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Abstract

We investigateto whatextentautomatic
learningtechniquescanbeusedfor shal-
low interpretationof userutterancesin
spoken dialoguesystems.This taskin-
volvesdialogueact classification,shal-
low understandingand problemdetec-
tion simultaneously. For this purpose
we train both a rule-induction and a
memory-basedlearningalgorithm on a
largesetof surfacefeaturesobtainedby
affordablemeansfrom anannotatedcor-
pusof human-machinedialogues.Using
a pseudo-exhaustive search,the param-
etersof both algorithmsareoptimized.
Theshallow interpretationtaskturnsout
to be a difficult one, partly sincethere
are94 typesof useranswers.The best
overall accuracy (exactmatch)obtained
was 73.5%, which is a significant im-
provementover the baseline. The best
averageprecisionandrecallfor dialogue
actclassificationwas91.2%,for classi-
fying slot types86.8%andfor detecting
communicationproblems91.0%.

1 Intr oduction

In recentyearstherehasbeenan increasedinter-
est in using statisticaland machinelearningap-
proachesfor the processingof userutterancesin
spoken dialoguesystems.Dialogue act classifi-
cation is anexamplefor which this approachhas
beenrelatively successful. The purposeof this

taskis to determinewhat theunderlyingintention
of a userutteranceis (e.g., suggest,request,re-
ject, etc.). Varioustechniqueshave beenusedfor
thispurpose,includingstatisticallanguagemodels
(ReithingerandMaier, 1995),maximumentropy
estimations(Choi et al., 1999),mixed stochastic
techniques(Stolcke et al., 2000),Bayesianmod-
elling (Keizer et al., 2002) and transformation-
basedlearning(Samueletal., 1998b).

Another task for which suchapproacheshave
been applied is automatic problem detection.
Given that current speechrecognizersmay still
make recognitionerrors,it is importantto try and
detecttheseproblemsassoonaspossible.Various
researchers,including (Hirschberg et al., 2001;
VandenBoschetal.,2001;Lendvai etal.,2002b),
have shown thatuserssignalproblemswhenthey
becomeaware of them and that it is possibleto
detectcommunicationsproblemswith a high ac-
curacy on thebasisof suchusersignals.

Finally, for processing and understanding
spokenuserutterances,statisticaltechniqueshave
also proven their usefulness,either in combina-
tion with rule-basedgrammars(e.g., Van Noord
et al. (1999))or without them(e.g.,Nakanoet al.
(1999)).

Dialogueact classification,problemdetection
and understandingare all highly relevant for the
processingof userutterancesin spoken dialogue
systems.Still, noneof theapproachesmentioned
above addressthesetasksin combination.Sucha
combinedapproachwouldconstituteashallow in-
terpretation modulewhich providescluesfor the
dialoguemanageraboutsemanticaspects(suchas



thecontentsof theuser’sutterance)andpragmatic
aspects(the dialogueact and feedbackaboutthe
statusof the dialogue). If we would be able to
correctlyobtainsucha representation,interaction
with thedialoguesystemcouldimprove,allowing
thedialoguemanagermoduleto switchits strategy
(e.g., to different error recovery or confirmation
strategy) to adaptto thegivensituation.Arguably,
generatingthis combinedsemantic-pragmaticin-
terpretationis a difficult tasksincetherearemany
ways in which thesedifferent cluescanbe com-
bined.In addition,someof theseclueswill behard
to predict(e.g.,whethera userwill acceptinstead
of correctamisrecognition,or whichpiecesof in-
formationauserwill decideto provideor correct).

The goal of this paper is to investigate to
whatextentdifferentmachinelearningapproaches
can be usedfor the purposeof suchshallow in-
terpretation. We use two learning techniques,
namelyrule-induction andmemory-basedlearn-
ing. Both learnersaretrainedona largesetof fea-
turesderivedfrom anannotatedcorpusof human-
machinedialogueswith aDutchtraintimetablein-
formationsystem.Thefeaturescomefrom differ-
entsourcesandareall low-level anddirectlyavail-
ablein mostcurrentspoken dialoguesystems.In
theexperimentsnoexplicit featureselectionisper-
formed. Our earlierresultson problemdetection
(basedon the samecorpus)showed that the best
resultsareobtainedusingall features(Lendvai et
al., 2002b). In addition, the learningtechniques
themselves are capableto determinewhich fea-
turesarebeneficialfor thelearningtaskandwhich
arenot. We do performanextensive searchto es-
timatetheoptimalsettingsof bothalgorithmsfor
thecurrenttask.

Theremainderof thispaperis organizedasfol-
lows. In Section2 wedescribethecorpusthatwas
usedandthe labelling of the utterances.In Sec-
tion 3 wedescribethelearninginstancesthatwere
derived from thecorpusandthegeneralstructure
of theoptimizationandclassificationexperiments.
The resultsaregiven in Section4. We conclude
with somegeneralremarksin Section5.

2 Corpus and Labelling

The corpususedin our study consistsof 3,738
pairsof systemquestionsanduseranswers;in to-

tal 441 full dialogues(involving more than 400
differentspeakers). The dialoguesweresampled
from a rangeof telephonecalls whereusersin-
teractedwith a Dutch train timetableinformation
system. The dialoguesare relatively short (2-10
turns). The systemusesa mixed-initiative dia-
logue strategy that promptsthe user to fill vari-
ousslots.Thesystemneedsto have theseslot val-
uesbeforeit canperforma databasequery. At all
times,thesystemgivesimmediatefeedbackto the
user, via implicit or explicit verification,onwhatit
hasunderstood.Usersof thissystemwill therefore
alwaysbecomeawareof eventualmisunderstand-
ingsfrom thefollowing systemquestion.

The semanticstructureof the systemprompt
and the shallow semanticsof the user’s response
were hand-labelledin terms of a simple and
straightforward tag set, derived from an earlier
annotationfor problem signalling performedby
(Van denBoschet al., 2001)andfrom structured
semanticannotationsof useranwersbasedon up-
dateexpressions(Veldhuijzenvan Zantenet al.,
1999). Theresultingtagsetis unambiguous,thus
systempromptsanduseranswerscanalwaysbe
associatedwith exactly one representation.The
numberof differenttagsfor bothsystemprompts
anduserutterancesis 94. The numberof differ-
entoccurringpairsof systempromptsanduserre-
sponseis 713: thereis no obvious mappingfrom
systemspromptsto userreactions.

Systempromptsaretaggedin termsof dialogue
actsandslots. Basicdialogueactsincludeasking
a question(Q), explicit verification(E), repeating
a prompt(R), askinga meta-question(M ) andof-
fering travel advice(final result,Fr ). Implicit ver-
ification is representedasthesimultaneousoccur-
renceof a questionanda verification (Q;I ). The
slots to be filled from the user input are depar-
tureandarrival station(V andA respectively), and
thecorrespondingday, time of day(i.e.,morning,
noonor night) andhour (representedasD, T and
H respectively). Thesetime slots can be ques-
tionedtogether(“when”, Q DTH ) or in isolation
(e.g., “at what time” Q H). In addition, the sys-
tem can ask whetherthe userwantsto have the
travel advicerepeated(repeatconnection,Q Rc),
or whethertheuserwouldlike to have information
aboutanotherconnection(Q Oc), or anearlieror



laterone,andsoon.
Thefollowing aresometaggedexamplesystem

prompts(translatedfrom Dutch); thegeneraltag-
formatis act slot, theparenticalnumberindicates
thefrequency of a tagin ourdata.

(i) Fromwhereto wheredo youwantto travel?
Q VA (556)

(ii) Whendo you wantto travel from Amsterdam
to Tilburg?
Q DTH;I VA (358)

(iii) I amsorrybut I didn’t understandyou. Could
you repeatfrom whereyou want to travel to
Schiphol?
RQ V;RI A (107)

(iv) I amsorrybut I didn’t understandyou. Could
you repeatyouranswer?
M (66)

User utterancesare likewise representedas a
combinationof dialogueacts and slots. Users
can give information (‘slot-filling’, S), provide
an answerwith explicitly uttering ‘yes’ (Y) or
‘no’/‘don’ t’/‘not’ (N), or acceptincorrect infor-
mation(A). The following arethreedifferentan-
swersto thesecondsystemquestionabove (num-
bersagainindicatefrequency of thetag).Thegen-
eraltag-formatof theclassesis act slot situation.

(i) Tomorrow.
S D ok (237)

(ii) No, not to Tilburg but to SCHIPHOL !
N;S A pr (22)

(iii) Todayat eightin theevening.
A;S DTH pr (3)

The first answeris an input in an unproblematic
situation(ok). Thesecondonefeaturesanexplicit
’no’ andat the sametime correctsthe misrecog-
nizedslot. Thethird answerillustratesacceptance
sincetheuserdoesnot correctthemisrecognized
slot (Tilburg) that is verified implicitly in a there-
foreproblematic(pr ) situation.

Our annotationschemethus usesa separate
marker associatedwith user utterancesthat fol-
low a question–answerpair in which the an-
swer causedsomecommunicationproblem, for
instance(andmostoften) becauseit wasmisrec-
ognized. Therefore,the specialmarker identifies
the point at which the userbecameawareof the

communicationproblem,sincehe or shehasjust
hearedasystempromptnot in accordancewith the
informationjust givenin thepreviousanswer.

In sum, the usertag representsjointly a high-
level dialogueact (S, A, Y, N), a shallow seman-
tic interpretationof thetypesof slotsfilled by the
user, anda high-level pragmatic“awareness”flag
of a communicationproblem. AppendixA illus-
tratesacompletetaggeddialogueof thecorpus.

3 Learning Experiments

3.1 Feature representation

The shallow interpretationlearningtaskcannow
be paraphrasedas follows: given a user utter-
ance in its precedingdialogue context, tag it
with a semantic-pragmaticinterpretation. This
tagincludesdialogueactinformation,information
aboutthe contentsandwhetheror not a commu-
nicationproblemarose.In (Lendvai et al., 2002b)
we studiedtheusefulnessof a wide rangeof fea-
tures for problem detectionin spoken dialogue
systemsusing machinelearning. We utilize the
samefeaturesfor the currentstudyaswell. The
featureswere extractedautomaticallyboth from
the stateof the systemand from the recognized
prosodyandwording of the user’s utteranceand
arelistedin Table1.

From the DialogueManager(DM) we usethe
wordsof the currentand the previous prompt as
well asthesequenceof tensystemprompttypes.
The latter can be seenas a (partial) representa-
tion of thedialoguehistory, showing (amongother
things)for whichslotsthesystemthinksit hasac-
quiredthecorrectvalue.Many studiesondialogue
act classificationalsomake useof the history of
thecomputedclassesof userinput,e.g.,Samuelet
al. (1998a).However, we optedfor not usingthis
feature,in orderto avoid cumulative error (Qu et
al., 1997)originatingfrom incorporatingincorrect
hypotheses.At the sametime, using the correct
taggedhistory of the user’s utterancesis not re-
alistic sincea spoken dialoguesystemcannever
have accessto thoseon-line.

The featuresrepresentinguser utterancesare
derived from both the output of the Automatic
SpeechRecognitionmodule(ASR) aswell asthe
raw audio.TheASR outputof this particularsys-



Aspect Feature
DM: prompt sequenceof last10 prompttypes
DM: lexical wordsin currentandpreviousprompt
ASR:confidence summedconfidencescoreof mostconfidentpathin currentwordgraph
ASR:branching branchingfactorin thewordgraphof currentandpreviousutterance
ASR: lexical bag-of-words of previous and currentuserturn; most confidentrecog-

nizedstring
Prosody:pitch maximumandminimumF0; positionof maximumandminimum;mean

F0andstandarddeviation
Prosody:energy maximumenergy (RMS);positionof maximum;meanRMSandstandard

deviation
Prosody:duration lengthof utterancein seconds;lengthof initial pausein frames
Prosody:tempo numberof syllablespersecond

Table1: Overview of theemployedfeatures.

tem produceda word graph, containingvarious
word hypothesesalongwith confidencescoresin-
dicatinghow surethesystemis that it recognized
a certainword correctly. From eachword graph
we strippedthe recognizedwords (including the
potentially incorrectones)and encodedtheseas
a 759 bits bag-of-words (BoW) vector. The 759
bits representall wordsthatoccurredat leastonce
in our corpus. In eachBoW vector we indicate
whethera word was present(‘p’) in the corre-
spondingwordgraphor not (‘a’).

Fromtheword graphwe extractedtheduration
of theinitial pause,thespeechtempo,andthede-
greeof branching. The initial pausein the utter-
ance(the length of the silencethat precedesthe
utterance)maycuethedegreeof hesitationof the
userin responding,cf. (Krahmeretal.,2001).The
speechtempoof the utterancecorrespondsto the
numberof utteredsyllablespersecond.

The complexity (or branching factor) in the
word graph was also calculated both for the
currentand the precedingutterance,characteriz-
ing the degreeof confusionin the graph; much
branchingin theword graphcanbe an indication
of systemuncertaintyor noisy user input. The
confidencemeasurementsof the ASR were also
converted into a feature: we summedthe confi-
dencescoresover the nodesof the overall most
confidentpathfor theuserinput.

Furthermore,we incorporateprosodicfeatures
in the learning since those have been reported

to function well for problemdetectionpurposes
(see e.g., Hirschberg et al. (2001)). Non-
standardprosodymay be a signal of hyperartic-
ulate speechwhich is typically associatedwith
corrections(comparethe way “Schiphol” is pro-
nouncedin the seconduserexampleutterancein
Section2). Fromtheaudiorecordingsof thecor-
puswe automaticallyextractedloudness(in terms
of RMS,i.e, rootmeansquareenergy), durationof
theutterancefrom silenceto silenceandpitch (in
termsof F0, i.e., fundamentalfrequency).

Eachof the3,738userutterancesin thecorpus
is representedasa vectorconsistingof 2,479fea-
tures.Eachinstancecontainsthetaggedrepresen-
tation of the correspondingutterance;this is the
tagto bepredicted.

3.2 Learners

Two learningalgorithmswere usedfor the shal-
low interpretationtask,a memory-basedoneand
a rule-induction one. For the former we used
theTiMBL softwarepackage,version4.3 (Daele-
manset al., 2002). TiMBL incorporatesa vari-
ety of memory-basedpatternclassificationalgo-
rithms,eachwith fine-tunablemetrics. We chose
for working with the IB1 algorithmonly (the de-
fault in TiMBL), taking the classical

�
-nearest

neighborapproachto classification.This
�
-NN al-

gorithmlooksfor thoseinstancesamongthetrain-
ing datathataremostsimilar to the testinstance,
andextrapolatestheirmajorityoutcometo thetest



instance’s class. Memory-basedlearningis often
called“lazy” learning,becausetheclassifiersim-
ply storesall trainingexamplesin memory, with-
out abstractingaway from individual instancesin
thelearningprocess.

In contrast,our other classifieris a “greedy”
learningalgorithm, RIPPER (Cohen,1995), ver-
sion1, release2.4. This learnerinducesrule sets
for eachof the classesin the data,with built-in
heuristicsto maximizeaccuracy andcoveragefor
eachruleinduced.Thisapproachaimsatdiscover-
ing theregularitiesin thedata,andrepresentit by
thesimplestpossibleruleset.Rulesareby default
inducedfirst for low-frequency classes,leaving the
mostfrequentclassthedefault rule.

3.3 Experimental set-up

Training and testingwas doneby 10-fold cross-
validation (CV), where re-samplingwas carried
out by means of dialogue-basedpartitioning,
therebyensuringthat no materialfrom the same
dialoguecould be part of both the training and
the testset. The performanceof the learnerswas
evaluatedaccordingto four measures.(1) Predic-
tive accuracy (the percentageof correctly tagged
test instances). Note that this is basedon ex-
act matches. Thus if the learner hypothesizes
A;S DTH ok andthe correcttag is A;S DTH pr,
this countsasan incorrectprediction. The other
threemeasuresare usedto gain more insight in
predictionof thecomponentsandinvolve thepre-
cision,recall,andF-scoreproportionallyweighted
over all tagsof (2) thepartof thetagrepresenting
the higher-level dialogueact (S, A, Y, or N), (3)
thepartof thetagrepresentingthefilled slots,and
(4) thepartof thetagrepresentingthepresenceof
acommunicationproblem.TheF-scorerepresents
theharmonicmeanof precisionandrecall.Weuse
theunweightedvariantof theF-score,whichis de-
finedas �������	�
������ ( � = precision,� = recall)
(van Rijsbergen,1979). Beforethe actualexper-
imentswereperformed,we performeda pseudo-
exhaustive searchfor the optimal settingof both
algorithms.

3.4 Pseudo-exhaustive parameter
optimization

Both IB1 and RIPPER have parametersthat bias
their performance. Since it is unknown before-
handwhich parametersettingyieldsthebestgen-
eralisationperformance,andsinceit is notallowed
to usetestmaterialto make thatestimation,a rea-
sonableremainingestimatecanbe madeby per-
forming experimentson the training material it-
self: e.g. to run a 10-fold experimenton each
of the 90% training set splits within the over-
all 10-fold CV experiment(cf. Kohavi andJohn
(1997)). Oneparametersettingcanthusbetested
by running 10 wrapped10-fold CV experiments
on training material,andaveragingover the 100
test scores. This procedurecan be repeatedfor
otherparametersettings,andtheparametersetting
with the highestestimatedgeneralisationperfor-
mancecan then be selectedto be appliedto the
full 90%trainingset,andtestedon theyet unseen
10%testset.

Thesizeof our datasetandtheavailablecom-
puterpowerenabledusto testapseudo-exhaustive
combinationof parametersettings.The searchis
not truly exhaustive becausewe did not try the
massivenumberof possiblevaluesfor numericpa-
rameters;we only testedthe rangeof valueswe
estimatedto bereasonable.Nevertheless,our ap-
proachsearchesthespaceof possibilitiesconsider-
ably morethoroughthaneconomicsearchheuris-
tics such as Monte Carlo sampling (Samuelet
al., 1998a).With IB1 the following metricswere
tested,amountingto 360 permutedcombinations
tested(for details,cf. Daelemanset al. (2002)):
� thenumberof nearestneighboursusedfor ex-

trapolationwere1, 3, 5, 7, 9, 11, 13, 15, 19,
and25� thedistanceweightingmetricof the

�
nearest

neighborswas either majority classvoting,
linearly-inverseddistanceweighting,inverse
distanceweighting,or exponential-decaydis-
tanceweightingwith � setto 1, 2, or 4� for computingthesimilarity betweenfeatures
either the overlap function or the modified
valuedifferencemetric(MVDM) functionwas
used� for estimatingtheimportanceof theattributes
in theclassificationtaskeitherno weighting,



accuracy dialogueact filled slot types comm.problems
(%) pre rec F pre rec F pre rec F

baseline 13.5 23.6 21.3 22.4 — 0.0 — — 0.0 —
1.5 1.9 1.7 1.8 — 0.0 — — 0.0 —

one-feature 40.2 73.4 66.9 70.0 63.7 62.2 62.9 73.5 50.8 60.0
1.8 2.0 1.9 2.7 3.3 2.6 4.0 4.9 4.5 5.4

Table2: Baselineandsimplelearning(i.e., onefeatureonly) scoreson shallow semanticinterpretation,
averagedover 10-fold CV experiments:accuracy, andproportionallyweightedprecision,recall andF-
scoreon dialogueact type, filled slot types,and communicationproblems. Eachsecondline shows
standarddeviation.

Information Gain, Gain Ratio, Chi-squared,
or shared-varianceweightingwasused.

For theRIPPER algorithmthelearnersto beop-
timizedwerecreatedby systematicallyvaryingthe
following parametersandtheirvalues,totalling24
permutedcombinationstestedper parameterset-
ting:

� negative testson the featureattributeswere
eitherallowedor disallowed� thenumberof optimizationroundson thein-
ducedrulesetwas0, 1, 2, 3� theamountof learninginstancesto be mini-
mally coveredby eachrulewassetto 1, 2, 5,
and10� the codingcostof a hypothesiswasallowed
to bemultiplied by 0.5,1.0,and2.0.

3.5 Baselines

The straightforward baselineis to alwayspredict
the majority class. The mostfrequenttag among
the 3738 user utterancesin the corpus is N ok
(theuseruttersa negative lexical item but it does
not signala problem: “no, thankyou”). This oc-
curs500times. Thestrategy of alwayspredicting
this label yields 13.5%accuracy (baseline). In a
way, this majority classbaselineis misleading;a
negative answeris muchmorelikely following a
yes/noquestion-typepromptsuchasQ Oc (“Do
youwantto know anotherconnection?”)thanit is
following a questionwhich involvesvariousslots
(e.g.,arrival anddestination,Q VA). An alterna-
tive, directly learnablefrom thedata,is to predict
userinputclassessolelyon thebasisof onesingle
feature:themostrecentlyaskedsystemprompt.

Always guessingthe tag occuring most fre-
quentlyin responseto thelastsystemprompttype
(basedon the 90% training sets,in the same10-
fold partitionsasusedby thelearners)producesa
baselineof 40.2%accuracy, an F-scoreof 70.0%
on predictingthe higher-level tags(S, A, Y, and
N), an F-scoreof 62.9%on predictingthe types
of filled slots,andanF-scoreof 60.0%on thede-
tectionof communicationproblems.This learning
experimentprovidesuswith averysharpbaseline,
but is in a way moreinformative thanthe major-
ity classbaseline.Details(includingprecisionand
recall) aregiven in Table2. Generally, precision
scoresarehigherthanthoseof recall.

4 Results

Table3 displaystheperformanceof thetwo learn-
ers on the shallow interpretationtask. As was
to be expected,both learning methodsperform
significantly better than the majority classbase-
line. However, if we comparethe resultswith
thoseobtainedby training on only a single fea-
ture(themostrecentsystemprompttype),amore
interestingpicture emerges. On accuracy (i.e.,
thestrongest,exactmatchcriterion),bothlearners
outperformthe one-featurelearner; IB1 reduces
error by 57%, RIPPER by 32%. Both theseac-
curacy scoresarestatisticallysignificantin a one-
tailed � -test(IB1: ���������������
 "!#�	���%$ , RIPPER:
�&�'$)(%�+*	$��
 ,!-�	���%$ ).

If we look at the more detailedsub-measures,
we seethat both learnersperformbetterthanthe
onefeaturelearnerin thethreesubtasks:dialogue
actclassification,predictingthetypeof filled slots,
andproblemdetection.Interestingly, for all tasks



accuracy dialogueact filled slot types comm.problems
algorithm (%) pre rec F pre rec F pre rec F
IB1 73.5 93.3 89.2 91.2 90.1 83.7 86.8 94.5 87.9 91.0

2.1 1.3 1.5 1.3 1.8 3.1 2.1 1.7 1.4 1.1

RIPPER 59.5 77.3 70.8 73.9 88.1 59.3 69.7 95.3 55.5 69.8
3.8 8.9 7.6 8.2 14.2 6.8 5.5 2.4 6.9 5.8

Table3: Scoresproducedby IB1 andRIPPER on shallow semanticinterpretation,averagedover 10-fold
CV experiments:accuracy, andproportionallyweightedprecision,recall andF-scoreon dialogueact
type,filled slot types,andcommunicationproblems.Eachsecondline shows standarddeviation.

RIPPER (trained on all features)performsunder
IB1. IB1 improvesover thebaselineandover RIP-
PER by abroadmargin.

The one-featurelearner performs reasonably
well becausethereappearto bestrongcorrelations
betweensystempromptsandtypical useranswers
that follow it (Lendvai et al., 2002a). This is not
surprising;the hardpart of the task is to predict
thosecaseswhere the user gives a different re-
sponsethan what is most likely. This is where
IB1 andRIPPER canin principledobetterthanthe
baseline,using informationprovided by the con-
text features.

The reasonwhy the predictionof communica-
tion problemsat the “aware” point is donebetter
by the two learnersthan the baselineis that it is
fairly unpredictablewhena communicationprob-
lem occurs;at least, it is lessstrongly relatedto
the mostrecenttype of systemprompt. The fact
that IB1 is ableto substantiallyimprove over the
baselineandover the rule-inductionlearnersug-
geststhatthisalgorithmis ableto useinformation
in all other featuresbesidesthe most recentsys-
tem promptto positive effect, whereasRIPPER is
unableto utilize suchinformation. However, as
(Van denBoschet al., 2001)and(Lendvai et al.,
2002b)report,RIPPER canattainhigherscoreson
thesamecorpus—F-scoresaround90%—on de-
tectingthecommunicationproblemswhentrained
on thatparticularproblemin isolation.

The near-exhaustive parameter optimization
leadto a smallvarietyof settingsfor IB1: theop-
timal

�
waseither5, 7 or 9, usingthe MVDM dis-

tancefunction, a sharedvariancefeatureweight-
ing, andlinear-inversedor exponentialdecaydis-
tanceweighting. For RIPPER theoptimal estima-

tion wasto allow negation,setthecodingcostfac-
tor to ����� (therebysimplifying the hypotheses),
use default rule ordering, and cover a minimal
numberof 10 instanceperrule. Theresultsof the
semi-exhaustive parametersearchsuggeststhat it
paysoff to baseclassificationson five IB1 to ten
RIPPER instances,ratherthanlower numbers(e.g.
case-specificrulesor

� �.$ ) or higher. This opti-
mal coverageor nearestneighborhoodsizecanbe
consideredfairly narrow.

In AppendixB a selectionfrom thesetof rules
generatedby RIPPER aregivenandexplained.

5 Concluding remarks

Weinvestigatedthelearnabilityof shallow seman-
tic interpretationof userutterancesin atrain infor-
mationdialoguesystemby two machinelearning
algorithms. We find that guessingthe most fre-
quentusersemanticsgiven a systemprompt is a
goodstrategy, but still leavesa considerablemar-
gin of error. The memory-basedlearnerIB1 im-
proved largely over this simplestrategy andover
the rule-inductionlearnerin accuracy andperfor-
manceon the threesubtasks.The rule induction
algorithm RIPPER performedworse, apparently
hinderedby the fact that it was unableto learn
rulesfor many differentuseranswertypes,dueto
thelack of sufficient examplesof thesetypes,and
reliableregularitiesin them.

The positive resultswith IB1 do suggestthat
shallow semanticinterpretationfrom surfacecon-
text features(systemprompts,word graphs,user
prosody)in annotateddatais possible,alsowhen
dialogueact classification,slot filling, andprob-
lem detectionaretreatedtogetherasoneshallow
interpretationtask. Our resultsleave to be inves-



tigatedhow well the learnerswould perform on
eachof the tasksin isolation. For problemdetec-
tion, we alreadyknow performanceis not better
whenthetaskis isolated.For thedialogueactclas-
sificationandslot filling task,earlierwork on the
sametrain informationdatacanserveascompara-
tivematerial(VeldhuijzenvanZantenetal., 1999)
if the slot-filling task is extendedto identifiying
theslot values.

Themethoddescribedin thispaperis generally
applicableasit is languageandtaskindependent.
Given enoughdata,it is likely that themethodis
more efficient in constructionand running time
than its counterpartthat usesfull parsingand/or
full semanticanalysis. We hypothesizethat with
the useof additionalfeaturesthe currentperfor-
mancewould improve, so thateventuallyit could
beintegratedandtestedin thecontext of aspoken
dialoguesystemto achievemorerefinedstrategies
for interpretinguserinput.
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Appendix A: An exampleannotateddialogue- English translation

Turn# Turn taker Utterance Semantictag
1 System goodmorning. this is theautomaticinformationsystemof public

transportation.thissystemprovidesinformationexclusively about
train travelsfrom NS-stationto NS-station.from which stationto
whichstationwould you like to travel?

Q VA

User I wantto go from Voorschotento theHaguecentralstation S VA ok
2 System whendo you want to travel from Voorschotento Utrechtcentral

station?
Q DTH;I VA

User I wantto go to theHaguecentralstation S A pr
3 System whendoyouwantto travel from Voorschotento theHaguecentral

station?
Q DTH;I VA

User thedayaftertomorrow S D ok
4 System at whattime doyou wantto travel thedayaftertomorrow? Q H;I D

User somewherein theevening S T ok
5 System soyou wantto travel betweeneightteenandtwentyfour hours? E T

User yes Y ok
6 System I amsorryI did notunderstandyou. couldyourepeatwhetheryou

wantto departbetweeneightteenandtwentyfour hours?
RE T

User yes Y pr
7 System therearefive connections.this is theearliest.by passangertrain

to ( /0/0/ ). doyou wantmeto repeattheconnection?
Fr;Q Rc

User yesrepeatit Y ok
8 System I amsorryI did notunderstandyou. couldyou sayagainif I need

to repeattheconnection?
RQ Rc

User yes Y pr
9 System I amsorrybut againI did notunderstandyou. couldyousayagain

if I needto repeattheconnection?
RQ Rc

User yes Y pr
10 System I repeattheconnection.by passangertrain to ( /0/0/ ). do you want

meto repeattheconnection?
Rc;Q Rc

User no N ok
11 System I amsorryI did notunderstandyou. couldyou sayagainif I need

to repeattheconnection?
RQ Rc

User nodon’t repeat N pr
12 System I amsorrybut againI did notunderstandyou. couldyousayagain

if I needto repeattheconnection?
RQ Rc

User no N pr
13 System doyou wantto know thenext connection? Q Nxc

User no N ok
14 System doyou wantto know anotherconnection? Q Oc

User no N ok
15 System I am sorry I did not understandyou. could you sayagainif you

wantto know anotherconnection?
RQ Oc

User no I don’t wantto know anotherconnection N pr



Appendix B: SelectedRIPPER rules

Thestructureof aruleis: if ! featuretest1 (AND ! featuretest1 , etc.) then class( 2 / 3 ), where! feature
test1 is a teston thepresenceof a nominalfeaturevalue,thepresenceof anelementof a setfeature,or
a rangeof a numericfeature. 2 indicatesthenumberof instancesa rule covers, 3 thenumberof false
predictions.
Lexical itemsaretranslatedfrom Dutchinto English.Featurecodesare:promptC: currentprompt;sysC:
currentsystemutterance;usrC/P: current/previous userutterance;rmsstdev, rmsmean,ipausedurare
prosodicfeatures(seeTable1).
Rule1 capturesthecharacteristicsof acceptance,whentheuseranswerswith explicit ’yes’ to thesys-
tem’s confirmationof themisunderstoodtime slot. Interestingly, thelearnerusesa prosodicfeature(the
standarddeviation in theloudnessof theinput) to baseits predictionon.
In Rule2 weseethatif themoreemphatic’whereto’ interrogative is usedby thesystem,theuseranswer
will oftencontainarrival informationonly, andthishappensin problematicsituations.
Rule3 is fairly general,hypothesizingthatwhenever thesystemasksfor thetime of travel, theuserwill
provide it without experiencingmisunderstandings(ok), andindeedthis rulehasvery low precision.
Hypothesis4 describesa dialoguesituationwhenthesystemtalksaboutitself (’I’ is present),prompt-
ing for time information(’o’clock’ is present),whereasin theprevious turn theuserhasprovided that
(‘o’clock’ is in thewordgraph).Nonetheless,theuseris providing theinformation(S H) again.
Rule 5 shedslight on theunproblematiccircumstancesof giving thedepartureslot value: theuserdid
not yetsaythis in thepreviousturn (’to’ wasabsentin thatwordgraph).
The sameslot is filled with a certainamountof hesitation(signalledby the the durationof the initial
pausefeature)underproblematiccircumstancesin Rule6.
A goodstrategy from theclassifieris to assumeanunproblematic‘yes’ answerwhencertainwords(’to’,
’no’, ’from’) werenot recognizedin theinput but ’yes’ waspresentin thewordgraph(Rule7).

1. if ’so’ 4 sysC 5 promptC � E T 5 ’o’clock’ 4 usrP 5 rmsstdev 16� 874 then
A;Y pr

(10/0)

2. if ’whereto’ 4 sysCthen S A pr (35/7)
3. if ’ time’ 4 sysCthen S H ok (97/75)
4. if ’ time’ 4 sysC 5 ’I’ 4 sysC 5 ’o’clock’ 4 usrPthen S H pr (25/7)
5. if promptC � Q V;E A 5 ’ to’ 74 usrP 5 rmsmean!8� 240then S V ok (10/0)
6. if ’from’ 4 sysC 5 ’ to’ 74 usrC 5 ipausedur16� 12 then S V pr (68/5)
7. if ’ to’ 74 sysC 5 ’no’ 74 usrC 5 ’from’ 74 sysC 5 ’yes’ 4 usrCthen Y ok (82/12)


