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Abstract

We investigate the feasibility of machine learning in automatic
detection of disfluencies in a large syntactically annotated
corpus of spontaneous spoken Dutch. We define disfluencies
as chunks that do not fit under the syntactic tree of a sentence
(including fragmented words, laughter, self-corrections,
repetitions, abandoned constituents, hesitations and filled
pauses). We use a memory-based learning algorithm for
detecting disfluent chunks, on the basis of a relatively small
set of low-level features, keeping track of the local context of
the focus word and of potential overlaps between words in this
context. We use attenuation to deal with sparse data and show
that this leads to a slight improvement of the results and more
efficient experiments. We perform a search for the optimal
settings of the learning algorithm, which yields an accuracy of
97% and an F-score of 80%. This is a significant improvement
of the baselines and of the results obtained with the default
settings of the learner.

1. Introduction

Disfluencies are a main stumbling block for automatic
processing of spoken language. Hence a preprocessing module
capable of automatically filtering out all kinds of disfluencies
would be very useful to have, because it is likely to improve
further processing such as parsing and interpretation.

Various researchers have worked on automatic disfluency
detection in the past two decades, including, but not limited to,
Hindle [8], Bear et al. [1], Nakatani & Hirschberg [11],
Heeman & Allen [7], Oviatt [13], Shriberg et al. [16]. Most of
this work is largely empirical and involves relatively small
datasets, since annotating corpora for disfluencies is a difficult
and time-consuming process. In addition, many of these
studies tend to focus on a subset of disfluent phenomena, such
as repairs or fragmented words, and are usually concerned
with (American) English (exceptions include Eklund &
Shriberg [6] on Swedish, Spilker et al. [17] on German, and
Lendvai [10] on Dutch).

In this paper we follow a different route. We apply memory-
based machine learning to automatically detect disfluencies in
a large syntactically annotated corpus of spontaneous spoken
Dutch. We take a broad conception of disfluency: everything
that does not fit under the syntactic tree of a sentence,
according to the syntactic annotators. This includes
fragmented words, laughter, self-corrections, repetitions,
abandoned constituents, hesitations and filled pauses. The
learning task is defined as follows: given an utterance (i.e., a
string of words), predict where disfluent chunks start and
where they end. This approach may be likened to syntactic
phrase chunking (e.g., Tjong Kim Sang & Buchholz [18]),
where the chunker in our case marks whether a word occurs
inside a disfluent chunk or outside it, rather than whether a

word occurs within or outside some syntactic constituent. As
input to the learning task we only use low level, readily
available features. No explicit feature selection is performed in
the experiments since the memory-based learner is capable of
determining which features are most beneficial for the learning
task. We do perform an extensive search to estimate the
optimal setting of the algorithm for our task, and investigate
the usefulness of special attenuation techniques (Eisner [5],
van den Bosch & Buchholz [2]) to compress the data set and
avoid sparse data problems.

The rest of this paper is organized as follows. In Section 2
we describe the method, starting with a brief overview of the
corpus we used (2.1), and the feature representations that we
derived from it (2.2). In Section 2.3 we describe the memory-
based classifier. The experimental set-up is outlined in 2.4.
Special attention is paid to the attenuation method (2.5) and
the parameter optimization routine (2.6). The baselines are
given in 2.7. In Section 3 the results are presented. We end
with some concluding remarks and pointers for future research
in Section 4.

2. Method

2.1. Corpus

Our experiments are based on the Spoken Dutch Corpus
(Corpus Gesproken Nederlands, CGN, Release 5) that
contains various kinds of discourses sampled from different
regions of the Netherlands and the Flemish part of Belgium.
The discourses are of various levels of spontaneity ranging
from television broadcasts to telephone conversations, and the
number of speakers spans from 1 (newsreading) to 7
(parliamentary sessions). For more information, see Oostdijk
[12] and van der Wouden et al. [19].

For the machine learning experiments we used a
representative sample of 203 full discourses from CGN,
consisting of 340,545 lexical tokens in 44,939 sentences. In
the corpus, sentence segmentation is done automatically, based
on silence detection. The average sentence length is 7.6 words.
The sentences are orthographically transcribed and morpho-
syntactically tagged. In addition, a complete and corrected
syntactic dependency tree is built manually for each utterance.

Figure 1 contains an example sentence from the CGN corpus
with the complete morpho-syntactic analysis. Note that certain
leaves are not incorporated in the syntactic analysis tree. By
definition we consider all those as disfluencies. In Figure 1 we
have three disfluent chunks: a false start (ik uh), a filled pause
following the word “scepsis” (uh) and a repetition (zo’n).
According to our criterion, 9.07% of all lexical tokens in the
data set are part of a disfluent chunk. The number of disfluent
chunks is 27,113.
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deze gang van zaken zo'n zo'n jaar aangekeken

Figure 1: Example sentence (“ik uh ik heb met de nodige scepsis uh deze gang van zaken zo’n zo’n jaar aangekeken”; I have followed this process
with a certain amount of skepticism for about a year) from the CGN corpus with full morpho-syntactic analysis.

2.2. Feature representations

Each of the 340,545 words is represented as a vector (or an
instance) of 31 features that we extracted automatically from
the corpus. The set of features can be grouped into two. One
group consists of nine lexical string features that represent the
focus word itself, plus its four left and right neighbors. Thus,
we use a context window of length nine. In line with earlier
work on disfluencies, for instance Heeman & Allen [7], we
assume that local context is sufficient for detecting most
speech repairs. We do not use part-of-speech tags and other
syntactic information from the gold-standard corpus, nor from
any part-of-speech tagger or parser. The second group of
features consists of 22 binary overlap features. Of these, 20
record overlap between words within the window, the
remaining two record overlap in the initial letters between the
focus word and its left and right neighbors respectively.
Matching words or word-initial letters are often to be found at
the onset of a reparandum and/or a repair part of a disfluency.

Finally, for each word in the data set we record whether it is
inside a disfluent chunck (I-DISFL) or outside of it (O-
DISFL), i.e., whether it is part of the syntactic structure for the
entire utterance or not. This is the class to be predicted by the
machine learner.

2.3. Classification: Memory-based learning

We worked with a memory-based learning (MBL) algorithm
based on the classical k-nearest neighbor approach to
classification (Cover & Hart [3]). The k-NN algorithm looks
for those instances among the training data that are most
similar to the test instance according to some distance function
A between two instances X and Y,

AXY) =2"—;w; 8 (x;, ),

where # is the number of features in X and Y, w; is the weight
of feature i and & gives the difference between two values of
the ith feature. The classes of the & nearest neighbors are then
extrapolated to predict the test instance’s class. Memory-based
learning is often called “lazy” learning, because the classifier
simply stores all training data in memory, without abstracting
away from individual instances in the learning process. We use
the TIMBL 4.3 software package (Daelemans et al. [4]) for the
experiments.
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2.4. Experimental set-up

Training and testing is done by 10-fold cross-validation (CV),
where re-sampling draws on discourse-based partitioning,
thereby assuring that no material from the same discourse
could be part of both the training and the test set.

The performance of the learner is evaluated in terms of four
measures: accuracy (the overall percentage of correctly
predicted I-DISFL and O-DISFL class labels), precision,
recall and F-score. The F-score represents the harmonic mean
of precision and recall. We use the unweighted variant of the
F-score that is defined as 2PR/AP+R), where P is precision and
R is recall (see e.g., van Rijsbergen [15]). We would like to
stress that precision, recall and F-score apply to entire chunks
in our evaluation. Thus: in the example sentence in Figure 1
both words in “ik uh” need to be classified as I-DISFL to
count as a correct classification of the chunk.

2.5. Attenuation

Infrequent or unknown words are often problematic for
machine learning techniques since the occurrence statistics of
such items are unreliable. At the same time, the word form
may contain useful information; for instance, a capitalized
word is likely to be a named entity, a word that contains a
number is usually either a number or the name of a number, a
hyphen tends to indicate compounding. In addition, the final
letters of a word may give away morphological clues, e.g., -ly
(adverb) in English, or -dt (verb) in Dutch. Attenuation is a
technique for words occurring below a certain frequency
threshold to make such information explicit while masking the
actual expression. Besides addressing the sparse data problem,
another advantage of this technique is that the search space is
reduced since the number of different feature values that needs
to be checked becomes much smaller.
Our attenuation method is a simplified version of van den
Bosch & Buchholz [2] (which was in turn based on a proposal
by Eisner [5]): -
IF a word occurs less than 100 times in the training data,
THEN

Convert it to MORPH

If it contains a number, add -NUM

If it contains a hyphen, add -HYP

If its first letter is a capital, add —CAP

If none of these three tests apply, add the last two

letters of the word.

ELSE retain the original word.
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For the (English) example sentence in Figure 1 this strategy
produces the sequence “I have MORPH-ed this MORPH-ss
with a certain amount of MORPH-sm for about a year”. The
attenuation method is applied to each train/test split, creating
attenuated versions of both. We hypothesize that for the
current learning task attenuation will not have a negative effect
(and might even have a positive effect) since the binary
overlap features, which are not based on the attenuated words,
are likely to compensate for some of the potential information
loss.

2.6. Parameter optimization by iterative deepening

Like most other machine learning techniques, the MBL
algorithm has various parameters that may bias its
performance. Since it is unknown beforehand which parameter
setting is most likely to yield the best results, and since it
would be bad practice to make this estimation using the test
data, we performed parameter optimization experiments on the
training material itself. More precisely, we ran 10-fold CV
experiments on each of the 90% training sets within the basic
10-fold CV experiment. Parameter settings were tested
according to a procedure called iterative deepening, which is a
combination of classifier wrapping and progressive sampling
(Kohavi & John [9], Provost et al. [14]).

The iterative deepening search algorithm automatically
constructed a large number of different learners by varying the
parameters of MBL and systematically trained these learners
on portions of the 90% training set, starting with a small
sample and doubling it over the iterative optimization rounds.
In the iterating rounds of the search process the combinations
of parameter settings were recursively estimated by
maximizing the F-score performance on the I-DISFL class.
The learner with the highest F-score on disfluency chunking
(i.e., the one with the highest estimated generalization
performance) was then selected and applied to the full 90%
training set and subsequently tested on the as yet unseen 10%
test set.

The learners were created by combining the following
parameters (the default setting in TiMBL are shown in
brackets):

e Thevalueof kcouldbe 1, 3,5,7,9, 11,13, 15, 19,
25, or 35. (Default: 1)

e  The distance weighting metric A was majority class
voting, linearly inversed distance weighting, inverse
distance weighting, or exponential decay distance
weighting with a set to 1, 2 or 4. (Default: majority
class voting)

e  The distance 8 between feature values was computed
using either the overlap function or the modified
value difference metric. (Default: overlap)

e  The weighting function w —which estimates the
importance of attributes— was either information
gain, gain ratio, %%, shared-variance or no weighting.
(Default: gain ratio)

For details about the parameters see Daelemans et al. [4].

2.7. Baselines

To quantify the performance of the learning method we need
to define a baseline. The most straightforward baseline is to
always predict the majority class. Since most words in the
corpus are not disfluencies, this baseline amounts to always
predicting class O-DISFL. This would result in a correct
prediction in 90% of the cases. However, for the class of
interest (I-DISFL) this strategy leads to a recall of 0 (all
disfluencies are missed) and an undefined precision and hence
an undefined F-score.

Table 1: Majority class and filled pause (FP) baselines. Standard
deviations are given between brackets.

Acc. Prec. Rec. F
Majonity 90.0(1.6) | NA 0 N/A
baseline
FP
S 92.9(1.5) | 76.4(3.1) | 28.5(5.8) | 412 (6.7)

A somewhat more intelligent baseline is the following. The
most frequent kind of easily detectable disfluencies are basic
filled pauses (FPs, transcribed as uh, uhm, hu, and hm in the
CGN corpus). We define a FP-baseline that predicts that all
filled pauses are disfluencies and everything else is not. This
baseline has an accuracy of 92.9%, a relatively high precision
(not 100%, since one in four filled pauses is part of a larger
disfluent chunk), a relatively low recall (it misses most
disfluent chunks) and an overall F-score of 41.2%. Table 1
summarizes the baselines.

3. Results

Table 2 shows the average performance of MBL in three series
of 10-fold CV experiments. In the first series we tested the
default settings of the TIMBL implementation of MBL. This
resulted in a 95.7% accuracy and a 72.3% F-score, which is a
clear improvement of both baselines in Table 1. When the
default settings of TIMBL were applied to the attenuated data,
we observed a slight, overall improvement. The increase in
accuracy is not significant, but the increase in F-score is, on a
one-tailed #-test (¢ = 1.96, p < .05). Thus, attenuation indeed
does not degrade performance while reducing the number of
different feature values.

Table 2: Results of the three series of learning experiments. Standard
deviations are given between brackets.

Acc. Prec. Rec. F
Defautt MBL | 957©35) | 690(3.0) | 760(1.6) | 723(18)
Attglel}ztjﬁn 196005 | 71760 | 76301.6) | 73.9018)
gt;‘:‘;f;‘t’g: 97.0(0.5) | 799(3.1) | 80.2(58) | 80.0(1.8)

The third experiment series involved both attenuation and
parameter optimization. This approach resulted in 97%
accuracy in disfluency chunking, which is a substantial
improvement over both baselines. With respect to the sharp
FP-baseline this amounts to an error reduction of 58%. There
is a 1-point increase in accuracy with this technique compared
to the default learner applied to attenuated data. The difference
is statistically significant (¢ = 4.29, p < .001). In addition, the
F-score obtained in this experiment is almost twice as high as
for the FP-baseline, and reaches a 7.7 points increase in F-
score compared to the default learner, primarily due to an
improved precision.

The settings resulting from the optimization process slightly
differed for the ten folds. Namely, the optimal value of k
ranged from 11 to 35, the distance metric chosen was either
linearly inversed or inverse distance weighting, the distance
between feature values was best computed using the modified
value difference metric, and for feature weighting the learners
mainly used shared variance, although gain ratio for two folds
led to better results. The most reliable features for the learners
were the focus word itself, as well as information on the focus
word‘s overlap with the immediate right or second right word
in the context window.
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4. Discussion

We set out to investigate the usefulness of memory-based
machine learning techniques for automatic disfluency
chunking in transcriptions of spontaneous speech. We took a
broad conception of what counts as a disfluency, namely
everything that does not fit under the syntactic tree of a
sentence according to a human annotator. This includes,
among other things, filled pauses, false starts, repetitions,
abandoned constituents, and fragmented words. We extracted
simple, low level features that keep track of the local context,
the focus word, and potential overlaps between words in the
context window. It turned out that the best results were
obtained using attenuated data and iterative deepening
parameter optimization. We saw that optimization led to a
significant improvement over the baselines and over the
results obtained with the default TIMBL settings, yielding an
accuracy of 97% (an error reduction of almost 60% with
respect to the highest baseline) and an F-score of 8§0%.

An obvious limitation of the current study is that it is based
on orthographic (correct) transcriptions. It would be highly
interesting to see what happens if we first put the speech data
through an automatic speech recognizer, and perform the
learning experiments on its output (which is more than likely
to contain a lot of recognition errors). It seems a safe bet that
this will lead to a significant drop in performance. However,
we believe that the basic approach followed in this paper will
still be useful. For instance, overlap features may still be
informative, even if entire words are misrecognized.

In addition, we conjecture that the use of additional features
may compensate for some of the loss in performance. This
would hold in particular for prosodic features, which have
been shown to be indicators of certain kinds of disfluencies.
One portion of the CGN data used here is currently being
prosodically annotated, assigning pitch accents and breaks to
the corpus material. We plan to redo the machine learning
experiments described here using recognized words and
prosodic information, and hope to be able to report on the
results in a sequel to this paper.
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