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Abstract

Potential games and supermodular games are attractive games, especially because under certain
conditions they possess pure Nash equilibria. Subclasses of games with a potential are considered
which are also strategically equivalent to supermodular games. The focus 1s on two-person zero-sum
games and two-person Cournot games.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction
The aim of this paper is to investigate two interesting classes of games for which the
existence of pure Nash equilibria i1s obtained under certain conditions, namely:

(1) the class of potential games (Monderer and Shapley, 1996);
(1) the class of supermodular games (Topkis, 1998).

The question tackled here 1s whether there are games belonging to both classes. It turns
out that two-person zero-sum supermodular games are potential games and conversely
that two-person zero-sum potential games can be transformed in a canonical way nto
supermodular games. Also Cournot games are, under special conditions, members of both
classes of games.

A connection between ordinal potential games (Monderer and Shapley, 1996) and super-
modular games 1s also established for certain Cournot games.
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In Section 2 the definitions of potential games and of supermodular games are recalled
together with some of their properties. In Section 3 the case of two-person zero-sum games
1s discussed and an example illustrating the connection between the two classes of games
1s given. Section 4 deals with Cournot duopoly competition and Cournot games. Section 5
contains some concluding remarks.

2. Preliminaries

Let (A, B, K, L) be arwvo-person game with strategy space A for player I, strategy space
B torplayer2,and K : Ax B— R, L : A x B +— R the pay-off function of players 1 and
2, respectively. If the players 1 and 2 choose a € A and b € B, respectively, then player |
obtains a pay-oft K(a. b) and player 2 obtains L(a, b).

A Nash equilibrium for such a game is a point (a. b) € A x Bsuchthat K(a, b) < K(a, b)
foreacha € A and L(a, b) < L(a, i}) for each b € B.

Such a game 1s called a potential game (Monderer and Shapley, 1996) if there is a
(potential) function P : A x B +— R such that

K(a>»,b)—K(ay, b)=P(a>, b)— P(a,,b), foralla,,a>» € A and foreachb € B,
L(a,by)—L(a,b>)=P(a,b,)— P(a, b>), ftoreacha € A and forall b, b» € B.

Clearly, elements of argmax( P) are Nash equilibria of the game.

The next lemma will be useful. It states that for a two-person potential game the pay-oft
function of player | (player 2) can be written as the sum of a potential and a function on
the Cartesian product of the strategy spaces, which only depends on the strategy choice of
player 2 (player 1). This 1s a known result (Slade, 1994; Facchini et al., 1997); an alternative
proof 1s given here.

Lemmal. Let (A, B. K, L) be apotential game with potential P. Then there exist functions
f: A Rand g : B+ R such that

K(a,b) = P(a,b) — 2g(b), L(a,b) = P(a, b) — 2 f(a)

foreacha € Aand b € B.

Proof. Take a™ € A, b™ € B and define f and g as follows. Foreacha € A and b € B, let
fla)= %(_ P(a,b™) — L(a, b")), g(b) = %(P(a*. by — K(a™, b)).

Since P 1s a potential for the game (A, B, K, L), we have
K(a,b) — K(a”,b) = P(a,b) — P(a”,b) or K(a,b)— Pla,b) =—-2g(b),

and also

L(a,b) — L(a,b*) = P(a,b) — P(a,b”) or L(a,b)— P(a,b) = -=2f(a)

foralla € Aand b € B.
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The game (A, B, K, L) 1s called an ordinal potential game (Monderer and Shapley, 1996)
if there 1s a (potential) function P : A x B +— R such that

K(ar,b) — K(ay,b) > 0 foralla,,a» € A and foreachbh € B,
& Plas, b) — Play, b) > 0,
L(a,by)— L(a,by) >0 foreacha € A and forall by, bh € B.

& Pla, by) — Pla, by) > 0,

We will use the following proposition.

Proposition 1 (Monderer and Shapley, 1996). Let (A, B, K, L) be a two-person game. Let
A, B be intervals of real numbers and K, L be twice continuously differentiable functions.
Then (A, B, K, L) is a potential game if and only if

K 8L
dadb  dadb’

For more information on potential games see Voorneveld (1999) and Mallozzi et al.
(2000).

Let us now recall some definitions related to supermodular games. A partially ordered set
1s a set X on which there 1s a binary relation < that i1s reflexive, antisymmetric and transitive.
Let us consider a partially ordered set X and a subset X' of X. If x’ € X and x’ < x for
each x € X’. then x’ is a lower bound for X': if x” € X and x < x” for each x € X', then
x"" 1s an upper bound tor X'. When the set of upper bounds of X’ has a least element, then
this least upper bound of X' is the supremum of X' in X; when the set of lower bounds of
X' has a greatest element, then this greatest lower bound of X" is the infimum of X" in X.

[f two elements x; and x> of a partially ordered set X have a supremum 1n X, 1t 1s called
the meet of x; and x> and 1s denoted by x| A x2; if x| and x> have an infimum 1n X, 1t 1s
called the join of x| and x> and 1s denoted by x| Vv x2. A partially ordered set that contains
the join and the meet of each pair of its elements is a lattice. If a subset X' of a lattice
X contains the join and the meet (with respect to X) of each pair of elements of X', then
X' 1s a sublattice of X. The real line R with the natural ordering denoted by < is a lattice
with x V y = max{x, y} and x A y = min{x, y} for x, y € R, and R" (n > 1) with the
natural partial ordering denoted by < is a lattice with x Vv y (6] W Wiliaieess i M Vi)
and x Ay= (X1 Ayl,...,xp Ayy) for x, y € R". Any subset of R 1s a sublattice of R,
and a subset X of R" is a sublattice of R" if it has the property that x, y € X imply that
(AKX Vs e max{x;; ¥x}) and (min{xi, yi}, .. <. min{x:. yu}) are i X.

The game (A, B, K, L) is called a supermodular game (Topkis, 1998) if the following
three properties are satisfied:

|

(1) A is a sublattice of R and B is a sublattice of R""2 for some m| € N, m>» € N;
(2) K, L have increasing differences on A x B, 1.e. for all (a),a>) € A® and for all
(b, by) € B? such that @y > a» and b > b»,
K(ay.by) — K(ay, b>) > K(a», b)) — K(a», by),
L(ay,by)— L(a>,by) > L(ay,b>) — L(a», b»);
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(3) K issupermodularin the first coordinate and L is supermodular in the second coordinate,
1.e. foreach b € B, for all a;, a» € A we have

K(a,,b) + K(a», b) < K(a; vVa>r, b)+ K(a, N a>, b)

and for eacha € A, forall b|, b» € B we have

L(a,by)+ L(a,b>) < L(a,by Vv b>)+ L(a,by A b»>).

We recall the following propositions.

Proposition 2 (Topkis, 1998). Let fbe a differentiable function on R" | then f has increasing
differences on R" if and only if (df/0x;) is increasing in x; for all distinct i and j and
all x.

Proposition 3 (Topkis, 1998). Let f be a rtwice differentiable function on R", then f has
increasing differences on R" if and only if 9= f/ox;0x; = 0, for all distinct i and j.

The following two examples show that the classes of potential games and supermodular
games do not coincide. So the study of special subclasses becomes interesting.

Example 1. Let A= B = [0, 1] and K(a, b) = 2ab, L(a,b) =a+ bforalla, b € [0, 1].
Then the game (A, B, K. L) is a supermodular game because A and B are sublattices of
R, K, L have increasing differences on [0, 1] x [0, 1], and K 1s supermodular in the first
coordinate and L in the second coordinate. This game is not an exact potential game because
the condition in Proposition 1 1s not satisfied since (9> K /dadb) = 2 # 0-L/dadb = 0. Let
us remark that the game 1s an ordinal potential game with potential function P given by
Pla,b) =a+ btorall a, b € |0, 1].

On the other hand there are games that are exact potential games and not supermodular
games.

Example 2. Let A = B = [0, 1] and K(a, b) = a* — 2a(b — (1/2))* + b, L(a,b) =
—2a(b — (1/2))" forall a, b € [0, 1]. Then the game (A, B, K, L) is a potential game with
potential function P given by P(a, b) = a* —2a(h — ( 1/2))- foralla, b € [0, 1] but it is not
a supermodular game in view of Proposition 3 because (9K /dadb) = —4(b — (1/2)) <
Oaf bis=(1/2).

3. Zero-sum potential games and supermodular games

A two-person game of the form (A, B, K, —K) 1s called a zero-sum game. Such a game
will be denoted by (A, B. K). In a zero-sum game one player pays the other. A saddle point
for such a game is a point (a, b) € A x B such that K(a,b) < K(a,b) < K(a, b) for
eacha € A and b € B. We denote by S(A, B, K) the set of all saddle points of (A, B, K).

Note that (A, B, K) 1s a potential game 1f there is a (potential) function P : A x B+ R
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such that

K(a>,b) — K(ay.b) foralla;,a» € A and foreachb € B,
— P(a>, b) — P(a,, b),
—K(a, b)) + K(a, b>) foreacha € A and forallb,, b>» € B.
= P(a, b)) — P(a, b»),
Clearly, elements of argmax(P) are saddle-points of the game. Also the converse turns

out to hold as we see in Remark 2.
Following theorem will be useful.

Theorem 1. Let (A, B, K) be a two-person zero-sum game. Then the following assertions
are equivalent:

(1;) (A, B, K) is a potential game:
(lij) there exists a pair of functions (f, g) with f : A +— R and ¢ : B +— R such that
K(a,b) = fla) — g(D) forall a € A, b € B (separation property).

Proof. That (1;;) implies (1;) follows by taking the potential P defined by
P(a,b) = f(a) + g(b)foralla €e Aand b € B.

Conversely, suppose (1;). Then by Lemma 1, there are functions f : A Randg: B+— R
such that foreacha € Aand b € B

K(a,b) = P(a,b) —2g(b), —K(a, b) = P(a, b) — 2 f(a).

So K(a,b) = f(a) — g(b) forall (a,b) € A x B.

Remark 1. This theorem is also proved in Potters et al. (1999), in an alternative way. In
that paper 1t was also observed that for 2 x 2-subgames of a two-person zero-sum potential
game the “diagonal property™ holds. This 1s

K(ay, b))+ K(a>.b>) = K(ay,b>) + K(a», b))

for all ay,a>» € A and b, b> € B. This property follows easily from (1;;) in Theorem 1.
Conversely, 1t was proved in Potters et al. (1999) that the diagonal property for two-person
zero-sum games implies also that the game 1s a potential game.

Remark 2. A pair ( f g) asin (1;;) of Theorem 1 1s called a separating pair for the potential
game (A, B, K). For a potential P of this game we have P(a. b) = ¢+ f(a) + g(b) tor each
a € A, b € Band some ¢ € R. Clearly, (a, b) i1s a saddle point of (A, B, K) if and only if
a € argmax,, 4 f(a), b € argmax,,- z¢(b) 1f and only if (a. h) € argmax(P).

Theorem | gives us the possibility to connect a two-person zero-sum potential game with
a related game where the strategy spaces are ordered subsets of R and the pay-off function
satisfies monotonicity conditions.
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Given (A, B, K) with potential function P and separating pair ( /; g) such that P(a, b) =
fla) +g(b) foralla € A, b € B, define (A . B, K) as follows. Take A = f(A), B = g(D)
and for (a,b) € A x B let K(a,b) = a — b.

So we use the real-valued functions f : A — Rand ¢ : B+ Rtofindagame (A, B, K)
with strategy spaces 1n [, which 1s strategically equivalent to (A, B, K) because

K(a,b) = K(f(a), g(b)) forall(a,b) € A x B,

K(c.d) = K(a, b) foralla € f~'(c), b € Q_I(d)
From this follows
(a,b) € S(A, B, K) = (f(a), g(b)) € S(A, B, K),
(c.,d) € S(A.B.K)= (a,b) € S(A, B, K) foralla e }‘F' IJEQ_'((!)

The strategy space A can be smaller than A because two strategies a; and a»>» in A which
are equivalent 1n the sense that

K(ay,b) = K(a>»,b) ftorallb e B

are mapped into the same point f(a)) = f(az) € A .
Relations between (A, B, K) and (A, B, K) are described in the following theoerm.

_— —

Theorem 2. Let (A, B, K) a game with potential P and let (A, B, K) be as above. Then

(2;) (A, B,K) isa potential game with potentialP : A x B +— R such that P(a, b) =
a—l—bfm allae A.be B:

(25:) max(A ) x max(B) = dl‘f’md‘{(P) — S(A. B. K):

(2iii) (a,b) € S(A, B, K) < f(a) = max(A), g(b) = max(B).

Note that S(A , B, K) has cardinality 0 or 1.

Example 3. Consider the matrix game

L R E

s 8 13 13

Al D 10 10

V& 10 [ 1D

|

corresponding to the two-person zero-sum game (A, B, K) where A = {T. M, I}, B
(L R EY and KGT L) = -8, KRy = K1, E) = 1la; KM,L) = 5, K(M, R) =
KM, E) = K(F, L) = 10, K(F, R) = K(F, E) = 15. t'we'take: f : {I. M, F} '— R
and g : {L, R, E} — R astollows: (T) =5, f(M) =2, f(F)=17,g(L) = —3, g(R) =

9(E) = —8, then K(a,b) = f(a) — g(b) foralla € A, b e Band P: A x B+ IR with
P{a. b) = f(a) + g(b) torall a € A, b € B 1s a potential for this matrix game.
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Transforming this game to (A, B, K) with the aid of (£ g) results in A = {2.5. 7).
B = {—8, =3} and K(a, b) = a — b or the “monotonic” matrix game

=65 -3
2 10 0
0 13 8

7 15 10

with the unique saddle point in (7, —3) corresponding to maximum 4 of the potential P
which can be written in matrix form as follows:

—8 -3
2 —6 —1
D —J —2
7 =1 4

Note that 7 = max(A ). —3 = max(B ).

Remark 3. If max(A ) (or max(B)) does not exists, then there are no saddle points. If K
1s bounded, then there are e-saddle points for each ¢ > 0 corresponding to points (a’, b’)
with P(a’, b") > sup(P(a, b) — ¢).

Theorem 3. The game (A, B, K) with K(a,b) = a — b for eacha € A and b € B is a
supermodular game.

Proof. The subsets A and B are sublattiges of R. Foreach b € B the functiona +— K(a, b)
1s supermodular on A and also b +— — K (a, b) 1s supermodular on B for eacha € A. We
have finished the proof if we show that for each ay, a» € A, by, b» € B the functions

ai> Ka, b)) —Ka, by (aé /ﬁ-i). bty =K(ay.b) +K(a», b) (b & B

are monotonic. This 1s true because these functions are 1n fact constant:

K(a, b)) — K(a, br) = —b| + b>, —K(ay,b) + K(a>, b) = —a| + a».

We have seen in Theorem 3 that two-person zero-sum potential games can be embedded
in the family of supermodular games. The converse 1s treated in following theorem.

Theorem 4. Let (A, B, K) be a two-person zero-sum game with A C R, B C R, which is
supermodular. Then (A, B, K) is a potential game.
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Proof. The supermodularity implies that for all @y, a> € A and by, b, € B with a) <
ar, by < b> we have

K(a>, b>) — K(a>, by) > K(ay, br) — K(ay, by).
—K(a», br) + K(ay,b>) > —K(a>, b)) + K(ay, by).

From these two inequalities follows the diagonal property. Then, according to Remark 1,
(A, B, K) 1s a potential game.

Example 4. Let (A, B, K, L) be the non-zero sum game with A = {1, 2}, B = {1, 2};
K== 7 forallz i€ Aand.j € Byand .L(l; L)} '= 4, (], 2) =7, L2, 1) = 5 and
[.(2,2) = 9. Then this game 1s a supermodular game but not a potential game.

Example 5. Let (A, B, K, L) be the non-zero sum game with A = {1, 2}, B = {l, 2};
Kl e=3"K (0 2) Vo2 ) =5 Ki(2: 2)- =2 ‘ande L) i="3: B(l.2) =
8, L(2,1) = 6,L(2,2) = 10. Then the game 1s a potential game but not a supermodu-
lar game.

|

Remark 4. A subclass of general two-person potential games can be embedded 1nto the
class of supermodular games 1n a similar way as we embedded two-person zero-sum po-
tential games. These are games of the form (A, B, K. L) with separable pay-off functions,
1.e. K and L can be written in the form

K(a,b) = f(a) + g(b), L(a,b) = h(a)—+ k(b)

foralla € A, b € B, and where f and h are real-valued functions on A such that f 1s
injective, and g and k are real-valued functions on B such that & 1s injective. A potential P
1s then given by P(a. b) = f(a)+ k(b) foreacha € A and b € B. A strategically equivalent
supermodular game 1s the game (A, B, K,L)where A = f(A), B = k(B) and where for
allic. A d'eB:

Kc.d)= K(f '(c), k' (d)), L(c,d) = L(f~'(c), k™' (d)).

4. Cournot games

Consider Cournot’s model of duopoly where the demand arises from a competitive market
of a single homogeneous commodity.

Suppose that firm i, i = 1, 2, can supply the single homogeneous product 1in any non
negative bounded quantity g; € [0, qf,.]] with production cost ¢;(g;). The price of the single
homogeneous commodity is given by the inverse demand function Q(gq|, g>) which 1s
assumed to be twice continuously differentiable function. We suppose that firm i’s cost
ci(a;).1'=1, 2, 1S differentiable.

Given the output level selected by the other firm, the objective of firm 7 1s to maximize
Its profit

I1;(q1, q2) = qi0Q(q1,q2) — ci(q;)
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by the choice of its output ¢;, where ¢; Q(q, g>) expresses the revenue (return) of firm
(. We assume that the marginal revenue of firm ¢ (1.e. Q(qg.g>) + ¢ (30 (g, g>)/dg;)) 1S
decreasing with respectto g;(j # 1).

A Cournot game 1s a game of the form (A, B, K, L) where A = |0, q{["l. B = [0, q{;\ and

K(a,b) = aQ(a, b) — c|(a), L(a, b) = bQ(a, b) — c>(b)
for all a € A and b € B. If the mverse demand function Q 1s linear in a + b, then the
corresponding Cournot duopoly game 1s also called a quasi-Cournor game.
Now we put a = a and b = —b for each a € A and b € B and consider the game

(A.B.K.L)where A = A, B :—B_.[—q 0] and

K(a.b) = K(a. —b). L(a.b) = L(a, —b)

forallae A.b € B.So

K(a,b) =aQ(a.—b) — c|(a). L(a,b) = —bQ(a, —b) — c2(—b).
The game (A‘ B.K.L) is strategically equivalent to (A, B, K, L) because K(a.b) =
K(a.b) and L(a.bh) = L(a,b) foralla € A, b € B. We will denote by NE(A, B, K, L)
the set of all Nash equilibria of the game (A, B, K, L). Note that (a. b) € NE(A, B, K. L)
if and only if (a, —b) € NE(A, B, K. L). Moreover, if (A, B, K, L) 1s a Cournot po-

L
tential game with potential function P, then the game (A, B . K. _[) as above 1s also
a potential game with potential P given by P (a. by = P(a,—b) for all a € A,

beB.

Theorem 5. Let (A, B, K, L) be a Cournot game and consider (A.B.K. L) as above.
Then

—_— — o

(5;) if the cost functions c¢; are of the form ci(q;) = cq; fori = 1,2, then (A, B, K, L) is
an ordinal potential game and also a supermodular game;

(5ii) if the inverse demand function Q is linear in the aggregate output level, given by
O(a,b) =a—Bla+Db),a,p >0 (1e. (A, B, K, L) is a quasi-Cournot game), then
(/i B.K.L)isa potential game and also a supermodular game.

Proof.

(5;) The Cournot duopoly with cost functions ¢;, i = 1,2 1s an ordinal p(}lential game
with potentml function P given by P(a, b) = ab[Q(a, b) — ¢] for all a € [0, q 'l and

b e |0, q '] (Monderer and Shapley, 1996), so the game (A, B, K. L) is also an ordinal

potential game with the potential P given by P (a. b) = P(a,b)forallae A,b e B.
Moreover, K (a.b) = alQ(a. —b) — ¢] and L(a. h) = —!)[Q G, =) = ] satisty the
increasing differences property because by Proposition 3 we have

)~ K 0 30
e e (= : Q -+ U= z 0
daob db da




(:5)
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and
- L 9 [ ToR
AN ) S Y
dadb da ab

since we assumed that the marginal revenue 1s decreasing. Moreover, the transtformed
strategy spaces A and B are sublattices of R, K is supermodular in the first coor-
dinate and L is supermodular in the second coordinate. Then the Cournot game is a
supermodular game.

The quasi-Cournot competition 1s a potential game with potential function P given
by P(a,b) = a(a + b) — Ba® + b*) — Bab — c\(a) — c2(b) for all a € [0, q '] and
b e |0, q“] Monderer and Shapley, 1996), so the game (A.B.K.L)isalsoa potential

game with the potential P given by P (a. b) = P(a. b) forall a € A .b € B.Moreover,
K(a.b) = = a|la — B(a — h)] —¢i(a) and L(a, h) = —h[u — Bla — b) | — ¢ w(—b) satisty
the increasing differences property because by Proposition 3 we have

3° K 3> L
— = =P =1
E){ii‘ib 3aob

As in the previous case, A and B are sublattices of R, K 1s supermodular in the first
coordinate, L 1s supermodular in the second coordinate and the quasi-Cournot game 1s
a supermodular game.

5. Concluding remarks

[et us first summarize the main results we obtained:

(1) a supermodular two-person zero-sum game 1s a potential game (Theorem 4). Con-

(11)

versely, 1f a two-person zero-sum game 1S a potential game then 1t 1s strategically
equivalent to a supermodular game (Theorems 2 and 3), which 1s monotonic and has at
most one saddle point; the set of pure saddle points of a two-person zero-sum potential
game turns out to coincide with the potential maximizers (Remark 2):

two subclasses of Cournot games are described, which are strategically equivalent to
supermodular games and which are simultaneously (ordinal or exact) potential games
(Theorem 5).

In Remark 4 we discussed a subclass of general two-person potential games which can
be embedded in the class of supermodular games. This result holds for a similar subclass
of general n-person strategic games with separable pay-off functions.

A.game of thetorm (A1, - : ws:Bns Kiss oonKpn) Where Kila;, a-—;) = filaiy) <+ gila~;) 1ot
alla; € Ajanda_; € IT;cpy— 1y A; 18 a potential game and 1t 1s strategically equivalent to a
supermodular game 1f fy, ..., f,, are injective functions. A potential 1s given by

/1
Pla) =)  fila;)

1= |

and the (strategically equivalent) supermodular game 1s defined as tollows:
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e foreachi e N = {l.,....n_}‘ A, = TilAi);
e forallby e A,,....b, € A,andalli e N

K;'(bl.. et et b”) — Kf(f‘]_l(bl)- 51/ loy ’(”—|(b”)}

Also duopoly results in Section 4 can be extended to multimarket oligopoly (Topkis.
1998). It 1s interesting to find other economic situations leading to strategic games which
are potential games and also supermodular games.
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