

Tilburg University

Norma	l's deconvolution	and the independer	nce of sample mear	n and variance	(problem
03.4.1)		•	·		``

Abadir, K.M.; Magnus, J.R.

Published in: **Econometric Theory**

Publication date:

Link to publication in Tilburg University Research Portal

Citation for published version (APA):

Abadir, K. M., & Magnus, J. R. (2003). Normal's deconvolution and the independence of sample mean and variance (problem 03.4.1). Econometric Theory, 19(4), 691-691.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 31. Jul. 2022

PROBLEMS AND SOLUTIONS

PROBLEMS

03.4.1. Normal's Deconvolution and the Independence of Sample Mean and Variance

Karim M. Abadir University of York, UK

Jan R. Magnus
Tilburg University, The Netherlands

- (a) Let x_1 and x_2 be independent variates having m.g.f.s $m_1(t_1)$ and $m_2(t_2)$, respectively, and define $y := x_1 + x_2$. Prove that y is normal if and only if x_1 and x_2 are both normal. Is the existence of m.g.f.s necessary for this result?
- (b) Let $\mathbf{x} := (x_1, \dots, x_n)'$ be a vector of independent (but not necessarily identically distributed) components, where $2 \le n < \infty$. Define $\bar{x} := (1/n) \sum_{i=1}^n x_i$ and $z := \sum_{i=1}^n (x_i \bar{x})^2$. It is well known that if $\mathbf{x} \sim \mathrm{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$, then $\bar{x} \sim \mathrm{N}(\boldsymbol{\mu}, \sigma^2/n)$ independently from $z/\sigma^2 \sim \chi^2(n-1)$. For $n \ge 3$, prove that if $\bar{x} \sim \mathrm{N}(\boldsymbol{\mu}, \sigma^2/n)$ and $z/\sigma^2 \sim \chi^2(n-1)$, then $\mathbf{x} \sim \mathrm{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$.
- (c) Why is the last statement in (b) not necessarily true for n = 2? What additional conditions are needed to make it hold for n = 2?

ACKNOWLEDGMENT

We thank Stéphane Gregoir, Paolo Paruolo, and two referees for their help and acknowledge support from the British ESRC grant R000239538.