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Investigation and Treatment of Missing Item Scores
in Test and Questionnaire Data

Klaas Sijtsma and L. Andries van der Ark
Tilburg University

This article first discusses a statistical test for investigating whether or not the pattern of
missing scores in a respondent-by-item data matrix is random. Since this is an asymptotic
test, we investigate whether it is useful in small but realistic sample sizes. Then, we discuss
two known simple imputation methods, person mean (PM) and two-way (TW)
imputation, and we propose two new imputation methods, response-function (RF) and
mean response-function (MRF) imputation. These methods are based on few assumptions
about the data structure. An empirical data example with simulated missing item scores
shows that the new method RF was superior to the methods PM, TW, and MRF in
recovering from incomplete data several statistical properties of the original complete data.
Methods TW and RF are useful both when item score missingness is ignorable and
nonignorable.

Introduction

A well known problem in data collection using tests and questionnaires
is that several item scores may be missing from the n respondents by J items
data matrix, X. This may occur for several reasons, often unknown to the
researcher.  For example, the respondent may have missed a particular item,
missed a whole page of items, saved the item for later and then forgot about
it, did not know the answer and then left it open, became bored while making
the test or questionnaire and skipped a few items, felt the item was
embarrassing (e.g., questions about one’s sexual habits), threatening
(questions about the relationship with one’s children), or intrusive to privacy
(questions about one’s income and consumer habits), or felt otherwise
uneasy and reluctant to answer.

The literature is abundant with methods for handling missing data. For
example, Little and Schenker (1995) and Smits, Mellenbergh, and Vorst
(2002) discuss and compare a large number of simple and more advanced
methods. Several methods are rather involved and, as a result, sometimes
perhaps beyond the reach of individual psychological and educational
researchers who are not trained statisticians or psychometricians. One

Correspondence concerning this article should be addressed to Klaas Sijtsma, Department
of Methodology and Statistics, FSW, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,
The Netherlands; e-mail: k.sijtsma@uvt.nl
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example is the EM method (Dempster, Laird, & Rubin, 1977; Rubin, 1991)
that alternately estimates the missing data, then updates the parameter
estimates of interest, uses these to re-estimate the missing data, and so on,
until the algorithm converges to, for example, maximum likelihood estimates.
Another example is multiple imputation (e.g., Little & Rubin, 1987). Here, w
complete data matrices are estimated by imputing for a respondent having
missing data, for example, scores of sets of other respondents with complete
data that are similar to the respondent’s available data. Then, statistics based
on the w (usually a surprisingly small number; see Rubin, 1991) complete data
matrices, are averaged to obtain parameter estimates and standard errors.
Data augmentation (Schafer, 1997; Tanner & Wong, 1987) is an iterative
Bayesian procedure that resembles the EM method and also incorporates
features of multiple imputation (Little & Schenker, 1995).

Our starting point was that many researchers do not have a statistician or a
psychometrician in their vicinity who is available to help them implement these
superior but complex and involved missing data handling methods. Those
researchers may be better off using simpler methods, that are easy to implement
and lead to results approaching the quality of EM and multiple imputation. A
circumstance favorable for these simpler methods to succeed is that the items
in a test measure the same underlying ability or trait and, thus, the observed item
scores contain much information about the missing item scores. This helps to
obtain reasonable estimates of missing item scores, even with simple methods.

However, first we investigated whether an asymptotic statistical test
(Huisman, 1999) for the hypothesis that the pattern of missing item scores
in a data matrix X is random (to be explained later on), is useful in small but
realistic sample sizes. This test may be seen as a useful precursor for item
score imputation: When its conclusion is that item score missingness is
random, the researcher can safely use a sensible item score imputation
method to produce a complete data matrix. When item score missingness is
not random, imputation methods must be robust so as to produce a data
matrix that is not heavily biased. We investigated this robustness issue in a
real data example for four imputation methods. Two simple methods were
known (e.g., Bernaards & Sijtsma, 2000), and two others were new
proposals based on concepts from item response theory (IRT), but without
using strong assumptions about the data structure.

Before we continue, it may be noted that a purely statistical approach of
the missing data problem may be too simple in some cases. For example, when
one item produces most of the missing scores then, depending on the research
context, the item may simply be deleted from further research (e.g., it was
printed on the back of the page and therefore missed by many), it may be
reformulated (e.g., positively worded instead of negatively, which caused
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confusion) in future research, or it may be replaced (e.g., respondents did not
understand what was asked of them). Thus, the statistical treatment of missing
item scores should be considered in combination with other courses of action.

Types of Missing Item Scores

The next example item was taken from a questionnaire that measures
people’s tendency to cry (Vingerhoets & Cornelius, 2001):

I cry when I experience opposition from someone else
Never  �   �   �   �   �   �   �   Always

In general, for a particular respondent or group of respondents nonresponse
may depend on:

1. The missing value on that item.  For example, belonging to the right-most
“Always” group may imply a stronger nonresponse tendency than belonging
to the left-most “Never” group.  Consequently, any missing data method based
on available item scores would underestimate the missing value.

2. Values of the other observed items or covariates.  For example, for
men it may be more difficult to give a rating in the three boxes to the right
(showing endorsement or partial endorsement) than for women.  Thus,
gender has a relation with item score missingness and this can be used for
estimating the missing item scores.

3. Values of variables that were not part of the investigation.  For example,
nonresponse may depend on the unobserved verbal comprehension level of the
respondents or on their general intelligence.  This kind of missingness is
relevant only if the unobserved variables are related to the observed variables,
and have an impact on the answers to the items in the test.

Item scores are missing completely at random (MCAR; see Little &
Rubin, 1987, pp. 14-17) if the cause of missingness is unrelated to the missing
values themselves, the scores on the other observed items and the observed
covariates, and the scores on unobserved variables. Thus, item score
missingness is ignorable because the observed data are a random sample
from the complete data. After listwise deletion, statistical analysis of the
resulting smaller data set results in less statistical accuracy and less power
when testing hypotheses, but unbiased parameter estimates.

When nonresponse depends on another variable from the data set, but
not on values of the item itself or on unobserved variables, item scores are
missing at random (MAR; see Little & Rubin, 1987, pp. 14-17). For example,
men may find it more difficult to answer “always” to the example item than
women, resulting in more missing item scores for men. The distributions of
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item scores are different between men and women, but the distributions are
the same for respondents and nonrespondents in both groups. Note that
within the groups of men and women we have MCAR (given that no other
variables relate to item score missingness).  This means that if, for example,
a regression analysis contains gender as a dummy variable the estimates of
the regression coefficients for both groups are unbiased.  Thus, when
missingness is of the MAR type it is also ignorable.

When missingness is not MCAR or MAR, the observed data are not a
random sample from the original sample or from subsamples.  Thus, the
missingness is nonignorable.  In practice, a researcher can only observe that
item scores are missing.  To decide whether item score missingness is
ignorable or nonignorable, he/she has to rely on the pattern of item score
missingness in the data matrix, X. When he/she finds no relationships to other
observed variables, he/she may decide that the missingness is of the MCAR
type. When a relationship to other observed variables is found, he/she may
use these variables as covariates in multivariate analyses or to impute
scores. When a more complex pattern of relationships is found, item score
missingness may be considered nonignorable. A reasonable solution is to
impute scores when the imputation method is backed up by robustness
studies (e.g., Bernaards & Sijtsma, 2000, for factor analysis of rating scale
data; and Huisman & Molenaar, 2001, in the context of test construction).

Missing Item Score Analysis

Theory for Analysis of the Whole Data Matrix

The scores on the J items are collected in J random variables X
j
, j = 1, ...,

J. For respondent i (i = 1, ..., n), the J item scores, X
ij
, have realizations x

ij
. Let

M
ij
 be an indicator of a missing score with realization m

ij
; m

ij
 = 0 if X

ij
 is

observed and m
ij
 = 1 if X

ij
 is missing. These missingness indicators are

collected in an n × J matrix M.
Huisman (1999; Kim & Curry, 1978) investigated whether or  not the

pattern of missingness in the data matrix X  is unrelated among items.  This
is called random missingness and is defined as follows.  Frequency counts
of observed missing scores and expected missing scores are compared,
given  statistical independence of the missingness between the items.  Thus,
whether a respondent misses the score on item j is unrelated to whether he
(or she) misses the score on item k.  Items j and k may have different
proportions of missing  scores.  A more restricted assumption, to be used
later on, is  that the proportions for all J items are equal, as is typical  of
MCAR. It may be noted that MCAR implies random missingness.
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Huisman (1999) classifies each respondent in the sample into one of J + 2
classes: (a) NM (No Missing): none of the item scores in a pattern are
missing; (b) M

j
 (Missing on item j): a score is missing only on item j; and (c)

MM (Multiple Missings): scores are missing on at least two items.
Let q

j
 = �

i
M

ij
/n be the proportion of missing values on item j in the

sample and let p
j
 = 1 – q

j
 be the proportion of observed values on item j.  Then,

under the assumption of random missingness (as defined above), the
expected values for NM, M

j
, and MM are

( )

( ) ( )

( ) ( ) ( )

1

1

;

;  and

.

J

j
j

j
j

j
J

j
j

E NM n p

q
E M E NM

p

E MM n E NM E M

=

=

=

=

= − −

∏

∑

The observed frequencies in these J + 2 classes are denoted by O(NM),
O(M

j
), and O(MM).  Under the assumption of random missingness

Pearson’s chi-squared statistic,

(1)
( ) ( )[ ]

( )
( ) ( )

( )
( ) ( )[ ]

( )

2 22
2

1

,
J j j

j j

O M E MO NM E NM O MM E MM
X

E NM E M E MM=

 −− − = + +∑

has a �2 distribution with J + 1 degrees of freedom as n → � (see, e.g.,
Agresti, 1990, pp. 44-45).  For n = 8, Table 1 shows an incomplete data matrix
X and the corresponding missingness indicator matrix, M.  This example is
used to calculate the X2 statistic (Equation 1). Because p

2
 = 1, we have that

E(M
2
) = 0; this is a structural zero, which is ignored in the computation of X2

at the cost of one degree of freedom. Table 2 shows the observed and the
expected frequencies that result in X2 = 1.65 (df = 5).  Given the small sample
size, it makes no sense to draw any inferences on the basis of the outcome.

Robustness of X2 Statistic for Small Samples

Problem Definition.  The robustness of Huisman’s (1999) asymptotic
test for small (realistic) samples is important. For similar expected
frequencies in each of the J + 1 classes, Koehler and Larntz (1980) found that
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Table 1
Artificial Data Matrix X Containing Missing Scores (Blanks), and
Corresponding Missingness Indicator Matrix M

Case Variables Missingness Indicators

X
1

X
2

X
3

X
4

X
5

M
1

M
2

M
3

M
4

M
5

1 2 1 1 0 0 0 1 1
2 3 5 4 5 5 0 0 0 0 0
3 4 3 3 4 0 0 1 0 0
4 1 1 1 3 2 0 0 0 0 0
5 3 3 4 1 0 0 1 0
6 5 5 3 5 0 0 0 1 0
7 1 3 2 2 2 0 0 0 0 0
8 3 3 1 2 0 0 0 0 1

q
j

.125 .0 .125 .375 .25
p

j
.875 1.0 .875 .625 .75

Table 2
Expected and Observed Frequencies for the Data in Table 1

Frequency Expected Observed

NM 2.87 3
M

1
0.41 0

M
3

0.41 1
M

4
1.72 1

M
5

0.96 1
MM 1.63 2
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statistic X2 approximates a chi-squared distribution when n > �10 × (J + 1),
given that n > 10 and J > 2. This rule does not apply when expected
frequencies are dissimilar, as in Huisman’s derivation of the expected
frequencies assuming random missingness. Now, if we assume the stronger
null-hypothesis of MCAR, under Huisman’s classification the expected
frequencies depend on the mean proportion of missing values, /jq q J= ∑ ,
and test length, J, resulting in

(2)

( ) ( )
( ) ( )

( ) ( ) ( )

1

1

1 ,

1 ,  and

1 1 1 .

J

J
j

J J

E NM n q

E M nq q

E MM n q Jq q

−

−

= −
= −

 = − − − − 

Note that as with Koehler and Larntz’s study the E(M
j
)s are all equal, but that

the other two expected frequencies are different from this value. Because
of this dissimilarity, we investigated whether the conditions given by Koehler
and Larntz for X2 to approximate a chi-squared statistic also hold here.

Simulation Study on Robustness.  For different combinations of n, q ,
and J (i.e., n = 10, 20, 50, 100, 200, 500, 1000, 2000; q  = 0.01, 0.05, 0.10; and
J = 10, 20), missingness indicator matrices, M, were simulated. The elements
of M were drawn from the multinomial distribution with probabilities based
on Equation 2. Table 3 shows the multinomial distributions of the expected
scores for q  = 0.01, 0.05, 0.10; and J = 10, 20 (these distributions are the
same for different n). The last two rows give evenly distributed classes,
corresponding to Koehler and Larntz’s (1980) study. The last two columns
give the sample sizes needed such that the Type I error rate approximates
well the nominal significance level, � = 0.05, under a chi-squared distribution.
Column n

accurate
 gives the sample sizes that resulted in a relatively close

approximation (Type I error rates between 0.050 and 0.055), and Column
n

inaccurate
 gives the sample sizes that resulted in less accurate Type I error

rates (between 0.050 and 0.080). If the sample size was smaller than
indicated in the last two columns, the Type I error rate was less accurate and
always exceeded 0.05. This means that for smaller sample sizes MCAR was
supported too often. Table 3 shows that the required sample size for X2 is
smallest when the expected proportions are evenly distributed, as in Koehler
and Larntz’s study. Moreover, if the E(M

j
)s are small (e.g., when q  = 0.01)

the required sample size increases rapidly.
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Discussion. For a test of reasonable length (J = 20) and for little
nonresponse ( q  = 0.01, as in a rather well-controlled data collection
procedure), n = 1000 is needed for the Type I error rate to match the nominal
error rate. For higher percentages of nonresponse, smaller samples (n = 500)
will yield this result. Given the limitations of this simulation, as a rule of the
thumb for trusting the p-values of the chi-squared statistics one can compute
various power divergence statistics (Cressie & Read, 1984) and compare the
differences. Power divergence statistics for Huisman’s classification are
given by,

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )1

2
.

1

J
j

j
j j

O M O NM O MM
S O M O NM O MM

E M E NM E MM

�
��

� � =

               = + +       +              
∑

The power divergence statistic S equals X2 for � = 1, the likelihood ratio
statistic G2 for � → 0, Neyman’s modified X2 for � = –2, the Cressie-Read
statistic (CR) for � = 2/3, and the Freeman-Tukey statistic for � = –1/2 (see,
e.g., Agresti, 1990, p. 249). Asymptotically, all power divergence statistics
converge to a chi-squared distribution. Differences between the various
power divergence statistics may occur when the sample size is too small, and
then the resulting p-values should be mistrusted. Koehler and Larntz (1980;

Table 3
Distribution of the Multinomial Resulting from Huisman’s Classification, and
Sample Sizes Needed to Approximate the Correct Nominal Type I Error Rate

q J E(NM)/n E(M
j
)/n E(MM)/n n

accurate
n

inaccurate

.01 10 .9044 .0091 .0046 1000 100
20 .8179 .0083 .0161 1000 100

.05 10 .5987 .0315 .0863 100 20
20 .3585 .0187 .2675 500 50

.10 10 .3487 .0387 .2543 100 20
20 .1216 .0135 .6084 500 100

10 .0833 .0833 .0833 50 10
20 .0455 .0455 .0455 100 20
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also, see Von Davier, 1997) noted that for sparse multinomials X2 converges
faster to a chi-squared distribution than G2.

Analysis of Missingness for Individual Items

Knowing which items in particular caused nonignorable nonresponse may
lead to the rejection of such items. Huisman (1999) suggested to first split the
sample into respondents with m

j
 = 0 and m

j
 = 1, and then compare these

subgroups with respect to the distributions of item scores on each of the other
J – 1 items using �2 tests, or the item means using t-tests or nonparametric
tests. Another possibility, assuming MAR, is to check the expectation that the
correlation matrix of the missingness indicator matrix M, R

M
, is an identity

matrix. Non-zero correlations provide evidence of nonignorable missingness
for (some of) the items involved. Significant correlations of covariates with
missingness variables, M

j
, may provide indications of the causes of

nonresponse, and this may help to remedy the missingness. In general,
nonsignificant correlations and differences between distributions indicate
MAR, and significant results indicate nonignorability.

Treatment of Missing Item Scores

Simple Imputation Methods

Person Mean Imputation.  Huisman (1999) and Bernaards and Sijtsma
(1999) imputed for all missing item scores of respondent i his/her mean on
the available items, denoted PM

i
. Suppose that for respondent i, J

i
 items (J

i

< J) are available of which the indices are collected in set A
(i)

; then,

( ) ; .i

ij
j A

i i
i

X

PM PM
J

∈= ∈
∑

�

For binary (0/1) item scores, we impute for each missing value another random
draw from the Bernoulli distribution with parameter PM

i
. For ordered

polytomous (0, ..., k) item scores, for example, for k = 4 and PM
i
 = 2.56, we

impute item score 2 if the value of the random draw from the Bernoulli
distribution with parameter 0.56 was 0 and item score 3 otherwise. Method
PM corrects for score differences between respondents but not for score
differences between items.
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Two-Way Imputation. Bernaards and Sijtsma (2000) corrected method
PM for the item mean score and the overall score level of the group. The item
mean, IM

j
, is defined as the mean score of the observed scores on item j, and

the overall mean, OM, is defined as the mean of all observed scores in the
data matrix, X. Then for missing item score (i, j),

; .ij i j ijTW PM IM OM TW= + − ∈�

Integer scores are imputed following the procedure outlined for method PM.

New Imputation Methods Using Nonparametric Regression

General Introduction. Let � denote the vector of latent trait parameters
necessary to describe the data structure in data matrix X, and let �

j
 be a

vector of possibly multidimensional item parameters, such as the item
locations and discriminations. IRT models all have the form P(X

j
 = x

j
|�; �

j
)

= f(�; �
j
); that is, the probability of having a score, x

j
, on item j, known as the

item response function (IRF), depends on respondent and item parameters.
By choosing a particular function for f(�; �

j
), such as a logistic regression

function (e.g., Baker, 1992; Fischer & Molenaar, 1995), even for incomplete
data, X, the item parameters may be estimated from the likelihood of the
model,

( ) ( ) ( )
1 1

model | model | ; .
n J

ij ij i j
i j

L P P X x
= =

= = =∏∏X � �

Assuming that the estimates ˆ
j�  are the true parameters, the respondent

parameters, �
i
, are estimated next (e.g., Baker, 1992). Suppose, imputation is

used to produce a complete data matrix for further analysis. First, the estimates
ˆ

i�  and ˆ
j�  are inserted in the IRT model, such that P(X

ij
 = x

ij
| ˆ

i� ; ˆ
j� ) is

obtained. Then, for binary scores, a draw from a Bernoulli distribution with
estimated probability P(X

ij
 = 1| ˆ

i� ; ˆ
j� ) can be imputed for missing value (i, j);

and for polytomous items, a draw from a multinomial distribution with
parameters P(X

ij
 = x

ij
| ˆ

i� ; ˆ
j� ), x

j
 = 1, ..., k, can be imputed for missing value

(i, j). This is called model-based imputation.
Obviously, if a particular IRT model represents the hypothesis of interest

and is also used for imputation, the resulting data set is biased in favor of this
hypothesis. Here, we propose two imputation methods based on the IRF, that
are based on nonparametric regression, and do not impose restrictions on the
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shape of the IRF and not explicitly on the dimensionality of measurement. For
example, if a researcher wants to fit the Rasch (1960) model (with � = �, a
scalar; and �

j
 = �

j
, a location parameter) to his/her data, and he/she uses one

of our item score imputation methods, the resulting complete data matrix is
not explicitly biased in favor of the Rasch model as it would be if that model
itself were used for item score imputation.

Two remarks are in order. First, although the two methods to be proposed
do not explicitly make assumptions about the dimensionality of the data, they
are likely to be more successful when the data are unidimensional. The
reason is that, like methods PM and TW, they use total person scores like
PM

i
 based on the summation of the items. Strong multidimensionality

produces a correlation structure among the items (with many 0 or almost 0
correlations) that renders such total scores inadequate summaries of the
information available. Second, more than, say, linear regression, an IRT
context is suited for missing item score imputation in tests and questionnaires
because it models data from variables that are allowed to correlate highly,
thus avoiding multicollinearity. Further, IRT models are flexible in that the
error component of the model is heteroscedastic. Also, given the highly
discrete nature of item scores the nonlinearity of IRT is helpful.

Response-Function Imputation.  In the nonparametric IRT context
adopted here, for convenience we assume that the IRF is a function of a
scalar latent trait �, and that it varies across items, but we do not assume a
latent item parameter vector, �

j
, that can be estimated from the likelihood.

See Van der Ark and Sijtsma (in press) for the use of several of the methods
discussed here when data are explicitly multidimensional.

Define a person summary score X
+
 = �

j=1
J X

j
.  Let the restscore, R

(-j)
 = X

+

– X
j
, be the total score on J – 1 binary items from the test except item j

(Junker & Sijtsma, 2000). Restscore R
(-j)

 is used as a proxy for � (e.g.,
Hemker, Sijtsma, Molenaar, & Junker, 1997; Junker, 1993; Sijtsma & Molenaar,
2002). We estimate P(X

j
 = 1|�) by means of P[X

j
 = 1|R

(-j)
], or P

j
[R

(-j)
], for short.

This observable probability is the item-rest regression (Junker & Sijtsma,
2000). Using only those respondents that have completely observed data,
probability P

j
[R

(-j)
 = r] can be estimated as the fraction of the subgroup with

rest score R
(-j)

 = r, that have item j correct. We use this fraction to impute
scores as follows.

1. Consider a respondent who has missing scores on item j and possibly
on other items as well. As before, the indices of the J

i
 available items are

collected in set A
(i)

. Multiplying PM
i
 by J – 1, we obtain a real, ( )

ˆ
j iR − , that

estimates respondent is integer restscore, R
(-j)i

, based on complete data; that
is,
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( )
ˆ

j iR −  = PM
i
 × (J – 1); ( )

ˆ
j iR −  � �.

2. Insert ( )
ˆ

j iR −  in the ordering, R
(-j)

 = 0, ..., J – 1. If estimate ( )
ˆ

j iR −  is an

integer, probability ( )
ˆ ˆ

j j iP R −
 
   can be obtained as the fraction of respondents

with restscore ( )
ˆ

j iR −  that have item j correct. If estimate ( )
ˆ

j iR −  is a real, it has

a left neighbor, R
(-j)
left , and a right neighbor, R

(-j)
right . From the sample of completely

observed respondents we have the corresponding probabilities P
j
[R

(-j)
left] and

P
j
[R

(-j)
right]. For respondent i, the probability P

j
[ ( )

ˆ
j iR − ] is estimated by linear

interpolation between P
j
[R

(-j)
left] and P

j
[R

(-j)
right]. Noting that R

(-j)
right – R

(-j)
left = 1, the

linear interpolation formula is

( )
ˆ ˆ

j j iP R −
 
   = P

j
[R

(-j)
left] + {P

j
[R

(-j)
right] – P

j
[R

(-j)
left]} × [ ( )

ˆ
j iR −  – R

(-j)
left].

3.  Impute a score in cell (i, j) by randomly drawing from a Bernoulli

distribution with parameter ( )
ˆ ˆ

j j iP R −
 
  .

These three steps are repeated for all missing item scores in X. For
example, for J = 5 let Carol have missing scores on items 1 and 3, and let her
have two items correct. Then, Carol’s estimated restscore for item 1 (Figure
1, upper panel) equals

( ) ( )
1

2 2ˆ 5 1 2 .
3 3CarolR − = × − =

Assume that P
1
[R

(-1)
left = 2] = 0.7 and that P

1
[R

(-1)
right = 3] = 0.85; then

( )1 1

2 2ˆ ˆ 2 0.7 0.15 0.8.
3 3CarolP R −

 = = + × =  

This method is called Response-Function (RF) imputation. The algorithm
contains reasonable provisions to take care of small or even empty rest score
groups (following a methodology used by Molenaar & Sijtsma, 2000, p. 67),
and other data problems. Explaining them in detail would take too much
space. Note that method RF takes differences between respondents into
account through the rest score groups and differences between items
through the item-rest regressions (cf. method TW).
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Figure 1
Item-rest regressions for dichotomous items (upper panel) and polytomous items (k = 2;
lower panel), and linearly interpolated response probabilities (corresponding to differently
marked columns) for Carol (upper panel; scores 0, 1) and John (lower panel; scores 0, 1, 2)
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For polytomous items, response probabilities, P(X
j
 � x

j
|�), x

j
 = 0, ..., k,

are estimated using procedures outlined above for dichotomous items.
Figure 1 (lower panel) illustrates how method RF can be generalized to an
item with three ordered answer categories. For each item, we have
response functions P(X

j
 � 1|�) and P(X

j
 � 2|�), that are estimated using

P[X
j
 � 1|R

(-j)
] and P[X

j
 � 2|R

(-j)
], respectively (Junker, 1993; Molenaar &

Sijtsma, 2000).
For example, for J = 5 let John have missing scores on items 1 and 3, and

scores 2, 2, 1 on the three remaining items. Then, John’s estimated restscore
for item 1 is

( ) ( )
1

5 2ˆ 5 1 6 .
3 3JohnR − = × − =

Because for each item there are two response functions, interpolation has
to be done twice. Let P[X

1
 � 1|R

(-1)
 = 6] = 0.80, P[X

1
 � 2|R

(-1)
 = 6] = 0.50,

P[X
1
 � 1|R

(-1)
 = 7] = 0.95, and P[X

1
 � 2|R

(-1)
 = 7] = 0.75; then

( )

( )

1 1

1 1

2 2ˆ ˆ1| 6 0.80 0.15 0.9
3 3
2 2ˆ ˆ2 | 6 0.50 0.25 0.67.
3 3

John

John

P X R

P X R

−

−

 ≥ = = + × =  
 ≥ = = + × =  

Figure 1 (lower panel) shows RF imputation of John’s score on item 1. The
response probabilities are shown by the bars (white bar for x = 0; black bar
for x = 1; and grey bar for x = 2). Integer item scores are drawn from a
multinomial distribution with category probabilities corresponding to the
length of the bars in Figure 1.

Mean Response-Function Imputation. The second new imputation
method uses the means of the J item-rest regressions and thus ignores item
differences (cf. method PM). It is denoted mean response-function imputation
(method MRF). Because joining small restscore groups for one item (e.g., the
groups R

(-j)
 = 0, 1, 2) may render the resulting joined group incomparable to

restscore groups of other items (e.g., the joint groups R
[-(j+1)]

 = 2, 3), we avoid
this problem by following the next steps.

1.  Estimate all J item-rest regressions, each based on all J rest-score
groups (unless a group is empty; then it is ignored). The restscore group-size
for group R

(-j)
 = r is denoted n

rj
.
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2.  For each rest-score value, R
(-j)

 = r, take the mean of the J success
probabilities, P

j
[R

(-j)
 = r], j = 1, ..., J (or a number smaller than J: see step 1);

and weigh each success probability by

1

/
J

rj rj
j

n n
=

∑ .

Denote this mean by P
r
, defined as,

( )

1

1

, 0,1, , .
J rj j j

r J
j

rj
j

n P R r
P r J

n

−

=

=

× =  = =∑
∑

�

3.  The estimate P
r
 of the mean of the item-rest regressions is used for

imputing scores.
Note that once we have estimated the restscore ( )

ˆ
j iR −  and determined

the corresponding success probability using one of the two methods outlined
previously, we may impute missing values by repeatedly drawing from the
same Bernoulli distribution that has that particular success probability as a
parameter. Generalization to polytomous items can be done similarly to the
generalization of method RF.

An Empirical Data Example

Method

Example Data.  We used data from a questionnaire (J = 23) asking
people how they responded to determinants (memories, thoughts, images,
experiences, situations) that could make them cry or weep (Vingerhoets &
Cornelius, 2001). Respondents were either Australians, Belgians or Indians.
Each item was scored 0 (determinant does not or rarely elicit crying) or 1
(determinant more often or almost always elicits crying). The original data
matrix also contained incomplete cases, but we used as a point of departure
the n = 705 complete cases, collected in the data matrix X. We also created
six versions of X that each contained missing item scores using the following
methodology.
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Simulation Study Design. For three matrices, fixed proportions ( q  = .01,
.05, and .10) of ignorable (MCAR) item  score missingness were simulated,
and for the other three matrices nonignorable item score missingness was
simulated.  Ignorable missingness was simulated by randomly deleting item
scores using a fixed probability for a score being missing. Nonignorable item
score missingness was simulated as follows. From the original data it was
determined that Australians, Belgians and Indians had missing item scores
according to the ratio m

A
 : m

B
 : m

I
 = 1 : 4 : 8. Items were weighted by social

desirability indices, s
1
, ..., s

23
, ranging from 0.4 (most social conventions would

require respondents to cry), to 10 (most social conventions would prohibit
respondents to cry). Item score missingness was then simulated by using for
each entry of X the probability P(M

ij
 = 1) = m

i
s

j
(1 + x

ij
)c, where c is a constant

chosen such that the desired proportion of item score missingness is obtained.
Thus, the probability P(M

ij
 = 1) was highest for Indians and lowest for

Australians; higher the more an item’s content stimulated a socially desirable
answer; and higher when the item score was 1 rather than 0.

Each of the methods PM, TW, RF, and MRF were used to impute scores
in each empty cell of each of the six incomplete versions of X. For each
incomplete version of X, this resulted in four imputed data matrices. Then,
for each matrix we used Huisman’s (1999) global test and we checked R

M

to identify possibly deviant items. These analyses gave evidence whether
these methods produced the correct conclusion about the ignorability or the
nonignorability of the item score missingness.

Outcome Statistics. For X and each of the 24 imputed data matrices based
on X, we calculated quality indices, well known in classical test theory  (Lord
& Novick, 1968), Mokken scale analysis (Mokken & Lewis, 1982; Sijtsma &
Molenaar, 2002), and the Rasch (1960) model (also see Fischer & Molenaar,
1995), respectively: (a) Cronbach’s (1951) alpha, used here as a lower bound
to the reliability of the test score, X

+
; (b) Mokken’s (1971) scalability

coefficient, H, which is an index for the precision of person ordering using X
+
;

and (c) the Rasch model chi-squared goodness-of-fit statistics, R
1c

 (Glas &
Verhelst, 1995) and Q

2
 (Van den Wollenberg, 1982). Statistic R

1c
 tests whether

the response functions of the J items are logistic with the same slope against
the alternative that they deviate from these conditions, and statistic Q

2
 tests

whether the test is unidimensional against the alternative of multidimensionality.
These coefficients and statistics were compared among nonignorable and
ignorable missingness, percentages of missingness, and imputation methods.
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Results

For MCAR, the null hypothesis of random missingness across cells of the
data matrix was not rejected for any percentage of item score missingness,
using either X2, G2, or CR (Table 4). For nonignorable item score
missingness, for q  = 0.01 the sample size (n = 705) was too small to detect
this nonignorability by any of the three statistics. This is consistent with the
results of the simulation study on minimally required sample sizes (Table 3).
The null hypothesis was rejected correctly for q  = 0.05 and q  = 0.10.

The correlation matrix R
M

 contained 253 unique (but mutually dependent)
correlations. Because of the skewness of the marginals in the two-by-two
frequency tables, Fisher’s exact test (e.g., Agresti, 1990, pp. 59-66) was used
to test for independence (implying � = 0). The last row of Table 4 gives the
percentage of significant results at the � = .05 level. Because tests were
dependent, we compared percentages of rejections of the null hypothesis
between ignorable and nonignorable item score missingness. The bottom line
of Table 4 shows that the percentage of significant Fisher exact test statistics
was higher for nonignorable item score missingness than for ignorable item
score missingness.

Table 4
Power Divergence Statistics X2, G2, and CR (df = 24), Type I Error Rate and
Percentage of Significant Fisher Exact Tests (Last Row), for Ignorable and
Nonignorable Item Score Missingness, for q  = 0.01, 0.05, and 0.10

Missingness Mechanism

Statistic Ignorable (MCAR) Nonignorable

q : .01 .05 .10 .01 .05 .10

X2 7.15 11.36 16.06 21.52 56.73 229.11
.9999 .9861 .8859 .6080 .0002 .0000

G2 8.32 10.57 18.35 25.45 62.30 170.18
.9978 .9918 .7856 .3812 .0000 .0000

CR 7.48 11.70 16.70 22.20 57.90 205.12
.9995 .9885 .8611 .5673 .0001 .0000

Sign. Fisher test 2.8% 3.2% 4.0% 4.7% 7.9% 18.2%
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Other local analysis of item score missingness was done by comparing
the mean PMs of nonrespondents and respondents to item j, for all items. To
avoid tedious detailed results, the discussion is limited to the data matrices
with q  = 0.05 ignorable missing item scores (MCAR) and q  = 0.05
nonignorable missing item scores, respectively. Table 5 shows that for
nonignorable item score missingness data, for six items the mean PMs of
both groups differed significantly (two-sided; using Bonferroni correction,
� = .05/23 = .0022). Thus, item score missingness was found indeed to be
nonignorable. For ignorable item score missingness data there were no
significant mean differences between mean PMs. This correctly indicated
ignorable nonresponse.

Table 6 shows that the bias in Cronbach’s alpha ranged from –.024 to
.011 (alpha found for X was .924; theoretical maximum is 1). Method RF
showed almost no bias. In general, imputed data sets showed little variation

Table 5
Student’s t-test and Type I Error Rate for Difference in PM Means of
Respondents and Nonrespondents ( q  = .05) to Item j, for Nonignorable
(Nonign.Miss.) and Ignorable Item Score Missingness (Ign.Miss).

Ign.Miss. Nonign.Miss. Ign.Miss. Nonign.Miss.

Item t p t p Item t p t p

1 –0.08 .9364 2.52 .0119 13 –2.22 .0265 1.52 .1284
2 –2.14 .0324 1.87 .0614 14 –0.45 .6499 1.32 .1844
3 1.15 .2517 2.82 .0048 15 0.08 .9313 3.08 .0020
4 –0.67 .5029 2.60 .0093 16 –0.44 .6601 2.91 .0037
5 0.79 .4393 2.77 .0057 17 –0.69 .4922 2.71 .0068
6 0.32 .7560 3.57 .0004 18 0.58 .5563 3.85 .0001
7 0.89 .3723 1.48 .1370 19 0.16 .8735 2.73 .0065
8 –1.86 .0627 2.03 .0434 20 0.03 .9758 3.46 .0006
9 –1.19 .2327 2.94 .0033 21 –0.77 .4427 1.90 .0575

10 –0.26 .7945 2.48 .0132 22 1.47 .1432 4.70 .0000
11 –0.94 .3447 1.29 .1959 23 2.30 .0421 4.18 .0000
12 –1.03 .3015 2.99 .0029

Note.  Significant Differences are in bold face; Bonferroni Alpha = 0.0022.
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between ignorable and nonignorable item score missingness and different
values of q . Table 7 shows that the bias in scalability coefficient H ranged
from –.091 to .046 (H value found  for X was .448; theoretical maximum is
1). There was almost no variation in the bias of H for q  = 0.01, more variation
for q  = 0.05 and the most for q  = 0.10. Method RF was the least biased.

Table 6
Bias in Cronbach’s Alpha, for Ignorable (MCAR) and Nonignorable

Missingness Mechanisms, q  = .01, .05, and .10, and Imputation Methods
PM, TW, RF, and MRF; Cronbach’s Alpha = .924 for Complete Data

Missingness Mechanism

Method Ignorable Nonignorable

q : .01 .05 .10 .01 .05 .10

PM .001 .005 .011 .001 .005 .010
TW .001 .005 .010 .001 .004 .008
RF .000 .000 –.003 .000 .000 .000

MRF .000 –.006 –.024 .000 –.002 –.014

Table 7
Bias in coefficient H, for Ignorable (MCAR) and Nonignorable Missingness
Mechanisms, q  = .01, .05, and .10, and Imputation Methods PM, TW, RF, and
MRF; H = .448 for Complete Data

Missingness Mechanism

Method Ignorable Nonignorable

q : .01 .05 .10 .01 .05 .10

PM .004 .018 .038 .004 .018 .041
TW .005 .023 .045 .005 .023 .046
RF .001 .000 –.014 .002 .007 .005

MRF .000 –.028 –.091 –.002 –.011 –.056
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Methods PM and TW had greater positive bias the higher the percentage of
nonresponse, and method MRF had greater negative bias the higher the
percentage of nonresponse.

For statistic R
1c

, the value found (157 with df = 88) for data matrix X means
that the 23 response functions are not all logistic with the same slopes, as the
Rasch model predicts. In general, method RF was closest to this target value
(Table 8). Each of the other methods showed at least one result that was much
too low (but also led to the rejection of the null hypothesis). The more
interesting result was that for nonignorable item score missingness the
imputation methods produced results that are hardly distinguishable from those
found for ignorable item score missingness. For statistic Q

2
, the value found

was 2112 with df = 1150, meaning that the 23 items together seem to measure
several latent traits instead of one. For methods PM and TW, the Q

2
 values

were always too high and they were higher the greater the percentage of item
score missingness (Table 9). For method RF, a similar pattern of results was
found for ignorable item score missingness. For method MRF, in this case an
opposite pattern was found with Q

2
 values that were too low. This pattern was

also found for methods RF and MRF for nonignorable item score missingness.
In general, methods PM and TW seem to favor the conclusion that
multidimensionality holds (too high Type I error), whereas method MRF seems
to favor the conclusion that the test is unidimensional (too low Type I error).
The results for method RF are less clear.

Table 8
Rasch Analysis Bias Results for R

1c
, for Ignorable (MCAR) and

Nonignorable Missingness Mechanisms, q  = .01, .05, and .10, and Imputation
Methods PM, TW, RF, and MRF; R

1c
 = 157 (df = 88) for Complete Data

Missingness Mechanism

Method Ignorable Nonignorable

q : .01 .05 .10 .01 .05 .10

PM –5 –11 –25 –10 –15 6
TW –6 –18 –37 –9 –12 1
RF –10 –13 –1 –5 –12 –5

MRF –8 –12 –25 –10 –16 –21

Note. J = 23; due to Rasch model estimation properties n varies from 620 to 643 across cells.
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Discussion

In our one-data set example, Huisman’s (1999) overall test statistic was
effective to detect both simulated ignorable and nonignorable item score
missingness correctly, given an appropriate sample size. When ignorable
item score missingness is found, we may have confidence that single
imputation or another method probably will not greatly invalidate the data.
Alternative classifications of missingness patterns than those used for
Huisman’s method may provide additional ways to test for MCAR or MAR.
Under MCAR any classification of the respondents or the items should fit.
Possibly useful classifications are those based on meaningful covariates,
such as gender, social-economic status and age.

Imputation methods PM and TW are so simple that they can be explained
easily to researchers that are not statistically trained. Also, they are easy to
compute using major software packages such as SPSS and SAS. Methods
RF and MRF use the response function, estimated nonparametrically from
the fully observed respondents, thus ignoring the common and more
restrictive assumptions typical of IRT models. These methods are also rather
easy to explain, but their computation can be cumbersome. This is true
especially for method RF when the restscore groups are small and have to

Table 9
Rasch Analysis Bias Results for Q

2
, for Ignorable (MCAR) and

Nonignorable Missingness Mechanisms, q  = .01, .05, and .10, and Imputation
Methods PM, TW, RF, and MRF; Q

2
 = 2112 (df = 1150) for Complete Data

Missingness Mechanism

Method Ignorable Nonignorable

q : .01 .05 .10 .01 .05 .10

PM 140 387 947 208 544 587
TW 24 239 1053 159 883 2119
RF 122 450 755 271 –216 –279

MRF 114 –353 –427 –122 –349 –448

Note. J = 23; due to Rasch model estimation properties n varies from 620 to 643 across cells.
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be joined. A simple computer program called impute.exe with the four
imputation methods implemented for both dichotomous and polytomous items
can be obtained from the authors at http://www.uvt.nl/faculteiten/fsw/
organisatie/departementen/mto/software2.html. The software was
written in Borland Pascal 7.0. The maximum order of data matrix X for which
the program works has not yet been explored.

Method RF was superior to methods PM, TW, and MRF in estimating the
alpha and H coefficients, and the Rasch model statistics R

1c
 and Q

2
. Method

TW produced higher percentages of hits than the other methods, but this
resulted sometimes in estimates of alpha and H that were too high. Method
RF may produce unstable results for small numbers of fully observed
respondents. Consequently, the estimates of the response probabilities may
be inaccurate. Method TW may be more stable, and may be preferred for
smaller sample sizes. Methods RF and TW may be also be useful when item
score missingness is nonignorable. A reviewer suggested that deleting cases
from the analysis with more than, say, half of the item scores missing may
further improve results. This is a possible topic for future research. Finally,
each of the methods probably works best when the data are unidimensional.
Multidimensionality is addressed by Van der Ark and Sijtsma (in press).

The error introduced in the data by single imputation may be too small,
resulting in standard errors that are too small (Little & Rubin, 1987, p. 256).
The analysis of test data usually is more involved, however, calculating large
numbers of statistics, testing many hypotheses, and selecting items based on
such calculations. Moreover, test construction has a cyclic character,
leaving out items in one cycle, re-analyzing the data for remaining items,
leaving out another item as well or re-selecting a previously rejected item in
another cycle, and so on. It would be interesting to see how multiple
imputation (e.g., Rubin, 1991) can help to obtain more stable conclusions for
item analysis. This is a topic for future research.
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