 to date t, and let

Rf,t−1 be the gross risk-free rate of return from date t − 1 to date t. Under the law

of one price, there exist stochastic discount factors or pricing kernels Mt that satisfy

Et−1 [MtRt] = ιK (3.1)
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and

Et−1 [Mt] =
1

Rf,t−1

, (3.2)

with ιK being a K-vector of ones, and where Et−1 denotes the conditional expecta-

tion given all information up to date t−1; see, e.g., Cochrane (2001). If, furthermore,

there are no arbitrage opportunities, then there is at least one such pricing kernel

which is strictly positive almost surely.

It is well-known that stochastic discount factors or pricing kernels can be thought

of as investors’ marginal utility. Consider a risk-averse investor who maximizes the

expected utility of the gross return on his wealth, RW,t, by choosing his investments

in the K + 1 available securities according to

maxw Et−1 [u(RW,t)]

s.t. RW,t = Rf,t−1 + w>Re
t ,

(3.3)

where Re
t ≡ Rt − Rf,t−1ιK is the K-vector of excess returns on the risky securities.

Note that the w’s need not sum to one. The first order conditions of problem (3.3)

imply that a valid stochastic discount factor is

u′(Rf,t−1 + w>
0 Re

t )

Rf,t−1Et−1[u′(Rf,t−1 + w>
0 Re

t )]
, (3.4)

with marginal utility being evaluated at the optimal portfolio choice w0. Note that

positive marginal utility implies the absence of arbitrage opportunities.

We extend this simple portfolio problem by allowing for state-dependent utility,

in which sources of risk other than the uncertain security returns may affect the

investor’s utility. Typically, these sources of risk are investor-specific. In principle,

they can be anything from human capital and illiquid equity to health risk and the

weather. In this study, however, we focus on a set important (macro)economic risk

variables such as inflation, the term spread, and consumption growth, following,

for example, Chen et al. (1986), Ferson and Harvey (1991), Campbell (1996), and

Balduzzi and Kallal (1997).

To be more precise, let yt be an economic risk variable, and write an investor’s

state-dependent utility as U(RW,t; yt). Hence, the investor’s utility does not only

depend on the return on his invested wealth, but also on the realization of the
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economic risk variable. We assume that the risk variable enters the individual’s

utility function linearly:

U(RW,t; yt) = u(RW,t − qyt), (3.5)

where q is a parameter reflecting the extent to which the investor cares about the

economic risk under consideration. Relation (3.5) can also be interpreted as a lin-

earization of U(RW,t; yt), with q = −Uy(RW,t; yt)/UR(RW,t; yt).

To motivate this specification, consider the rate of inflation of the investor’s

consumption as an economic risk variable, and assume, for now, that q equals unity.

Then the argument of the utility function can be interpreted as the individual’s real

return on wealth (taking RW to be the nominal return on wealth). Depending on the

investor’s inclination to look at real returns rather than nominal returns, parameter

q may assume other values. In particular, q = 0 may be interpreted as the investor

being prone to money illusion.

More generally, any economic risk may affect the individual’s utility of wealth.

For instance, an interest rate shock can have an effect on the investor’s utility of

wealth, perhaps through his positions in non-tradable assets, such as a mortgage.

Similarly, default risk can affect utility as bankruptcy jeopardizes one’s labor income.

Furthermore, a change in dividend yield may cause one’s investment opportunity set

to shift (dividend-yield risk), as well as an unanticipated fall in consumption growth

(business cycle risk).

We will refer to q as the individual’s exposure to the economic risk, by analogy

with the literature on non-marketed securities mentioned in the introduction. Note

that in case of zero exposure, the utility function reduces to the one considered

in (3.3). In case of non-zero exposure, however, the economic risk will affect the

investor’s portfolio choice, and, hence, give rise to hedging demand.

The portfolio choice problem now becomes:

maxw Et−1 [u(RW,t − qyt)]

s.t. RW,t = Rf,t−1 + w>Re
t ,

(3.6)

and the corresponding first order conditions read

Et−1[u
′(Rf,t−1 + w>

1 Re
t − qyt)R

e
t ] = 0K , (3.7)
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where w1 denotes the vector of optimal portfolio weights. We take a first order

Taylor series approximation around the optimal portfolio in case of no exposure,

i.e., around w1 = w0 and q = 0, to obtain

0K = Et−1[u
′(Rf,t−1 + w>

1 Re
t − qyt)R

e
t ]

≈ Et−1[u
′(Rf,t−1 + w>

0 Re
t )R

e
t ]

+ Et−1[u
′′(Rf,t−1 + w>

0 Re
t )R

e
t ((w1 − w0)

>Re
t − qyt)]

= 0K − Et−1[R
e
tΩtR

e>
t ](w1 − w0) + Et−1[R

e
tΩtyt]q, (3.8)

where Ωt ≡ −u′′(Rf,t−1 + w>
0 Re

t ) > 0, and the last equality follows from the first

order conditions of problem (3.3). Hence, the difference in optimal portfolio weights

per unit of exposure is

w1 − w0

q
≈ Et−1[R

e
tΩtR

e>
t ]−1Et−1[R

e
tΩtyt]. (3.9)

Formula (3.9) tells us how an individual’s investment portfolio should be reallo-

cated on account of his exposure to economic risk; some assets will require addi-

tional investment, while others will require less. Hence, this portfolio of incremen-

tal (dis)investments constitutes the investor’s hedging demand associated with the

economic risk variable under consideration. Accordingly, we refer to (3.9) as an

investor’s economic hedging portfolio.2

To further elaborate on this hedging interpretation, note that the expression on

the right-hand side of equation (3.9) is equal to the vector of regression coefficients

in a weighted least squares regression of the economic risk variable on the excess

returns Re
t , in which the weight is given by the negative of the second derivative of

the utility function evaluated at the zero-exposure optimum:

yt = δ>Re
t + εt, (3.10)

where Et−1[R
e
tΩtεt] = 0K and δ = (w1 − w0)/q. This regression is, in effect, an

approximate replication of the economic risk variable using the set of traded secu-

rities; the investor hedges his exposure to the economic risk by taking an offsetting

2Note that this economic hedging portfolio does not have the interpretation of a “pure” hedge

as in Anderson and Danthine (1981), in the sense that it minimizes the variance of the return on

wealth. In our more general expected utility framework we cannot speak of such a pure hedge, as

other moments of the distribution matter as well.
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position in a portfolio that mimics the economic risk variable best. By investing

in this economic hedging portfolio, the investor essentially minimizes the weighted

expected squared hedging error εt:

min
δ

Et−1[Ωtε
2
t ]. (3.11)

Weighting by the concavity of the utility function implies that for utility functions

with an upward sloping second derivative (like, for instance, power utility), large

negative returns on wealth get a large weight, while large positive returns get a

small weight. This makes sense intuitively, since risk-averse investors will want

their hedge against economic risk to work best when wealth is low, whereas the

quality of the hedge is less important to the investor when wealth is high.

It is well-known that in a traditional mean-variance framework, hedging demand

is independent of the level of risk aversion. Hence, for mean-variance investors, the

weight is constant, and the hedging problem reduces to an ordinary least squares

projection. Ergo, in this special case, heterogeneity of risk preferences is not an is-

sue. Many theoretical papers, including Mayers (1972), Stoll (1979), Anderson and

Danthine (1980), Anderson and Danthine (1981), and Hirshleifer (1989), effectively

adopt this restrictive assumption. Moreover, Balduzzi and Kallal (1997) and Bal-

duzzi and Robotti (2001) also make use of unweighted hedging.3 However, weighted

hedging is important for non-mean variance utility, as our results show.

Given the above analysis, it is natural to define the implied hedging cost asso-

ciated with the economic risk variable as the expected excess return on the corre-

sponding economic hedging portfolio:

λt−1 ≡ δ>Et−1[R
e
t ]. (3.12)

The implied hedging cost is the expected return an investor with preferences de-

scribed by u is willing to give up to hold a position that is hedged against economic

risk. Equivalently, it is the required compensation for an investor providing the

hedge in terms of additional expected return.

3Anderson and Danthine (1981) do mention the possibility of a general expected utility formula-

tion, but they do not explore the issue further. Neither do they examine the empirical implications

of weighted hedging.
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Balduzzi and Kallal (1997) and Balduzzi and Robotti (2001) refer to the implied

hedging cost as an economic risk premium. The term risk premium, however, sug-

gests the existence of an equilibrium price of economic risk that is the same for all

agents. Clearly, the implied hedging cost does not have an equilibrium interpreta-

tion, since the underlying economic risk is typically not traded. Rather, the implied

hedging cost is a compensation for economic risk that is required by an individual

investor. For this reason we avoid the use of the term risk premium.4

In Section 4.3 we examine the implied hedging costs associated with several

economic risk variables using investments in both stocks and bonds. Furthermore,

we analyze the composition of the underlying hedging portfolios.

3.3 Description of the data

This section describes the data used in the empirical analysis. The data is at a

monthly frequency, and the period considered is August 1960 through December

2001, giving a total of 497 months.

3.3.1 Securities returns

The set of traded securities we consider includes the three factor portfolios of Fama

and French (1992)—market, size, and book-to-market value—as well as the mo-

mentum portfolio of Carhart (1997). These factors have been found to explain the

premiums on stocks. Furthermore, following Fama and French (1993), we include

two bond-market factors: a term factor (the difference between a long-term govern-

ment bond return and the one-month T-bill rate) and a default factor (the difference

between the return on a portfolio of long-term corporate bonds and a long-term gov-

ernment bond return). The one-month T-bill rate is used as a proxy for the risk-free

4Balduzzi and Kallal (1997) and Balduzzi and Robotti (2001) do recognize that the implied

hedging cost depends on (marginal) utility and, hence, the selected pricing kernel. In fact, Balduzzi

and Kallal (1997) analyze the bounds on economic risk premiums, for given levels of the pricing-

kernel variance. Moreover, they compare these bounds to the kernel of a representative consumer

with power utility. Balduzzi and Robotti (2001) use a very specific kernel (the minimum-variance

kernel of Hansen and Jagannathan), which leads to premiums that are equal for all agents.
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rate.

The market (RM–RF ), size (SMB), book-to-market value (HML), and momen-

tum (UMD) portfolios are from Kenneth French’ data library.5 The bond factors

(TERM and DEF ) are constructed using long-term government and corporate bond

series from Ibbotson and Associates, and the risk-free rate (RF ) which is also from

French.

Table 3.1 reports summary statistics for the securities data.6 These are very

much in line with the results reported by other authors. The assets considered cover

a fairly wide range of average returns. The market risk premium was about 49 basis

points per month on average in our sample period, which corresponds to about 6

percent annually. Only the risk-free rate exhibits strong positive autocorrelation;

the risky returns are typically not very autocorrelated. The size portfolio and the

term factor are positively correlated with the market portfolio, while book-to-market

value has a sizeable negative correlation with the market. The bond-market factors,

DEF and TERM, are strongly negatively correlated, which is due to the fact that

they are constructed using the same long-term government bond.

3.3.2 Economic risk variables

We consider six (macro)economic risk variables that have also been used in previous

studies. See, for example, Chen et al. (1986), Burmeister and McElroy (1988), Ferson

and Harvey (1991), Campbell (1996), Balduzzi and Kallal (1997), and Balduzzi and

Robotti (2001). They are:

1. Inflation (INF ): The monthly net rate of inflation.

2. Real interest (RI ): The monthly real net return on a one-month T-bill.

5These are acronyms for “small minus big” (SMB), “high minus low” (HML), and “up minus

down” (UMD).
6The risky securities we consider are all zero-cost portfolios, but some of them are financed at

the risk-free rate, while others are financed using other short positions. Nevertheless, we can take

Re to be equal to the selected vector of excess returns, and the analysis of Section 3.2 continues

to apply. The only difference is in the interpretation of the portfolio weights. In particular, the

fraction of wealth invested in the risk-free rate is one minus the fractions invested in RM–RF

and TERM, and the fraction of wealth invested in the long-term government bond is equal to the

difference between the portfolio weights invested in TERM and DEF.
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3. Term spread (TS ): The yield spread between a long- and a short-term gov-

ernment bond.

4. Default spread (DS ): The difference in yields between corporate bonds rated

Baa by Moody’s Investor Service and Aaa corporate bonds.

5. Dividend yield (DIV ): The monthly dividend yield on the S&P 500 composite.

6. Consumption growth (CG): Monthly real per-capita consumption growth of

du-rables, nondurables, and services.

The monthly inflation rate is provided by Ibbotson and Associates and is com-

puted as the relative change of the consumer price index for all urban consumers.

The monthly real interest rate is the CRSP one-month T-bill rate deflated by INF,

the inflation rate. The default spread and the term spread are constructed using

government bond-yield series (10-year and 1-year) and corporate bond-yield series

(Baa and Aaa) obtained from the Federal Reserve Statistical Release. The dividend

yield and consumption growth series are obtained from Datastream.

Summary statistics for the six economic risk variables are provided in Table 3.2.

Note that the risk variables are much less volatile than the security returns, and

that they are typically highly autocorrelated. Only consumption growth is neg-

atively autocorrelated at the first lag, which is consistent with previous research

(e.g., Balduzzi and Kallal (1997)). A clear pattern emerges from the correlation ma-

trix of the risk variables. In particular, note the high negative correlation between

the inflation rate and the real risk-free rate, which is not surprising given that the

real risk-free rate is equal to the nominal risk-free rate less the rate of inflation, and

the nominal risk-free rate is relatively constant over our sample period. Also note

the strong positive correlations between the dividend yield on the one hand, and the

default spread and the inflation rate on the other, as well as the negative correlation

between the term spread and the inflation rate.

3.4 Hedging portfolios and implied hedging costs

In this section, we compute and interpret the hedging portfolios and implied hedg-

ing costs associated with the six economic risk variables under scrutiny using the



34 Economic Hedging Portfolios

available set of traded assets. As a first step in the analysis, we estimate a vec-

tor autoregressive (VAR) model for the “raw” economic risk variables, and use the

residuals as our actual economic risk variables, as in Campbell (1996). The rea-

son for this is that we are only interested in hedging the unanticipated components

of economic risks (shocks); any anticipated part can be hedged trivially using the

risk-free asset.

Table 3.3 reports the coefficients in a first-order VAR, as well as the standard

deviations and the correlations of innovations to the system. Many variables enter

significantly with either positive or negative signs in the forecasting equations. In

particular, the regression coefficients on the dependent variables’ own lags are all

highly significant due to the substantial autocorrelation in the economic variables.

The autocorrelation is most pronounced in the term spread, the default spread,

and dividend yield, explaining the high R2 in those regressions. The innovations

in inflation and the real interest rate are highly negatively correlated, while the

correlations of the other innovations are on average less than 10 percent.

The economic hedging portfolios and their corresponding hedging costs are es-

timated in two steps. In the first step, we use the generalized method of moments

(GMM) of Hansen (1982) to estimate the optimal zero-exposure portfolio weights for

investors in a standard constant relative risk aversion or power utility framework.

The power utility function is given by u(x) = x1−γ/(1 − γ), where γ > 0 is the

parameter of risk aversion which we allow to vary. These zero-exposure portfolio

weights are subsequently used in the second step in the weighted least squares re-

gression to obtain estimates of the hedging portfolios and the implied hedging costs.

This procedure involves an errors-in-variables problem and requires an adjustment

of the standard errors. The econometric details are given in the appendix.

3.4.1 Implied hedging costs

The hedging costs associated with the economic risk variables are in Panel A of

Table 3.4. These hedging costs are measured in units of risk, or Sharpe ratios, as

in Balduzzi and Kallal (1997); that is, the vector-autoregressive residuals are scaled

by their standard deviations, so that they can be compared to each other. To get

an idea of the order of magnitude of these implied hedging costs, or their economic
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significance, consider that the monthly market Sharpe ratio is about 0.11 for the

period under scrutiny.

Our results show that investors are willing to pay for inflation shocks and inno-

vations in dividend yield only. This holds for all types of agents, with levels of risk

aversion ranging from γ = 1 to γ = 20. The estimated hedging costs for inflation

and dividend yield are both statistically and economically significant. Both are neg-

ative, indicating that investors must forgo expected return if they want to hedge long

exposures to these economic risks. Note that the implied hedging cost for inflation

decreases as we consider more risk averse investors. This result may at first sight

seem counterintuitive, however the magnitude of the hedging cost is in fact not de-

termined by the level of risk aversion directly, but rather by its effect on the weight,

Ω, in the hedging problem. Neither size nor sign of this effect can be predicted

without examination of the data. An increase in the level of risk aversion, which

makes the investor put more weight on low returns than on high returns, apparently

decreases the slope in the hedging regression (in absolute value) and thus reduces

the associated hedging cost for the case of inflation risk.7 Contrary to inflation,

the hedging cost associated with dividend yield seems to be independent of people’s

attitudes toward risk. We find no evidence for significant risk compensations for

other economic risk variables.

Apart from a single risk exposure, agents may very well be exposed to several

economic risks simultaneously. This implies that hedging portfolios are constructed

to hedge for multiple risks. The resulting hedging costs are linear combinations

of the hedging costs in Panel A of Table 3.4. These then constitute the price for

simultaneously hedging for several economic risks.

An alternative way of analyzing risk premiums is to look at an innovation in

isolation, disregarding innovations in other risk variables. To achieve this, we fol-

low Campbell (1996) and Balduzzi and Kallal (1997) by orthogonalizing the VAR-

residuals using a Cholesky decomposition of their variance-covariance matrix. The

first innovation, the one in the rate of inflation, is unaffected by this procedure;

the other innovations are. The orthogonalized innovation in the real interest rate

7Note that there is also no reason why the implied hedging cost should increase with risk

aversion. In fact, in a mean-variance framework, the hedging cost is independent of the investor’s

risk aversion.
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is equal to the part of the original real interest rate innovation orthogonal to the

innovation in inflation; the orthogonalized innovation in term-structure risk is equal

to the part of the original innovation in term-structure risk orthogonal to the inno-

vations in inflation and the real interest rate; et cetera. The variables are ordered

in such a way that the orthogonalized innovations are easily interpretable. For in-

stance, the orthogonalized innovation in the real interest rate is a change in the real

interest rate that is not caused by a change in the inflation rate. Hence, it amounts

to a shock in the nominal rate.

The hedging costs related to the orthogonalized economic innovations are in

Panel B of Table 3.4. We find that both inflation risk and dividend yield still

require economically and statistically significant hedging costs for a broad range of

levels of risk aversion. In addition, shocks to the real interest rate that are unrelated

to inflation surprises also require a negative and significant hedging cost for all types

of investors considered. This cost is quite sizeable for relatively risk tolerant agents,

but gets smaller for higher levels of risk aversion.

3.4.2 Economic hedging portfolios

Table 3.5 reports the hedging portfolios underlying the hedging costs associated with

each of the economic risk variables. Several securities provide hedges for economic

risks. For instance, a significant long position in the default portfolio is required to

hedge against inflation risk. That is, investors prone to inflation risk should reduce

their investment in government bonds and buy corporate bonds. This is because

when inflation is higher than anticipated, the return on the default factor is high.

This result holds for a broad range of levels of risk aversion.

Observe, however, that a hedge against inflation requires other portfolio adjust-

ments as well. For instance, the momentum portfolio appears to be a useful hedging

instrument for relatively risk tolerant agents, while the market portfolio provides

inflation protection for relatively risk averse investors. This shows that differences

in risk aversion can have such an effect on the weighting in the hedging problem,

that some securities turn out to be good hedges for certain types of agents, while

others do well for other types of agents.

Note furthermore, that the total (dis)investment in the hedging portfolios de-
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pends on the investor’s exposure to inflation risk. Naturally, if the exposure is zero,

no hedging is needed, while in case of a non-zero exposure, some portfolio adjust-

ments are required. Table 3.5 shows the hedging portfolios for an investor with

unit exposure to innovations in the economic risk variables. Hence, an investor with

relative risk aversion of one who cares about real returns instead of nominal returns,

i.e., an investor with γ = 1 and q = 1, should increase his investment in the default

portfolio by almost 5 percentage points. For investors with γ = 1 and q = .5, the

adjustment is half this amount.

For investors who face real interest-rate risk, a short position in the default

portfolio is required. Hence, an exposure to the real interest rate can be offset by

a disinvestment in corporate bonds and an investment in government bonds, as the

return on the default portfolio is low. Moreover, risk averse investors (γ = 1) should

increase their position in the momentum factor.

Furthermore, the term portfolio provides a good hedge for term-structure risk

across all levels of risk aversion. That is, when there is a shock in the interest rate

differential, investors with an exposure to term-structure risk ought to use the term

factor as a hedging instrument. For instance, investors whose portfolio is adversely

affected by a high long-term interest rate and a low short-term interest rate, perhaps

due to a mortgage loan and a savings account, can hedge the risk of a high interest

rate differential by increasing their investment in long-term bonds and decreasing

their investment in T-bills, because the excess return on long-term bonds is expected

to be higher at such times.

As for hedges against default risk, most investors (if they face an exposure to

this economic risk) seem to be best off taking long positions in the term portfolio

and the default portfolio. Hence, corporate bonds appear to perform best when the

risk of default is high, that is, if the yield spread rises.

For all levels of risk aversion considered, the hedging portfolio associated with

dividend yield requires significant short positions in the market and momentum

portfolios as well as long positions in the term and default portfolios. Note that an

unanticipated increase in the dividend yield usually coincides with an unexpected

drop in stock prices. Hence, investors can offset such a price drop by selling the

market and momentum portfolios and buying relatively cheap bonds.
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Finally, hedging consumption-growth risk calls for a disinvestment in the size

portfolio. Hence, if an investor fears an unexpected drop in consumption growth,

he had better avoid small company stocks, and increase his investment in large

company stocks.

Note that while it is true that the magnitude and significance of hedging positions

typically dies down with increasing risk aversion, many individual security positions

remain economically and statistically significant even for high levels of risk aversion.

It is also interesting to note that most hedging portfolio weights have the same sign

for different risk-aversion levels. Only rarely do the weights change sign, and when

they do, statistical significance disappears.

3.4.3 Speculative versus hedging demand

We can extend our model by not only considering investors’ hedging demand, but

also their speculative demand for assets, analogously to the mean-variance case, as

studied in, e.g., Anderson and Danthine (1980, 1981). In case of mean-variance

investors, one may break down investors’ total demand for assets into a pure specu-

lation component, which is equivalent to the position of an investor with no exposure

to exogenous risk, and a pure hedge component, which is equal to the position of

an infinitely risk-averse investor. In our more general setting, we cannot make this

distinction, as investors’ hedges against economic risk will in general depend on the

concavity of their utility functions, and hence not be “pure” in the sense of Anderson

and Danthine (1981). Nevertheless, we can separate investors’ demand for assets

due to speculative motives, and their demand for assets due to hedging, with both

components being risk-aversion dependent.

For reasons that will become clear shortly, we define speculative demand as the

set of (dis)investments in the available assets relative to a position in just the risk-

free asset and the market portfolio. Hence, we look at the portfolio choice problem

from the point of view of an agent who invests according to the premise of two-fund

separation which follows from the capital asset pricing model. Moreover, we consider

the possibility that this investor has an exposure to one or more economic risks. The

economic hedging demand that is induced by this exposure may potentially shed

light on the Fama-French anomalies, to the extent that the Fama-French premiums
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may in fact be explained by hedges against economic risk.

As suggested before, let us consider an agent who invests only in the risk-free

asset and the market portfolio. Write the vector of available risky excess returns,

Re, as

Re =

[

Re
m

Re
F

]

,

where Re
m denotes the excess return on the market portfolio and Re

F are the returns

on the (other) Fama-French portfolios. Consider the optimal portfolio choice in case

of an exposure q to economic risk with unrestricted investment opportunities (i.e.,

the investor may choose all available traded assets), and the optimal portfolio choice

in case of no exposure with the restricted investment opportunity set (the CAPM

investor):

w1 = arg max
w

E[u(Rf + w>Re − qy)]

wm,0 = arg max
wm

E[u(Rf + wmRe
m)].

The corresponding first-order conditions are

0K = E[u′(Rf + w>
1 Re − qy)Re]

0 = E[u′(Rf + w>
0 Re)Re

m],

where w0 ≡ (wm,0, 0
>
K−1)

>. A first-order Taylor expansion around w1 = w0 and

q = 0 implies:

w1 − w0 ≈ E[ReΩ0R
e>]−1E[u′(Rf + w>

0 Re)Re]

+E[ReΩ0R
e>]−1E[ReΩ0y]q, (3.13)

where Ω0 = −u′′(Rf + w>
0 Re). Note that the weight Ω0 will be different from

the weight obtained in Section 3.2, since the restricted model will imply a differ-

ent optimal zero-exposure portfolio choice than the unrestricted model. The first

term on the right-hand side of (3.13) can now be interpreted as speculative de-

mand, and the second term can be interpreted as an economic hedging compo-

nent. Note that speculative demand depends on the term E[u′(Rf + w>
0 Re)Re],

which is proportional to the generalized Jensen measure E[M0R
e], where M0 ≡

u′(Rf + w>
0 Re)/RfE[u′(Rf + w>

0 Re)] is the stochastic discount factor of an investor
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restricted to the market portfolio and the risk-free asset. It measures the attractive-

ness of new investments relative to a set of reference assets (in this case the market

portfolio and the risk-free asset); a positive value indicates that the investor can im-

prove his expected utility by going long in the new investment, whereas a negative

value implies a short position. See, for instance, Glosten and Jagannathan (1994)

and Chen and Knez (1996). Since the market portfolio is our point of reference, the

first element of this vector is equal to zero.

We find significant speculative demand for the various assets relative to the

CAPM portfolio. The market portfolio, the book-to-market value portfolio, and

the momentum portfolio all require significant additional investments on account of

speculative motives. As expected, the size of this speculative demand decreases with

risk aversion, but the effect remains statistically significant. Hence, we conclude that

the CAPM does not hold. We do not find significant speculative demand for the

size portfolio and the two bond portfolios.

Table 3.6 reveals that speculative motives are not the only reason for people to

diverge from the CAPM. There is significant hedging demand for almost all assets by

various agents. For instance, investors with a unit exposure to inflation risk require

a short position of about three quarters of a percent in the market portfolio. This

result is quite robust across different levels of risk aversion. In fact, most hedging

positions are, contrary to the hedging portfolios in Table 3.5, independent of risk

aversion.

Note that only the market portfolio provides a good hedge in case of an inflation-

risk exposure, whereas in the unrestricted case, the momentum and default portfolios

do, too. Apparently, the weighting scheme implied by the CAPM makes these

assets less useful as hedging instruments than they are for the unrestricted investor.

Different weighting schemes are also the reason for the differences we find in the

hedging portfolios associated with real interest-rate risk. For the CAPM case, a

long position in the term portfolio is required; in the unrestricted case, a hedge is

obtained by shorting the default portfolio (and for relatively risk tolerant investors,

going long in the momentum portfolio). For the other risks, we find that by and

large the same assets turn up as useful hedging instruments as in the unrestricted

case. Hence, restricting the investment opportunity set does not have an important
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effect on the hedging portfolios in those cases. An exception is consumption-growth

risk, in which case, in addition to a long position in the size portfolio, a long position

in the default portfolio is called for. The only asset which does not show up as a

useful hedging instrument in Table 3.6 is the momentum portfolio.

The results in Table 3.6 have interesting implications for the raison d’être of

the Fama-French risk premiums. While we find that some of investors’ demand

for assets is due to speculative motives, part of the reason why they deviate from

the CAPM is attributable to economic risks. In particular, we find no significant

speculative demand for the size portfolio, the term portfolio, and the default portfo-

lio. Therefore, investments in these portfolios can be entirely explained by hedging.

Our results suggest that the size premium is related to hedges against consumption-

growth risk; that the term premium in bond markets is caused by hedging against

real interest-rate, term-structure, default, and dividend-yield risk; and that the de-

fault premium in bond markets is related to hedging against default, dividend-yield,

and consumption-growth risk. The anomalies in the investments for which we do

find significant speculative demand can still be partly explained by economic risks.

Only the momentum portfolio seems to be unrelated to any of the economic risks

included in the analysis.

3.5 Conclusion

In this chapter we estimate and interpret the composition of portfolios that investors

hold to hedge various economic risks. We also consider the implied hedging costs

associated with these economic hedging portfolios for various types of agents. We

wish to stress that these hedging portfolios are individual specific. Using a model

of state-dependent utility, we show that agents’ economic hedging portfolios can be

obtained by a risk aversion-weighted least squares regression of the economic risk

variables onto the available risky security returns, as opposed to the unweighted

hedging demand one obtains in the traditional mean-variance framework.

We find that agents across a broad range of levels of risk aversion are willing

to pay (or demand) significant compensations for hedges against three sources of

economic risk: inflation risk, real interest-rate risk, and dividend-yield risk. Fur-
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thermore, our results show that all economic risk variables we consider require a

significant hedging adjustment with respect to one or more traded securities. Some

of these securities prove to be useful hedging instruments across different types of

investors, whereas others only serve as hedges for particular levels of risk aversion,

which demonstrates the empirical relevance of risk aversion-weighted hedging.

Furthermore, we contribute to the discussion on asset pricing anomalies by ex-

amining whether the Fama-French premiums can be attributed to economic hedging

motives. While we cannot conclude that book-to-market and momentum anoma-

lies are (solely) due to reasons of economic hedging, we do find that the size effect

found in stock markets as well as the term and default premiums found in bond

markets, may potentially be explained by hedges against economic risk, most no-

tably by hedges against real interest-rate risk, default risk, term-structure risk, and

consumption-growth risk.
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A Econometric issues

This appendix discusses the estimators of several key parameters in this chapter

and their limiting distributions. They are w, the zero-exposure portfolio weights; δ,

the hedging portfolio weights; λ, the implied hedging cost; and α, the speculative

demand for risky assets.

Let Rf denote the risk-free rate, and let Re be the K-vector of excess returns. k

of the K risky assets are basis assets, k ≤ K. Let Re
b denote the excess returns on

these basis assets. In Section 3.4.3 we take the excess return on the market portfolio

as the basis asset.

1. Zero-exposure portfolio weights

Using standard GMM notation, the pricing errors are

e (θ) = cu′
(

Rf + w>Re
b

)

[

Rf

Re
b

]

−
[

1

0k

]

,

where θ = (c, w>)>. The moment conditions read 0k+1 = E [e (θ)] ≡ g (θ). The

GMM-estimator is then given by 0k+1 = ET [e(θ̂)] ≡ gT (θ̂), where ET denotes the

sample average. Note that

√
T (θ̂ − θ) ' −

(

∂gT (θ)

∂θ>

)−1 √
TET [e (θ)] .

Hence, under standard regularity conditions, the limiting distribution of θ̂ is given

by

√
T (θ̂ − θ) −→ N

(

0,

(

∂g (θ)

∂θ>

)−1

A

(

∂g> (θ)

∂θ

)−1
)

,

where A = var [e (θ)].

2. Hedging portfolio weights

Let Ω (θ) = −u′′(Rf + w>Re
b), and ε(θ) = y − δ(θ)>Re, where

δ(θ) = E
[

ReΩ (θ) Re>
]−1

E [ReΩ (θ) y] .
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Estimate Ω (θ) by the plug-in estimator Ω(θ̂) ≡ Ω̂, and δ = δ(θ) by

δ̂ = δ̂(θ̂) = ET [ReΩ̂Re>]−1ET [ReΩ̂y].

Note that

Ω̂ ' Ω (θ) +
∂Ω (θ)

∂θ>
(θ̂ − θ)

' Ω (θ) − ∂Ω (θ)

∂θ>

(

∂gT (θ)

∂θ>

)−1

ET [e (θ)] .

Hence,

√
T (δ̂ − δ) ' ET [ReΩ(θ)Re>]−1

√
TET [ζ(θ)],

where

ζ(θ) = ReΩ(θ)ε(θ) − E

[

Re ∂Ω(θ)

∂θ>
ε(θ)

]−1(
∂g (θ)

∂θ>

)−1

e(θ),

and so the limiting distribution of δ̂ is

√
T (δ̂ − δ) −→ N

(

0, E[ReΩ(θ)Re>]−1BE[ReΩ(θ)Re>]−1
)

,

where B = var[ζ(θ)].

3. Implied hedging cost

The implied hedging cost, λ, is defined as

λ = λ (θ) = E[Re>δ (θ)] = E[Re]>δ.

It can be estimated by

λ̂ = λ̂(θ̂) = ET [Re]>δ̂.
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Notice

√
T (λ̂ − λ) =

√
T
(

ET [Re]>δ̂ − E[Re]>δ
)

=
√

T
(

δ̂>(ET [Re] − E[Re]) + E[Re]>(δ̂ − δ)
)

=

[

δ̂

E [Re]

]> √
T

[

ET [Re] − E[Re]

δ̂ − δ

]

'
[

δ̂

E [Re]

]> √
T

[

ET [Re] − E[Re]

ET [ReΩ (θ) Re>]−1ET [ζ (θ)]

]

=

[

δ̂

E [Re]

]> [

IK 0

0 ET [ReΩ (θ) Re>]−1

]

×

√
T

[

ET [Re − E[Re]]

ET [ζ (θ)]

]

.

Hence, the limiting distribution of λ̂ is given by

√
T (λ̂ − λ) −→ N(0, a>HCHa),

where

a =

[

δ

E [Re]

]

H =

[

IK 0

0 E[ReΩ (θ) Re>]−1

]

C = var

[

Re

ζ (θ)

]

.

4. Speculative demand

Speculative demand is defined as

α = α (θ) = E[ReΩ (θ) Re>]−1E[u′(Rf + w>Re
b)R

e],

and it is estimated by

α̂ = α̂(θ̂) = ET [ReΩ̂Re>]−1ET [u′(Rf + ŵ>Re
b)R

e].
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Using a first-order Taylor approximation, we obtain

u′(Rf + ŵ>Re
b) ' u′(Rf + w>Re

b) + u′′(Rf + w>Re
b)R

e>
b (ŵ − w).

Let φ = φ(θ) = E[u′(Rf + w>Re
b)R

e], and φ̂ = φ̂(θ̂) = ET [u′(Rf + ŵ>Re
b)R

e]. Then

√
T (φ̂ − φ) =

√
T
(

ET [u′(Rf + ŵ>Re
b)R

e] − E[u′(Rf + w>Re
b)R

e]
)

'
√

T
(

ET [u′(Rf + w>Re
b)R

e] − E[u′(Rf + w>Re
b)R

e]
)

+ET [Reu′′(Rf + w>Re
b)R

e>
b ]

√
T (ŵ − w)

=
[

IK 0 −ET [ReΩRe>
b ]

]√
T

[

ET [η (θ)]

θ̂ − θ

]

,

where η = η (θ) = u′(Rf + w>Re
b)R

e − E[u′(Rf + w>Re
b)R

e]. Hence,

√
T (α̂ − α) ' E[ReΩ (θ) Re>]−1

[

IK 0 −E[ReΩ(θ)Re>
b ]

]

×




IK 0

0 −
(

∂gT (θ)
∂θ>

)−1





√
T

[

ET [η(θ)]

ET [e (θ)]

]

−→ N
(

0, PQRDR>Q>P
)

where

P = E[ReΩ (θ) Re>]−1

Q =
[

IK 0 −E[ReΩ(θ)Re>
b ]

]

R =





IK 0

0 −
(

∂g(θ)
∂θ>

)−1





D = var

[

η (θ)

e (θ)

]

.
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B Tables

Table 3.1: Summary Statistics for Security Returns

The sample period is August 1960 through December 2001. Mean returns and standard

deviations are in percentage points per month. RM–RF is the return on the market

portfolio in excess of the risk-free rate, SMB is the return on the size portfolio, HML

is the return on the book-to-market value portfolio, UMD is return on the momentum

portfolio, TERM is the return on a long-term government bond in excess of the risk-free

rate, DEF is the return on a long-term corporate bond less the return on a long-term

government bond, and RF is the risk-free rate. Corrt is the autocorrelation at lag t.

Panel A: Means, Standard Deviations, and Autocorrelations

Variable Mean Std. Dev. Corr1 Corr2 Corr3 Corr6 Corr12

RM–RF 0.491 4.453 0.061 -0.054 -0.003 -0.032 0.010

SMB 0.160 3.217 0.075 0.033 -0.105 0.080 0.136

HML 0.446 2.934 0.125 0.067 0.043 0.063 0.028

UMD 0.879 3.874 -0.025 -0.056 -0.030 0.088 0.114

TERM 0.125 2.765 0.060 0.001 -0.107 0.041 -0.017

DEF 0.014 1.192 -0.170 -0.078 -0.020 -0.034 -0.024

RF 0.485 0.216 0.945 0.909 0.885 0.825 0.714

Panel B: Correlations Matrix

Variable RM–RF SMB HML UMD TERM DEF RF

RM–RF 1 0.301 -0.422 -0.026 0.278 0.082 -0.106

SMB 1 -0.298 0.005 -0.091 0.151 -0.046

HML 1 -0.161 0.002 0.024 0.043

UMD 1 0.041 -0.191 -0.012

TERM 1 -0.473 0.022

DEF 1 -0.059

RF 1
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Table 3.2: Summary Statistics for Economic Risk Variables

The sample period is August 1960 through December 2001. Means and standard deviations

are in percentage points per month. INF is the monthly net rate of inflation, RI is the

monthly real net risk-free rate, TS is the yield spread between long- and short-term

government bonds, DS is the yield spread between Baa and Aaa corporate bonds, DIV is

dividend yield on the S&P 500 composite, and CG is monthly real per-capita consumption

growth of durables, nondurables, and services. Corrt is the autocorrelation at lag t.

Panel A: Means, Standard Deviations, and Autocorrelations

Variable Mean Std. Dev. Corr1 Corr2 Corr3 Corr6 Corr12

INF 0.361 0.318 0.642 0.548 0.510 0.469 0.521

RI 0.124 0.274 0.481 0.362 0.351 0.310 0.436

TS 0.062 0.086 0.959 0.894 0.836 0.704 0.501

DS 0.082 0.037 0.971 0.932 0.903 0.826 0.679

DIV 0.288 0.091 0.997 0.994 0.990 0.968 0.905

CG 0.207 0.571 -0.204 0.012 0.019 0.051 -0.005

Panel B: Correlations Matrix

Variable INF RI TS DS DIV CG

INF 1 -0.743 -0.422 0.234 0.414 -0.225

RI 1 0.118 0.206 -0.014 0.157

TS 1 0.100 -0.091 0.107

DS 1 0.660 -0.034

DIV 1 -0.030

CG 1
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Table 3.3: First-Order VAR of the Economic Risk Variables

Regression coefficients of a first-order vector autoregression of the economic risk variables.

The sample period is August 1960 through December 2001. Standard errors are in paren-

theses. Acronyms are defined in Table 3.2. Standard deviations of the innovations are in

percentage points per month.

Panel A: Regression Coefficients

Depend. Regressors

Variable INF RI TS DS DIV CG R2

INF 0.723 0.253 -0.521 -0.707 0.542 0.049 0.777

(0.086) (0.086) (0.165) (0.465) (0.165) (0.019)

RI 0.146 0.588 0.323 0.839 -0.411 -0.047 0.390

(0.089) (0.089) (0.170) (0.480) (0.170) (0.019)

TS 0.018 0.024 0.973 0.118 -0.058 -0.001 0.950

(0.009) (0.009) (0.017) (0.048) (0.017) (0.002)

DS 0.011 0.011 -0.003 0.927 0.002 -0.002 0.991

(0.003) (0.003) (0.006) (0.017) (0.006) (0.001)

DIV 0.004 0.002 -0.003 -0.020 1.000 -0.001 1.000

(0.002) (0.002) (0.005) (0.013) (0.005) (0.001)

CG -0.675 -0.446 0.207 0.515 0.608 -0.255 0.198

(0.207) (0.205) (0.394) (1.114) (0.394) (0.044)

Panel B: Standard Deviations and Correlation Matrix of VAR Innovations

Variable Std. Dev. INF RI TS DS DIV CG

INF 0.228 1 -0.957 -0.056 -0.077 0.124 -0.157

RI 0.235 1 -0.058 0.081 -0.126 0.153

TS 0.024 1 0.182 0.063 -0.063

DS 0.008 1 0.174 -0.038

DIV 0.007 1 -0.023

CG 0.545 1



50 Economic Hedging Portfolios

Table 3.4: Implied Hedging Costs

Implied hedging costs associated with innovations in risk variables, measured in units of

risk (i.e. standard deviation). The sample period is August 1960 through December 2001.

Standard errors are in parentheses. Acronyms are defined in Tables 3.1 and 3.2.

Panel A: First-Order VAR Innovations

Risk aver. INF RI TS DS DIV CG

γ = 1 -0.0669** 0.0321 0.0856 0.0037 -0.0356** 0.0409

(0.0286) (0.0261) (0.0789) (0.0343) (0.0141) (0.0260)

γ = 2 -0.0587** 0.0286 0.0622 0.0083 -0.0354*** 0.0354

(0.0251) (0.0235) (0.0566) (0.0266) (0.0134) (0.0225)

γ = 5 -0.0487** 0.0227 0.0507 0.0075 -0.0348*** 0.0285

(0.0243) (0.0233) (0.0484) (0.0255) (0.0135) (0.0222)

γ = 20 -0.0425* 0.0193 0.0413 0.0072 -0.0341** 0.0237

(0.0246) (0.0235) (0.0427) (0.0242) (0.0137) (0.0223)

Panel B: Orthogonalized First-Order VAR Innovations

Risk aver. INF RI TS DS DIV CG

γ = 1 -0.0669** -0.1104** 0.0426 -0.0075 -0.0323* 0.0351

(0.0286) (0.0461) (0.0694) (0.0468) (0.0171) (0.0272)

γ = 2 -0.0587** -0.0956*** 0.0239 0.0014 -0.0330** 0.0297

(0.0251) (0.0347) (0.0504) (0.0342) (0.0153) (0.0233)

γ = 5 -0.0487** -0.0828*** 0.0174 0.0023 -0.0331** 0.0236

(0.0243) (0.0299) (0.0433) (0.0312) (0.0151) (0.0224)

γ = 20 -0.0425* -0.0738*** 0.0114 0.0036 -0.0328** 0.0192

(0.0246) (0.0267) (0.0387) (0.0287) (0.0152) (0.0221)

***/**/* indicates significance at the 1/5/10% level.
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Table 3.5: Economic Hedging Portfolios
Hedging portfolio weights (in percentage points) due to a unit exposure to innovations in economic risk variables. The sample period is
August 1960 through December 2001. Standard errors are in parentheses. Acronyms are defined in Tables 3.1 and 3.2.
Risk aversion Security INF RI TS DS DIV CG

γ = 1 RM–RF -0.56 (0.42) -0.13 (0.40) 0.16 (0.12) -0.01 (0.02) -0.03*** (0.01) 1.64* (0.86)
SMB -0.18 (0.45) -0.11 (0.45) 0.24* (0.14) -0.04 (0.03) 0.00 (0.01) 4.52*** (1.35)
HML -0.94 (0.66) 0.35 (0.63) 0.27* (0.15) -0.03 (0.03) -0.03** (0.01) 2.39 (1.70)
UMD -0.94*** (0.30) 0.77** (0.35) -0.10* (0.06) 0.02* (0.01) 0.00 (0.00) -0.25 (0.48)
TERM -0.22 (0.82) 0.37 (0.91) 0.42*** (0.15) 0.05 (0.03) 0.04** (0.02) -0.78 (1.32)
DEF 4.76*** (1.61) -3.61* (1.97) 0.07 (0.47) 0.17** (0.08) 0.04* (0.02) -4.14 (3.22)

γ = 2 RM–RF -0.72** (0.35) 0.16 (0.33) 0.10 (0.08) 0.00 (0.02) -0.03*** (0.01) 1.30* (0.74)
SMB -0.19 (0.45) -0.03 (0.42) 0.14* (0.09) -0.03* (0.02) 0.00 (0.01) 4.21*** (1.11)
HML -0.90 (0.57) 0.46 (0.54) 0.17* (0.10) -0.01 (0.02) -0.03** (0.01) 2.03 (1.34)
UMD -0.65** (0.31) 0.42 (0.35) -0.05 (0.04) 0.01 (0.01) 0.00 (0.00) -0.16 (0.42)
TERM -0.24 (0.59) 0.45 (0.64) 0.30*** (0.09) 0.08*** (0.03) 0.03** (0.01) -1.05 (1.17)
DEF 3.52*** (1.16) -2.95** (1.37) 0.27 (0.26) 0.14*** (0.05) 0.05** (0.02) -0.49 (2.53)

γ = 5 RM–RF -0.77** (0.34) 0.28 (0.34) 0.08 (0.06) 0.00 (0.01) -0.02*** (0.01) 1.12 (0.74)
SMB -0.22 (0.43) 0.04 (0.41) 0.10 (0.07) -0.02* (0.01) 0.00 (0.01) 3.91*** (1.02)
HML -0.81 (0.54) 0.45 (0.53) 0.13 (0.08) -0.01 (0.02) -0.03** (0.01) 1.81 (1.25)
UMD -0.38 (0.36) 0.18 (0.39) -0.03 (0.05) 0.00 (0.01) 0.00 (0.01) -0.33 (0.52)
TERM -0.28 (0.56) 0.50 (0.58) 0.25*** (0.07) 0.09*** (0.03) 0.03** (0.01) -1.16 (1.15)
DEF 2.77*** (1.05) -2.41** (1.20) 0.30 (0.21) 0.14*** (0.05) 0.06** (0.02) 1.14 (2.47)

γ = 20 RM–RF -0.77** (0.34) 0.32 (0.34) 0.07 (0.06) 0.00 (0.01) -0.02*** (0.01) 0.98 (0.74)
SMB -0.22 (0.43) 0.06 (0.41) 0.08 (0.06) -0.02 (0.01) 0.00 (0.01) 3.75*** (0.98)
HML -0.73 (0.53) 0.41 (0.52) 0.11 (0.07) 0.00 (0.02) -0.03** (0.01) 1.62 (1.22)
UMD -0.25 (0.39) 0.07 (0.41) -0.03 (0.05) 0.00 (0.01) 0.00 (0.01) -0.44 (0.57)
TERM -0.30 (0.55) 0.51 (0.57) 0.23*** (0.07) 0.09*** (0.03) 0.03** (0.01) -1.10 (1.15)
DEF 2.40** (1.05) -2.13* (1.17) 0.31 (0.19) 0.13*** (0.05) 0.06** (0.02) 1.90 (2.47)

***/**/* indicates significance at the 1/5/10% level.
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Table 3.6: CAPM Economic Hedging Portfolios
CAPM hedging portfolio weights (in percentage points) due to a unit exposure to innovations in economic risk variables. The sample period
is August 1960 through December 2001. Standard errors are in parentheses. Acronyms are defined in Tables 3.1 and 3.2.
Risk aversion Security INF RI TS DS DIV CG

γ = 1 RM–RF -0.73** (0.30) 0.36 (0.31) 0.05 (0.04) 0.00 (0.01) -0.03*** (0.01) 0.96 (0.65)
SMB -0.11 (0.37) -0.11 (0.36) 0.05 (0.04) -0.01 (0.01) 0.00 (0.01) 2.86*** (0.82)
HML -0.54 (0.40) 0.23 (0.40) 0.09* (0.05) -0.01 (0.02) -0.02** (0.01) 1.46* (0.86)
UMD 0.38 (0.32) -0.48 (0.33) -0.04 (0.04) -0.01 (0.01) 0.00 (0.01) -0.92 (0.63)
TERM -0.69 (0.49) 1.02* (0.53) 0.17** (0.07) 0.10*** (0.03) 0.03* (0.02) -1.00 (0.97)
DEF 0.86 (1.04) -0.55 (1.12) 0.20 (0.15) 0.15*** (0.05) 0.07** (0.03) 5.67** (2.55)

γ = 2 RM–RF -0.75** (0.30) 0.40 (0.31) 0.05 (0.04) -0.01 (0.01) -0.02*** (0.01) 0.90 (0.68)
SMB -0.12 (0.38) -0.09 (0.36) 0.05 (0.04) -0.01 (0.01) 0.00 (0.01) 2.83*** (0.80)
HML -0.52 (0.40) 0.23 (0.41) 0.09* (0.05) -0.01 (0.02) -0.02** (0.01) 1.35 (0.86)
UMD 0.35 (0.32) -0.41 (0.33) -0.04 (0.04) -0.01 (0.01) 0.00 (0.01) -0.90 (0.62)
TERM -0.64 (0.49) 0.93* (0.53) 0.17** (0.07) 0.11*** (0.03) 0.03* (0.02) -1.02 (1.01)
DEF 0.87 (1.05) -0.61 (1.13) 0.22 (0.15) 0.16*** (0.05) 0.06** (0.03) 5.63** (2.47)

γ = 5 RM–RF -0.74** (0.30) 0.41 (0.31) 0.05 (0.04) -0.01 (0.01) -0.02** (0.01) 0.85 (0.69)
SMB -0.12 (0.38) -0.08 (0.37) 0.05 (0.04) -0.01 (0.01) 0.00 (0.01) 2.82*** (0.80)
HML -0.49 (0.40) 0.22 (0.41) 0.09* (0.05) -0.01 (0.02) -0.02** (0.01) 1.29 (0.86)
UMD 0.33 (0.32) -0.38 (0.33) -0.04 (0.04) -0.01 (0.01) 0.00 (0.01) -0.89 (0.62)
TERM -0.62 (0.49) 0.89* (0.53) 0.16** (0.07) 0.11*** (0.03) 0.02 (0.02) -1.02 (1.02)
DEF 0.87 (1.06) -0.64 (1.14) 0.23 (0.14) 0.16*** (0.04) 0.06** (0.03) 5.56** (2.43)

γ = 20 RM–RF -0.74** (0.30) 0.42 (0.31) 0.05 (0.04) -0.01 (0.01) -0.02** (0.01) 0.80 (0.70)
SMB -0.11 (0.38) -0.09 (0.37) 0.04 (0.04) -0.01 (0.01) 0.00 (0.01) 2.81*** (0.80)
HML -0.47 (0.40) 0.21 (0.41) 0.09* (0.04) -0.01 (0.02) -0.02** (0.01) 1.20 (0.86)
UMD 0.32 (0.32) -0.37 (0.33) -0.05 (0.03) -0.01 (0.01) 0.00 (0.01) -0.91 (0.62)
TERM -0.60 (0.49) 0.86 (0.52) 0.16** (0.07) 0.11*** (0.03) 0.02 (0.01) -0.94 (1.03)
DEF 0.84 (1.05) -0.64 (1.13) 0.24* (0.14) 0.15*** (0.04) 0.06** (0.03) 5.56** (2.42)

***/**/* indicates significance at the 1/5/10% level.



Chapter 4

Multivariate Option Pricing Using

Dynamic Copula Models

4.1 Introduction

In today’s economy, multivariate (or rainbow) options are viewed as excellent tools

for hedging the risk of multiple assets. These options, which are written on two or

more underlying securities or indexes, usually take the form of calls (or puts) that

give the right to buy (or sell) the best or worst performer of a number of underlying

assets. Other examples include forward contracts whose payoff is equal to that of

the best or worst performer of its underlyings, and spread options on the difference

between the prices of two assets.

One of the key determinants in the valuation of multivariate options is the depen-

dence between the underlying assets. Consider for instance a bivariate call-on-max

option, namely a contract that gives the holder the right to purchase the more valu-

able of two underlying assets for a pre-specified strike price. Intuitively, the value

of such an option should be smaller if the underlyings tend to move together than

when they move in opposite directions. More generally, the dependence between

the underlyings could change over time. Accounting for time variation in the de-

pendence structure between assets should prove helpful in providing a more realistic

valuation of multivariate options.

Over the years, various generalizations of the Black–Scholes (1973) Brownian
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motion framework have been used to model multivariate option prices. Examples

include Margrabe (1978), Stulz (1982), Johnson (1987), Reiner (1992), and Shimko

(1994). In these papers, the dependence between assets is modelled by their corre-

lation. However, unless asset returns are well represented by a multivariate normal

distribution, correlation is often an unsatisfactory measure of dependence; see, for

instance, Embrechts, McNeil and Straumann (2002). Furthermore, it is a stylized

fact of financial markets that correlations observed under ordinary market conditions

differ substantially from correlations observed in hectic periods. In particular, asset

prices have a greater tendency to move together in bad states of the economy than

in quiet periods; see, for instance, Boyer et al. (1999) and Patton (2002a, 2002b)

and references therein. These “correlation breakdowns,” associated with economic

downturns, suggest a dynamic model of the dependence structure of asset returns.

In this chapter, the relation between multivariate option prices and the depen-

dence structure of the underlying financial assets is modelled dynamically through

copulas. A copula is a multivariate distribution function each of whose marginals

is uniform on the unit interval. It has been known since the work of Sklar (1959)

that any multivariate continuous distribution function can be uniquely factored into

its marginals and a copula. Thus while correlation measures dependence through

a single number, the dependence between multiple assets is fully captured by the

copula. From a practical point of view, the advantage of the copula-based approach

to modelling is that appropriate marginal distributions for the components of a mul-

tivariate system can be selected by any desired method, and then linked through a

copula or family of copulas suitably chosen to represent the dependence prevailing

between the components.

The use of copulas to price multivariate options is not new. For example, in

Rosenberg (1999), univariate options data are used to estimate marginal risk-neutral

densities, which are linked with a Plackett copula to obtain a bivariate risk-neutral

density from which bivariate claims are valuated. This semiparametric procedure

uses a particular identifying assumption on the risk-neutral correlation to fix the

copula parameter. Cherubini and Luciano (2002) extend Rosenberg’s work by con-

sidering other families of copulas. In Rosenberg (2003), a risk-neutral bivariate dis-

tribution is estimated from nonparametric estimates of the marginal distributions
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and a nonparametric estimate of the copula.

An innovating feature of the present study, however, is that, contrary to earlier

works on multivariate option pricing, the dependence structure of the underlying

assets is not treated as fixed, but rather as possibly varying over time. Taking

into account this time variation is important because it may influence option prices.

This chapter proposes a model for the time variation of the dependence structure,

in which a parametric copula is specified whose dependence parameter is allowed

to change with the volatilities of the underlying assets. A distinct advantage of the

parametric approach is that while the model may be misspecified, the robustness of

the conclusions can easily be verified by repeating the analysis for as many different

copula families as desired.

A similar dynamic-copula approach has already been used in the foreign exchange

market literature by Patton (2002a), who found time variation to be significant in

a copula model for asymmetric dependence between two exchange rates where the

dependence parameter followed a ARMA-type process. While Patton’s goal was to

study the effect of asymmetric dependence on portfolio returns, the objective of the

present work is very different. The main focus here is on the effect of time variation

in the underlying dependence structure on the price of multivariate options.

In the empirical study presented herein, multivariate options on two important

American equity index returns are considered: the S&P 500 and the Nasdaq. An

analysis of the results suggests that allowing for time variation in the dependence

structure of the underlyings produces substantially different option prices than un-

der constant dependence, particularly in times of increased volatility. Moreover,

option prices implied by a normal dynamic dependence structure differ significantly

from option prices implied by non-normal dynamic dependence structures. These

findings suggest that unless the dependence between the S&P 500 and Nasdaq stock

indexes is well described by a normal copula, alternative copula families should

be considered. Option prices turned out to be robust among the alternative—i.e.,

non-normal—copula models considered in this study.

The remainder of this chapter is organized as follows. Section 5.2 describes the

payoff structure of better-of-two-markets and worse-of-two-markets claims, and ex-

plains in detail the proposed dynamic-dependence option valuation scheme. The



56 Multivariate Option Pricing Using Dynamic Copula Models

empirical results are presented in Section 4.3, and conclusions are given in Sec-

tion 4.4.

4.2 Option pricing with time-varying dependence

Multivariate options come in a wide variety of payoff schemes. The most commonly

traded options of this kind are basket options on a portfolio of assets, such as

index options. Other examples include spread options, some of which are traded

on commodity exchanges (see, for example, Rosenberg (1998)), or dual-strike and

multivariate-digital options.

This study concentrates on European-type options on the best (worst) performer

of several assets, sometimes referred to as outperformance (underperformance) op-

tions. As these are typically traded over the counter, price data are not available.

Therefore, valuation models cannot be tested empirically. However, a robustness

study comparing models with different assumptions remains feasible, and this is

the objective pursued herein. While the study described in the sequel is restricted

to options on better- and worse-of-two-markets claims, the technique is sufficiently

general to analyze the aforementioned alternative multivariate options as well, and

may thus be of wider interest.

One can distinguish four types of better-of-two-markets or worse-of-two-markets

claims: call options on the better performer, put options on the worse performer,

call options on the worse performer, and put options on the better performer. These

may be referred to as call-on-max, put-on-min, call-on-min, and put-on-max options,

respectively. Their payoffs at maturity are:

call on max : max{max(R1, R2) − E, 0},
put on min : max{E − min(R1, R2), 0},
call on min : max{min(R1, R2) − E, 0},
put on max : max{E − max(R1, R2), 0},

where Ri is the return at maturity on index i ∈ {1, 2}, and E denotes the exercise

price of the option.

The proposed scheme for valuating these options is as follows. First, each of

the two objective marginal distributions of the daily index returns underlying a
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type of claim is modelled, and their risk-neutral counterparts are derived. Next, a

parametric family of copulas is chosen to fix the joint risk-neutral distribution of

the index returns. The fair value of the option is then determined by taking the

discounted expected value of the option’s payoff under the risk-neutral distribution.

The specification chosen for the objective marginal distributions is from Duan

(1995). It is general enough to capture volatility clustering, a stylized fact of equity

returns for which there is overwhelming empirical evidence at the daily frequency,

while still providing a relatively easy transformation to risk-neutral distributions.

Each of the objective marginal distributions of the index returns is modelled by a

GARCH(1,1) process. It is repeated here for the sake of completeness; see Bollerslev

(1986). For i ∈ {1, 2},

Ri,t+1 = µi + ηi,t+1 ,

ηi,t+1|It ∼ N (0, hi,t) ,

hi,t+1 = ωi + βihi,t + αiη
2
i,t+1,

where ωi > 0, βi > 0, and αi > 0. Here, It denotes the information available

at time t. However, it must be stressed that, in the light of Sklar’s theorem, in

principle any choice for the marginal distributions is consistent with the copula

approach. The vast collection of alternatives that have been used by other authors

to model univariate index return distributions includes (variants of) continuous-

time geometric Brownian motion of Black and Scholes (1973), and the discrete-

time binomial model of Cox, Ross and Rubinstein (1979). Again, the GARCH

specification that is employed here is appealing as it allows for an easy change of

measure in addition to being able to capture volatility clustering. In particular,

Duan (1995) shows that, under certain conditions, the change of measure comes

down to a change in the drift.

An alternative, nonparametric approach is to use univariate option price data

to obtain arbitrage-free estimates of the marginal risk-neutral densities, as in Ait-

Sahalia and Lo (1998). This route is taken by Rosenberg (2003). Clearly, an ad-

vantage of this approach is that it does not impose restrictions on the asset return

processes or on the functional form of the risk-neutral densities. However, this flex-

ibility comes at the cost of imprecise estimates, especially if the distributions are
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time-varying.

The second step in the proposed valuation scheme is to fix the joint risk-neutral

distribution of the index returns by choosing a copula. A set of well-known one-

parameter copula families is considered for this purpose. They are the Frank,

Gumbel–Hougaard, Plackett, Galambos, and normal families. Their cumulative

distribution functions are given in Appendix A. For all of these copulas, there is a

one-to-one relation between the dependence parameter—denoted θ—and Kendall’s

nonparametric measure of association. For any copula Cθ, Kendall’s tau is related

to θ in the following way:

τ(θ) = 4ECθ(U, V ) − 1, (4.1)

where (U, V ) is distributed as Cθ, and E denotes the expectation operator with

respect to U and V . Appendix B displays closed-form formulas for the population

value of Kendall’s tau for some of the copula models under consideration.

This relation suggests a natural way to estimate the copula. An estimate of

θ is readily obtained by computing the sample version of tau on a (sub)sample

of paired index-return observations, inverting Relation (4.1), and plugging in the

sample tau.1 This method-of-moment type procedure yields a rank-based estimate

of the association parameter which is consistent, under the assumption that the

selected family of copulas describes accurately the dependence structure of the equity

indexes. Other methods could be used without fundamentally altering this approach,

e.g., inversion of Spearman’s rho, or the maximum pseudo-likelihood method.

The proposed technique assumes that the objective and risk-neutral copulas are

identical. Rosenberg (2003) makes this assumption as well. If multivariate option

price data were available, this assumption could be tested or the appropriate risk-

neutral copula could be estimated. Only data on prices of multivariate claims would

reveal information about the risk-neutral dependence structure. Information about

the risk-neutral dependence structure can never be extracted from univariate op-

1The sample version of Kendall’s tau is defined as follows. Let {(X1, Y1), . . . , (Xn, Yn)} be a

random sample of n observations from a vector (X,Y ) of continuous random variables. Two distinct

pairs (Xi, Yi) and (Xj , Yj) are said to be concordant if (Xi − Xj)(Yi − Yj) > 0, and discordant if

(Xi −Xj)(Yi − Yj) < 0. Kendall’s tau for the sample is then defined as t = (c − d)/(c + d), where

c denotes the number of concordant pairs, and d is the number of discordant pairs.
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tion prices—which are available—as these only bear relevance to the risk-neutral

marginal processes, and not to the joint risk-neutral process. Identification of the

multivariate density requires knowledge of both the marginal densities and the de-

pendence function that links them together.

Time variation in the copula is modelled by allowing the parameter of dependence

parameter to evolve through time according to a particular equation. The forcing

variables in this equation are the conditional volatilities of the underlying assets.

These are also the forcing variables that are typically chosen to model time-varying

correlations; see, e.g., the BEKK model introduced by Engle and Kroner (1995).

Additional motivation is provided by the evidence on correlation breakdowns, which

suggests that financial markets exhibit high dependence in periods of high volatility.

Patton (2002a) proposes an ARMA-type process linking the dependence parameter

to absolute differences in return innovations, which is another way to capture the

same idea.

To be more specific, let τt be Kendall’s measure of association at time t, and

let hi,t be the objective conditional variance estimate at time t of underlying index

return i ∈ {1, 2} implied by Duan’s GARCH option pricing model. It is assumed

that

τt = γ(h1,t, h2,t) (4.2)

for some function γ(·, ·) to be specified later. This conditional measure of association

governs the degree of dependence for the risk-neutral copula under consideration.

The proposed valuation scheme is implemented using Monte Carlo simulations.

Pairs of random variates are drawn from the copula implied by the estimated con-

ditional risk-neutral measure of association, which are then transformed to return

innovations using Duan’s GARCH model. Subsequently, the payoffs implied by

these innovations are averaged and discounted at the risk-free rate. The result then

constitutes the fair value of the option. Algorithms for random variable genera-

tion from the non-normal copulas are given in Genest and MacKay (1986), Genest

(1987), Ghoudi, Khoudraji and Rivest (1998), and Nelsen (1999). For the normal

copula, a straightforward Cholesky decomposition may be used.
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4.3 Pricing options on two equity indexes

The dynamic-dependence valuation scheme outlined in Section 5.2 is applied to

better-of-two-markets and worse-of-two-markets options on the S&P 500 and Nasdaq

indexes. A sample consisting of pairs of daily returns on the S&P 500 and Nasdaq

from January 1, 1993 to August 30, 2002 was obtained from Datastream. The sample

size is T = 2422. The maximum likelihood estimates of the GARCH parameters for

the marginal index return processes may be found in Table 4.1. The values for α

and β nearly add up to one. These estimates are in line with previously reported

values.

Figure 4.1 depicts the time series of the estimated standardized GARCH in-

novations (η1,t+1/
√

h1,t, η2,t+1/
√

h2,t) for the last 250 trading days in the sample.

(For clarity, the picture is restricted to a subsample; other episodes show a similar

pattern.) Note that outliers typically occur simultaneously and in the same direc-

tion. This positive dependence between the two series is even more apparent from

Figure 4.2, which displays the support set of the empirical copula of the standard-

ized return innovations. This scatter plot consists of the observed pairs of ranks

(divided by T + 1) for the estimated standardized GARCH innovations of the two

markets. Under regularity conditions, the empirical copula function converges to the

true (here, objective) copula function; see Van der Vaart and Wellner (1996). Notice

the pronounced positive dependence, particularly in the tails. The sample version of

Kendall’s tau for the entire sample amounts to 0.60, confirming positive dependence.

Figure 4.3 gives an impression of how this dependence measure of the standardized

return innovations evolves over time. It shows rolling-window estimates of Kendall’s

tau using window sizes of two months, i.e., Kendall’s tau at day t is computed using

the 20 trading days prior to day t, day t itself, and the 20 trading days after day t.

While the estimates show considerable variation, a slightly upward trend over the

sample period is discernable.

The time variation in the copula is governed by Equation (4.2). It models the

dependence measure as a function of the conditional volatilities of the index returns.

The following specification of this function is proposed:

γ(h1, h2) = γ0 + γ1 log max(h1, h2). (4.3)
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To motivate this specification, recall that the evidence on correlation breakdowns

suggests that increased dependence occurs in hectic periods. Hence, theory predicts

a positive value of γ1. The maximum operator reflects that hectic periods in either

market may cause dependence to go up. Since volatility in both markets is highly

dependent, the actual specification is likely not to affect the results in the present

section too much. The parameters γ0 and γ1 were estimated by regressing the

rolling-window estimates of Kendall’s tau on the estimated log maximum conditional

volatility. This is illustrated in Figure 4.4. The slope coefficient, γ1, was estimated

at 0.063; positive, as expected. The estimated dependence measure implied by these

parameter estimates,

γ(h1,t, h2,t) = γ0 + γ1 log max(h1,t, h2,t),

was then used to fix the conditional risk-neutral copula at time t. Return innova-

tions were sampled from this conditional copula to compute the price of the option.

In total, the Monte Carlo study was based on 100, 000 replications, leading to sim-

ulation errors in the order of magnitude of 1 basis point for one-month maturity

claims.

Clearly, the option price depends on the initial levels of volatility of the under-

lyings. Prices for three levels of initial volatility were computed: low, medium, and

high volatility, where medium volatility is defined as the estimated unconditional

variance ω/(1−β −α), and low and high volatility are one-fourth of and four times

this amount, respectively. Furthermore, different maturities were considered, rang-

ing from one day to one month (i.e., 20 trading days). The strike price was set at

levels between .98 and 1.02. Finally, the risk-free rate was assumed to be 4 percent

per annum.

The results show that allowing for time varying dependence leads to different

option prices than under static dependence, in particular in times of high volatility.

This is illustrated in Figure 4.5 which displays, for various copula parametrizations,

the price (measured in basis points) of a one-month put-on-max option as a func-

tion of the exercise price implied by dynamic dependence, and compares it to the

option price under three levels of static dependence: low, medium, and high static

dependence. The medium level of dependence is equal to the average measure of

dependence found in the sample, 0.60; the low and high levels are 0.40 and 0.80,
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respectively. Note that a static model for the dependence structure, which uses the

sample measure of dependence of 0.60, underestimates the option price generated

by the dynamic model considerably for all copula parametrizations and over the

entire range of strike prices considered. The difference is significant since the 95%

confidence intervals of the price estimates do not overlap. In the interest of clarity,

confidence intervals are not displayed here, but available from the authors upon re-

quest. Note that the prices implied by dynamic copulas are between the high and

the medium static-dependence prices, suggesting that the dynamic model implies

a dependence that is on average stronger than in the medium static-dependence

case. Interestingly, price differences between the dynamic and static model vanish

as initial volatilities are at a medium level; see Figure 4.6. The same holds for low

initial volatilities (not shown), again, across a broad range of copula families and

strike prices.

It is also interesting to compare option prices produced by different dynamic

copula families. It turns out that prices implied by the normal copula deviate

substantially from prices implied by the other copula families. Outside the normal

class, the copula choice appears to be irrelevant. This suggests that unless the

dependence between index returns can be described by a normal model, alternative

specifications should be considered. These findings are illustrated in Figures 4.7 and

4.8 which depict dynamic-dependence one-month call-on-max and put-on-min option

prices respectively, as a function of their strike under medium initial volatilities. The

prices implied by the normal copula are significantly lower than the prices implied

by the other copulas across the whole range of strike prices. The effect is there at

other maturities as well. The difference between normal and non-normal prices is

also found for high and low initial volatility levels. The differences are less significant

for call-on-min and put-on-max options.

4.4 Conclusions

This chapter studies the relation between multivariate options prices and the depen-

dence structure of the underlying assets. A copula-based model was proposed for

the valuation of claims on multiple assets. A novel feature of the proposed model
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is that, contrary to earlier works on multivariate option pricing, the dependence

structure is not taken as fixed, but rather as potentially varying with time. The

time variation in the dependence structure was modelled using various parametric

copulas by letting the copula parameter depend on the conditional volatilities of the

underlyings.

This dynamic copula model was applied to better- and worse-of-two-markets op-

tions on the S&P 500 and Nasdaq indexes for a variety of copula parametrizations.

Option prices implied by the dynamic model turned out to differ substantially from

prices implied by a model that fixes the dependence between the underlying indexes,

especially in high-volatility market conditions. Hence, the application suggests that

time variation in the dependence between the S&P 500 and the Nasdaq is important

for the price of options on these indexes. A comparison of option prices computed

from different copula families shows that the normal family produces prices that

differ significantly from the ones implied by the non-normal alternatives. These

findings suggests that if the dependence between the index returns is not well repre-

sented by a normal copula, alternative copulas need to be considered. The empirical

relevance of such alternatives is apparent given the evidence of non-normality in fi-

nancial markets.
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A One-parameter copula families

The table below displays several one-parameter copula families.

Frank Cθ(u, v) = 1
θ
log
{

1 + (eθu−1)(eθv−1)
eθ−1

}

Gumbel–Hougaard Cθ(u, v) = exp
{

−
(

| log u|θ + | log v|θ
)

1

θ

}

Plackett Cθ(u, v) =
1+(θ−1)(u+v)−

√
[1+(θ−1)(u+v)]2−4uvθ(θ−1)

2(θ−1)

Galambos Cθ(u, v) = uv exp
{

(

| log u|θ + | log v|θ
)

1

θ

}

Normal Cθ(u, v) = Nθ(Φ
−1(u), Φ−1(v))

Note: Φ is the standard (univariate) normal distribution function, and Nθ denotes the standard

bivariate normal distribution function with correlation coefficient θ.

B Kendall’s tau

The table below provides expressions—closed-form if available—of the relation be-

tween Kendall’s tau and the parameter of the families considered in Appendix A.

Frank τ(θ) = 1 − 4 {D1(−θ) − 1} /θ

Gumbel-Hougaard τ(θ) = 1 − 1/θ

Plackett τ(θ) = 4
∫ 1

0

∫ 1

0
Cθ(u, v)dCθ(u, v) − 1

Galambos τ(θ) = θ+1
θ

∫ 1

0

(

1
t1/θ + 1

(1−t)1/θ − 1
)−1

dt

Normal τ(θ) = 2
π

arcsin θ

Note: D1 denote the first-order Debye function, D1(−θ) = 1
θ

∫ θ

0
t

et
−1dt + θ

2 .



C Tables and figures 65

C Tables and figures

Table 4.1: Maximum likelihood estimates of the GARCH parameters for the

marginal index return processes. Figures in brackets are robust quasi-maximum

likelihood standard errors.

Parameter S&P 500 Nasdaq

µ × 102 0.0674 (0.0168) 0.0812 (0.0246)

ω × 105 0.0680 (0.0398) 0.1895 (0.0987)

β 0.9258 (0.0220) 0.8906 (0.0309)

α 0.0680 (0.0198) 0.1015 (0.0288)
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Figure 4.1: Daily standardized GARCH innovations for S&P 500 and Nasdaq for

the last 250 trading days in the sample.
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Figure 4.2: Support set of the empirical copula of the standardized GARCH inno-

vations.
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Figure 4.3: Rolling-window estimates of Kendall’s tau for the standardized return

innovations using a window size of 41 trading days.
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Figure 4.4: Regression of rolling-window estimates of Kendall’s tau for the stan-

dardized return innovations on the logarithm of the maximum return volatility.
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Figure 4.5: One-month maturity put-on-max prices as a function of the strike under

high initial volatilities for dynamic dependence and for low, medium, and high static

dependence for various copulas.
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Figure 4.6: One-month maturity put-on-max prices as a function of the strike under

medium initial volatilities for dynamic dependence and for low, medium, and high

static dependence for various copulas.
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Figure 4.7: One-month call-on-max prices as a function of the strike under dynamic

dependence and medium initial volatilities for various copula models.

0.98 0.99 1 1.01 1.02 1.03 1.04
150

200

250

300

350

400

450

500
normal
frank
gumhou
plackett
galambos

Figure 4.8: One-month put-on-min prices as a function of the strike under dynamic

dependence and medium initial volatilities for various copula models.



Chapter 5

An Anatomy of Futures Returns:

Risk Premiums and Trading

Strategies

5.1 Introduction

Futures contracts are known to demand risk premiums in various ways. First, as

the price of a futures contract will converge to the spot price of the underlying as-

set, we can expect that the risk factors that drive the underlying asset returns will

also generate risk premiums in the corresponding futures returns. These spot-futures

premiums have been analyzed for instance by Bessembinder (1992), who investigates

whether futures markets and asset markets are integrated and finds that premiums

for systematic risk factors in equity markets and 22 different futures markets are

very similar. Although Dusak (1973) finds that for three different agricultural con-

tracts the CAPM-beta is basically zero, Jagannathan (1985) finds that for the same

three contracts the consumption-based CAPM does imply significant risk premiums

and finds market prices of risk that coincide with those found in equity markets.

Bessembinder and Chan (1992) report that instrumental variables known to possess

forecast power in equity and bond markets also possess forecast power for prices in

agricultural, metals, and currency futures markets. This evidence of predictability

is consistent with the existence of time-varying risk premiums in futures markets.

71
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Second, using a simple cost-of-carry relationship between the spot and the futures

price, the term structure of futures prices depends on the term structure of the cost of

carry, or yield.1 Similarly to the term structure of interest rates, the term structure

of yields can be expected to contain term premiums that show up in the expected

futures returns. DeRoon, Nijman and Veld (1998) analyze the yields of five different

futures contracts and show that they contain term premiums that lead to predictable

variation in returns on spreading strategies (i.e., combined long and short positions

in futures contracts on the same underlying asset but with different maturities.)

Earlier research by Fama (1984) and Fama and French (1987) has shown that the

level of the yield also contains information about the spot-futures premium. This

implies that the yield is not only relevant because it gives rise to term premiums, but

also because it is linked to the spot-futures premium. Furthermore, Bessembinder,

Coughenour, Seguin and Smoller (1995) find a negative relation between futures

yields and the spot price of the underlying asset, which is indicative of an anticipated

mean reversion in asset prices.

Finally, without differentiating with respect to futures’ maturities, there is an

extensive literature that shows that the net hedge demand for futures contracts in-

duces risk premiums in futures markets. This is known as the hedging pressure effect.

Although the description of the hedging pressure effect dates back to Keynes (1930)

and Hicks (1939), the empirical relevance of the effect has only been documented

during the last two decades in Carter et al. (1983), Chang (1985), Bessembinder

(1992), and DeRoon, Nijman and Veld (2000). These studies find that the net

position of hedgers in futures indeed results in significant and time-varying risk pre-

miums, an effect that is especially strong in commodity futures markets, and to a

lesser extent in financial futures markets. Also, as DeRoon et al. (2000) show, there

appear to be spillover effects of hedging pressure from one market to another caused

by cross-hedging.

This paper analyzes trading strategies that intend to capture the various premi-

ums in futures markets. We study the cross-section of futures returns over different

markets and different delivery horizons, and link the differences in returns to the

1The yield of a futures contract is defined as the annualized percentage spread between the

futures price and the spot price of the underlying asset.
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various risk premiums that have been distinguished in these markets. The paper

therefore provides a link between different parts of the futures literature, and it

translates futures premiums into implementable trading strategies.

We start by analyzing the unconditional mean returns of futures contracts. This

amounts to an analysis of static futures-only strategies. These strategies are of

interest in themselves because they provide an understanding of passive strategies

that may serve as a benchmark for hedge funds and commodity trade advisors

(CTAs) that are active in those markets. Although such passive strategies serve a

purpose of their own, it may very well be that the underlying factors are already

captured by equity and bond markets. Therefore, we also analyze the performance of

passive futures strategies relative to equity, bond, and currency benchmarks, similar

to the ones used by Fung and Hsieh (1997, 2000) in analyzing the performance of

hedge funds and CTAs. To the extent that futures returns and asset returns are

generated by the same risk factors (as documented by Bessembinder (1992)), we

may expect that there will be no outperformance of equity and bond portfolios by

passive futures trading. Indeed, we find that, generally, unconditional mean returns

are zero after correcting for these benchmarks. We do, however, find evidence of

non-zero average returns for passive spreading strategies which go long in long-term

contracts and short in the nearest-to-maturity contract.

We proceed by analyzing active trading strategies that exploit the predictable

variation in futures returns. We study predictability from three sources: the term

structure of futures yields, the hedging pressure effect, and past returns or mo-

mentum. The forecast power of yields, previously documented in Fama (1984) and

Fama and French (1987), is re-examined using contracts that cover a wider range

of futures contracts and of the term structure of futures prices than before. Next,

we investigate whether the hedging pressure effect can explain the variation in spot

and term premiums. Finally, we examine whether futures returns are forecastable by

past returns. We find that futures yields across a wide range of maturities have sub-

stantial forecast power for both short and spreading returns. These returns are also

predictable by past hedging pressure, while momentum is only present in spreading

returns.

In order to exploit forecastability of futures returns, we use active trading strate-
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gies along the lines of Jegadeesh and Titman (1993) and Fama and French (1992,

1995). These trading strategies sort futures markets every period on a particular

characteristic into groups, and then take long positions in one group and short po-

sitions in another. For instance, the information in the yields is used to construct a

portfolio of long positions in a group of low-yield futures markets, and short positions

in a group of high-yield futures markets. The returns on the nearest-to-maturity

contracts in this periodically updated spreading portfolio exploit the spot-futures

premium, while the returns on longer-maturity contracts also capture the term pre-

mium. Using information variables such as yields, hedging pressure, and past returns

in futures markets is similar in nature to using information variables such as dividend

yields or price-earnings ratios in equity markets. As with the passive strategies, we

also analyze the performance of the active strategies relative to equity, bond, and

currency benchmarks. Our results show that predictability in both spot and spread-

ing returns can be exploited using yield-based trading strategies. Strategies based

on past hedging pressure also outperform benchmark portfolios. Finally, in contrast

with results in equity markets, momentum strategies do not appear to pay in futures

markets. Our findings seem to hold up under a number of robustness tests.

The paper proceeds as follows. Section 5.2 shows a simple decomposition of

futures returns that enables us to isolate the different elements of the expected

futures returns. Moreover, it describes how we construct active trading strategies on

the basis of predictable futures returns. Section 5.3 describes the data and provides

empirical results for the passive futures strategies. Section 5.4 analyzes the active

strategies based on futures yields, hedging pressure, and momentum. In Section 5.5

we present the conclusions and examine the robustness of the empirical results.

5.2 Methodology

5.2.1 A decomposition of futures returns

We start our analysis with a simple decomposition of futures returns that highlights

the different premiums that are present in futures markets. Denoting by St the spot

price of the underlying asset, and by F
(n)
t the futures price for delivery at time t+n,

we use the storage model or cost-of-carry relation, which dates back to Working
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(1949) and Brennan (1958), to define the yield y
(n)
t :

F
(n)
t = St exp{y(n)

t × n}. (5.1)

Thus, y
(n)
t is the per-period yield for maturity n, analogous to the n-period interest

rate. It is also the slope of the term structure of (log) futures prices, as is readily

seen by solving (5.1) for y
(n)
t . This yield consists of the n-period interest rate, and

possibly other items such as dividend yields, foreign interest rates, storage costs,

and convenience yields, depending on the nature of the underlying asset.

From the one-period expected log-spot return we define the spot risk premium

πs,t as the expected spot return in excess of the one-period yield,

Et [rs,t+1] = Et [ln(St+1) − ln(St)] = Et [st+1 − st] (5.2)

= y
(1)
t + πs,t,

where we take expectations Et conditional on the information available at time t

and use lower cases to denote log prices. The spot premium πs,t can be interpreted

as the expected return in excess of the short-term yield, similar to stock returns in

excess of the short-term interest rate and dividend yield. It is easy to show that the

spot premium is also the expected return of the short-term futures contract, r
(1)
f,t+1,

i.e., the return on the futures contract that matures at time t+1. This follows from

applying the cost-of-carry relation in (5.1) to such a contract and from the fact that

the futures price converges to the spot price at the delivery date:

Et[r
(1)
f,t+1] = Et[st+1 − f

(1)
t ] (5.3)

= Et[st+1 − st − y
(1)
t ] = πs,t.

Next, we define a term premium π
(n)
y,t similarly to DeRoon et al. (1998), as the

(expected) deviation from the expectations hypothesis of the term structure of yields:

ny
(n)
t = y

(1)
t + (n − 1)Et[y

(n−1)
t+1 ] − π

(n)
y,t . (5.4)

DeRoon et al. (1998) estimate the term premiums for five different futures contracts,

using one-factor models for the yields similar to the Vasicek-model and the Cox-

Ingersoll-Ross model for the term structure of interest rates. Without imposing
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any structure on the term structure of yields, it is important to note that the term

premium π
(n)
y,t also shows up in the expected return on a futures contract for delivery

at time t + n. This follows from the log return on such a contract and applying

the cost-of-carry relation again. Using the definitions of πs,t and π
(n)
y,t in (5.2) and

(5.4) it is easily seen that the expected one-period futures return for a contract that

matures at time t + n is:

Et[r
(n)
f,t+1] = Et[f

(n−1)
t+1 − f

(n)
t ] (5.5)

= πs,t + π
(n)
y,t ≡ π

(n)
f,t .

Thus, the expected one-period return on an n-period futures contract consists of

the futures premium π
(n)
f,t only, which can be separated in a spot premium πs,t and

a term premium π
(n)
y,t . Notice that it follows immediately from (5.3) that π

(1)
y,t = 0,

i.e., the short term futures contract does not contain a term premium.

This decomposition of the futures premium into a spot premium and a term

premium is a useful starting point for our analysis. From (5.3) we have that the

spot premium can be identified with a long position in a short-term futures contract.

Using spreading strategies it is also possible to isolate the term premium. Combining

a long position in an n-period futures contract with a short position in an m-period

futures contract on the same underlying asset, the expected return on this portfolio

is

Et[r
(n)
f,t+1 − r

(m)
f,t+1] = π

(n)
y,t − π

(m)
y,t . (5.6)

If m = 1, i.e., if we combine a long position in a long-term contract with a short

position in the short-term contract, then the expected return on the spreading strat-

egy is generated by one term premium π
(n)
y,t only. Otherwise the expected return is

a combination of two term premiums.

The decomposition in (5.5) is important, because the two risk premiums πs,t and

π
(n)
y,t are likely to compensate for different risk factors. For instance, in case of index

futures, πs,t reflects equity market risk, whereas π
(n)
y,t reflects interest rate risk. In

case of oil futures the spot premium reflects the oil price risk, whereas the term

premium mainly reflects the risk that is present in the convenience yield. Therefore,

we will focus on short-term futures trading strategies and on spreading strategies in

order to capture the expected returns generated by the different risk factors, i.e., to
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capture both the spot premiums and the term premiums.

5.2.2 Predictability and active trading strategies

We now show how predictable variation in futures returns can be used to construct

simple, implementable active trading strategies. Suppose that the spot-futures pre-

mium πs,t in a particular market can be forecast by an instrument xt, observable at

time t, through the following simple linear relation:

πs,t = α + βxt, (5.7)

and suppose that β is positive. As mentioned before, the spot premium is the ex-

pected return on the short-term futures contract; see Equation (5.3). Thus, investors

could take a long position in the short-term contract whenever the instrument has

a high value, and a short position otherwise. Such an active trading strategy would

yield a return that is on average higher than the return on a passive strategy which is

long in the contract at any given time. If markets are efficient, this higher expected

return compensates for additional risk involved in the active strategy.

Similar trading strategies can be constructed if term premiums can be explained

by observable variables. In that case, we use the fact that the n-th term premium

π
(n)
y,t is the expected return on a spreading strategy which takes a long position in the

n-period futures contract combined with a short position in the short-term contract;

see Equation (5.6). Denoting again by xt the forecast variable, and assuming a

positive relation between the term premium and the forecast variable, a simple

active trading strategy would be to take a long position in the long-term contract

combined with a short position in the short-term contract whenever the instrument

has a high value, and a short position in the long-term contract combined with a

long position in the short-term contract otherwise.

In this paper we focus on predicability of returns using instruments which are

observed in all futures markets, such as futures yields, hedgers’ positions, and past

returns. This allows us to construct trading strategies along the lines of Jegadeesh

(1990), Lehmann (1990), and Jegadeesh and Titman (1993) which operate in mul-

tiple markets. These studies analyze the returns on momentum strategies in equity

markets. Momentum strategies are spreading strategies which buy stocks that have



78 An Anatomy of Futures Returns

performed well in the past and sell stocks that have performed poorly in the past.

Similarly, trading strategies based on, for instance, futures yields can be formed by

ranking futures markets on their yields at a given point in time, and taking positions

in high-yield contracts (for instance, the one-third highest yield contracts) combined

with offsetting positions in low-yield contracts (the one-third lowest yield contracts).

At a later date, the futures portfolio is updated by sorting the markets again on the

then prevailing yields, and adapting positions accordingly; and so on. Note that this

type of strategy depends on the rank order statistics of the forecast variable (in this

case the futures yields), and, hence, requires the use of market-specific instruments.

Forecast variables which are not directly related to futures markets, such as the

equity and bond market variables used by Bessembinder and Chan (1992), are not

applicable here.

In Section 5.4 we analyze the time variation of both components of the futures

premium using futures yields, hedging pressure, and past returns as explanatory

variables, and we examine if any explanatory power found can be exploited using

the simple type of trading strategy sketched above. First, however, we analyze the

performance of passive futures strategies.

5.3 Data, descriptive statistics, and passive trade

We analyze a data set consisting of semi-monthly observations of 23 U.S. futures

markets over the interval January 1986 to December 2000 obtained from the Futures

Industry Institute (FII) Data Center. Using the classification of Duffie (1989), the

data can be divided into 16 commodity futures contracts and seven financial futures

contracts. The commodities include grains (wheat, corn, and oats), soybean com-

plex (soybeans, soybean oil, and soybean meal), livestock (live cattle, feeder cattle,

and live hogs), energy (crude oil and heating oil), metals (gold, silver, and plat-

inum), and foodstuffs (coffee and sugar). The financial contracts include interest

rates (Eurodollars), foreign currencies (Swiss francs, British pounds, Japanese yen,

and Canadian dollars), and equity indices (S&P 500 and NYSE composite). These

markets have relatively large trading volumes and provide a broad cross-section of

futures markets. Details about the delivery months and the exchanges where these
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futures contracts are traded are in Table 5.1.

Following common practice in the literature (see, for example, Fama and French

(1987), Bessembinder (1992), Bailey and Chan (1993), Bessembinder et al. (1995)

and DeRoon et al. (2000)), we construct continuous series of futures returns by

using rollover strategies. For the nearest-to-maturity series a position is taken in

the nearest-to-maturity contract until the delivery month, at which time the position

changes to the contract with the following delivery month, which is then the nearest-

to-maturity contract. In this way we are able to derive return series for second

nearby contracts, third nearby contracts, et cetera. Prices of futures observed in the

delivery month are excluded from the analysis to avoid obligatory delivery of the

physical asset. At least four different return series exist for each contract, up till 12

series for the oil contracts. Depending on the delivery dates during the year, the

different series are for delivery one to three months apart. We obtain a maximum

of 376 observations per series.

Since the delivery dates are more than two weeks apart for all contracts, and

since for many futures the delivery dates are not evenly spread over the year, it is

not possible to get the exact short futures returns on regular time intervals. Assum-

ing that the term premium is relatively unimportant for the nearest-to-maturity

contracts, we use the returns on those contracts as a proxy for the short futures

returns, st+1 − f
(1)
t . The first column of Table 5.2 gives the average returns of the

nearest-to-maturity contracts for the different futures. These are estimates of the

unconditional spot-futures premiums E[πs,t]. Except for oats, which has an esti-

mated premium of −15.5 percent on an annual basis, and the equity indices, which

require compensations of 8.6 and 7.8 percent, the hypothesis that the mean short

futures return is zero cannot be rejected for any of the futures markets at the 5

percent level, indicating that most of the markets considered do not demand sig-

nificant spot premiums.2 Similar evidence is found in, e.g., Bessembinder (1992),

Bessembinder and Chan (1992), and DeRoon et al. (2000) who also study broad

cross-sections of futures markets using various sample periods that only partially

overlap with our sample period. However, as Bessembinder and Chan (1992) point

2All statistical tests were conducted using White’s (1980) heteroskedasticity-consistent standard

errors, unless stated differently.
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Table 5.1: Futures exchanges and Delivery Months
Contract Exchange Delivery months

Commodities

Grains

Wheat Chicago Board of Trade 3 5 7 9 12

Corn Chicago Board of Trade

Oats Chicago Board of Trade 3 5 7 9 12a

Oil & Meal

Soybeans Chicago Board of Trade 1 3 5 7–9 11

Soybean oil Chicago Board of Trade 1 3 5 7–10 12

Soybean meal Chicago Board of Trade 1 3 5 7–10 12

Livestock

Live cattle Chicago Mercantile Exchange 2 4 6 8 10 12

Feeder cattle Chicago Mercantile Exchange 1 3–5 8–11

Live (lean) hogs Chicago Mercantile Exchange 2 4 6–8 10 12

Energy

Crude oil New York Mercantile Exchange All

Heating oil New York Mercantile Exchange All

Metals

Gold Commodity Exchange, Inc. 2 4 6 8 10 12b

Silver Commodity Exchange, Inc. 2 4 6 8 10 12bc

Platinum New York Mercantile Exchange 1 4 7 10

Foodstuffs

Coffee C Coffee, Sugar & Cocoa Exchange 3 5 7 9 12

Sugar #11 Coffee, Sugar & Cocoa Exchange 1d 3 5 7 9e 10

Financials

Interest Rates

Eurodollars International Monetary Market 3 6 9 12f

Foreign Currencies

Swiss franc International Monetary Market 3 6 9 12

Pound Sterling Chicago Mercantile Exchange 3 6 9 12

Japanese yen International Monetary Market 3 6 9 12

Canadian dollar International Monetary Market 3 6 9 12

Indices

S&P 500 International Monetary Market 3 6 9 12

NYSE Composite New York Futures Exchange 3 6 9 12
aNovember 2000 and January 2001 contracts also traded; bAll delivery months traded in 1995–

2000; cExcept November 1998; dJanuary contracts traded until 1990; eSeptember contracts traded

until 1987; f All delivery months traded in November 1995–June 2001.
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out, “while zero-mean returns are consistent with the absence of risk premia, they

are also consistent with the existence of time-varying risk premia.” Hence, the fact

that returns are zero on average does not preclude non-zero conditional premiums.

The next columns of Table 5.2 show the average returns on passive spreading

strategies which combine a long position in a longer-maturity contract with a short

position in the nearest-to-maturity contract. Using (5.6) and assuming that the term

premium on the short contract is approximately zero, the average returns on the

spreading strategies give us estimates of the unconditional term premiums E[π
(n)
y,t ]

for various maturities. Significant term premiums are found for many markets, in

particular grains, soybean complex, heating oil, and Eurodollar futures. For many

futures there is also a clear pattern in the average spreading returns, implying an

average term structure of futures prices that is either upward or downward sloping.

Except for the financial futures, the estimated term premiums often have the op-

posite sign of the corresponding spot premiums. As is clear from (5.5), an estimate

of the total unconditional futures premium is obtained by adding the average short

return to the average spreading return.

The standard deviations also show a clear structure over the different maturities,

where the volatility of the spreading strategies is always increasing in the maturity

of the contract. The volatility of the short-term futures contract is always higher

than than the volatility of the spreading strategies for the same underlying asset,

implying that spot price risk is larger than yield or basis risk. However, for many

commodity markets the yield or basis risk is as high as the spot price risk of the

index futures and even higher than the spot price risk of the Eurodollar futures as

well as some currency futures.

Thus, Table 5.2 illustrates the relevance of both spot premiums and term pre-

miums as components of the average returns on passive, futures-only strategies. We

analyze the underlying factors that determine these premiums by examining the

relative performance of these passive strategies with respect to several benchmarks.

First, we test whether the returns can be explained by the Capital Asset Pricing

Model. We consider as a benchmark the return on the MSCI U.S. equity index in

excess of the risk-free rate as measured by the one-month Eurodollar deposit rate.

The first column of Table 5.3 gives Jensen’s unconditional measure of performance—
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Jensen’s alpha—for the nearest-to-maturity contracts. Apart from the index futures,

the nearest-to-maturity alphas do not differ much from their unconditional means.

Indeed, the corresponding CAPM-betas (not reported here) are close to zero. This

is consistent with Dusak’s (1973) finding that for wheat, corn, and soybean futures

systematic risk is basically zero. As expected, the CAPM captures the factors un-

derlying the spot premium in the index futures well, with betas close to 1.0 and

alphas indistinguishable from zero. However, the significant spot premium in the

short-term oats contract cannot be explained by domestic equity market risk.

The alphas of the spreading strategies are reported in the next columns of Ta-

ble 5.3. The futures markets that showed significant term premiums also have non-

zero alphas, which are similar to their unconditional means. Indeed, the CAPM-

betas for the spreading strategies are basically zero, implying that the term pre-

miums in futures markets cannot be accounted for by the market portfolio. Most

futures show an upward or downward sloping term structure of Jensen’s alphas.

As an alternative to the CAPM we consider a six-factor model which includes,

apart from the excess returns on the MSCI U.S. equity index, five other benchmarks.

They are: the excess returns on non-U.S. equities (from MSCI), U.S. and non-U.S.

government bonds (from J.P. Morgan), emerging market stocks (from IFC), and the

U.S. dollar (from the U.S. Federal Reserve). These benchmarks are similar to the

ones used by Fung and Hsieh (1997, 2000) in analyzing the performance of hedge

funds and CTAs. The remaining columns of Table 5.3 present the unconditional

multi-factor alphas for the short futures returns and the returns on the spreading

strategies. By and large the same pattern emerges; non-zero alphas are found in

the same markets as before (grains, soybean oil and meal, heating oil, silver, and

Eurodollars), and they are of the same sign and order of magnitude as in the CAPM

case.

To sum up, Table 5.3 demonstrates that passive rollover trading strategies, which

go long in the nearest-to-delivery futures contract, do not outperform or are not

outperformed by the market portfolio, except in one or two cases. There is somewhat

more evidence that passive, short-term trading produces abnormal returns relative

to a set of equity, bond, and currency benchmarks. Passive spreading strategies,

which capture the term structure of futures prices, do yield abnormal returns in
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a significant number of markets, both with respect to the market and multiple

benchmarks.

5.4 Active trading strategies

We now turn to an analysis of the time variation in the spot and term premiums

of futures returns. Our goal is to examine whether the predictable variation in

either component can be exploited in simple, active trading strategies explained in

Section 5.2.2. Three sources of predictability are considered: futures yields, hedging

pressure, and past returns.

5.4.1 Yield-based strategies

Using (5.1), the yield on the m-th nearby futures contract is defined as the spread

between the m-th nearby log futures price and the log spot price of the underlying

asset, divided by the remaining time to maturity,

y
(m)
t =

f
(m)
t − st

T (m) − t
, (5.8)

where T (m) is the delivery date of the m-th nearby contract.3 Since the moment of

settlement within the delivery month is often at the option of one of the contract

participants or not easily determined due to market-specific regulations, we cannot

measure the time to maturity of the contract exactly. To solve this problem, we

assume that contracts are settled at the 15-th of each delivery month. This as-

sumption may potentially result in some measurement error, in particular for the

nearest-to-delivery contracts, since the relative effect of errors will be largest on the

shortest maturity, whereas it vanishes for longer-maturity contracts. It is important

to note, however, that the results for the yield-based trading strategies are not likely

to be affected by the exact measurement of the futures yields, since only the order

statistics of the relative yields—not their nominal value—play a role in the trading

strategies.

3Note the difference in notation with Section 5.2. The number in brackets now refers to the

order of maturity, not the actual time to maturity of the contract.
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Table 5.4 shows the average annualized yields of the first to the sixth nearby

contract for every futures market along with the standard deviations. Upward as

well as downward sloping term structures are common in futures markets, apparently

independent of the classification given in Table 5.1. Yields tend to be larger in

absolute value and more variable for agricultural futures (grains, soybean complex,

livestock, and foodstuffs) than for energy and metal futures. Financial futures have

even smaller yields and show the least variability. For most commodity futures,

there is either an upward or a downward sloping term structure of yields, while

index and currency futures show a constant term structure.

The theory of storage—which predicts that a futures’ yield equals the interest

rate plus the marginal storage cost, less the marginal convenience yield from holding

the underlying asset—can help us interpret these figures. Convenience yields and

storage costs are important for many commodities, and they are likely to be more

important and variable for agricultural futures than for energy and metal futures;

see, e.g., Bessembinder et al. (1995). For the currency and index futures, no storage

cost or convenience yield is likely to be included in the yield to maturity. Theory pre-

dicts that the yield on currency futures is equal to the differential between domestic

and foreign interest rates. For instance, for Japanese yen futures, the positive mean

yield implies that U.S. interest rates were, on average, higher than Japanese interest

rates by about 3.0 percent per year. The relatively constant term structure of yields

observed for the currency futures implies that there have been, on average, little

differences between interest rate differentials across different maturities. For index

futures, the yield on the n-th nearby contract reflects the domestic interest rate of

the same maturity. The flat yield term structure implies that the term structure of

interest rates was relatively flat on average.

Documenting predictability from yields

Previous research has examined the forecast power of yields for futures returns.

Fama (1984) shows that the current short-term futures-spot differential, or basis,

i.e., the numerator in (5.8), has power to predict the future change in futures prices

in a number of currency futures markets. Fama and French (1987) find that the

short-term basis in agricultural and metal markets also contains information about

the variation in futures premiums, both the spot-futures premium as well as longer-
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term futures premiums. DeRoon et al. (1998) find that the spreads between futures

and spot prices have power to explain term premiums for gold and soybean contracts.

We re-examine the forecast power of futures yields using not only the short-term

yield but the entire term structure of futures yields. For each futures markets, we

regress the semi-monthly return on the nearest-to-maturity contract on the current

yield of the m-th nearby contract,

r
(1)
f,t+1 = α1m + β1my

(m)
t + ε

(1,m)
t+1 , (5.9a)

for m = 1, . . . , 6. Deviations of β1m from zero imply that the spot-futures premium

can be explained by the m-th nearby yield. Analogously, we regress the return on

spreading strategies which go long in the n-th nearby contract and short in the

nearest-to-maturity contract on the m-th nearby yield,

r
(n)
f,t+1 − r

(1)
f,t+1 = αnm + βnmy

(m)
t + ε

(n,m)
t+1 , (5.9b)

for n = 2, . . . , 6 and m = 1, . . . , 6. Evidence of non-zero βnm indicates that the m-th

nearby yield has explanatory power for the n-th term premium in futures prices.

Equations (5.9a) and (5.9b) lead to 36 regressions for each of the 23 markets

under scrutiny. Table 5.5 summarizes the results of these regressions. Panel A

reports for all (n,m) combinations the p-value for a test that the slope coefficients are

zero in all markets. Clearly, this hypothesis is rejected in many cases. In particular,

the short yield has strong forecast power for short as well as most spreading returns,

and the term structure of yields appears to contain information about both short

returns and second, fourth, and sixth nearby spreading returns. Panel B of Table 5.5

shows for each (n,m) pair the number of markets for which predictability is found,

i.e., the number of slope coefficients which differ significantly from zero at the 10

percent level. Predictability seems to be strongest for the short return using the

short yield—significance is found in eight out of 23 markets.

Moreover, a clear pattern emerges from the signs of the slope coefficients, which

are marked by a + or − in Panel B of Table 5.5. All markets in which predictability

of the short return is found have negative yield coefficients, whereas virtually all

markets with predictable spreading returns have positive yield coefficients. Hence,

for a significant number of contracts, current yields tend to have a negative im-

pact on the spot-futures premium and a positive impact on term premiums. The
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negative effect of yields on the spot-futures premium is also found by Fama (1984)

and Fama and French (1987). Research on the relation between yields and term

premiums is scarce; DeRoon et al. (1998) examine five markets using observation

from March 1970 until December 1993, and detect a significant relation for gold and

soybean contracts, which is negative rather than positive. We do not find reliable

forecastability for these contracts in our sample period, which only partly overlaps

with theirs.

Exploiting predictability from yields

The negative relation between futures yields and short-term returns suggests

that a simple, active trading strategy, which goes long in the nearest-to-maturity

contract if current yields are low, and short if current yields are high, would yield a

positive expected return. Similarly, profits could be made using a trading strategy

which takes a long position in a long-term contract combined with a short position in

the nearest-to-maturity contract if current yields are high, and opposite positions if

current yields are low. By constructing cross-market portfolios of offsetting positions

in low-yield and high-yield markets, one may exploit the predictability of returns in

futures markets as a whole.

Analogously to the work by Jegadeesh (1990) and others on momentum strate-

gies, and the work by Fama and French (1992, 1995) on size and book-to-market

factors in equity markets, we sort all 23 futures contracts on their short yield at

every date in the sample into three groups of about equal size: a low-yield group,

a high-yield group, and a group with intermediate yields.4 We then form a sim-

ple spreading portfolio of equally-weighted long positions in the low-yield group

combined with as many equally-weighted short positions in the high-yield group.

Portfolios are updated in this way every period. Similar portfolios are constructed

using yields of longer maturities.

The first column of Table 5.6 shows the averages, standard deviations, and

Jensen’s alphas (both CAPM and multi-factor based) for the nearest-to-maturity

returns on these active trading strategies. Clearly, the average portfolio returns are

positive and significantly different from zero. The average return increases from 7.4

4The low-yield group and the high-yield group each consist of the nearest integral value of Nt/3

contracts, where Nt is the number of markets for which price data is observed.
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percent on an annual basis for the short yield-based strategy to 12.9 percent per

year as the maturity of the yield goes up, but this also leads to a higher risk as mea-

sured by the standard deviation of the return. The performance of the yield-based

strategies is little changed after correcting the returns for market risk. Moreover,

the hypothesis that Jensen’s alphas are zero is strongly rejected for all maturities.

If, instead of the CAPM, we use a six-factor benchmark, the results are only slightly

less powerful.

The next columns of Table 5.6 present the results for active trading strategies

which combine two spreading strategies: one spreading strategy takes long positions

in long-term contracts and short positions in short-term contracts in the high-yield

group; the other takes short positions in the long-term contracts and long positions

in the short-term contracts in the low-yield group. As expected, mean returns and

standard deviations are lower than for the nearest-to-maturity returns. There is a

clear upward sloping term structure in the expected returns and standard deviations

of the trading strategies. All average returns differ significantly from zero at the

10 percent level, while many differ significantly from zero at the 5 and even the

1 percent level. Again, the size and significance of the results hardly changes if

returns are corrected for market risk. A multi-factor correction dampens the results

somewhat, but most alphas remain significant at the 10 percent level, with results

being particularly strong for the longer-maturity term-spreading returns.

5.4.2 Strategies based on past hedging pressure

Next, we investigate the time variation of risk premiums through the hedging pres-

sure effect. The hedging pressure effect implies that the net demand for futures

contracts induces risk premiums in futures markets. Previous studies find that the

empirical relevance of the effect is substantial. Carter et al. (1983) analyze the

weekly returns on contracts of different delivery months in wheat, corn, soybean,

cotton, and cattle markets, and provide strong statistical evidence that returns are a

function of speculators’ net positions. They are unable to distinguish between spot

and term premiums, because they use returns on contracts of a fixed delivery month

rather than a fixed time-to-maturity. Bessembinder (1992) analyzes the variation in

the spot-future premium by using nearest-to-maturity returns in 22 futures markets
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including agricultural, metal, foreign currency, and (other) financial contracts. He

finds that mean returns depend on net hedging, particularly in non-financial futures

markets. DeRoon et al. (2000) use nearest-to-maturity as well as second nearby con-

tracts and they also find significant and time-varying risk premiums. Moreover, they

find evidence for spillover effects of hedging pressure from one market to another.

These studies do not make a distinction between the spot-futures premiums and

term premiums in futures markets. It is not clear a priori if net hedge demand

has the same influence on spot premiums as on term premiums. We examine the

relevance of the hedging pressure effect for both spot and term premiums. Further-

more, previous studies have used current measures of net hedging to explain the

variation in expected futures returns. However, data on hedge positions, which are

published in the Commitment of Traders reports issued by the Commodity Futures

Trading Commission (CFTC), only become available at a time lag of at least three

days.5 Hence, information on hedge positions is only observable to investors after a

reporting lag, and therefore cannot be used as a conditioning variable in an active

trading strategy. We examine whether the hedging pressure effect, which has been

shown to have strong explanatory power for futures returns if no reporting lag is

taken into account, also contains information about returns if net hedging is lagged

one period. Moreover, we analyze whether predictability, if any, can be exploited

using active trading.

Following previous works, we define the hedging pressure variable in a futures

market as the difference between the number of short hedge positions and the num-

ber of long hedge positions by large traders, relative to the total number of hedge

positions by large traders in that market,

qt =
# of short hedge positions − # of long hedge positions

total # of hedge positions
, (5.10)

where positions are measured by the number of contracts in the futures market.

Hedging pressures are calculated from the aforementioned Commitment of Traders

reports, which were available semi-monthly (and every two weeks as of October

1992) in our sample period. The first two columns of Table 5.7 show the averages

5The Commission reports on her website that “[t]he Commitments of Traders reports are re-

leased at 3:30 pm Washington D.C. time. The [. . . ] reports are usually released Friday. The release

usually includes data from the previous Tuesday.”
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and standard deviations of the hedging pressure variables for all futures markets.

Both net short and net long hedging are common, and variability is considerable.

These figures are in line with results reported by, e.g., DeRoon et al. (2000). The

next columns show the autocorrelation of the hedging pressure variables at the first

four lags. Clearly, hedging pressure is strongly persistent for every market. The

pattern resembles that of a first-order autoregressive model. One may expect that

due to this strong persistence, return predictability is not much affected by lagging

the hedging pressure measure.

Documenting predictability from past hedging pressure

Panel A of Table 5.8 documents the predictability of nearest-to-maturity and

term-spreading returns using lagged hedging pressure. It summarizes the results of

six regressions for every market, i.e., one regression of the nearest-to-maturity return

on past hedging pressure, and five regressions of spreading returns on past hedging

pressure:

r
(1)
f,t+1 = α1 + β1qt−1 + ε

(1)
t+1 (5.11a)

r
(n)
f,t+1 − r

(1)
f,t+1 = αn + βnqt−1 + ε

(n)
t+1, (5.11b)

for n = 2, . . . , 6. The first line of Panel A shows the p-value for a joint test that

all slope coefficients are zero. For the short returns, the hypothesis that slopes

are zero is rejected at the 10 percent level; evidence of non-zero slopes is much

stronger for the spreading returns, indicating that past hedging pressure explains

the variation in term premiums much better than the variation in spot premiums.

The weak forecast power found for the short-term returns is striking in the light of

the strong, positive effect of hedging pressure found by studies which do not take

into account a reporting lag, particularly given the high level of persistence in the

hedging pressure variables. One possible explanation for this result is that there

is a negative relation between past hedging pressure and the forecast errors of the

regressions which use current instead of lagged hedging pressure. Indeed, we find

a large negative covariance between these variables for each market which cancels

out (and in some cases dominates) the effect of persistence in the hedging pressure

variable.
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Exploiting predictability from past hedging pressure

Panel A of Table 5.8 also reports the number of markets in which we find sig-

nificant slope coefficients, broken down according to sign. In most cases where

predictability of the short returns is found, past hedging pressure has a negative

effect on returns. This is opposite to the effect documented for current hedging

pressure for the reasons mentioned above. In contrast, the much stronger effect of

past hedging pressure on the variation in the term premium is in almost all cases

negative. This suggests that trading strategies which go long in contracts which

have had high hedging pressure in the past and short in contracts which have had

low hedging pressure in the past, could be profitable. Panel B of Table 5.8 shows

that this is indeed the case. Significant abnormal returns can be achieved by trading

according to a strategy which sorts futures markets every period into three equal-

sized groups according to lagged hedging pressure, and takes (equally weighted)

long positions in long-term contracts combined with short positions in the nearest-

to-maturity contract in markets with high lagged hedging pressure, and opposite

positions in markets with low lagged hedging pressure. The higher the maturity

of the long-term contract, the higher the expected return (but also the risk) of the

trading strategy. As expected, the strategy which is designed to exploit the (weak)

predictability in the variation of the spot premium does not outperform the market

or the six-factor benchmark.

5.4.3 Momentum strategies

Finally, we examine the presence of the momentum effect in futures markets and we

analyze the performance of momentum strategies. From equity markets we know

that stocks that have performed well in the past are likely to perform well in the fu-

ture, while stocks that have performed poorly in the past are likely to perform poorly

in the future. Such predictability in equity markets has been shown to be exploitable

using spreading strategies. Early works include Jegadeesh (1990), Lehmann (1990),

and Jegadeesh and Titman (1993) who show that strategies which buy past winners

and sell past losers generate significant positive abnormal returns. In a recent paper,

Jegadeesh and Titman (2001) show that, contrary to other stock market anomalies,

momentum profits have continued in the 1990s. Whether momentum is also present



5.4 Active trading strategies 91

and profitable in futures markets is an open question.

Documenting momentum

If futures returns are autocorrelated over time, then this is evidence of momentum

in futures markets. Historically, little evidence has been found of autocorrelation in

futures returns. For instance, Dusak (1973) reports semi-monthly serial correlations

at up to 10 lags for the returns on wheat, corn, and soybean contracts during the

1950s and 1960s, and finds that hardly any differ significantly from zero. In a sample

of 12 agricultural, foreign currency, and metal futures markets in the 1970s and 1980s

analyzed by Bessembinder and Chan (1992), no appreciable autocorrelation is found

either. We also find little evidence of autocorrelation in the subsequent years among

an even more extensive cross-section; only silver (−.15) and sugar (.16) contracts

show significant semi-monthly serial correlation in the nearest-to-maturity returns

at the 1 percent level, while soybeans (−.12) and crude oil (.11) also show significant

autocorrelations at the 5 percent level. Equally weak (or even weaker) results are

found for the serial correlations at further lags, largely confirming the evidence

documented in previous studies.

The autocorrelation coefficient of futures returns coincides with the slope co-

efficient in a forecast regression of current on past returns. Panel A of Table 5.9

summarizes the results of such regressions for the nearest-to-maturity returns and

the returns on term-spreading strategies using semi-monthly lags. As noted be-

fore, hardly any momentum is found at this horizon for the nearest-to-maturity

contracts. The hypothesis that all slope coefficients, i.e., all autocorrelation coeffi-

cients, are zero cannot be rejected at all conventional confidence levels. This implies

that the variation in spot premiums cannot be explained by its own history.

We do, however, find significant results for the term premiums. A substantial

number of futures markets shows momentum in the spreading returns at all delivery

horizons, while the hypothesis that autocorrelations are zero is rejected in all cases

(at the 5 percent level) and strongly rejected (i.e., at the 1 percent level) in most.

Momentum therefore induces term premiums in futures markets, a result that has to

our knowledge not been documented previously. There is, however, no clear pattern

in the direction of the predictability. In some markets, past returns have a positive

effect on future returns, while in others a negative effect is found. This finding



92 An Anatomy of Futures Returns

suggests that the active trading strategies discussed earlier have a lesser chance of

performing abnormally.

Exploiting momentum

Indeed, Panel B of Table 5.9 shows that there are no significant (abnormal) re-

turns to be made from taking long positions in futures markets with low past returns

and short positions in markets with high past returns. Therefore, the momentum

effect, which is clearly present in the term structure of futures prices, does not ap-

pear to be exploitable using such simple trading rules. Hence, the profitability of

momentum strategies in equity markets does not translate to futures markets. How-

ever, we do retain the pattern of average returns, standard deviations, and alphas

increasing with maturity observed for yields and past hedging pressure.

5.5 Conclusions and robustness of the results

For convenience, we briefly recapitulate the conclusions of the previous sections

here. Firstly, we find zero-mean unconditional spot-futures premiums in virtually

all markets, while unconditional term premiums are non-zero for some markets.

Basically the same results are obtained after correcting for market or multi-factor

risk, except for the financial index spot-futures premiums, which appear to be largely

due to market risk. Both premium components can be explained by futures yields

and past hedging pressure, while the momentum effect appears to have explanatory

power for the term premiums only. Momentum is not found for the spot premiums.

Finally, predictability in both spot and term premiums is found to be exploitable

using yield-based strategies, while strategies based on past hedging pressure are only

profitable using the term premiums. Momentum strategies do not yield (abnormal)

returns.

To test the robustness of these conclusions, we perform a number of sensitivity

tests. First, we investigate the possibility that the size and predictability of futures

premiums changes over the sample period by splitting the sample period in half

and redoing the entire analysis for each subperiod. Second, we examine whether

our findings stay the same if, instead of semi-monthly returns, we use returns with

longer horizons. Finally, we test whether the active trading strategies which were
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found to outperform benchmarks, are still profitable if transaction costs are taken

into account.

5.5.1 Subperiod results

The sample period is split up into two intervals of about equal size. The first

subperiod consists of semi-monthly data from January 1986 to December 1993, and

the second subperiod is from January 1994 to December 2000.

The average returns and volatilities of the nearest-to-maturity contracts and the

spreading strategies are about the same size in each of the subperiods as in the entire

sample. We find about the same number of non-zero mean returns, albeit that some

of markets in which they are obtained differ across subperiods. Similar results are

obtained for the unconditional Jensen’s alphas.

Furthermore, we find that futures yields have strong forecast power in both peri-

ods, albeit slightly less than in the entire sample. However, while the first subperiod

shows a clear pattern of negative regression coefficients for the spot premium and

positive coefficients for the term premiums, the results are mixed in the second

subperiod. Nevertheless, the yield-based trading strategies produce significant and

positive returns in both periods, with constant volatilities across time. Moreover,

the strategies outperform the market to a similar degree in both periods. However,

they do not outperform the six-factor benchmark in the first subperiod, whereas

they do in the second.

The hedging-pressure forecast regressions show similar results across the two

subperiods. As in the entire sample, we find strong predictability for the term

premiums, while only weak predictability is found for the spot premium. Again, the

predictability in the term premiums turns out to be exploitable using active trading

strategies. In fact, in the first subperiod positive abnormal returns are obtained

for the spreading strategies which use the third, fourth, and fifth nearby contracts,

while the strategies which use the second and third nearby contracts yield positive

abnormal returns in the second subperiod.

Finally, there is a momentum effect in both periods which is comparable to the

momentum effect in the entire sample. We find that term premiums are predictable

by past term premiums, with positive and negative coefficients in each subperiod.
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As in the large sample, no predictability is found for the spot premiums. Also, the

momentum effect does not appear to be exploitable in either subperiod.

To sum up, although there are differences between mostly individual premiums

across time, the forecast power of yields, hedging pressure, and past returns, and

the extent to which active trading strategies can exploit forecastability, are obtained

consistently through time.

5.5.2 Multi-period returns

The results so far are based on semi-monthly returns as in, for example, DeRoon

et al. (2000). However, other authors have used different horizons to analyze futures

premiums. Fama (1984), Fama and French (1987), Chang (1985), and Bessem-

binder and Chan (1992) examine monthly returns, while Carter et al. (1983) use

weekly returns, and Bessembinder (1992) and Bessembinder et al. (1995) analyze

daily returns. DeRoon et al. (1998) analyze both daily returns and returns over

longer, contract-specific holding periods. To test the resiliency of our results in this

dimension, we repeat all analysis for different return horizons. The semi-monthly fre-

quency at which we observe the hedging pressure data dictates the minimum return

horizon we can use. Hence, the basic holding period is half a month. We construct

multi-period returns by adding semi-monthly (log) returns over multiple periods.

We consider two-period (monthly), three-period (semi-quarterly), and four-period

(bi-monthly) returns.6

In the interest of conciseness, rather than repeat all empirical results for the

multi-period returns, which are available from the authors on request, we briefly

summarize the main conclusions here. The multi-period short and spreading re-

turns from passive trading show little difference from the one-period results; we

obtain unconditional futures premiums which are similar in size and in statistical

significance. The same is true for the CAPM and multi-factor alphas. Interestingly,

the forecast power of yields found for the semi-monthly returns is even stronger

6To minimize loss of data, we use overlapping series of multi-period returns. As a consequence,

the innovations in the forecast regressions will be autocorrelated. We use the method of Newey

and West (1987) to correct the covariance matrix of the innovations for heteroskedasticity and

autocorrelation.
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for returns over longer horizons. A re-examination of yield-based predictability for

monthly returns as in Table 5.5 shows that nearly all joint tests for zero slopes re-

sult in p-values smaller than 5 percent, with most being well below 1 percent. On

average, we find that the number of predictable markets is increased by half. The re-

sults for the semi-quarterly and bi-monthly returns are only slightly weaker but still

considerably stronger than for the semi-monthly returns. As for the multi-period

returns on the yield-based trading strategies, we find similar averages, standard de-

viations, and alphas compared to the one-period case. Only the strategies using

semi-quarterly returns seem to produce even stronger statistical significance.

Multi-period versions of the forecast regressions and the trading strategies based

on hedging pressure and momentum also confirm the qualitative results found for

the one-period returns. The forecast power of hedging pressure is found to be

consistent over all holding periods, with the exception of the one-month horizon, in

which case predictability is somewhat stronger. Predictability from past returns—

the momentum effect—is about equally strong for all horizons. Finally, the trading

strategies which aim to exploit predictability from hedging pressure or momentum

produce similar results for all horizons.

5.5.3 Transaction costs

As a final robustness test, we investigate whether the active trading strategies which

we found to outperform the benchmark portfolios, still yield abnormal returns after

correcting for transaction costs. Active trading, contrary to passive trading, involves

regular updating of long and short positions, and such updating is costly. These

transaction costs, which comprise brokerage commissions, exchange and clearing

fees, taxes, the bid-ask spread, etc., vary by type of trader, type of transaction, type

of market, as well as through time. Hence, it is not easy to estimate transaction costs

and incorporate them in the returns on trading strategies. Instead, we compute for

each active strategy a critical transaction cost, defined as the average transaction

cost per contract, expressed as a percentage of the futures price, for which the

(abnormal) return on the strategy is just significantly different from zero at a given
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confidence level.7 Thus, the critical transaction cost is the maximum transaction

cost for which the strategy is still profitable.

The total transaction costs of an active trading strategy depend on the propor-

tion of futures positions which need to be replaced with new positions each period.

Panel A of Table 5.10 shows the average replacement rates for the long positions and

the short positions of the yield-based strategies. The average replacement rate of

25 percent for the long positions of the semi-monthly updated short-yield strategy

means that, on average, one in four long positions is substituted with a new long

position every half month. Each substitution involves one “round turn,” i.e., closing

an existing long position by selling a contract, and taking a new long position by

buying a new contract. Likewise, 23 percent of all short positions is replaced with

new ones every half month. Average replacement rates for the semi-monthly up-

dated yield-based strategies vary between 12 and 25 percent. More contracts need

to be replaced as the return horizon increases.

Table 5.11 shows the critical transaction costs for the semi-monthly mean returns

and alphas on the yield-based strategies corresponding to a 95 percent confidence

level. Clearly, the short-yield strategies and the long-term spreading strategies per-

mit the largest per-contract transaction costs for the strategies to remain profitable.

For instance, the strategy based on the second nearby yields will still be profitable

when transaction costs are under 54 basis points per trade. After correcting for mar-

ket risk, the critical transaction costs are only slightly lower at 51 basis points, while

correcting for multiple benchmarks reduces the critical cost to 33 basis points. More

generally, critical transaction costs hardly change from average returns to CAPM

alphas, but they go down quickly for the multi-factor alphas.

An individual trading small quantities is likely to pay more than these critical

transaction costs in brokerage fees alone. Hence, the abnormal returns on yield-

based trading may vanish. Large traders, on the other hand, may be able to mitigate

this cost; however, it may be difficult to trade large quantities at once without

moving the price a few basis points. Hence, the outperformance of benchmark

7Note that for our simple, equally-weighted trading strategies, the costs of updating futures

positions only involves the costs of replacing one position by an other, and not the additional costs

of changing portfolio weights. On the other hand, we abstract from the trading costs resulting

from rolling over contracts when they approach maturity (or when the order of maturity changes).
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portfolios by yield-based trading strategies with a semi-monthly return horizon may

disappear once we include transaction costs, whether they be due to commissions

and fees or market impact.

The critical transaction costs found for the other semi-monthly updated spread-

ing strategies are even lower, and they go down as maturity decreases. The average

returns on the strategies using the shortest maturities are far too small to toler-

ate transaction costs. Again, critical transaction costs are about the same for the

average returns as for CAPM alphas, and considerably lower for the multi-factor

alphas.

We also computed the critical transaction costs for the yield-based strategies

with longer return periods. Again, we find the same pattern: low critical costs

for the short-term spreading returns, and higher critical costs for the short-term

returns and the long-term spreading returns. While critical transaction costs differ

across return horizons, they seldom exceed one hundred basis points. The yield-

based strategies which use semi-quarterly returns allow for the highest transaction

costs, even though average replacement rates are relatively high. This is explained

by the fact that these are also the strategies which produce the strongest evidence

for outperformance of benchmark returns, as noted before.

Panel B of Table 5.10 shows the average replacement rates for the trading strate-

gies based on past hedging pressure and on momentum. Average replacement rates

for the hedging-pressure strategies are of the same order of magnitude as for the

yield-based strategies, showing the same pattern of rates going up with the return

horizon. The momentum strategies, on the other hand, require considerably higher

replacement rates (implying larger total transaction costs), and they remain constant

across return periods. Critical transaction costs for these active trading strategies

(not shown here) suggest that positive abnormal returns disappear for reasonable

values of the transaction costs.

5.6 Conclusion

This paper has analyzed trading strategies which capture the various risk premiums

that have been distinguished in futures markets. On the basis of a simple decompo-
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sition of futures returns, we showed that the return on a short-term futures contract

measures the spot-futures premium, while spreading strategies isolate the term pre-

miums. Using a broad cross-section of futures markets and delivery horizons, we

examined the components of futures risk premiums by means of passive trading

strategies and active trading strategies which intend to exploit the predictable vari-

ation in futures returns.

We find that passive strategies which capture the spot-futures premium do not

yield abnormal returns, in contrast to passive spreading strategies which capture the

term premiums. The term structure of futures yields has strong explanatory power

for both spot and term premiums, which can be exploited using active trading

strategies that go long in low-yield markets and short in high-yield markets. The

profitability of these yield-based trading strategies is not due to systematic risk.

However, transaction costs may eliminate these gains, in particular for the strategies

which capture short-term premiums.

Furthermore, we find that spreading returns are predictable by net hedge de-

mand observed in the past, which can be exploited by active trading, but only if

transaction costs are relatively low. Finally, there is momentum in futures markets,

but momentum strategies do not outperform benchmark portfolios.
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Table 5.2: Summary statistics for short and spreading returns
Returns are calculated from semi-monthly data for the period January 1986 to December 2000. Average returns and
standard deviations are annualized and in percentages. The short return is defined as the return on the nearest-to-
maturity contact. The n-th spreading return is the return on a strategy which takes a long position in the n-th nearby
contract and a short position in the nearest-to-maturity contract.

Averages Standard deviations
Short Spreading returns Short Spreading returns

return r
(n)
f − r

(1)
f return r

(n)
f − r

(1)
f

r
(1)
f n = 2 n = 3 n = 4 n = 5 n = 6 r

(1)
f n = 2 n = 3 n = 4 n = 5 n = 6

Wheat −5.4 2.7** 5.0** 5.1** 5.9** 9.5** 21.2 5.2 8.1 9.7 11.0 13.7
Corn −8.4 1.4 3.1* 4.3** 6.6*** 8.4*** 21.7 4.7 7.2 8.6 10.0 12.2
Oats −15.1** 3.6* 5.4* 7.7** 6.6 . 30.4 8.2 11.4 13.9 16.8 .
Soybeans −2.3 −1.4* −1.3 −1.0 −0.1 1.5 19.8 3.0 5.0 5.9 6.5 7.7
Soy oil −9.2* 0.4 1.8*** 3.1*** 4.1*** 5.0*** 21.8 1.7 2.7 3.8 5.0 5.9
Soy meal 5.7 −3.4*** −5.4*** −5.8*** −6.1*** −5.5** 21.4 3.9 6.5 7.9 9.1 10.3
Live cattle 5.3* −0.8 −3.0 −2.7 −3.9* −3.8 12.5 5.7 7.3 8.2 8.6 9.2
Feeder cattle 3.9 −0.7 −0.6 −0.5 −0.3 −0.7 12.0 2.9 4.1 5.1 5.7 6.3
Live hogs 6.4 0.6 −2.1 −3.1 −4.5 −2.9 23.9 9.6 14.4 16.7 18.5 19.8
Crude oil 7.8 0.2 −1.0 −1.9 −2.6 −3.0 34.5 7.1 10.2 12.5 14.3 15.8
Heating oil 13.1 −8.1*** −9.3** −8.7** −8.6* −9.2* 33.5 10.3 14.6 16.4 17.9 18.8
Gold −6.2* −0.1 0.0 −0.1 −0.1 −0.2 13.0 0.4 0.6 0.8 1.0 1.2
Silver −8.8 0.4 0.4 1.0* 0.9 1.1 22.9 1.3 1.8 2.3 2.8 3.1
Platinum 1.9 0.4 −0.5 −1.0 . . 19.7 2.1 3.0 3.2 . .
Coffee −8.4 −0.6 −1.5 −1.5 −0.3 −1.4 37.7 7.2 10.2 12.4 14.6 16.2
Sugar 1.8 2.6 1.2 0.4 0.8 −2.7 39.4 19.6 21.4 22.7 23.9 26.2
Eurodollar 0.5* 0.2** 0.4*** 0.5*** 0.5** 0.4** 1.1 0.4 0.6 0.7 0.8 0.8
Swiss franc −0.1 −0.1 −0.2 . . . 11.9 0.3 0.8 . . .
British pound 2.6 −0.1 −0.2 . . . 10.0 0.4 0.8 . . .
Japanese yen 0.8 0.0 −0.1 0.1 . . 12.4 0.3 0.6 1.0 . .
Can. dollar 0.6 −0.1 0.0 0.0 −0.1 . 4.7 0.4 0.8 1.1 1.4 .
S&P 500 8.6** 0.0 0.0 −0.2 . . 14.4 0.3 0.6 0.8 . .
NYSE 7.8** 0.1 0.1 . . . 13.9 0.3 0.7 . . .

*/**/*** indicates significance at the 10/5/1 percent level. No result is reported if more than one-third of the data is missing.
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Table 5.3: Unconditional Jensen’s alphas
The unconditional Jensen’s alpha in the Capital Asset Pricing Model is the intercept in a regression of the short return
(or a spreading return) on the return of the market portfolio in excess of the risk-free rate. The market portfolio is
measured by the MSCI U.S. equity index, and the risk-free asset is the one-month Eurodollar deposit. The multi-factor
alphas are implied by a six-factor model including U.S. and non-U.S. equities, U.S. and non-U.S. government bonds,
emerging market stocks, and the U.S. dollar. All alphas are annualized and in percentages.

Capital Asset Pricing Model Multi-factor model
Short Spreading returns Short Spreading returns

return r
(n)
f − r

(1)
f return r

(n)
f − r

(1)
f

r
(1)
f n = 2 n = 3 n = 4 n = 5 n = 6 r

(1)
f n = 2 n = 3 n = 4 n = 5 n = 6

Wheat −5.7 2.8** 5.2*** 5.2** 6.1** 9.7** −8.5 2.8** 5.6*** 6.1** 7.2** 11.6***

Corn −8.1 1.3 3.2* 4.2** 6.4** 8.0*** −6.5 1.6 3.5* 4.4** 6.2** 8.3**

Oats −15.0** 3.3 5.1* 7.4** 7.0 . −20.3*** 3.3* 6.6** 9.4*** 11.2** .
Soybeans −2.1 −1.1 −0.8 −0.7 0.2 1.6 −3.3 −0.9 −0.4 −0.4 0.3 1.9
Soy oil −8.8 0.4 1.7** 3.0*** 3.9*** 4.8*** −8.9 0.4 1.6** 2.9*** 3.8*** 4.8***

Soy meal 6.3 −3.2*** −5.1*** −5.5*** −6.0** −5.5** 3.8 −2.3** −3.7** −3.9** −4.5** −4.0
Live cattle 4.5 −1.0 −2.8 −2.4 −3.6* −3.6 3.3 −0.2 −1.8 −1.2 −2.1 −2.2
Feeder cattle 3.4 −0.7 −0.6 −0.5 −0.2 −0.6 3.5 −1.1 −1.5 −1.1 −0.7 −1.1
Live hogs 6.5 1.0 −1.3 −2.3 −3.7 −2.3 3.8 1.3 0.8 −0.3 −2.0 0.3
Crude oil 9.9 0.2 −1.2 −2.3 −3.1 −3.6 15.1* 0.3 −1.1 −2.3 −3.3 −4.0
Heating oil 14.4* −7.7*** −8.9** −8.4** −8.4* −9.1* 19.1** −7.0** −8.4** −7.9* −8.2* −8.9*

Gold −4.9 −0.1 −0.1 −0.1 −0.1 −0.2 −6.8* −0.1 0.0 0.0 0.0 −0.1
Silver −8.9 0.5 0.4 1.1* 1.1 1.2 −8.9 0.5 0.5 1.3* 1.3* 1.6*

Platinum 1.1 0.4 −0.4 −0.8 . . 2.3 0.3 −0.7 −1.3 . .
Coffee −7.4 −0.8 −2.0 −2.1 −1.0 −1.7 −2.7 −0.7 −2.2 −2.7 −2.0 −2.6
Sugar 1.8 2.7 1.7 1.0 1.2 −1.9 4.9 −0.3 −1.2 −2.7 −2.3 −7.1
Eurodollar 0.4 0.2* 0.3** 0.4** 0.4* 0.3 0.1 0.1 0.3** 0.3** 0.3* 0.2
Swiss franc 1.1 −0.1 −0.2 . . . −2.1* −0.1 −0.1 . . .
British pound 3.1 −0.1 −0.1 . . . 1.2 −0.1 −0.1 . . .
Japanese yen 1.2 0.0 −0.1 0.1 . . −1.2 0.0 0.1 0.2 . .
Canadian dollar 0.2 −0.1 0.0 0.0 −0.1 . −0.7 −0.1 −0.1 0.0 −0.1 .
S&P 500 −0.2 0.0 −0.1 −0.2 . . −0.3 0.1** 0.1 0.0 . .
NYSE −0.5 0.0 0.1 . . . −0.3 0.1** 0.3** . . .

*/**/*** indicates significance at the 10/5/1 percent level. No result is reported if more than one-third of the data is missing.
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Table 5.4: Summary statistics for futures yields
The yield on the m-th nearby futures contract is defined as the difference between the log price of the m-th nearby
futures contract and the log spot price divided by the estimated time to maturity. Settlement is assumed to take place
on the 15-th of the delivery month on average. Yields are calculated from semi-monthly data for the period January
1986 to December 2000. Averages and standard deviations are annualized and in percentages.

Averages Standard deviations
2nd 3rd 4th 5th 6th 2nd 3rd 4th 5th 6th

Short nearby nearby nearby nearby nearby Short nearby nearby nearby nearby nearby
yield yield yield yield yield yield yield yield yield yield yield yield

Wheat 24.3 9.0 5.2 4.1 4.0 3.7 13.5 6.1 4.8 3.9 3.1 2.8
Corn 44.2 20.3 15.6 12.6 10.5 9.1 10.6 5.1 4.0 3.4 2.9 2.6
Oats −117.8 −28.8 −13.9 −8.1 −4.5 . 22.2 4.9 3.4 3.0 2.6 .
Soybeans 21.0 9.2 6.8 5.6 4.9 4.4 5.3 3.1 2.6 2.1 1.8 1.5
Soy oil 14.3 9.7 8.4 7.4 6.6 6.0 8.2 3.7 2.7 2.3 2.1 2.0
Soy meal 12.4 3.5 2.1 1.9 1.9 1.9 14.3 7.2 5.2 4.1 3.5 3.0
Live cattle 11.9 0.9 −0.7 −1.1 −1.2 −1.0 9.5 4.7 3.2 2.4 1.9 1.5
Feed. cattle −117.0 −49.1 −31.6 −22.2 −16.9 −14.4 17.4 6.0 3.4 2.4 2.0 1.7
Live hogs 102.5 41.5 26.9 18.8 15.0 11.9 39.1 17.1 12.1 9.7 7.9 6.5
Crude oil 0.1 −3.3 −4.4 −4.8 −4.9 −4.8 1.6 2.9 3.2 3.1 3.0 2.9
Heating oil −7.9 −8.4 −6.6 −5.6 −5.2 −4.9 11.4 9.6 7.9 6.7 5.8 5.1
Gold 3.1 4.3 4.5 4.6 4.6 4.7 1.7 0.6 0.4 0.4 0.3 0.3
Silver −6.4 1.7 3.8 4.7 5.1 5.3 3.6 1.4 0.9 0.6 0.6 0.5
Platinum 0.5 0.8 1.2 1.9 . . 2.0 1.0 0.8 0.5 . .
Coffee 43.7 14.5 10.4 8.6 7.6 6.9 26.8 8.9 6.3 5.2 4.4 3.9
Sugar −22.0 −5.1 −3.6 −2.8 −2.1 −1.6 14.7 4.7 3.3 2.8 2.4 2.3
Eurodollar −0.1 −0.3 −0.4 −0.5 −0.6 −0.6 0.3 0.3 0.2 0.2 0.2 0.1
Swiss franc 1.9 1.9 1.9 . . . 0.8 0.6 0.5 . . .
Br. pound −2.3 −2.3 −2.1 . . . 0.6 0.5 0.4 . . .
Jap. yen 3.0 3.1 3.2 3.4 . . 0.8 0.5 0.5 0.5 . .
Can. dollar −1.1 −1.0 −1.0 −1.0 −0.9 . 0.5 0.4 0.3 0.3 0.3 .
S&P 500 3.0 3.2 3.2 3.3 . . 0.7 0.3 0.3 0.3 . .
NYSE 2.7 2.9 3.0 2.9 . . 0.7 0.3 0.3 0.3 . .

No result is reported if more than one-third of the data is missing.
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Table 5.5: Yield-based forecast regression scoreboard

For each futures market, semi-monthly short and spreading returns are regressed

on the short yield. The analysis is repeated using yields of other maturities, i.e,

the yield on the second nearby contract, the yield on the third nearby contract, et

cetera. If, for a particular regression, more than one-third of the sample days has

missing observations, the market is excluded from the analysis. Panel A gives the

p-value for a test that the slope coefficients are equal to zero for all markets. Panel

B shows the number of markets with slope coefficients which differ significantly from

zero at the 10 percent level. The sign (+/−) indicates whether these coefficients are

positive or negative. Between parentheses is the total number of analyzed markets,

i.e., markets with sufficient data.

Short Spreading returns

return r
(n)
f − r

(1)
f

r
(1)
f n = 2 n = 3 n = 4 n = 5 n = 6

A. Test: all slope coefficients zero (p-value)

Short yield 0.000 0.012 0.006 0.001 0.263 0.005

2nd yield 0.000 0.124 0.147 0.005 0.485 0.004

3rd yield 0.000 0.457 0.600 0.054 0.750 0.054

4th yield 0.000 0.011 0.140 0.151 0.671 0.135

5th yield 0.001 0.015 0.249 0.418 0.646 0.088

6th yield 0.127 0.051 0.102 0.320 0.357 0.155

B. Number of predictable markets and sign

of predictability (total number of markets)

Short yield 8−(23) 4+(23) 6+(23) 3+(21) 2+(17) 2+(15)

2nd yield 6−(23) 3+(23) 3+(23) 2+(21) 2+(17) 3+(15)

3rd yield 6−(23) 2+(23) 2+(23) 0 (21) 0 (17) 0 (15)

4th yield 6−(21) 1+(21) 1+(21) 0 (20) 0 (17) 0 (15)

5th yield 2−(17) 2a(17) 2a(17) 1b−(17) 0 (17) 1b−(15)

6th yield 1−(15) 2a(15) 2a(15) 1b−(15) 0 (15) 1b−(15)
aOne negative sign (silver) and one positive sign (soybean meal).
bSilver.
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Table 5.6: Yield-based trading strategies
At each date, futures markets are sorted on the short yield into three groups of
about the same size. Averages, standard deviations, and alphas (all annualized and
in percentages) are reported for the short returns on trading strategies which take
long positions in the low-yield group and as many short positions in the high-yield
group. The analysis is repeated for yields of other maturities, as well as for the
(term-)spreading returns on trading strategies which go long in high-yield markets
and short in low-yield markets.

Short Spreading returns

returns r
(n)
f − r

(1)
f

r
(1)
f n = 2 n = 3 n = 4 n = 5 n = 6

Averages
Short yield 7.4** 1.9** 3.3*** 3.6** 4.9** 7.5***

2nd nearby yield 10.4*** 1.9** 3.5*** 4.0*** 5.5*** 8.4***

3rd nearby yield 11.0*** 2.1** 3.2*** 3.8** 5.2*** 8.0***

4th nearby yield 11.7*** 2.3** 3.1** 3.6** 5.2*** 7.8***

5th nearby yield 11.8*** 2.2* 3.3** 3.7** 4.4** 6.5**

6th nearby yield 12.9*** 2.3* 3.1* 3.8* 3.7* 4.9*

Standard deviations
Short yield 12.0 3.8 5.0 6.1 7.5 9.4
2nd nearby yield 12.4 3.7 5.0 6.0 7.3 9.1
3rd nearby yield 12.9 3.7 4.9 6.0 7.3 9.2
4th nearby yield 14.0 4.2 5.5 6.4 7.8 9.3
5th nearby yield 16.7 4.8 6.3 7.2 8.3 10.1
6th nearby yield 18.5 5.4 6.9 7.9 8.9 10.3

CAPM alphas
Short yield 7.5** 1.9** 3.3*** 3.6** 4.7** 7.4***

2nd nearby yield 10.3*** 1.9** 3.5*** 4.0*** 5.3*** 8.3***

3rd nearby yield 10.8*** 2.1** 3.2*** 3.8** 5.1*** 7.9***

4th nearby yield 11.6*** 2.3** 3.0** 3.5** 5.2*** 7.7***

5th nearby yield 11.6*** 2.2* 3.3** 3.7** 4.4** 6.4**

6th nearby yield 13.1*** 2.3* 3.1* 3.8* 3.8* 4.9*

Multi-factor alphas
Short yield 5.2 1.8* 2.8** 2.6 3.3 6.4**

2nd nearby yield 9.0*** 1.8* 3.0** 3.3** 4.3** 7.7***

3rd nearby yield 10.0*** 1.9* 2.7** 3.2** 4.0** 7.1***

4th nearby yield 10.3*** 2.0* 2.5* 3.0* 4.0* 7.0***

5th nearby yield 9.9** 1.7 2.3 2.6 3.0 5.7**

6th nearby yield 11.6** 1.6 1.9 2.6 2.4 3.5
*/**/*** indicates significance at the 10/5/1 percent level.
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Table 5.7: Summary Statistics for Hedging Pressures

The hedging pressure variable is defined as the number of short hedge positions

minus the number of long hedge positions divided by the total number of hedge

positions. Hedging pressures are calculated from semimonthly data for the period

January 1986 to December 2000. Averages and standard deviations are in percent-

ages. ρτ denotes the autocorrelation at lag τ .

Avg. Std. ρ1 ρ2 ρ3 ρ4

Wheat 17.1 20.3 0.78 0.63 0.54 0.44

Corn −0.9 15.6 0.88 0.76 0.67 0.58

Oats 38.4 15.9 0.87 0.71 0.56 0.44

Soybeans 17.0 20.6 0.89 0.82 0.78 0.71

Soy oil 12.7 19.8 0.84 0.72 0.62 0.55

Soy meal 13.2 15.5 0.79 0.64 0.56 0.50

Live cattle 14.6 17.4 0.94 0.88 0.82 0.77

Feeder cattle −11.5 24.3 0.91 0.78 0.66 0.55

Live hogs 2.3 24.0 0.79 0.61 0.51 0.45

Crude oil 0.2 6.8 0.79 0.64 0.49 0.42

Heating oil 9.1 9.4 0.79 0.56 0.39 0.26

Gold −3.1 21.7 0.80 0.65 0.53 0.46

Silver 43.0 15.9 0.87 0.76 0.69 0.66

Platinum 35.7 23.7 0.84 0.68 0.57 0.51

Coffee 17.9 14.5 0.75 0.53 0.36 0.28

Sugar 20.0 19.8 0.87 0.74 0.62 0.51

Eurodollar −3.2 5.4 0.92 0.86 0.80 0.75

Swiss franc −7.8 43.5 0.74 0.49 0.35 0.22

British pound 0.5 41.3 0.66 0.37 0.26 0.13

Japanese yen −10.1 37.3 0.79 0.62 0.52 0.46

Canadian dollar 14.2 39.2 0.75 0.57 0.44 0.36

S&P 500 −5.1 6.7 0.84 0.73 0.63 0.56

NYSE −14.4 45.0 0.76 0.65 0.55 0.46
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Table 5.8: Hedging pressure-based forecast regression scoreboard and trad-
ing strategies
Caption as in Tables 5.5 and 5.6.

Short Spreading returns

return r
(n)
f − r

(1)
f

r
(1)
f n = 2 n = 3 n = 4 n = 5 n = 6

A. Forecast regression scoreboard

Test: all zero (p-value) 0.066 0.000 0.000 0.000 0.000 0.000
Predictable markets (+) 1 8 8 8 6 5
Predictable markets (−) 4 1 0 1 0 0
Number of markets (23) (23) (23) (20) (17) (15)
B. Trading strategies

Average 4.2 2.1*** 3.0*** 3.8*** 4.9*** 5.7**

Standard deviation 12.6 3.1 3.9 5.2 7.0 10.9
CAPM alpha 3.5 2.1*** 3.0*** 3.8*** 4.9*** 5.7**

Multi-factor alpha 4.7 1.9** 3.0*** 3.6** 4.5** 5.8*

*/**/*** indicates significance at the 10/5/1 percent level.

Table 5.9: Momentum-based forecast regression scoreboard and trading
strategies
Caption as in Tables 5.5 and 5.6.

Short Spreading returns

return r
(n)
f − r

(1)
f

r
(1)
f n = 2 n = 3 n = 4 n = 5 n = 6

A. Forecast regression scoreboard

Test: all zero (p-value) 0.211 0.008 0.000 0.003 0.032 0.000
Predictable markets (+) 1 3 2 0 1 1
Predictable markets (−) 3 2 6 4 3 2
Number of markets (23) (23) (23) (19) (17) (15)
B. Trading strategies

Average 2.7 −0.3 −0.5 0.2 1.0 1.7
Standard deviation 15.0 3.6 4.8 6.5 8.4 10.3
CAPM alpha 2.9 −0.3 −0.4 0.3 1.3 2.0
Multi-factor alpha 1.8 −0.8 0.0 1.0 1.3 2.9

*/**/*** indicates significance at the 10/5/1 percent level.
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Table 5.10: Average replacement rates

The average replacement rate is the average proportion of long or short contracts

replaced by new contracts every period (semi-monthly, monthly, etc.) for a given

trading strategy.

A. Yield-based trading strategies

Semi- Semi- Bi-

monthly Monthly quarterly monthly

long short long short long short long short

Short 25% 23% 26% 26% 31% 28% 31% 31%

2nd 15% 17% 18% 21% 22% 25% 25% 27%

3rd 12% 16% 15% 19% 19% 23% 21% 25%

4th 13% 25% 18% 36% 22% 33% 26% 42%

5th 15% 21% 20% 26% 23% 30% 27% 31%

6th 17% 21% 22% 29% 26% 33% 31% 34%

B. Trading strategies based on past hedging pressure

Semi- Semi- Bi-

monthly Monthly quarterly monthly

long short long short long short long short

19% 19% 26% 26% 31% 33% 31% 37%

C. Momentum strategies

Semi- Semi- Bi-

monthly Monthly quarterly monthly

long short long short long short long short

64% 63% 64% 64% 62% 63% 64% 65%
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Table 5.11: Critical transaction costs for the yield-based strategies

The critical transaction cost is the average replacement cost for which the hypothesis that

the mean return or alpha on an active trading strategy is zero is just not rejected at the

5 percent level. The table displays critical transaction costs for the yield-based strategies

with a semi-monthly return horizon. Transaction costs are measured in basis points of the

futures price.

Critical transaction costs

Short Spreading returns

return r
(n)
f − r

(1)
f

r
(1)
f n = 2 n = 3 n = 4 n = 5 n = 6

Yield-based trading strategies

Averages

Short yield 13 1 7 5 10 25

2nd nearby yield 54 1 14 14 24 50

3rd nearby yield 69 3 12 12 24 52

4th nearby yield 52 2 4 4 14 34

5th nearby yield 41 . 3 1 4 18

6th nearby yield 41 . . . . .

CAPM alphas

Short yield 11 1 7 5 8 24

2nd nearby yield 51 1 14 13 22 49

3rd nearby yield 64 4 12 12 22 50

4th nearby yield 49 2 4 4 14 34

5th nearby yield 39 . 2 1 3 17

6th nearby yield 42 . . . . .

Multi-factor alphas

Short yield . . 1 . . 12

2nd nearby yield 33 . 5 1 6 36

3rd nearby yield 47 . 1 0 2 33

4th nearby yield 33 . . . . 22

5th nearby yield 14 . . . . 2

6th nearby yield 20 . . . . .
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Samenvatting (Summary)

Dit proefschrift beslaat, zoals de titel reeds suggereert, een breed scala aan onder-

werpen binnen het vakgebied der financiële economie. Het behelst een verzameling

studies over investeringsbeslissingen en waarderingsvraagstukken op diverse deel-

terreinen van de financiële economie, uiteenlopend van de reële optietheorie en de

analyse van macro-economische risico’s, tot termijnmarktmodellen en de waardering

van multivariate financiële derivaten.

In hoofdstuk 2 van het proefschrift wordt de theorie van dynamisch investerings-

gedrag onder onzekerheid bestudeerd. Deze theorie, die ook wel de reële optietheorie

wordt genoemd, stelt dat het van waarde kan zijn een investering met een positieve

netto contante waarde, maar met onzekere opbrengsten, uit te stellen in situaties

waarin de investering niet kosteloos ongedaan kan worden gemaakt. Tot dusverre

is deze theorie alleen ontwikkeld voor de bijzondere omstandigheid dat de inves-

teerder risiconeutraal is, en voor het speciale geval dat alle onzekere toekomstige

opbrengsten van de investering exact kunnen worden gehedged (nagebootst) op de

ter beschikking staande vermogensmarkten. In dit hoofdstuk wordt onderzocht hoe

de optimale investeringsbeslissing wordt bëınvloed wanneer niet aan deze veronder-

stellingen is voldaan.

Met gebruikmaking van een model waarin ook met risico-aversie rekening wordt

gehouden, wordt het bestaan van een drempelwaarde voor de investeringsopbreng-

sten aangetoond. Evenals in de reeds ontwikkelde theorie, komt de optimale inves-

teringsbeslissing erop neer dat men dient te investeren wanneer de huidige waarde

van de opbrengsten de drempelwaarde overstijgt, en anders voorlopig dient af te

zien van de investering. Met behulp van een nutsfunctie die gekenmerkt wordt door

afnemende risico-aversie bij grotere bedragen, wordt vervolgens onderzocht wat de
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invloed is van veranderingen in risico-aversie, de onzekerheid van de opbrengsten en

andere parameters van het model op de optimale investeringsbeslissing.

In termen van de comparatieve statica van het model, zijn de belangrijkste bevin-

dingen dat een hogere mate van risico-aversie leidt tot een hogere investeringsdrem-

pel, vooral als de omvang van de investering aanzienlijk is. Ook een toename van de

onzekerheid van de investeringsopbrengsten heeft tot gevolg dat het aantrekkelijker

wordt de investering uit te stellen. Dit effect blijkt sterker te zijn naarmate de

risico-aversie van de investeerder groter is.

Verder worden in hoofdstuk 2 niet eerder gepubliceerde analytische formules

afgeleid voor de comparatieve statica van het model met risiconeutraliteit. Een

vermeldenswaardige conclusie is dat een renteverlaging voor de risiconeutrale inves-

teerder altijd leidt tot een lagere investeringsdrempel, omdat het positieve effect van

een renteverlaging op investeringen (ten gevolge van een hogere contante waarde van

de opbrengsten) altijd groter is dan het tegengestelde effect dat veroorzaakt wordt

door een hogere optiewaarde van uitstel (de mogelijkheid toekomstige verliezen te

verminderen of te vermijden).

Hoofdstuk 3 biedt een analyse van zogeheten economic hedging portfolios. Dit

zijn beleggingsportefeuilles die investeerders aanhouden om macro-economische ri-

sico’s waaraan zij zijn blootgesteld af te dekken. Zo kan bijvoorbeeld onvoorziene

inflatie de koopkracht van een belegger in gevaar brengen. Door een hedgeporte-

feuille aan te houden waarvan het verwachte rendement zo veel mogelijk samenhangt

met de beweging van de inflatie, kan dit inflatierisico verminderd worden. Zo’n

hedgeportefeuille bestaat bijvoorbeeld uit beleggingen in aandelen en obligaties. In

dit hoofdstuk wordt aangetoond hoe de optimale samenstelling van een hedgeporte-

feuille verkregen kan worden. De optimale portefeuillegewichten blijken een functie

van de mate van risico-aversie van de investeerder. Bovendien is de hedge preciezer

bij tegenvallende aandelen- en obligatiekoersen dan in betere tijden. Deze benade-

ring vormt daarmee een uitbreiding van de optimale hedgeportefeuille die volgt uit

het gangbare mean-variance model.

Een empirische analyse van optimale hedgeportefeuilles ter bescherming tegen

inflatie-, rente-, krediet- en andere macro-economische onzekerheden voor Ameri-

kaanse beleggers met toegang tot de aandelen- en obligatiemarkten laat zien dat
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nutsmaximaliserende beleggers die blootgesteld zijn aan macro-economische risico’s

bereid zijn significante compensaties te betalen voor het afdekken van die risico’s.

Afhankelijk van de mate van risico-aversie van de belegger verandert de samenstelling

van de hedgeportefeuille, waarmee de eerder beschreven theoretische samenhang em-

pirisch wordt ondersteund. Verder kan hedgen tegen macro-economische risico’s, zo

blijkt uit dit onderzoek, wellicht ook een verklaring bieden voor het feit dat fei-

telijk waargenomen rendementen niet stroken met het Capital Asset Pricing Model

(CAPM), dat voorspelt dat beleggers alleen compensatie kunnen verwachten voor

marktrisico en derhalve kunnen volstaan met beleggingen in een marktindex.

In hoofdstuk 4 wordt de prijsbepaling van multivariate opties onder de loep

genomen. Multivariate opties zijn financiële derivaten waarvan de uitbetaling een

functie is van twee of meer onderliggende activa. Gewoonlijk betreft het call- of

put-opties die recht geven op de toekomstige aan- respectievelijk verkoop, tegen een

vooraf vastgestelde prijs, van het onderliggende activum met het hoogste (of juist

laagste) gerealiseerde rendement. Voor de premie van een dergelijk derivaat is de

samenhang tussen de onderliggende activa van belang, die in dit hoofdstuk model-

matig beschreven wordt door middel van parametrische copula’s. Dit zijn functies

die de afhankelijkheid tussen stochastische variabelen in kaart brengen en een alter-

natief bieden voor de veelal veronderstelde Gaussische of normale afhankelijkheids-

structuur.

In tegenstelling tot andere onderzoeken op dit terrein wordt in deze studie niet

uitgegaan van een constante afhankelijkheidsstructuur, maar is een in de tijd ver-

anderende samenhang ook toegelaten. Daarbij wordt aangenomen dat de mate van

samenhang tussen de onderliggende activa verband houdt met de volatiliteit in de

afzonderlijke markten, hetgeen aansluit bij het verschijnsel dat in roerige tijden

hogere correlaties tussen de rendementen op financiële activa worden gemeten dan

in rustiger tijden. Deze dynamische copulamodellen zijn toegepast op call- en put-

opties op twee Amerikaanse beursindices, de S&P 500 en de Nasdaq. De bevindingen

van dit onderzoek zijn dat de optiepremie die volgt uit dynamische copulamodellen

sterk afwijkt van de optiepremie die berekend wordt op basis van modellen die een

constante afhankelijkheid veronderstellen, met name in geval van grote fluctuaties

op de onderliggende markten. Verder blijkt dat de in ogenschouw genomen niet-
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Gaussische copula’s significant verschillende premies opleveren ten opzichte van de

Gaussische copula, ongeacht de volatiliteit op de onderliggende markten, terwijl

er geen noemenswaardig verschil is tussen de optiepremies die volgen uit de niet-

Gaussische copula’s.

Onderwerp van hoofdstuk 5 zijn de risicopremies op termijnmarkten. Het ver-

wachte rendement op termijncontracten (futures) kan ontleed worden in een spot

premium en een term premium. De spot premium meet het verschil tussen het ver-

wachte eenperioderendement op de onderliggende waarde en de kortetermijnyield.

De kortetermijnyield is het procentuele prijsverschil tussen het kortetermijncontract

en de onderliggende waarde. De term premium is de wig tussen de som van verwachte

toekomstige kortetermijnyields en de langetermijnyield. Aangetoond kan worden dat

de spot premium gelijk is aan het verwachte rendement op een long-positie in een

kortetermijncontract, terwijl de term premium gelijk is aan het verwachte rende-

ment op een spreadingstrategie, waarbij een long-positie in een langetermijncontract

gecombineerd wordt met een short-positie in een kortetermijncontract. Op basis

van deze decompositie worden in dit hoofdstuk de genoemde premiecomponenten

geschat, en wordt de voorspelbaarheid van de bijbehorende rendementen onderzocht

om vervolgens de winstgevendheid van zogeheten sortingstrategieën te analyseren.

De empirische analyse in dit hoofdstuk concentreert zich op een groot aan-

tal Amerikaanse futuresmarkten voor goederen en financiële waarden. Gemiddeld

genomen blijken de rendementen op vrijwel alle kortetermijnfutures nihil te bedra-

gen, wat duidt op verwaarloosbare onconditionele spot premiums. Echter, de gemid-

delde rendementen op de eerdergenoemde spreadingstrategie, en daarmee de schat-

tingen van de onconditionele term premiums, blijken voor veel markten wel van nul

af te wijken, zelfs na correcties voor systematisch risico.

De voorspelbaarheid van de kortetermijnrendementen en de rendementen op de

spreadingstrategie is onderzocht aan de hand van drie variabelen: de termijnstruc-

tuur van futuresyields, de zogenoemde hedging pressure (d.i. het saldo van short-

en long-posities van hedgers in een futuresmarkt) en het momentumeffect. Yields

hebben een dusdanig sterke verklarende waarde voor zowel spot als term premi-

ums, dat men met dynamisch handelen door steeds long te gaan in de markten

met de laagste yields en short in de markten met de hoogste yields, de rende-
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menten op benchmarkportefeuilles significant overtreft. Een dergelijke sortingstrate-

gie gebaseerd op hedging pressure levert eveneens hogere rendementen op dan die

men op basis van het CAPM of een meerfactorenmodel zou verwachten. Vergelijk-

bare momentumstrategieën blijken echter niet winstgevender dan deze benchmarks.

Alleen wanneer de transactiekosten, die met deze dynamische strategieën gepaard

gaan, aanzienlijk zijn verdwijnen de gevonden anomalieën.




