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Chapter 1

Introduction

1.1 Background and motivation

During the last decennia we witnessed an increasing complexity of products in the

financial markets. This led financial institutions to rely more and more on the use

of quantitative models. Besides the growth in complexity we also saw a spectac-

ular growth in trading, especially in derivative instruments, that continues in the

new millennium. For example, the turnover of exchange-traded financial derivatives

at the end of 2002 is estimated about $ 170 trillion and the notional amount of

outstanding OTC contracts is estimated about $ 128 trillion (see Jeanneau (2002)).

The growing complexity and trading size of the financial markets makes the task

for financial regulators more difficult and important. An important part of banks’

portfolios these days consists of derivative securities whose value can depend on

some traditional underlyings such as stocks, bonds, and currencies or some more ex-

otic underlyings such as volatility and credit. One of the most apparent differences

between trading derivatives and fundamental securities, like stocks and bonds, is the

importance of theoretical valuation and hedging models in derivatives markets. For

example, these models are used for predicting the behavior of the term structure

of interest rates, modeling the dynamics of assets underlying derivative contracts,

the volatility surface of option prices, determining the most appropriate hedge in-

struments, etc. This induces a somewhat new type of risk, model risk. Model risk

manifests itself, for instance, when a delta hedge for a put or call option on a stock in-

1



2 Introduction

dex is based on a Black-Scholes (lognormal) model with a certain volatility, whereas

the index in fact follows a lognormal process with a different volatility. When the

assumed value of the volatility is less than the actual value, the party that is writing

the option will not only suffer a loss from quoting a too low price but will also be

subject to a variance resulting from mishedging. When the volatility is overesti-

mated the writer may in a competitive market not be able to sell the option at the

high price that correspond to the overestimated volatility; even when the option is

sold, there is still a mishedging risk. Potentially more severe cases of model risk

may be envisaged as well, such as when the true process does not follow a lognormal

process but rather one that has heavier tails or is time-dependent.

Derivatives practitioners are well aware of the fact that their models are not

entirely correct and try to adjust the models to market conditions. For example,

having to deal with the constant volatility assumption in the Black-Scholes model,

while knowing very well that the true value of volatility is uncertain, traders often

use implied volatilities as model input. Usually there are numerous options trading

on the same underlying with different strikes resulting in multiple implied volatilities

contradicting the Black-Scholes assumption. Despite the apparent inconsistency of

the Black-Scholes model with market prices, traders continue to use it trying to

adjust it using rules of thumb based on market knowledge.

Risk managers, who are further removed from the market than traders, are

usually less capable of making these subjective corrections necessary to get the

models to work. Therefore, model risk is harder to grasp for risk managers as more

traditional sources of risk such as market risk, credit risk, legal risk, etc. A solution

is to set model reserves for trading desks. Ideally, these model reserves depend on

the market and the product traded, as some markets and/or products are more

easily reliably modeled than others.

Though most prominent in derivatives markets, model risk is certainly not re-

stricted to derivatives. Risk managers prefer to use (downside) risk measures to

estimate the risk of a portfolio (possibly, but not necessarily containing derivatives).

They employ models for describing the dynamics of the portfolios in order to com-

pute these risk measures. However, if the models they employ do not accurately

describe the underlying dynamics this results in an opaque estimate of the risk.
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The need for an accurate estimate of the risk profile of a bank is first of all

important to the banks itself, but second to central banks regulating the financial

system. The Bank for International settlements (BIS) puts great emphasis in its

Basel Accord (and its upcoming sequel, Basel II) on the accurate risk representa-

tions. For example, capital requirements are based on the results of a backtest of

the model of a bank used to predict its value-at-risk. It is the purpose of this thesis

to investigate model risk in general and related issues such as accuracy testing of

risk management models and option pricing models.

1.2 Overview and contribution of thesis

The first part of the thesis investigates model risk issues in risk management. In

Chapter 2 we present a framework for backtesting all currently popular risk mea-

surement methods for quantifying market risk (including value-at-risk and expected

shortfall) using the functional delta method. Estimation risk can be taken explic-

itly into account. Based on a simulation study we provide evidence that tests for

expected shortfall with acceptable low levels have a better performance than tests

for value-at-risk in realistic financial sample sizes. We propose a way to deter-

mine multiplication factors, and find that the resulting regulatory capital scheme

using expected shortfall compares favorably to the current Basel Accord backtesting

scheme.

We test several risk management models for computing expected shortfall for

one-period hedge errors of hedged derivatives positions in Chapter 3. Contrary

to value-at-risk, expected shortfall cannot be tested using a standard binomial test,

since we need information about the distribution in the tail. As derivatives positions

change characteristics and thereby the size of risk exposures over time changes as

well, one cannot apply the standard tests based on stationarity. To overcome this

problem, we present a transformation procedure. For comparison purposes the tests

are also performed for value-at-risk.

Chapter 4 proposes a general framework for quantification of model risk. This

framework allows one to allocate regulatory capital to positions in a given market

depending on the extent to which this market can be reliably modelled. Our ap-
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proach is based on computing worst-case risk measures over sets of models that are

in some appropriate sense close to a nominal model. The method is general in the

sense that it can be applied with any of the usual risk measures such as value-at-risk

and expected shortfall. In as far as risk measures can also be used as pricing tools

or as determinants of margin requirements, the chapter provides a quantification of

model risk in these settings as well. We present an application to stock portfolios

and find that for usually applied specifications misspecification risk is much more

important than estimation risk.

In the early days of option pricing plain vanilla options were not traded very

frequently and, therefore, their pricing posed a modelling challenge. Currently, the

market for (short-term) plain vanilla options is so liquid that the pricing of them

does not require much modelling. A simple interpolation of the implied volatility

surface would already give a reasonable price. Therefore, the pricing model risk

is negligible. However, modelling remains crucial for hedging. Depending on the

hedge strategy used the risk profile of a derivative can take (very) different forms

(see Green and Figlewski (1999). The issue of hedging model risk for derivatives

portfolios is addressed in Chapter 5. We empirically investigate the S&P 500 market

and the $/£, $/�, and £/� foreign exchange markets. Furthermore, we advocate

the bootstrap as an alternative to the historical simulation method to determine

estimation and misspecification risk. We find that in our samples estimation risk

and misspecification risk are considerable and often significant. Furthermore, we

find that in the S&P 500 market a risk premium seems to be demanded for bearing

these risks while this is not the case in the FX markets investigated.

The second part of the thesis deals with pricing interest rate derivatives. In

Chapter 6 we show that discrete string models are observationally equivalent to

market models. We also derive the parsimony of the models. As a consequence of

the observational equivalence discrete string models are a special case of the HJM

framework. The discrete string models can be estimated/calibrated using principal

components analysis in the same manner as the market models.

In Chapter 7 we investigate factor dependence and estimation risk for commonly

traded exotic interest rate derivatives. We employ the popular Libor market model,

and suggest the (stationary) bootstrap method to compute the estimation risk for
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exotic products. We find that autocaps, sticky caps, and ratchet caps are sensitive

to the number of factors used and have considerable estimation risk.

Chapter 8 presents the main conclusions and directions for further research.





Part I

Model risk issues in risk

management
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Chapter 2

Backtesting for Risk-Based

Regulatory Capital

2.1 Introduction

Regulators face the important but difficult task of determining appropriate capi-

tal requirements for regulated banks. Such capital requirements should protect the

banks against adverse market conditions and prevent them from taking extraordi-

nary risks (where, in this paper, we focus on market risk). At the same time, regu-

lators should not prevent banks from practicing one of their core businesses, namely

trading risk. The crucial ingredients in the process of risk based capital require-

ment determination are the use of a risk measurement method (to quantify market

risk), a backtesting procedure, and multiplication factors, based on the outcomes

of the backtesting procedure. Regulators apply multiplication factors to the risk

measurement method they use in order to determine the capital requirements. The

multiplication factors depend on the backtesting results, where a bad performance

of the risk measurement method results in a higher multiplication factor. Conse-

quently, to guarantee an appropriate process of capital requirement determination,

regulators need an accurate backtesting procedure, combined with a suitable way of

determining multiplication factors. Based on these requirements the regulators will

assign the risk measurement method.

Since its introduction in the 1996 amendment to the Basel Accord (see Basel

9
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Committee on Banking Supervision (1996a) and Basel Committee on Banking Su-

pervision (1996b)) the value-at-risk has become the standard risk measurement

method. However, although the value-at-risk may be interesting from a practical

point of view, it has a serious drawback: it does not necessarily satisfy the property

of subadditivity, which means that one can find examples where the value-at-risk of

a portfolio as a whole is higher than that of the sum of the value-at-risks of its mu-

tually exclusive sub-portfolios. An alternative, practically viable risk measurement

method that satisfies the subadditivity property (and other desirable properties 1) is

the expected shortfall. Currently, a debate is going on whether the use of expected

shortfall should be recommended in Basel II. So far, it is not in Basel II due to the

expected difficulties concerning backtesting (see Yamai and Yoshiba (2002b)). Thus,

although the value-at-risk does not necessarily satisfy the subadditivity property, it

is still prescribed by regulators, because of its perceived superior performance in

case of backtesting.

Both the value-at-risk and the expected shortfall (as well as many other risk

measurement methods) are level-based methods, meaning that one first has to choose

a level; given this level, the risk depends on the corresponding left-hand tail of the

profit and loss distribution. For the value-at-risk the Basel Committee chooses a

level of 0.01, meaning that the value-at-risk is based on the 1% quantile of the

profit and loss distribution. For the sake of comparison, one might be tempted to

choose the same level for alternative risk measurement methods, like the expected

shortfall, so that they are calculated based on the same left-hand tail of the profit

and loss distribution. When the level in both cases equals 0.01 it seems obvious

to expect that backtesting expected shortfall will be much harder than backtesting

the value-at-risk, even without trying it out. However, comparing alternative risk

measurement methods by equating their levels does not seem to be appropriate from

the viewpoint of capital reserve determination. From that perspective it seems much

better to choose the levels such that the risk measurement methods result in (more

or less) the same quantiles of the profit and loss distribution. The 0.01-level of

value-at-risk will then correspond to a higher level in case of the expected shortfall.

But then it is no longer clear which method will perform better in backtesting. It

1Namely, translation invariance, monotonicity, and positive homogeneity. These three proper-
ties are also satisfied by value-at-risk.
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is the aim of this paper to make this comparison.

The contribution of the paper is threefold. First, we provide a general backtesting

procedure for a large class of risk measurement methods, which contains all major

risk measurement methods used nowadays. In particular, as a result a test for

expected shortfall is derived which appears to be new in the literature. Using the

functional delta method we provide a framework that requires the regulator only

to determine the influence function of the risk measurement method in order to

determine the critical levels of the capital requirements table. We show that the

present backtesting methodology in the Basel Accord is a special case. Furthermore,

a simple method to incorporate estimation risk is presented. The fact that banks

have time-varying portfolio sizes and risk exposures complicates the use of standard

statistical techniques. We deal with this issue using a standardization procedure

based on the probability integral transform also used by Diebold, Gunther and Tay

(1998) and Berkowitz (2001). The key idea of the standardization procedure is that

banks should not only report whether or not the realized profit/loss is beyond the

value-at-risk, but also which quantile of the predicted profit and loss distribution

is realized. Second, we establish, via simulation experiments, that backtests for

expected shortfall have a more promising performance than for value-at-risk, when

the comparison is based on (more or less) equal quantiles instead of equal levels. In

this way we provide evidence for a viable risk based regulatory capital scheme using

expected shortfall with good backtesting properties. Finally, we suggest a general

method to determine multiplication factors for the risk measurement methods using

the backtest procedure developed.

The setup of the paper is as follows. In Section 2.2 we review the most popular

risk measurement methods in current quantitative risk management. In Section 2.3

we present the standardization procedure in order to take account of the time-varying

portfolio sizes and risk exposures. Section 2.4 treats the backtesting of the Basel

Accord, its generalization using the functional delta method, and the incorporation

of estimation risk. Simulation experiments are presented in Section 2.5. In Section

2.6 a suggestion for determination of multiplication factors is given. Finally, Section

2.7 concludes.
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2.2 Risk measurement methods

2.2.1 Definitions and notation

Though risk profiles contain much relevant information for risk managers, they be-

come unmanageable for large firms with many divisions and portfolios. Therefore,

for risk management purposes, risk managers prefer low dimensional characteristics

of the risk profiles. In order to compute these low dimensional characteristics they

use a financial model m = (Ω,P), where Ω denotes the states of the world, and P

the postulated probability distribution.2 A risk is defined as follows.3

Definition 2.1 Let a financial model m be given. A risk defined on m is an element

of R(m), the set of random variables defined on Ω.

This definition, in which a “risk” is a random variable, follows the terminology

of Artzner, Delbaen, Eber and Heath (1999) and Delbaen (2000). Artzner et al.

(1999) defined a risk measure for a particular financial model.

Definition 2.2 Let a financial model m be given. A risk measure, ρ, defined on m

is a map from R(m) to IR ∪ {∞}.4

In order to allow for several financial models, we use a class of financial models

denoted by M. Each of these models defines a set of risks R (m). Following Kerkhof,

Melenberg and Schumacher (2002) we denote a mapping defined on M that assigns a

risk measure defined on m for eachm ∈ M by a risk measurement method defined on

M, RMM. The most well-known risk measurement method nowadays is the value-

at-risk method which was supported by the Basel Committee in the 1996 amendment

to the Basel Accord (see Basel Committee on Banking Supervision (1996a)).

Before coming to the formal definitions of the popular risk measurement methods

we present the quantile definitions.

Definition 2.3 (Quantiles) Let X ∈ R(m) be a risk for model m = (Ω,P).

2Formally, a model is defined by m = (Ω,F ,P), where F is the information available.
3Formally, R(m) is defined as the space of all equivalence classes of real-valued measurable

functions on (Ω,F).
4Including ∞ allows risks to be defined on more general probability spaces, see Delbaen (2000).
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1. Qp (X) = inf {x ∈ IR : P(X ≤ x) ≥ p} is the lower p -quantile of X.

2. Qp (X) = inf {x ∈ IR : P(X ≤ x) > p} is the upper p -quantile of X.

The definition of the value-at-risk method can then be given by

Definition 2.4 The value-at-risk method with reference asset N and level p ∈
(0, 1) assigns to a model m = (Ω,P) the risk measure VaRp

m given by

VaRp
m : R(m) � X �→ −Qp (X/Nm) = Q1−p (−X/Nm) ∈ IR ∪ {∞}, (2.1)

where Nm denotes the reference asset in model m.

We use a reference asset N (for example, the money market account) to measure the

losses in terms of money lost relative to the reference asset. This allows comparison

of risk measures for different time horizons.

Since the introduction of value-at-risk by RiskMetrics (1996), the literature on

value-at-risk has surged (see, for example, Risk Magazine (1996), Duffie and Pan

(1997), and Jorion (2000) for overviews). Though value-at-risk is an intuitive risk

measure, the reasoning behind it was more practical than theoretically grounded.

Recently, Artzner, Delbaen, Eber and Heath (1997) introduced the notion of co-

herent risk measures having the properties of translation invariance, monotonicity,

positive homogeneity, and subadditivity. Their ideas were formalized in Artzner

et al. (1999) and Delbaen (2000), amongst others. The value-at-risk method does

not necessarily satisfy the relevant subadditivity property. This means that we can

find examples where the value-at-risk of a portfolio is higher than that of the sum

of the value-at-risks of a set of mutually exclusive sub-portfolios (see, for example,

Artzner et al. (1999), Acerbi and Tasche (2002), and Tasche (2002)). A practically

usable coherent risk measure is the expected shortfall as given in Acerbi and Tasche

(2002).

Definition 2.5 The expected shortfall method with reference asset N and level
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p ∈ (0, 1) assigns to a model m = (Ω,P) the risk measure ESm given by

ESm : R(m) � X �→ −1

p

(
IEXII(−∞,Qp(X/Nm)]

+Qp (X/Nm) (p− P (X/Nm ≤ Qp (X/Nm)))) ∈ IR ∪ {∞}. (2.2)

In case that p = P (X/Nm ≤ Qp (X/Nm)), the expected shortfall equals5

ESm(X) = −1

p
IE
[
XII(−∞,Qp(X/Nm)]

]
= IE [X | X ≤ Qp (X/Nm)] . (2.3)

Thus, informally, value-at-risk gives “the minimum potential loss for the worst 100p

% cases”6 while expected shortfall gives the “expected potential loss for the worst

100p % cases”. Therefore, the expected shortfall takes the magnitude of the ex-

ceedance of the value-at-risk into account, while for value-at-risk the magnitude of

exceedance is irrelevant.

2.2.2 Which levels?

Both the value-at-risk and the expected shortfall risk measurement method are

defined for arbitrary levels p ∈ (0, 1). This leaves the issue of the choice of p open.

Since we are interested in protecting against adverse market conditions it is clear

that p should be chosen small. But how small? For value-at-risk the most common

choices are p = 0.05 or p = 0.01 (the level chosen by the Basel Committee). In

combination with the current multiplication factors used by the Basel Committee,

the 1% value-at-risk results in more or less satisfactory capital reserves. In order

to get a risk based capital reserve scheme based on expected shortfall, we need to

determine a level p for the expected shortfall. In most comparisons between value-

at-risk and expected shortfall their levels are taken to be equal. This seems to lead to

the general opinion that, although expected shortfall has nice theoretical properties,

it is much harder to backtest than value-at-risk (see Yamai and Yoshiba (2002b)), the

5The additional term Qp (X/Nm) (p− P (X/Nm ≤ Qp (X/Nm))) is needed in order to make the
expected shortfall coherent, see Acerbi and Tasche (2002).

6Most value-at-risk devotees prefer the alternative formulation of “the maximum loss in the
100(1-p)% best cases.”
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main reason why expected shortfall is still absent in Basel II.7 However, for capital

reserve determination it seems to make sense to look at comparable quantiles instead

of levels. For example, take the median shortfall, that is, take the median in the tail

instead of the expectation. The median shortfall with level 2p corresponds to value-

at-risk with level p. If we would compare the backtest results of the median shortfall

and the value-at-risk with the same level, we probably find that value-at-risk has a

better performance than median shortfall. But for a valid comparison, we should

use the median shortfall with twice the level of value-at-risk, in which case we find

equal performance. A similar reasoning applies to expected shortfall. In order to

have a valid comparison of the backtest results we should look at the quantiles and

not the levels. Doing this for the Gaussian distribution (as a reference distribution),

we find p = 0.025 for the expected shortfall when p = 0.01 for value-at-risk.8 In

case of excess kurtosis we need to take a higher level for the expected shortfall for it

to equal the 1% value-at-risk. Since, in practice, we usually encounter distributions

with heavier tails than the Gaussian distribution, the level of 2.5% can be seen as a

lower bound on the level for equal capital requirement.

2.3 Standardization procedure

Let (ht)t∈TT
with TT = {1, ..., T} (the test period) be a time-series of (in our case

daily) returns on a profit and loss account (P&L) of a bank. Usually, the sequence

(ht)t∈TT
cannot be modelled appropriately as a sample from one single distribution,

say F , due to the fact that banks change the composition of their portfolio frequently.

In general, the risk profile (the distribution of the P&L) of the bank changes over

time. Therefore, we allow (ht)t∈TT
to be drawn from a different (marginal) distribu-

tion each period, that is,

ht ∼ Ft t ∈ TT . (2.4)

A bank is required to report the riskiness of its portfolio every day by means of

7We thank Jon Danielsson for pointing this out to us.
8Notice that for the value-at-risk at level p = 0.01 we have −Φ−1(0.01) = 2.33, while for

the expected shortfall at level p = 0.025 we have Φ−1(0.025) = −1.96 and −IE[X|X < −1.96] =
φ(−1.96)/Φ(−1.96) = 2.34 (see (2.3)), whenX follows a standard normal distribution (where φ and
Φ denote the density and distribution function of the standard normal distribution, respectively).
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a risk measure ρ (ht), where ρ (ht) denotes the risk measure for period t using the

information up to time t−1.9 In order to compute these risk measures the bank uses

a sequence of forecast distributions (Pt)t∈TT
, with corresponding densities (pt)t∈TT

.

Often Ft is assumed to belong to a location-scale family; that is, it is assumed

that the sequence {(ht − µt) /σt}t∈TT
is identically distributed (see, for example,

McNeil and Frey (2000) and Christoffersen, Hahn and Inoue (2001)). However,

this restricts the way in which the procedure takes portfolio changes of banks into

account. In this set-up moments higher than two are only allowed to vary over time

through the first two moments. More generally, we can use the probability integral

transform (see, for example, Van der Vaart (1998)) to go from a non-identically

distributed sequence (ht)t∈TT
to an identically distributed sequence (yt)t∈TT

. This

transform is defined as

yt = G−1

(∫ ht

−∞
pt (u) du

)
= G−1 (Pt (ht)) , t ∈ TT , (2.5)

In case Pt = Ft for each t ∈ TT , the distribution of yt equals G, otherwise, the

distribution of yt is equal to, say, Qt, unequal to G (for at least one time period

t). The following lemma (see special cases in Diebold et al. (1998) and Berkowitz

(2001)) gives the density qt of yt.

Lemma 2.1 Let ft (·) denote the density of ht, pt (·) the density corresponding

to Pt (·), g the density associated with G, and yt = G−1 (Pt (ht)). If
dP−1

t (G(yt))

dyt
is

continuous and nonzero over the support of ht, yt has the following density:

qt (yt) =

∣∣∣∣dG−1 (Pt (ht))

dht

∣∣∣∣−1

ft (ht)

= g (yt)
pt (ht)

ft (ht)
. (2.6)

Proof. Just apply the change of variables transformation to yt = G−1 (Pt (ht))

and the result follows.

In case the forecast distributions of the bank are correct, i.e., Pt = Ft, t ∈ TT , we

have that qt (yt) = g (yt). Thus, under the hypothesis that Pt = Ft, t ∈ TT we can

9It would be more appropriate to write ρt−1 (ht), but we suppress the subscripts for notational
convenience.
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go from a non-identically distributed sequence (ht)t∈TT
to an identically distributed

sequence (yt)t∈TT
with distribution G. We denote this procedure as standardization

to G. For example, Berkowitz (2001), uses G = Φ, the standard normal distribution,

in order to use the Gaussian likelihood for his Likelihood Ratio tests.10

2.4 Backtest procedure

After assigning a risk measurement method the regulator faces the important task

of determining the quality of the models that the regulated banks use in order to

compute the risk measure. One of the reasons that the value-at-risk approach is

often preferred to the coherent risk measures is the fact that the quality of value-at-

risk models seems more easily verifiable. Therefore, the choice of risk measurement

method by the regulator is based on the tools available to the regulator to ver-

ify model quality. In order to motivate the regulated institutions to improve their

models, regulators often impose model reserves or multiplication factors (see, for

example, the multiplication factors by the Basel Committee). In Section 2.4.1 we

review the backtest procedure of the Basel Committee. Then we provide an alter-

native and more general procedure, in Section 2.4.2 ignoring estimation risk, and in

Section 2.4.3 taking estimation risk into account.

2.4.1 Backtest procedure of Basel Committee

In this section we briefly describe the backtest procedure used by the BIS for deter-

mining the multiplication factors for capital requirements. A full exposition can be

found in the Basel Committee on Banking Supervision (1996b).

Banks need to produce T (T = 250 in the current BIS implementation) value-

at-risk forecasts (1% value-at-risk in the current BIS implementation) (VaRt)t∈TT
,

where VaRt denotes the value-at-risk forecast for day t using the information up to

time t− 1. It is assumed that these value-at-risk forecasts (VaRt)t∈TT
are such that

the exceedances sequence (et)t∈TT
consists of independent elements with a Bernoulli

distribution with probability p, that is, Bern(p), where p denotes the quantile rel-

10Notice, however, that when Pt 
= Ft, for at least one t ∈ TT , the standardization procedure
will result in distributions Qt, not necessarily equal for different t ∈ TT .
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Table 2.1: BIS multiplication factors
The table shows the plus factors (multiplication factor = 3 + plus factor) used by
the BIS for capital requirements based on a sample of 250. Tables for other sample
sizes can be constructed by letting the yellow zone start when the cumulative
probability exceeds 95% and the red zone when it exceeds 99.99%.

zone
Number of
exceedances

Plus
factor

Cumulative
probability

0 0,00 8,11
1 0,00 28,58

green zone 2 0,00 54,32
3 0,00 75,81
4 0,00 89,22
5 0,40 95,88
6 0,50 98,63

yellow zone 7 0,65 99,60
8 0,75 99,89
9 0,85 99,97

red zone ≥ 10 1,00 99,99

evant to the value-at-risk method employed. The exceedances (et)t∈TT
are defined

by

et = II(−∞,−VaRt) (ht) , t ∈ TT . (2.7)

By definition we have that

P (et = 1) = P (ht < −VaRt) , t ∈ TT . (2.8)

If −VaRt = F−1
t (p), with F the cumulative distribution function of ht, we have that

P (et = 1) = p and, consequently, the distribution of et indeed follows a Bernoulli-

distribution. Using the cumulative distribution of the binomial distribution one

may then compute multiplication factors based on the number of exceedances. For

completeness, we present Table 2 from Basel Committee on Banking Supervision

(1996b) in Table 2.1.

The capital requirement can then be computed as the product of the value-at-

risk at time t, VaR0.01
t , multiplied by a multiplication factor, mft, that is determined
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by the results of a backtest of model m on the previous T (T = 250 in Basel Accord)

days,11

CRt = mft · VaR0.01
t . (2.9)

The backtest procedure given by the Basel Committee described above has some

serious shortcomings. It assumes that under the null hypothesis the exceedances

(et)
T
t=1 are i.i.d. while empirical evidence shows a clustering phenomenon in the

exceedances (see, for example, Berkowitz and O’Brien (2002)). However, in case

of dependence, one could adapt the test procedure by applying, for instance, the

Newey-West (1987) approach which allows for quite general forms of dependence

over time. Another drawback is that the above procedure does not take estimation

risk into account which manifests itself in the fact that VaRt = F̂−1
t (p) which is not

necessarily equal to F−1
t (p). Due to the limited amount of data there is likely some

inaccuracy in the estimate for the value-at-risk which in effect causes an estimation

error in the exceedances (compare West (1996)). This issue is treated in Section

2.4.3. A final drawback is that by transforming the information of the distribution

into one characteristic (exceeding of value-at-risk or not) we lose relevant information

of the return distribution (see also Berkowitz (2001)). In Section 2.5 we see that the

power of the test is affected by removing this information.

2.4.2 General backtest procedure

We assume given a sample of transformed data (yt)t∈TT
to which the standardiza-

tion procedure, described in Section 2.3 has been applied; this yields observations

drawn from actual distributions Qt, some or all possibly unequal to the postulated

standardized distribution G. In this subsection we abstract from possible estima-

tion risk in estimating the distribution function. This will be discussed in the next

subsection.

The null hypothesis H0 : Qt = G can be tested against numerous alternatives.

We shall formulate these alternatives under the additional assumption of station-

11Actually, the used value-at-risk is max{VaR0.01
t , 1

60

∑60
i=1 VaR0.01

t−i } instead of VaR0.01
t (see Basel

Committee on Banking Supervision (1996b)). Furthermore, the multiplication factors are set every
3 months.
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arity, i.e., Qt = Q.12 For example, Berkowitz (2001) tests this hypothesis using a

likelihood ratio (LR) test using the Gaussian likelihood (H1 : Q 
= G = Φ) and a

censored Gaussian likelihood (H1 : Q(−∞,Q−1(p)] 
= G(−∞,G−1(p)] ).13 Using the cen-

sored Gaussian likelihood has the advantage that it ignores model failures in the

interior of the distribution: only the tail behavior matters.

Following this line of reasoning, we use risk measurement methods which focus by

construction on the tail behavior to evaluate the null hypothesis. Our main concern

is not conservatism, that is, the true risk � (Q) is smaller than or equal to � (G), the

risk expected by our model. Since we do not want that the model underestimates

the risk, the alternative is taken to be H1 : � (Q) > � (G).

In Section 2.2, we defined risk measurement methods as functions of random

variables (defined on a financial model m = (Ω,P)) following the quantitative risk

measurement literature. For the purpose of testing it is more convenient to define

the risk measurement method as a functional, � : DF → IR, of a distribution function

to IR ∪∞.14 Thus, RMMm (X) = � (F ) for risk X if F is the distribution function

of X associated with model m.

If � : DF → IR is Hadamard differentiable on DF , we can apply the functional

delta method (see, for example, Van der Vaart (1998) Thm. 20.8)

√
T (� (QT ) − � (Q)) =

√
T

1

T

T∑
t=1

ψt (Q) + op (1) , IEψt (Q) = 0, IEψ2
t (Q) <∞,

(2.10)

where QT denotes the empirical distribution of the random sample (yt)t∈TT
and

ψt (Q) denotes the influence function of the risk measurement method � at observa-

tion t. As can easily be shown, the common risk measures such as value-at-risk and

expected shortfall are Hadamard differentiable.15 We can then use the following test

12When presenting the test statistics, we maintain this assumption and implicitly assume that
this stationarity is transferred in the risk measures �(Qt). Notice, however, the testing procedure
is more generally applicable than just for the case of stationarity.

13For distribution function F , F(−∞,F−1(p)] denotes the left tail of the distribution up to the pth

quantile.
14DF denotes the space of all distribution functions, that is, all non-decreasing cadlag functions

F on [−∞,∞] with F (−∞) ≡ limx→−∞ F (x) = 0 and F (∞) ≡ limx→∞ F (x) = 1. DF is equipped
with the metric induced by the supremum norm.

15For the value-at-risk, see, for example, Van der Vaart and Wellner (1996) Lemma 3.9.20. In
case of the expected shortfall, the influence function is easily obtained by applying the chain rule
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statistic:

ST =
√
T

(� (QT ) − � (Q))√
V

d→
H0

N (0, 1), (2.11)

with V = IEψ2
t (Q) and �(Q) evaluated under the null hypothesis, Q = G.16 Some

important examples are:

Example 2.1 (Value-at-risk) In the case of value-at-risk written as a function of

the distribution function

�(Q) = −Q−1(p), (2.12)

the influence function ψ (Q) is given by

ψVaR (Q) = −p− II(−∞,Q−1(p)] (x)

q (Q−1 (p))
, (2.13)

and

IEψ2
VaR (Q) =

p (1 − p)

q2 (Q−1 (p))
. (2.14)

This leads to the following test statistic

SVaR =
√
Tq
(
Q−1 (p)

) (� (QT ) − � (Q))√
p (1 − p)

(2.15)

The critical value-at-risk levels for the yellow and red zones are given by

VaRyellow =

√
z0.95

T

p (1 − p)

q2 (Q−1 (p))
+ VaR (Q)

VaRred =

√
z0.9999

T

p (1 − p)

q2 (Q−1 (p))
+ VaR (Q) , (2.16)

where zp denotes the pth quantile of the standard Gaussian distribution.

Example 2.2 (Exceedances) In the case of the number of exceedances written as

for Hadamard differentiable functions to the quantile function and the mean, see, for example, Van
der Vaart and Wellner (1996) Lemma 3.9.3.

16Under the assumption of stationarity, i.e., Qt = Q, we could also evaluate V under the alter-

native as V = 1
T

∑T
t=1

(
ψt (QT ) − 1

T

∑T
t=1 ψt (QT )

)2

. However, our simulation study indicates a
much worse performance of the test statistics using this estimate than when evaluating V under
the null.
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a function of the distribution function

�(Q) = II(−∞,Q−1(p)], (2.17)

the influence function ψ (Q) is given by

ψexc (Q) = p− II(−∞,Q−1(p)] (x) , (2.18)

and

IEψ2
exc (Q) = p (1 − p) . (2.19)

This gives the following test

Sexc =
√
T

(� (QT ) − � (Q))√
p (1 − p)

(2.20)

The critical numbers of exceedances for the yellow and red zones are given by

Excyellow =
√
z0.95Tp (1 − p) + pT

Excred =
√
z0.9999Tp (1 − p) + pT (2.21)

For the regular backtest size of 250, these critical values are equal to the exact

setting of the binomial distribution used by the BIS.

Example 2.3 (Expected shortfall) In the case of ES written as a function of the

distribution function

�(Q) = −
∫ Q−1(p)

−∞
xdQ(x) +Q−1(p)

(
p−
∫ Q−1(p)

−∞
dQ(x)

)
, (2.22)

the influence function ψ (Q) is given by

ψES (Q) = −1

p

[(
x−Q−1 (p)

)
II(−∞,Q−1(p)] (x)

+ψVaR (Q)

(
p−
∫ Q−1(p)

−∞
dQ (x)

)]
− ES (Q) + VaR (Q) (2.23)
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and

IEψ2
ES (Q) =

1

p
IE
[
X2|X ≤ Q−1 (p)

]
− ES (Q)2

+2

(
1 − 1

p

)
ES (Q) VaR (Q) −

(
1 − 1

p

)
VaR (Q)2 . (2.24)

This leads to the following test statistic

SES =
√
T

(� (QT ) − � (Q))√
IEψ2

ES (Q)
(2.25)

The critical ES levels for the yellow and red zones are given by

ESyellow =

√
z0.95

T
IEψ2

ES (Q)2 + ES (Q)

ESred =

√
z0.9999

T
IEψ2

ES (Q)2 + ES (Q) (2.26)

We conclude this subsection by illustrating that the test statistics can easily be

implemented for the Gaussian case G = Φ, by presenting the outcomes of IEψ2
t (G)

in case of value-at-risk and expected shortfall. For this, let φ (x) denote the density

function of the standard Gaussian N (0, 1) distribution and zp the pth quantile of

the standard normal distribution. The value-at-risk in case of a normal distribution

N (0, 1) is given by

VaRp (X) = zp, (2.27)

and the expected shortfall is given by

ESp (X) = −φ (zp) /p. (2.28)

IEψ2
t (Φ) for value-at-risk and expected shortfall are then given by,

IEψ2
t (Φ) =

p (1 − p)

φ (zp)
,
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for value-at-risk and

IEψ2
t (Φ) = 1 − zp

φ (zp)

p
−
(
φ (zp)

p

)2

− 2

(
1 − 1

p

)
φ (zp)

p
zp −

(
1 − 1

p

)
z2

p ,

for expected shortfall.

2.4.3 Estimation risk

The backtesting procedures described in this section assume that the forecasted

distributions (Pt)t∈TT
of the profit/loss are given. It seems natural to penalize banks

with a plus factor for using inappropriate model families, but not for just having to

estimate a correctly specified model (assuming that they use their data efficiently).

In order to do so, we derive in this section backtest procedures that take estimation

risk into account.

Again, we use the standardization procedure described in Section 2.3. We assume

given a random estimation sample (yt)t∈Te
, Te = {−N + 1, ..., 0}, and a random

testing sample (yt)t∈TT
TT = {1, ..., T} with yt ∼ Q (Q = G under the null). We

then have
√
n (� (Qn) − � (Q))

d→ N
(
0, IEψ2 (Q)

)
, n = T,N

where ψ (·) is the influence function of � (·). This yields (still under the null)

√
T (� (QT ) − � (QN)) =

√
T (� (QT ) − � (Q)) −

√
T

N

√
N (� (QN) − � (Q))

d→ N
(
0, (1 + c) IEψ2 (G)

)
, (2.29)

when T
N

→ c as N → ∞ and T → ∞.

If the estimation period would grow with time, c would tend to zero. In practice,

one usually specifies a finite fixed estimation period (for example, 2 years) and

computes the risk measure based on this estimation period. This is a so-called

rolling window estimation procedure, which can be approximated in our setting by

taking c = T
N

in (2.29).

For the examples in 2.4.2 we can derive the critical values for the yellow and

red zones in the same way by replacing V by (1 + c)V . With the incorporation of
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Table 2.2: Simulation results for size of tests
This table presents the Type I errors (in percentages) if Ft = Pt = N (0, 1)
for t ∈ TT for T = 125, 250, 500, and 1000. The argument H0 indicates
that the variance used is IEψ2

t (G) and H1 indicates that the variance used is

V = 1
T

∑T
t=1

(
ψt (Q) − 1

T

∑T
t=1 ψt (Q)

)2

. Tail0.025 signifies Berkowitz tail test. The

number of simulations equals 10,000.

T Exceedances VaR0.01 (H0) VaR0.01 (H1) ES0.025 (H0) ES0.025 (H1) Tail0.025

125 3.75 2.75 1.81 2.64 3.24 3.05
250 4.17 4.81 2.87 5.14 4.64 5.42
500 6.63 2.91 2.27 9.38 8.10 5.16

1000 4.51 3.87 2.98 4.34 2.63 5.33

estimation risk in the backtesting procedure we introduce an additional degree of

freedom for the regulator, namely the choice of c (or N , since T could already be

chosen by the regulator).

2.5 Simulation results

In this section we compare the finite sample behaviors of the backtest procedures.

First, we determine the actual size of the tests for the exceedances ratio, value-at-

risk, and expected shortfall. For simplicity, we take Ft = N (0, 1), the standard

normal distribution, for t ∈ TT . To check the performance of the tests for size,

we take Pt = Ft, t ∈ TT , and set the significance level α = 0.05. We verify the

performance of the tests given in the examples in Section 2.4.2 using G = Φ, the

standard normal distribution function.17 The tests are compared to the censored

LR test of Berkowitz (2001), which we refer to as the Berkowitz tail test. Table 2.2

shows the results of the performance of the size of the tests. We see that the size for

the three tests (Exceedances, value-at-risk, and expected shortfall) seem reasonable

for the common sample size of 250. The Berkowitz tail test seems to converge a bit

faster.

17Using G = U [0, 1] results in very poor results for smaller sample sizes. The reason is that
by transforming the data to uniform random numbers the symmetry in the test is lost due to the
non-linear shape of F .
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Next, we investigate the power of the different tests. In practice, financial time

series often exhibit excess kurtosis with respect to the normal distribution and have

longer left tails. We consider three alternatives that replicate (parts of) this be-

havior. First, we use the student t−distribution with 5 degrees of freedom, that

is, Ft = t5. This distribution has heavier tails than the normal distribution, but

is still symmetric. Second, we use two alternatives from the Normal Inverse Gaus-

sian (NIG) family.18 The NIG distribution allows one to control both the level

of excess kurtosis and the skewness. We consider two cases: a symmetric case

with a moderately high kurtosis, β = 0, α =
√
β2 + 1, δ = 1/ (1 + β2) , µ = 0

and a case where the distribution is very skewed to the left and has a large kur-

tosis, β = −0.25, α =
√
β2 + 1, δ = 1/ (1 + β2) , µ = 0. Third, we take a

GARCH(1,1)-process,19 with parameter values ω = 0.05, γ1 = 0.25, and γ2 = 0.7 to

allow for a time-dependent distribution under the alternative hypothesis. For the

time-independent cases we present the results for VaR and ES with the test statistic

estimated under the null as well as under the alternative (see footnote 16). Table 2.3

contains the results. We see that in case of a time-independent alternative for both

the value-at-risk and the expected shortfall, the tests with variance evaluated under

the null hypothesis have (far) more power. The difference with the test using the es-

timated variance under the alternative narrows when the sample size increases. The

test for expected shortfall performs best in detecting the misspecification, also when

the alternative is GARCH(1, 1) for T ≥ 250; the number-of-exceedances test has less

power than the value-at-risk test and the expected shortfall test. The Berkowitz tail

test also performs well and, therefore, seems a worthwhile auxiliary test, but, in

18The density of the NIG (α, β, µ, δ) is given by

fNIG (x) =
α exp

(
δ
√
α2 − β2 − βµ

)
π

q

(
x− µ

δ

)−1

K1

{
δαq

(
x− µ

δ

)}
exp {β (x− µ)} ,

with q (x) =
√

1 + x2 and K1 (x) the modified Bessel function of the third kind. See, for example,
Barndorff-Nielsen (1996).

19The GARCH(1,1) model (see Bollerslev (1986)) is given by the following return and volatility
equations:

rt =
√
htεt

ht = ω + γ1r
2
t−1 + γ2ht−1
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general, trails the test for expected shortfall. Especially for the shorter sample sizes

the test for expected shortfall performs better with only GARCH(1, 1) for T = 125

as an exception.

Finally, we take estimation risk into account. In Table 2.4 the results are shown

for an equal estimation and testing period. It gives the expected result that the

longer the samples the better the power of the tests. However, the performance of

the test for value-at-risk with the variance evaluated under the alternative (in the

time-independent cases) is quite bad. In Table 2.5 we fixed the testing period at 1

year (250 days) and varied the estimation period. As expected the results improve

for longer estimation periods. Again, the performance of the test for value-at-risk

with the variance evaluated under the (time-independent) alternative is quite bad.

Concluding, we find that the performances of the tests with the variance eval-

uated under (a time-independent) H0 have far more power than the tests with the

variance evaluated under H1 for sample sizes realistic for financial data. Further-

more, we find that the performance for the size of the tests of the 2.5% expected

shortfall is about equal to the 1% value-at-risk. However, the power of the 2.5%

expected shortfall test is much better than that of the 1% value-at-risk.

2.6 Multiplication factors

In this section we propose a method to compute multiplication factors for capital

requirements determination. Our starting point is the test statistic (2.11). If the

test statistic results in rejection of the null hypothesis, then we might conclude that

� (G) is taken too low. The question then is by which multiplication factor � (G)

at least should be increased, such that the test statistic does no longer result in

rejection of the null. Let �∗ (QT ) the realized value of � (Q). Then the minimum

multiplication factor, mf, for which the null hypothesis would not be rejected follows

from setting (2.11) equal to kα, the critical value of the test at the significance level

α

√
T

(�(QT ) − mf(s∗T )�(G))√
V

= zα, (2.30)
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where s∗T denotes the realized value of the test statistic. More generally, we may want

to use a basis multiplication factor (bmf) and we may want to cap the multiplication

factor at some upper value (limit). Using the fact that ρ(QT ) = ρ(G) +
√

V s∗T
T

our

proposal for the multiplication factor becomes

mf (s∗T ) = min


bmf · max

1, 1 +

√
V s∗T
T

−
√

V kα

T

� (G)


 , limit

, (2.31)

We show the results for our proposed multiplication factor applied to value-at-

risk, and expected shortfall in Figure 2.1, where we use G = Φ, α = 0.05, bmf = 3,

and limit = 4. As the variance in (2.29) is larger than without estimation risk, the

basis multiplication factor should be taken higher if one takes estimation risk into

account. This is probably also one of the reasons why the multiplication factor of

the BIS is rather high. For reasons of comparison with the BIS scheme, we use here

a bmf of 3 and a limit of 4. See Kerkhof et al. (2002) for suggestions on setting the

bmf for markets depending on the reliability with which the market can be modeled.

On the horizontal axis we plot the quantiles of the distribution of the test statistic in

(2.11) under the null hypothesis and on the vertical axis the resulting multiplication

factors. As a benchmark we also plot the multiplication factors when using the

current Basel procedure (now as a function of the quantiles of the corresponding test

under the null). We see that the multiplication factors according to our proposal

seem to compare favorably with those according to the Basel procedure. Moreover,

the multiplication factors for expected shortfall are slightly lower than for value-

at-risk. This has to do with the result that expected shortfall is more accurately

estimated under the null than value-at-risk, i.e., the variance V in case of expected

shortfall is smaller than in case of value-at-risk.

In Figure 2.2 we report the results of applying the multiplication factors from

(2.31) to value-at-risk and expected shortfall, using again the outcomes of the Basel

procedure as a benchmark. We consider two cases: first, we look at the case where

the model is correct, Pt = Ft = N (µ, σ2); second, the case of a seriously misspecified

model, Pt = N (µ, σ2) and Ft = NIG(α,−0.25, δ, µ) with α, δ, µ as before, being the
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Figure 2.1: Multiplication factors
This figure shows the multiplication factors on the vertical axis against the quantiles
of the test statistic on the horizontal axis. We used G = Φ, α = 0.05, and a basic
multiplication factor bmf= 3.
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Figure 2.2: Multiplication factors (size, power)
This figure shows the simulated cdf of the multiplication factors. In the upper panel
the case of Ft = N (µ, σ2) is shown. In the lower panel we have the case where
Ft = NIG(α,−0.25, δ, µ). In both panels Pt = N (µ, σ2). The number of days
equals 250 and the number of simulations equals 10, 000.
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case where the distribution is very skewed to the left and has a large kurtosis.

The results of the correctly specified case reflect the outcomes presented in the

previous figure: expected shortfall, having the lowest multiplication factors, per-

forms best. Notice that the multiplication factor scheme from the current Basel

Accord results in (too) large multiplication factors. In the second case of a misspec-

ified model we see that the test using expected shortfall results in higher factors in

more cases (due to the higher power) than the test using value-at-risk. For both

expected shortfall and value-at-risk the penalty depends smoothly on the outcome

of the test. The multiplication factors according to the current Basel Accord more

or less correspond to those of value-at-risk and expected shortfall, but in a heavily

non-smooth way.

Concluding, in the case that the bank uses a correctly specified model, we find

that the capital requirement scheme using expected shortfall leads to the least severe

penalties. On the basis of the current Basel Accord banks would be punished more

often and then also severely. Furthermore, in case of a misspecified model, we find

that the capital requirement scheme using expected shortfall rejects the misspecified

models most often, the multiplication factor depends smoothly on the size of the

misspecification found and the variance in the multiplication factors is low.

2.7 Conclusions

In this paper we suggested a backtest framework for a large and relevant group of

risk measurement methods using the functional delta method. We showed that,

for a large group of risk measurement methods containing all currently used risk

measurement methods, the backtest procedure can readily be found after computing

the appropriate influence function of the risk measurement method. The influence

functions for value-at-risk and expected shortfall are provided. Since this general

framework is based on asymptotic results, we investigated whether the procedure is

appropriate for realistic finite sample sizes. The results indicate that this is indeed

the case, and that, contrary to common belief, expected shortfall is not harder to

backtest than value-at-risk if we adjust the level of expected shortfall. Furthermore,

the power of the test for expected shortfall is considerably higher than that of value-
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at-risk. Since the probability of detecting a misspecified model is higher for a given

value of the test statistic, this allows the regulator to set lower multiplication factors.

We suggested a scheme for determining multiplication factors. This scheme results

in less severe penalties for the backtest based on expected shortfall compared to

backtests based on value-at-risk and to the current Basel Accord backtesting scheme

in case the test incorrectly rejects the model. In case of a misspecified model the

multiplication factors are on average about the same for all tests. However, the

multiplication factors based on the expected shortfall test are smooth and have low

variance.

Thus, the prospects for setting up viable capital determination schemes based

on expected shortfall seem promising.



Chapter 3

Testing Expected Shortfall Models

for Derivatives Positions

3.1 Introduction

Managing the risks of derivative assets has always been one of the major challenges

in risk management. With the strong increase in derivative positions in the portfolios

of financial institutions the task of managing these risks has become more daunting

than ever. An equally daunting task is testing the quality of models used to quantify

the risk of derivatives positions.

Since the Basel Committee advised the use of value-at-risk (VaR) in the 1996

amendment to the Basel Accord for determination of regulatory capital, many stud-

ies have investigated VaR (see, for example, the overviews in Jorion (2000) and

Dowd (1998) and the references therein). Recently, a literature emerged advocating

alternative risk measures, namely, coherent risk measures and, in particular, ex-

pected shortfall (see, for example, Artzner et al. (1999), Delbaen (2000), Acerbi and

Tasche (2002), and Tasche (2002)). The advantages of expected shortfall over VaR

are that it satisfies the property of subadditivity and the fact that portfolio opti-

mization under expected shortfall constraints yields reasonable portfolios, contrary

to VaR (see, for example, Yamai and Yoshiba (2002a) for the constrained portfo-

lio optimization). Though most people agree that from a theoretical point of view

expected shortfall is to be preferred to VaR, it is still less widely used due to the

35
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lack of a solid backtesting procedure. Recently, Kerkhof and Melenberg (2003) (see

also Chapter 2 of this thesis) introduced a test for expected shortfall and found that

for appropriately adjusted levels, expected shortfall has more desirable backtesting

properties than VaR.

Though quite a number of studies have tested the performance of several VaR

models, derivatives positions were rarely explicitly taken into account (see, for exam-

ple, McNeil and Frey (2000), Christoffersen et al. (2001), and Berkowitz and O’Brien

(2002)). In cases where derivative positions were explicitly taken into account, the

literature usually focused on the computation of VaR rather than on the testing of

the VaR models, since the standard binomial test can be applied (see, for example,

Kupiec (1995) and El-Jahel, Perraudin and Sellin (1999)). However, the standard

binomial test cannot be applied to expected shortfall. In order to test expected

shortfall we need information of the distribution of bank’s profit and losses (P&L)

account, or more specifically its tail behavior.

One of the problems that one faces in determining the P&L distribution of (non-

linear) derivatives is that their risk characteristics change over time. For example,

an option can change from a 1 year at-the-money option into a 3 month far out-

of-the-money option, resulting in completely different risk characteristics. In this

chapter, we propose a method to take into account the differences in risk exposures

between options with different characteristics.

We consider several methods to estimate the risk measure for the one-day hedge

error. The first method we consider is a simple Black-Scholes based model which

assumes normal asset returns and constant implied volatilities. Method 2 relaxes the

assumption of normal asset return and uses a nonparametric asset return distribution

based on historical simulation. Method 3 is a full historical simulation method that

assumes a nonparametric asset returns distribution and a nonparametric implied

volatility distribution. The fourth method is a Vector AutoRegessive (VAR) model

for asset returns and implied volatilities returns with Gaussian errors, while method

5 considers nonparametric errors instead.

We test the models on the FX market and, in particular, the mutual exchange

rates of the US, the UK, and Japan. Furthermore, we test the models on S&P

500 options. We find that the historical simulation method and the VAR models
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perform reasonably well.

The remainder of the chapter is structured as follows. Section 3.2 describes daily

market risk for derivative positions. Section 3.3 discusses the aging, moneyness, and

level effects of derivative positions and a possible transformation to standardize the

risk exposures. The models used are described in Section 3.4. Section 3.5 describes

the test used and Section 3.6 presents the empirical results. Finally, Section 3.7

concludes.

3.2 Quantifying daily market risk

Consider the situation where a financial institution manages a portfolio which is

short in options. Due to this position the financial institution is subject to a risk

exposure with respect to the value of the options. To decrease this risk exposure

the financial institution hedges the derivative using a particular hedge strategy.

To illustrate, consider a derivative whose price at day t equals ft. The financial

institution hedges the derivative using some underlying instruments with prices St =(
S1

t , ..., S
k
t

)
. Let the money market account at time t be given by Nt. Let the

financial institution hedge the derivative by buying amounts γt =
(
γ1

t , ..., γ
k
t

)
of the

underlying instruments. Define

αt =
ft − γt · St

Nt

. (3.1)

Then we will have as accounting identity

ft = γt · St + αtNt. (3.2)

The next day the price of the derivative will be ft+1, while the hedging position (if

there are no intermediate adaptations) will be valued γt · St+1 + αtNt+1. The differ-

ence between the next period’s derivative’s price and the hedge position induces the

daily market risk. A financial institution can quantify this daily market risk by as-

suming some method to estimate or calibrate the next day’s probability distribution

of (ft+1, St+1, Nt+1). Taking a numeraire whose future value at t + 1 is known (for

example, a one-period discount bond) reduces the problem to estimating or calibrat-
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ing the next day’s probability distribution of (ft+1, St+1), but now with respect to

the numeraire instead of cash. This allows for estimation or calibration of the daily

market risk measures (for instance, value-at-risk or expected shortfall). Our interest

in this chapter is in risk measures of the daily market risk profile. Specifically, we

are interested in the distribution of

E1
t ≡ ∆ft − γt∆St, (3.3)

where ∆xt ≡ xt+1 − xt for x = f, S. E1
t denotes the one-period hedge error and

its distribution which is termed the daily market risk profile is denoted by L (E1
t ).

Examples of the daily market risk profile are given in the upper panel of Figure 3.1,

which presents daily market risk profiles of a delta hedged 3 month at-the-money, 1

year at-the-money, and 3 year at-the-money (ATM) call option in a Black-Scholes

world with annual instantaneous drift µ = 0.1, instantaneous volatility σ = 0.2, and

instantaneous riskless interest rate equal to r = 0.05. Time t is measured in days (1

year equals 250 days). In line with Boyle and Emanuel (1980) a shifted non-central

χ2−distribution is found as an approximation for the market risk profile.

3.3 Aging, moneyness, and level effect

Figure 3.1 clearly shows that the distribution of hedge errors of options depends on

the time to maturity, τ = T − t. We refer to the fact that the daily market risk

profile changes with the time to maturity as the aging effect. For shorter maturities,

the daily risk profile is more spread out. The middle panel of Figure 3.1 shows the

dependence of the daily risk profile on moneyness which is termed the moneyness

effect.1 Out-of-the-money options have more variability than in-the-money options.

Finally, in the lower panel we see the influence of the level on the risk profiles, the

so-called level effect. It is easy to show that this effect is linearly dependent on the

level.

The three effects shown in Figure 3.1 indicate the problems one encounters when

using time series data of a particular option to extract information of the daily

1Moneyness is defined as m = log (ertSt/k) . A call option is called in-the-money (ITM) if
m > 0, at-the-money if (ATM) m = 0, and out-of-the-money (OTM) if m < 0.
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Figure 3.1: Aging, moneyness, and level effects
On the horizontal axis the return on the hedged portfolio is given in percentages.
Total number of simulations = 100,000. The upper panel shows the daily risk profiles
of delta hedged ATM call option with a maturities of 3 months, 1 year, and 3 years
and level 100. The middle panel shows the daily risk profiles of delta hedged OTM
(m = −0.1) , ATM (m = 0), and ITM (m = 0.1) call option with a maturity
1 year and level of 100. The lower panel shows the daily risk profiles of a delta
hedged ATM call option with a maturity of 1 year and levels of 50, 100, and 200.
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market risk profile of that option. The observations of hedge errors of the option

are taken with different times to maturity and potentially different moneyness and

levels. Since the distribution differs for these situations, these hedge errors are

hard to compare. In order to suppress the level effect we first determine a level-

independent distribution of relative hedge errors in the following way:

Ẽ1
t =

E1
t

ft − γt · St

. (3.4)

The dependence on the daily market risk profile on the aging and moneyness

effect is more complicated to resolve. To get rid of the aging and moneyness effect, it

is natural to use data on derivatives with the same moneyness and time to maturity,

if possible. For FX derivatives and interest-rate derivatives these data are available,

since these are quoted in the market with a fixed time to maturity. For equity

derivatives, however, this is more complicated due to the fact that these derivatives

have fixed maturity dates. Therefore, we have to transform our data.

3.3.1 Transformation of the data

A possible way to correct the daily market risk profile for the aging and moneyness

effect is to assume a parametric option pricing model so that one can use the char-

acteristics of such a model to find the appropriate corrections. In this section we

correct for the aging and moneyness effect using the Black-Scholes model.2 Denoting

the model price by f(ξt) with ξt = (St, t) a Taylor series expansion gives

f(ξt+∆t) = f(ξt) + ∆(ξt)∆St +
1

2
Γ(ξt) (∆St)

2 + Θ(ξt)∆t+O(∆t3/2), (3.5)

where

∆St = St+∆t − St. (3.6)

∆(ξt) ≡ ∂f
∂S

(ξt) denotes the first-order partial derivative of f with respect to the

underlying, Γ(ξt) ≡ ∂2f
∂S2 (ξt) denotes the second order partial derivative with respect

to the underlying, and Θ(ξt) ≡ ∂f
∂t

(ξt) denotes the first partial derivative with respect

to the current time.

2Other models with sufficiently smooth pricing formulas can also be used.
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We take ∆t = 1. Let E1
t denote the one-period hedge error from time t to t+ 1

and let {γt}T
t=1 denote the hedging strategy. Neglecting the remainder term from

now on, we get

E1
t = ∆ft − γt∆St

= (γt − ∆(ξt)∆St) +
1

2
Γ(ξt) (∆St)

2 + Θ(ξt).

In general, the hedge errors E1
1 , ..., E

1
T resulting from the hedge strategy {γt}T

t=1

do not have the same distribution. To evaluate the performance of a hedge strategy,

we want to “standardize” the hedge errors such that they have the same distribution.

As reference distribution, we use the distribution, L (E1
t∗), for some t∗ such that

0 ≤ t∗ < T .

We assume strict stationarity of the (conditional) differenced underlying process,

implying,

L (∆St | Ft) = L (∆St∗ | Ft∗) (3.7)

for t = 1, ..., T. Using the auxiliary process γ∗t

γ∗t = ∆(ξt) +
Γ(ξt)

Γ(ξt∗)
(γt∗ − ∆(ξt∗)) ,

we find the following relationship between the distributions of the hedge errors at

different times.

L (Et∗ | Ft) = L
(

Γ(ξt∗)

Γ(ξt)
E1

t +
Γ(ξt∗)

Γ(ξt)
(γ∗t − γt) ∆St −

Γ(ξt∗)

Γ(ξt)
Θ(ξt) + Θ(ξt∗) | Ft∗

)
.

(3.8)

In (3.8) we found a relation between the one-period hedge error from t∗ to t∗ + 1

with characteristics (St∗ ,mt∗ , τt∗) and the one-period hedge error from t to t+1 with

characteristics (St,mt, τt). Therefore, we can transform the data set of realizations

drawn from not identically distributed distributions to one of realizations drawn from

approximately identically distributed distributions. To obtain (3.8) we neglected the

remainder term and used a parametric model in (3.5), so that this can only be seen

as a good practical approximation and not as a strict identity.

Suppose we have a time series of hedge errors from a one year ATM call option.
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Figure 3.2: Transformation
This figure shows the effect of the transformation described in 3.3.1. The
graph shows the risk profile when the hedge errors of a delta hedged ATM
option position are corrected for all effects, and the risk profiles corrected
for all effects but the aging effect, the moneyness effect, and the level ef-
fect, respectively. The reference distribution is a one year ATM call option.
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In Figure 3.2 we see the result of correcting the time series hedge errors for aging,

moneyness, and level effect. This is in accordance with the ”true” distribution

determined by cross-sectional simulation. Furthermore, the distribution is given in

case one of the corrections is left out. We see that the distribution is more spread

out, if we leave out the aging effect correction. This follows from the fact that

gamma is higher for short term options. Not correcting for the moneyness results

(for an originally ATM option) in a less spread out distribution due to the fact that

the gamma is lower for ITM and OTM options. Finally, we see that the distribution

which is not corrected for level is rather similar to the corrected one. The level effect,

however, becomes more important in case the sample is longer and the underlying

moves further away from its starting position.

3.4 Daily market risk forecasting methods

In this section, we discuss several methods that can be used to compute risk mea-

sures, such as value-at-risk and expected shortfall, of the daily market risk. In doing

so, the models need to estimate F ≡ L
(
Ẽ1

t

)
or more specifically the (joint) distri-

bution of ∆fmi
t and ∆Smi

t for models i = 1, ..., 5. After applying the standardizing

procedure in (3.8) we assume a stationary time series of3

Ẽ1,mi
t =

∆fmi
t − γt∆S

mi
t

ft − γtSt

, t = 1, ..., T,

with ∆fmi
t ≡ fmi

t+1 − ft and ∆Smi
t ≡ Smi

t+1 − St where ft and St denote observed

prices.

We have returns data available of the underlying (S), the implied volatility

(σ), the domestic interest rate (rd), and the foreign interest rate (rf ), h−N+1 =(
hs
−N+1, h

σ
−N+1, h

rd

−N+1, h
rf

−N+1

)
, ..., hT =

(
hs

T , h
σ
T , h

rd

T , h
rf

T

)
, with hx

t = log (xt/xt−1).

From these data we use {h1, ..., hT} for testing and we refer to this set as the testing

sample. The testing sample is used in the backtest to determine the quality of the

method. All the models discussed below are used to estimate the distribution of

the relative one-period hedge error Ẽ1,mi, denoted by Fmi . For notational conve-

3The time series is also assumed to be ergodic and to satisfy the necessary regularity conditions
needed for Central limit theorems used later on.
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nience, we neglect the dependence of Ẽ1,mi , ∆fmi
t , and ∆Smi

t on mi in the following

enumeration of models.

1. Method 1 is a naive method which more or less follows the Black-Scholes world

assumptions, but with potentially changing mean and volatility. It assumes

that L
(
hs

t+1

)
= N (µt, σ

2
t ) and that σ, rd, and rf are constant. To estimate

µt and σ2
t we use the returns data of the underlying, hs

t , ..., h
s
t−N , to get µt

and σ2
t , the so-called rolling window estimators for µt and σ2

t . For t = 1, ..., T

we draw hs
t from N (µt, σ

2
t ) to construct (∆St)

T
t=1 and (∆ft)

T
t=1.

4 Given the

hedge strategy γ we construct
(
Ẽ1

t

)T

t=1
from which we produce an estimate

�̂m1 = �
(

ˆFm1

)
.

2. Method 2 is a historical simulation method for the underlying asset. The

implied volatilities, domestic and foreign interest rates are as in method 1.

Method 2 allows a distribution for the underlying that differs from the nor-

mal distribution. It assumes (hs
t)

T
t=−N+1 is an i.i.d. sample. We estimate the

distribution, L (hs
t), by the empirical distribution of (hs

t∗)
t
t∗=t−N+1.

5 Drawing

(with replacement) from (hs
t∗)

t
t∗=t−N+1 for t = 1, ..., T allows us to construct

(∆St)
T
t=1 and (∆ft)

T
t=1. Given the hedge strategy γ we construct

(
Ẽ1

t

)T

t=1
from

which we produce an estimate �̂m2 = �
(

ˆFm2

)
.

3. Method 3 is a full historical simulation method. This type of method is often

used in practice and assumes that (ht)
T
t=−N+1 is an i.i.d. sample. We estimate

the distribution, L (ht) by the empirical distribution of (ht∗)
t
t∗=t−N+1. Drawing

ht (with replacement) from (ht∗)
t
t∗=t−N+1 for t = 1, ..., T allows us to construct

to construct (∆St)
T
t=1 and (∆ft)

T
t=1. Given the hedge strategy γ we construct(

Ẽ1
t

)T

t=1
from which we produce an estimate �̂m3 = �

(
ˆFm3

)
.

4. In method 4 a first-order Vector AutoRegressive (VAR) model for estimation

of the distribution of (St+1, σt+1)
T
t=1 is estimated using (ht∗)

t
t∗=t−N+1 for t =

4Note that the sequence (∆St)
T
t=1 is not used to produce a price path (St)

T
t=1 of the underlying.

It only serves to compute a series of hedge errors. The price path of the underlying is given by the
data.

5Considering the stationarity assumption, it would be more efficient to use all available data,
but we use this nonparametric rolling window estimator because it is often used in practice.
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1, ..., T [
hs

t+1

hσ
t+1

]
= Φ0 + Φ1

[
hs

t

hσ
t

]
+

[
us

t+1

uσ
t+1

]
(3.9)

ht+1 = Φ0 + Φ1ht + ut+1, t = 1, ..., T (3.10)

with

L (ut+1|Ft) = N (0,Σt) ,

where Ft denotes the information set at point t. This gives (Φ0,t,Φ1,t)
T
t=1, and

(Σt)
T
t=1 to generate (∆St+1,∆σt+1) for t = 1, ..., T and (∆ft)

T
t=1. Given the

hedge strategy γ we construct
(
Ẽ1

t

)T

t=1
from which we produce an estimate

�̂m4 = �
(

ˆFm4

)
.

5. In method 5 a first-order Vector AutoRegressive (VAR) model for estimation

of the distribution of (St+1, σt+1)
T
t=1 is estimated using (hs

t∗ , h
σ
t∗)

t
t∗=t−N+1 for

t = 1, ..., T [
hs

t+1

hσ
t+1

]
= Φ0 + Φ1

[
hs

t

hσ
t

]
+

[
us

t+1

uσ
t+1

]
(3.11)

ht+1 = Φ0 + Φ1ht + ut+1, t = 1, ..., T (3.12)

with

L (ut+1|Ft) = FN
t ,

where FN
t denotes the empirical distribution function of u at time t esti-

mated from ut−N+1, ..., ut−1. This gives (Φ0,t,Φ1,t)
T
t=1, and (Σt)

T
t=1 to generate

(∆St+1,∆σt+1) for t = 1, ..., T and (∆ft)
T
t=1. Given the hedge strategy γ we

construct
(
Ẽ1

t

)T

t=1
from which we produce an estimate �̂m5 = �

(
ˆFm5

)
.

3.5 Test procedure

In this section, we present a test to evaluate daily market risk evaluation models

described in Section 3.4. Time t runs from −N+1 to T . The last T observations are
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used for testing. At each point in time the method is estimated from the previous

N observations, that is, we use the so-called rolling window estimator.

The predicted daily market risk will be obtained from the distribution Fmi of6

Ẽ1,mi
t =

∆fmi
t − γt∆S

mi
t

ft − γtSt

, (3.13)

while the actual daily market risk is induced by the distribution F of

Ẽ1
t =

∆ft − γt∆St

ft − γtSt

(3.14)

We would like to test whether the predicted risk measures are the same for the

method hedge errors as for the empirical hedge errors. Let � (Fmi) represent the

characteristic of interest of Fmi and let � (F ) represent the corresponding charac-

teristic of interest of F .

Denote by �
(
F̂mi

)
an appropriate estimator for � (Fmi) such that

√
T
(
�
(
F̂mi

)
− � (Fmi)

)
=

√
T

1

T

T∑
t=1

Ψmi
t + op (1) , IEΨmi

t = 0, IE (Ψmi
t )2 <∞,

(3.15)

and, similarly, let �
(
F̂
)

be an appropriate corresponding estimator for � (F ) such

that

√
T
(
�
(
F̂
)
− � (F )

)
=

√
T

1

T

T∑
t=1

Ψt + op (1) , IEΨt = 0, IE (Ψt)
2 <∞, (3.16)

where Ψmi
t and Ψt are called the influence functions. In Appendix A the influence

functions for VaR and expected shortfall are given. Then, under the null hypothesis

H0 : � (Fmi) = � (F ) , we have

√
T
(
�
(
F̂mi

)
− � (Fmi)

)
−
√
T
(
�
(
F̂
)
− � (F )

)
=[

1 −1
]√

T
1

T

T∑
t=1

[
Ψmi

t

Ψt

]
+ op (1)

d−→
H0

N (0, V ) (3.17)

6Notice the difference in notation: ∆xmi
t ≡ xmi

t+1 − xt and ∆xt ≡ xt+1 − xt for x = S, f . In
both cases we use the observed prices as starting point.
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with

V =
[

1 −1
] lim

T→∞
IE

T−1

 T∑
t=1

[
Ψmi

t

Ψt

][
Ψmi

t

Ψt

]′ [ 1

−1

]
(3.18)

So, with V̂ (using, for example, the estimator of Newey and West (1987)) satisfying

V̂
p−→ V , we can take as a test statistic

T

(
�
(
F̂mi

)
− �
(
F̂
))2

V̂

d−→
H0

χ2
1 (3.19)

Since we can simulate from Fmi as often as we would like, we can strengthen

the test above by using �̄ ≡ 1
K

K∑
k=1

�k(F̂
mi
t ), with K equal to the number of trials,

instead of �̂(Fmi
t ). This gives for fixed K

√
T (�̄− �(Fmi)) =

√
T

1

TK

K∑
k=1

T∑
t=1

Ψmi
t,k + op (1) ,

IEΨmi
t,k = 0, IE

(
Ψmi

t,k

)2
<∞. (3.20)

The expression in (3.20) converges in probability to zero as K → ∞ and so we can

take as a test statistic

T

(
�̄− �

(
F̂
))2

v̂

d−→
H0

χ2
1, (3.21)

where v̂ denotes a consistent estimator for

v = lim
T→∞

IE

[
T−1

T∑
t=1

Ψ2
t

]
. (3.22)

3.6 Empirical Results

3.6.1 FX market

The FX market is by far the most liquid market in the world with a daily turnover

of about 1.5 trillion US dollars (for comparison, the NYSE has a daily turnover of

about 30 billion US dollar). In this section, we apply the test outlined above to call
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options on the dollar-yen, dollar-pound, and pound-dollar exchange rates. Quotes

are in implied volatilities in the FX market and prices can be computed using the

Garman-Kohlhagen model (see Garman and Kohlhagen (1983)). This is a version

of the Black-Scholes model applicable to currency options. Call option prices are

given by

cGK
(
S, k, rd, rf , σ, τ

)
= Ste

−rf τΦ (d+) −Xe−rdτΦ (d−) , (3.23)

where

d± =
log (St/k) +

(
rd − rf

)
τ

σ
√
τ

± 1

2
σ
√
τ . (3.24)

rd is the domestic instantaneous riskless interest rate, rf is the foreign instantaneous

riskless interest rate, σ denotes the instantaneous volatility of the exchange rate and

Φ (·) denotes the Gaussian cumulative distribution function.

The daily data available consist of implied volatilities of 3 month ATM call

options on dollar-yen, dollar-pound, and pound-dollar exchange rates, the corre-

sponding exchange rates, and the US, UK, and Japanese interest rates.7 The data

run from August 9, 1995 until December 13, 2002 and are shown in Figure 3.3.

This results in 1918 data points. We use a two year rolling window estimation

period for all the models. Taking the number of trading days per year equal to 250

gives us estimation periods of 500 observations and 1418 observations for testing. In

Kerkhof and Melenberg (2003) (see also Chapter 2 of this thesis) it is argued that

for fair comparison with a 1% value-at-risk the level of expected shortfall should be

about 2.5%.8 The quality of the models is tested by tests whether the variances, the

1%-value-at-risk, and 2.5% expected shortfall of the hedge error as predicted by the

models and empirical hedge errors are equal.9 The level for value-at-risk is chosen

at 1% such that it equals the current level in the 1996 amendment to the Basel

Accord (see Basel Committee on Banking Supervision (1996b)). Table 3.1 reports

the variance, 1% value-at-risk, and 2.5% expected shortfall for an investment of $100

in a portfolio of ATM call options and the underlying exchange rate with as ratio

7The data have been kindly shared by ABN-AMRO Bank.
8This argument is based on the normal distribution, but seems to be approximately correct in

our sample.
9In the absence of data on ITM and OTM options, we have assumed a flat volatility smile for

the FX options. Since we are looking at one-day hedge errors and the FX volatility smile is rather
flat near the money, this should not lead to severe biases.
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Figure 3.3: FX data
In the upper panel the normalized price paths of the USD/JPY,
USD/GBP, and GBP/JPY are given. In the lower panel the
implied volatilities for the 3m ATM call options are given.
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the hedge strategy.

For all exchange rates we find that the methods 1 and 2 are rejected for all

risk measures. The full historical simulation method (method 3) performs well for

all exchange rates and all risk measures. The parametric VAR method, method

4, is rejected for the USD/JPY exchange rate for being too conservative, while

it is rejected in the GBP/JPY exchange rate for underestimating the risk. The

nonparametric VAR method, method 5, is conservative in all markets and is rejected

for the USD/JPY and USD/GBP exchange rates.

3.6.2 S&P 500 options

We have available option data on the S&P 500 ranging from January 2, 1992 till

August 29, 1997. Quotes on the options are the end-of-day quotes with synchronous

observations of the underlying index. For the FX options we have data on fixed time

to maturity and moneyness options available. For the S&P 500 we have fixed ma-

turity and varying moneyness option data. Therefore, we apply the transformation

method of Section 3.3.1. We analyze the models for calculating the risk measures
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Table 3.1: Tests of Risk measures for the 3 month exchange rates
This table shows the empirical standard deviations, VaR0.01, and ES0.025 and those
obtained from methods 1,...,5 for the USD/JPY, GBP/JPY, and USD/GBP ex-
change rate. We test whether the method predictions correspond to the empirical
quantities. The p-values of these tests are given in parentheses. In order to reduce
sampling error we used K = 10, 000.

emp method 1 method 2 method 3 method 4 method 5

USD/JPY

std. dev. 0.23
0.05

(0.00)
0.09

(0.00)
0.20

(0.36)
0.22

(0.85)
0.21

(0.63)

VaR0.01 -0.58
−0.18
(0.00)

−0.25
(0.00)

−0.62
(0.39)

−0.80
(0.00)

−0.72
(0.00)

ES0.025 -0.74
−0.19
(0.00)

−0.33
(0.00)

−0.70
(0.74)

−0.90
(0.43)

−0.85
(0.81)

USD/GBP

std. dev. 0.11
0.04

(0.00)
0.04

(0.00)
0.11

(0.19)
0.12

(0.09)
0.13

(0.00)

VaR0.01 -0.30
−0.13
(0.00)

−0.17
(0.00)

−0.35
(0.11)

−0.35
(0.12)

−0.44
(0.00)

ES0.025 -0.38
−0.14
(0.00)

−0.19
(0.00)

−0.40
(0.19)

−0.36
(0.75)

−0.47
(0.02)

GBP/JPY

std. dev. 0.19
0.06

(0.00)
0.08

(0.00)
0.17

(0.27)
0.16

(0.07)
0.17

(0.30)

VaR0.01 -0.52
−0.19
(0.00)

−0.30
(0.00)

−0.54
(0.78)

−0.40
(0.03)

−0.52
(0.91)

ES0.025 -0.61
−0.20
(0.00)

−0.34
(0.00)

−0.60
(0.83)

−0.41
(0.02)

−0.61
(0.92)
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Table 3.2: Tests of risk measures for delta hedged 3 month S&P 500 options
This table shows the empirical standard deviations, VaR0.01, and ES0.025 and those
obtained from methods 1,...,5 for a delta-hedged positions in 3 month ATM S&P
500 options. We test whether the method predictions correspond to the empirical
quantities. The p-values of these tests are given in parentheses. In order to reduce
sampling error we used K = 10, 000.

emp method 1 method 2 method 3 method 4 method 5

ATM 3 months

std. dev. 0.24
0.04

(0.00)
0.05

(0.00)
0.23

(0.34)
0.24

(0.83)
0.23

(0.55)

VaR0.01 −0.74
−0.13
(0.00)

−0.19
(0.00)

−0.67
(0.27)

−0.80
(0.42)

−0.71
(0.55)

ES0.025 −0.85
−0.13
(0.00)

−0.19
(0.00)

−0.76
(0.35)

−0.83
(0.73)

−0.79
(0.48)

ATM 1 year

std. dev. 0.41
0.06

(0.00)
0.06

(0.00)
0.43

(0.50)
0.43

(0.49)
0.43

(0.28)

VaR0.01 −1.26
−0.13
(0.00)

−0.17
(0.00)

−1.39
(0.18)

−1.12
(0.15)

−1.42
(0.10)

ES0.025 −1.27
−0.17
(0.00)

−0.19
(0.00)

−1.41
(0.22)

−1.16
(0.12)

−1.44
(0.12)

for 3 month ATM options. For this we use the options with time to maturity closest

to 3 months and closest to the ATM level. Again we investigate a portfolio of $100

invested in options and the underlying asset. As hedge ratio we apply the standard

Black-Scholes delta with continuous dividend yield.

We find that the empirical risks for S&P500 options are higher than for the FX

options. We find that the positions in the 1 year options are more risky than the

positions in the 3 months options. For the tests of the S&P500 options we get more

or less the same results as for the FX options. Only models 3, 4, and 5 have a

acceptable prediction behavior.

Overall, we see that models 1 and 2 do not perform well and underestimate the

risk of delta hedged derivatives positions in almost all cases. This can be explained

by the fact that they do not take fluctuations in the levels of implied volatilities into

account. The historical simulation method and both VAR models perform about

the same, although the VAR models for changes in the underlying and implied
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volatilities are sometimes a bit too conservative. Since the historical simulation

method and the VAR model with historical simulation take more time to compute

than the Gaussian VAR model where VaR and ES can be computed analytically, it

seems easiest to compute both VaR and ES based on the Gaussian VAR model.

3.7 Conclusions

In this chapter we tested several risk management models for computing expected

shortfall and value-at-risk for one-period hedge errors of hedged derivatives positions.

Though value-at-risk can be tested using a binomial test, this is not the case for

expected shortfall and we need information of the distribution in the tail. By nature,

the characteristics of derivatives positions are changeable and as a consequence the

size of risk exposures varies over time. To overcome this problem, we present a

transformation procedure.

We empirically test the performance of several models, based on tests for stan-

dard deviation, value-at-risk, and expected shortfall. We find that in order to get

good indication of the risk of a hedged derivative in both the FX and the equity

market it is of crucial importance to take the variation in the implied volatilities

into account. We find that a historical simulation method, which is commonly

used in practice, produces the best results. A parametric and non-parametric VAR

model perform reasonably well, but their performance trails that of the historical

simulation method.
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A Influence functions for value-at-risk and expected

shortfall

Let Ft denote the distribution of the one-day hedge error E1
t . The influence functions

of value-at-risk and expected shortfall are then given by:

1. Value-at-risk: In the case of VaRp the influence function Ψ (Ft) is given by

ΨVaR (Ft) =
p− II[−∞,F−1

t (p)] (x)

q
(
F−1

t (p)
) , (3.25)

and

IEΨ2
VaR (Ft) =

p (1 − p)

q2
(
F−1

t (p)
) . (3.26)

2. Expected shortfall: In the case of ESp the influence function Ψ (Ft) is given by

ΨES (Ft) = −1

p

[(
x− F−1

t (p)
)
II[−∞,F−1

t (p)] (x)

+ ΨVaR (Ft)

(
p−
∫ F−1

t (p)

−∞
dF (x)

)]
−ES (Ft) + VaR (Ft) (3.27)

and

IEΨ2
ES (Ft) =

1

p
IE
[
X2|X ≤ F−1

t (p)
]
− ES (Ft)

2

+2

(
1 − 1

p

)
ES (Ft) VaR (Ft)

−
(

1 − 1

p

)
VaR (Ft)

2 . (3.28)





Chapter 4

Model Risk and Regulatory

Capital

4.1 Introduction

Due to the growing complexity of financial markets, financial institutions rely more

and more on the use of models to assess the risks to which they are exposed. The

accuracy of these risk assessments depends crucially on the extent to which a market

can be reliably modeled. Choosing an appropriate model to compute market risk

measures is an important and difficult task. It is a widespread feeling among both

academics and practitioners that, although some models do a better job than others,

the search for one ultimate model is futile. An approach that takes the limitations

of our knowledge into account is to develop models—depending on the application

(pricing, hedging, ...) — that capture the most important aspects of a particular

market, and to somehow control for the fact that the assessment of risk is based on

a possibly misspecified model (see Derman (1996)).

The hazard of working with a potentially misspecified model is called model risk.

Currently no explicit capital requirements are set by regulators in connection with

model risk. This is done indirectly using the so called multiplication factors. How-

ever, the Basel Committee has indicated that it plans to expand the current capital

adequacy framework to improve the charting of risks to which financial institutions

are exposed (see Basel Committee on Banking Supervision (1999)). In particular,

55
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the Committee intends to set capital requirements for operational risk, which is of-

ten taken to consist for an important part of model risk (see Basel Committee on

Banking Supervision (2003)). Just as the 1996 Amendment of the Basel Commit-

tee stimulated financial institutions to refine their market risk models, banks are

likely to make more detailed assessments of model risk after incorporation of model

risk regulation in the Basel Accord. As part of their internal risk management sys-

tems, most large financial institutions already set aside reserves for model risk (the

so-called model reserves). This means that booking of certain profits on trades is

postponed if it is felt that these profits are sensitive to the model used.

The aim of this paper is to provide a quantitative basis for the incorporation

of model risk in regulatory capital requirements. The same framework may also

be used for the computation of model reserves in the context of internal risk man-

agement procedures within financial institutions; in addition, the method may be

used in margin setting by clearing house exchanges, or as a pricing tool. To extend

the current practice of computing market risk measures on the basis of some given

(“nominal”) model, we determine a set of plausible alternative models. In recogni-

tion of the fact that each of these models is a (reasonable) candidate for representing

reality, we propose to compute a worst-case market risk measure over some set of

alternative models. Model risk is then defined as the difference between this mea-

sure and the market risk measure computed from the nominal model. Using sets

of alternative models restricted and unrestricted to a model class, we distinguish

between model risk due to estimation error and model risk due to misspecification.

Previous studies on model risk have focused on the risk of using incorrect parame-

ter values in a parametric setting, i.e., estimation error (see, for example, Gibson,

Lhabitant, Pistre and Talay (1999), Talay and Zheng (2002), and Bossy, Gibson,

Lhabitant, Pistre, Talay and Zheng (2000)). However, our study suggests that the

leading factor in model risk is often misspecification rather than estimation error.

One major area where financial models play an important role is the risk manage-

ment of the portfolios of financial institutions. We discuss value-at-risk and expected

shortfall when using a simple Gaussian model and a GARCH(1, 1) model for port-

folio returns to illustrate the model risk measurement tools. We consider the S&P

500 and USD/GBP exchange rate as investments. The results can be interpreted in
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terms of a multiplication factor that should be applied to account for model risk in a

given market. Our results for these models indicate that about half of the regulatory

capital set by the Basel Committee can be explained in this way when computing

the 1% value-at-risk at a 95% confidence level. We find that the model risk due to

misspecification is much larger than the model risk due to estimation error.

Another area which relies heavily on financial models is constituted by derivatives

trading. For instance, Hull and Suo (2002) investigate the model risk associated with

the calculation of prices and deltas for illiquid exotic options based on an implied-

volatility model that is calibrated using current prices of liquid products. Their

paper clearly demonstrates the presence of model risk in a number of situations.

In a companion paper (see Chapter 5), we assess hedging model risk in derivative

products on the basis of the total hedging error rather than the error in computing

Greeks, and we propose a quantitative measure of model risk that could be used,

for instance, in the determination of model reserves.1 We illustrate the approach for

the Black-Scholes family of option pricing models. The results indicate that also in

this setting model risk due to misspecification is much larger than the model risk

due to estimation error.

The remainder of the paper is structured as follows. In the next section, we

give an overview of market risk measurement. We discuss some of the popular

risk measures with some emphasis on coherent market risk measurement which fits

neatly with the model risk measurement method proposed in Section 4.2. In Section

4.3 we propose a general framework for incorporation of model risk. This is based

on a worst-case analysis. A decomposition of model risk in a parametric and a

nonparametric part is proposed. Section 4.4 provides an application to portfolio

risk management. We discuss the value-at-risk and the expected shortfall approach.

Finally, Section 4.5 concludes.

1Steps towards the quantification of model risk for derivative contracts have been taken by
Green and Figlewski (1999), who show that the risk of trading derivative securities can be decreased
substantially by delta hedging. We follow this line of thought by considering the risk of derivative
products in combination with a given hedging strategy. The proposed methodology encompasses
the methodology proposed by Hull and Suo (2002). Furthermore, robustness issues as treated by
El Karoui, Jeanblanc-Picqué and Shreve (1998) fit into the proposed setup.
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4.2 Market Risk Measurement

By market risk we understand the risk caused by random fluctuations in future asset

prices. For each given position, the most basic question that a risk manager must

be able to answer is whether or not the risk associated to this position is acceptable.

This qualitative decision is often based on the computation of a risk measure which

in some way represents the “distance to (un)acceptability”. Such a risk measure

may, for instance, be arrived at as follows. Since, in the context of finance, risk is

usually measured in terms of a univariate distribution (profit/loss), an unacceptable

position can be made acceptable if enough of a suitable “sweetener” is added.2 The

amount of sweetener that has to be added to make a given position just acceptable

is a natural measure of the distance to acceptability.

4.2.1 Use of market risk measures

Market risk measures may be used for a number of different purposes.

1. Regulatory capital requirements for securities firms and banks are computed

on the basis of risk measures. Specifically, the value-at-risk method has been

adopted by the Basel Committee on Banking Supervision (1996a).

2. Some banks set reserves for trading desks as part of their internal risk man-

agement procedures. The size of the reserve is coupled to some measure of the

riskiness of the positions taken by the desk.

3. Exchanges need to guarantee the promises to all parties involved in a contract.

To guarantee these promises they use clearing margins for their members. For

example, the Chicago Mercantile Exchange (CME) and many other exchanges

use SPAN to determine the clearing margins. For more detailed information,

see Artzner et al. (1999) and SPAN (1995).

4. Market risk measures may also be used as pricing tools, since they can be used

to compare different risks so that good deals can be identified. This point of

2For the “sweetener” one can think of 1) a premium in pricing applications, 2) capital reserve
in case of regulatory applications, and 3) margin in case of clearing houses.
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view is elaborated, for instance, in Cochrane and Saá-Requejo (2000), Jaschke

and Küchler (2001) and Carr, Geman and Madan (2001).

4.2.2 Notation and definitions

Since in this paper we are interested in model risk, we will be working with classes

of models rather than with a single model. It is not always convenient to use the

same probability space for each of these models. Therefore, we start by a formal

description of a setting that allows the use of multiple probability spaces.

Definition 4.1 A model is a probability space (Ω,F ,P).

One could imagine more elaborate probabilistic settings; in particular, a filtration

might be assumed given. However, the above notion will be sufficient for the pur-

poses of this paper. For any model m, let R(m) denote the space of equivalence

classes of measurable real-valued functions on (Ω,F).

Definition 4.2 Let a model m be given. A risk defined on m is an element of

R(m).

This definition, in which a “risk” is a random variable defined on a given probability

space, follows the terminology of Artzner et al. (1999) and Delbaen (2000). We

introduce a similar concept for model classes rather than for individual models.

Definition 4.3 Let M be a class of models. A product defined on M is a mapping

that assigns to each model m ∈ M a risk defined on m. The set of all products

defined on M is denoted by X (M).

The risk induced by a product Π on a model m will be denoted by Πm. Since

R(m) is a vector space, the set of products X (M) has the structure of a vector

space as well. For instance, if Π1 and Π2 are products defined on the same class of

models M, then Π1 + Π2 is the product that associates to a model m in M the risk

(Π1)m +(Π2)m. Similarly, we can also define products relative to a reference product

(if the reference product is nonzero), and we have a partial ordering on products.

We now proceed to risk measures, starting with the definition for an individual

model.
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Definition 4.4 Let a model m be given. A risk measure defined on m is a map

from R(m) to IR ∪ {∞}.3

Definition 4.5 Let a class of models M be given. A risk measurement method

defined on M is a mapping that assigns to each model m ∈ M a risk measure

defined on m.

Risk measures can be used to separate acceptable from unacceptable risks in the

following way.

Definition 4.6 Let a model m be given, and let ρ be a risk measure defined on m.

The acceptance set associated with ρ is the set

Aρ = {X ∈ R(m) | ρ(X) ≤ 0} . (4.1)

So far we did not discuss specific properties for risk measures and related notions

that would justify the nomenclature. We come to this in the next section.

4.2.3 Popular risk measurement methods and their proper-

ties

Most risk measures used in practice can be viewed as risk measurement methods in

the formal sense of the previous section. Due to its prominent role in the amendment

of 1996 by the Basel Committee, the value-at-risk approach is currently the most

popular method used in risk measurement (see, for example, Duffie and Pan (1997),

Basel Committee on Banking Supervision (1996a), Dowd (1998), and Risk Magazine

(1996)). A formal description of VaR may be given as follows.

Definition 4.7 (Value at Risk (VaR)) Let a model class M be given. The value-

at-risk method with reference asset N ∈ X (M) and level p ∈ (0, 1) assigns to a

model m = (Ω,F ,P) ∈ M the risk measure VaRm given by

VaRm : R(m) � X �→ − inf {q ∈ IR : P (X/Nm ≤ q) ≥ p} ∈ IR ∪ {∞}. (4.2)

3Including ∞ allows risks to be defined on more general probability spaces, see Delbaen (2000).
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We now list a number of properties that risk measures and risk measurement meth-

ods may satisfy. We start with individual models. So, let a model m be given, and

let ρ be a risk measure defined on m. Since m will be fixed for the moment, we

write R(m) simply as R. Some properties of interest will be stated as axioms. In

the first axiom we also assume that a reference risk N ∈ R has been given.

Axiom 4.1 (Translation invariance) For all X ∈ R and τ ∈ IR, we have ρ(X +

τN) = ρ(X) − τ .

Adding (subtracting) an initial investment of size τ in the reference assetN decreases

(increases) the risk measure ρ by τ . Therefore, τ can be interpreted as the amount

of the sweetener added to the risk X to make it more acceptable (or less, in case τ

is negative).

Axiom 4.2 (Monotonicity) For all X and Y ∈ R with X ≤ Y , we have ρ(X) ≥
ρ(Y ).

It seems natural to assign a higher value to risks that always have a lower payoff.

Note that the axiom of monotonicity rules out the commonly used mean-variance

measure ρ(X) = −IEP(X) + γVarP (X), where γ is a risk aversion parameter. The

VaR measure, on the other hand, is monotonic.

Axiom 4.3 (Positive homogeneity) For all X ∈ R and λ ≥ 0, ρ(λX) = λρ(X).

Again, this axiom is satisfied by VaR. The homogeneity axiom may be considered

reasonable as a local approximation, or when size effects (due, for instance, to liq-

uidity risk or to regulatory constraints) are taken into account in the future net

worth of a position.

Axiom 4.4 (Subadditivity) For allX and Y ∈ R, we have ρ(X+Y ) ≤ ρ(X)+ρ(Y ).

If the risk measure ρ satisfies the subadditivity property, the risk manager/supervisor

is sure that the sum of two separate risks X and Y can be estimated conservatively

by the sum of the risk measures of the separate risks. If a risk measure does not

satisfy the subadditivity property, a risk might be disguised by splitting it up. The
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VaR measure does not satisfy the subadditivity property (see Artzner et al. (1999)

for a counterexample).

In some situations the risk of a portfolio might be increasing in a nonlinear way

with the position size (for example due to increasing liquidity risk). This led Föllmer

and Schied (2002) to introduce the axiom of convexity.

Axiom 4.5 (Convexity) For all X and Y ∈ R, and λ ∈ [0, 1], we have ρ(λX + (1−
λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ).

Convexity means that diversification does not increase risk.

The above axioms can be transferred to risk measurement methods in a straight-

forward way. We shall say that a risk measurement method RMM defined on a model

class M satisfies Axiom i (i = 1, . . . , 5 ) if for each m ∈ M the risk measure RMMm

on m satisfies Axiom i with R = R(m). In the case of the translation invariance

axiom, it is assumed that a reference product in X (M) is given.

The fact that VaR does not satisfy the subadditivity or convexity property is

often seen as a disadvantage of this risk measurement method; see Artzner et al.

(1999) and Acerbi and Tasche (2002) for a more extensive discussion. Alternative

risk measures have been proposed that do satisfy the desirable subadditivity prop-

erty. Artzner et al. (1997) introduced the notion of coherent risk measures. Their

ideas were formalized in Artzner et al. (1999), Artzner (1999), and Delbaen (2000).

Definition 4.8 A coherent risk measure is a risk measure that satisfies the axioms

of translation invariance, monotonicity, subadditivity, and positive homogeneity.

Definition 4.9 A convex risk measure is a risk measure that satisfies the axioms

of translation invariance, monotonicity, and convexity.

The above definitions can immediately be extended to produce the notion of a

coherent risk measurement method and a convex risk measurement method, respec-

tively.

The five axioms still allow many measurement methods, so even when one decides

to use a coherent or convex measure one needs further considerations to arrive at a

specific method. An example of a coherent risk measurement method is the worst
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conditional expectation (WCE). Contrary to VaR, this measure takes the size of

losses under the VaR limit into account. Therefore, it is not possible to increase

the expected return of a portfolio under WCE restrictions by taking extremely risky

bets with a very low probability of a very high loss.

Definition 4.10 (Worst Conditional Expectation (WCE)) Let a model class M be

given. The worst conditional expectation method with reference product N ∈ X (M)

and level p ∈ (0, 1) assigns to a model m = (Ω,F ,P) ∈ M the risk measure WCEm

given by

WCEm : R(m) � X �→ − infA∈F , P(A)>p IEP [X/Nm | A] ∈ IR ∪ {∞}. (4.3)

It is a straightforward exercise to show that WCE satisfies the axioms of translation

invariance, monotonicity, positive homogeneity, and subadditivity. Though WCE

has nice theoretical implications, it is difficult to compute in practice. A practically

usable coherent risk measure is the expected shortfall as given in Acerbi and Tasche

(2002).

Definition 4.11 (expected shortfall (ES)) The expected shortfall method with ref-

erence asset N and level p ∈ (0, 1) assigns to a modelm = (Ω,F ,P) the risk measure

ESm given by

ESm : R(m) � X �→ −1

p

(
IEXII(−∞,Qp(X/Nm)]

+Qp (X/Nm) (p− P (X/Nm ≤ Qp (X/Nm)))) ∈ IR ∪ {∞}. (4.4)

4.3 Model risk

Market risk measures are typically based on a class of scenarios together with a

base probability measure; both items are provided by a model m. At a higher level,

however, there is uncertainty about which model to use. A financial institution’s

perception of market risk can deviate substantially from the actual market risk

due to the fact that the actual dynamics are insufficiently represented by the model

dynamics. Due to the use of an incorrect model, the financial institution may accept
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risks that it would find unacceptable in case it would know the actual dynamics.

The risk associated to the mismatch between model dynamics and actual dynamics

is called model risk.

In the sequel we propose a framework to quantify this model risk. Since the

true dynamics are unknown, it makes sense to form a set of alternative dynamics

K (containing a nominal model m) which is likely to contain the true dynamics. A

natural candidate for a model risk measure is the difference between the worst-case

risk measure among all models in the neighborhood K and the risk measure under

the dynamics of the nominal model m. If the market risk measurement method

is translation invariant, the difference between these two quantities gives the extra

position in the reference product which has to be added to the market risk measure of

the nominal model to make the risk acceptable, even under the worst case dynamics.

In the next section, this intuition is formalized.

4.3.1 Measuring model risk

Suppose that the financial institution uses a risk measurement method RMM to

assess the acceptability of a product (portfolio) Π. In model m, the risk of the

product Π is computed as RMMm(Πm). To take into account model uncertainty, we

take a set of alternative dynamics K around m and compute the worst-case market

risk measure (with respect to K), which is given by supk∈K RMMk(Πk). Model risk

may now be quantified as follows.

Definition 4.12 (Model risk measure)4 Let M be a class of models, let m be a

model in M, and let K be a subset of M containing m. Furthermore, let Π be a

product defined on M and let RMM be a risk measurement method satisfying the

axiom of translation invariance for M. The model risk associated to the method

RMM of product Π, with respect to the nominal model m and the tolerance set K,

is given by

φRMM(Π,m,K) = supk∈K RMMk(Πk) − RMMm(Πm). (4.5)

4The case where RMMm(Πm) = ∞ is uninteresting since the financial institution will never
accept the product Π in its portfolio.
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Artzner et al. (1999), Delbaen (2000), Föllmer and Schied (2002), and others use

one particular model m to compute the market risk measure RMMm(Πm). With the

definition above we extend their risk measurement framework by including model

risk. The amount φRMM(Π,m,K) can be thought of as a model reserve that should

be held to cover the worst-case dynamics of K. This interpretation depends on

the translation invariance axiom of the risk measurement method which is therefore

crucial in the definition. Consider, for example, value-at-risk. From empirical data

we can determine whether the VaR limit given by a nominal model is exceeded as

often as predicted or more often. If the model is accurate in predicting the VaR limit

we would like to set a small model reserve. On the other hand, we want to set a large

model reserve in case the model does a poor job predicting the VaR limit. Adding the

model reserve φRMM(Π,m,K) to the nominal market risk measure RMMm(Πm) gives

a total risk measure equal to supk∈K RMMk(Πk). In appendix 4.3.2 we illustrate the

procedure for coherent risk measures, in particular, the WCE and SPAN. The size

of the model reserve (and thereby the total risk measure) is controlled by the size

of K. In the next section, we discuss the determination of K and the dependence of

the model reserve on model accuracy in more detail.

The model risk measure that we have defined may have some desirable properties

depending on the market risk measurement method from which it has been derived.

Of the properties of the risk measurement method chosen translation invariance is

of special importance. It allows for the intuitive invariance property of the model

risk measure.

Theorem 4.1 (Invariance) Let RMM be a risk measurement method that is trans-

lation invariant with respect to a reference product N . Then the model risk measure

associated to RMM is invariant in the sense that

φRMM(Π + τN,m,K) = φRMM(Π,m,K) (4.6)

for all τ ∈ IR.
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Proof. Take τ ∈ IR. We have

φRMM(Π + τN,m,K) = supk∈K RMMk (Πk + τNk) − RMMm (Πm + τNm)

= supk∈K RMMk (Πk) − τ − RMMm (Πm) + τ

= φRMM(Π,m,K).

The addition of a constant payoff should not alter the model risk, since it is model

independent. Another way to look at it is that the constant payoff can be fully

hedged by a position in the reference product. In a similar way, one can easily

prove that for positive homogeneous RMM the model risk measure is positively

homogeneous.

The model risk measure does not, in general, satisfy the monotonicity, subaddi-

tivity, and convexity property. However, if the underlying market risk measurement

method satisfies any of these properties, these properties hold for what might be

called total market risk, viz. the sum of nominal market risk and model risk. For

example, in case of subadditivity, this can be seen from the fact that total mar-

ket risk is given by the formula supk∈K RMMk(Πk), and from the general fact that

supi(ai + bi) ≤ supi(ai)+supi(bi). As noted above, the reason why market risk mea-

sures are often required to be subadditive is to prevent companies, trading desks,

etc. from covering up large risks by splitting them into separate positions that do

satisfy the risk criteria. If total market risk is reported, then subadditivity of this

risk measure is sufficient for this.

We choose a worst-case approach to quantify model risk. An alternative would

be a Bayesian approach, in which the model risk measure is a weighted average of

risk measures according to some prior. Depending on its risk attitude, the financial

institution can give more weight to unfavorable dynamics. However, the choice of a

prior is difficult and arbitrary. In a worst-case approach, one only needs to specify

the tolerance set K; this may be seen as an acknowledgment of the restrictions of

statistical modeling in the face of limited data and limited understanding of the true

dynamics.
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4.3.2 Model risk for popular risk measures

In this section we illustrate the model risk measure for coherent risk measures and,

in particular, the worst conditional expectation and SPAN.

A coherent risk measure method ρm for model m = (Ω,F ,P) can be written in

the form5

ρm (Π) = supQ∈P(m) IEQ [Π] .

Different choices of P (m) produce different risk measures. We specify P (m) for

WCE and SPAN.

Example 4.1 (WCE) Given is a model m with a base probability P, m = (Ω,F ,P).

The class of models P (m) is given by

PWCE (m) = {P (. | A) | P (A) > α} .

Example 4.2 (SPAN) Given is a modelm with a base probability P, m = (Ω,F ,P),

with Ω = ω1, ..., ωk and F = 2Ω, where ωi denotes a scenario. Let

P (ω1) = ... = P (ωk) =
1

k
.

The SPAN method is such that6

PSPAN (m) ⊂ {Q | Q << P} .

Note the difference between P (m) and K in Def. 4.12. P (m) is a set of probability

measures based on one base probability measure P to compute a coherent market

risk measure. However, K denotes a set of models. The models in this set can have

different measurable spaces and different base probability measures. The model risk

measure for a general coherent risk measure is then given by

φRMM(Π,m,K) = supk∈K supQ∈P(k) IEQ [Π] − supQ∈P(m) IEQ [Π] .

5For simplicity we use the definition given by Artzner et al. (1999). The definition for general
probability spaces is given in Delbaen (2000).

6Of course, any probability measure P∗ equivalent to P could serve as a base probability measure
for PSPAN (see SPAN (1995) for details or Artzner et al. (1999) for a summary).
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4.3.3 Decomposition of Model Risk

The exposition given in section 4.3.1 was rather general. We did not specify a

model m or a set of alternative models K. In this section we discuss some possible

choices for the set of alternative dynamics K. In practice, one starts with a (usually

parametric) model class, say M (Θ) ≡ {(Ω,F ,Pθ) : θ ∈ Θ} ⊂ M, where Θ denotes

the parameter space.7 Using an estimation or calibration procedure, a particular

element m(θ̂) is chosen from M (Θ). Even if the actual dynamics, say m0, belong to

the parametric model class M (Θ), that ism0 = m (θ0) for some θ0 ∈ Θ, the financial

institution faces the risk of selecting the wrong element m(θ̂). This risk is called

model risk due to estimation error. To define a neighborhood of plausible values

around m(θ̂), one typically uses confidence regions. Specifically, we can place a

confidence region around the estimator θ̂ for θ0 to define some neighborhood around

m(θ̂). Depending on a chosen level α we take a (1 − α) confidence region around

θ̂.8 In this way we arrive at a set of alternative models of the following form:

K (α) =
{
m (θ) ∈ M (Θ) : θ ∈ CI1−α( θ̂)

}
(4.7)

In situations where one is interested in a specific market risk measurement method

RMM and a specific product Π, an alternative approach which focuses more directly

on the given situation is to use the set K defined by

K (α) =
{
m (θ) ∈ M (Θ) : RMMm(θ)

(
Πm(θ)

)
∈ CI1−α

(
RMMm( θ̂)

(
Πm( θ̂)

))}
.

(4.8)

We define model risk due to estimation error, or simply estimation risk, as the model

risk that is obtained from a tolerance set derived from confidence regions in within

the model class.

Now let us consider the situation where the actual dynamics may not belong to

M (Θ). The risks that we are considering are real-valued random variables and so a

natural idea is to work on the basis of the associated distribution functions. Suppose

that a cumulative distribution function F̂ (x) has been obtained by some nonpara-

metric estimation method. This allows us to define a tolerance set K depending on

7In the usual parametric case the parameter space is a subset of IRk.
8CI1−α(θ̂) denotes the (1 − α)-confidence interval for θ0.
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confidence level α in the following way:

K (α) = CI1−α (m̂) :=

{
m = (Ω,F ,P) : F (x) = P ((−∞, x]) ∈

[
F̂ (x) ± kα/2√

n

]
∀x ∈ IR

}
,

where kα/2 is the critical value of the Kolmogorov-Smirnov statistic.9 As above, one

may also define tolerance sets that are more specifically tied to a given risk measure-

ment method and a given product. Along this line, one may estimate RMMm (Πm)

first and define a tolerance set based on a confidence region CI1−α for the estimate

K (α) = {m : RMMm (Πm) ∈ CI1−α} .

In general, we can determine tolerance sets that are restricted to a (parametric)

subclass M (Θ) or that are not restricted to such a model class (which we will refer

to as unrestricted, in the sequel). As above, one may define model risk due to

estimation error as the model risk restricted to the model class M (Θ). The amount

that has to be added to arrive at the model risk determined from the unrestricted

method may be termed model risk due to misspecification or simply misspecification

risk. In other words, if Kr is the restricted tolerance set and Ku is the unrestricted

one, then we define the misspecification risk for a given product Π as

φRMM (Π,Kr, Ku) = supk∈Ku
RMMk (Πk) − supk∈Kr

RMMk (Πk). (4.9)

However, the quantity defined above may in some cases be less than zero, whereas

we would prefer to define misspecification risk in such a way that it is always non-

negative. To achieve this with the above definition, we have to make sure that the

set Kr is nested in Ku. In case the misspecification risk in (4.9) turns out to be

negative, one could argue that that the unrestricted set Ku is too small, i.e., based

upon too low a confidence level. Therefore, we use a family {Ku(γ)} of tolerance

sets parameterized by the confidence level γ. For a given confidence level α and

a given tolerance set Kr, which may have been selected on the basis of the same

9Formally, the use of the Kolmogorov-Smirnov statistic requires (Ω,F) to be model independent.
For the empirical applications we have in mind, this is not a restriction. Alternative uniform
confidence bounds around a nonparametric distribution may be obtained from the Cramér-von
Mises statistic or the Kuiper statistic (see, for example, Shorack and Wellner (1986)).
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confidence level, we then take Ku = Ku(β) where β is defined by10

β = min(α, sup {γ ∈ (0, 1) : Kr ∈ Ku (γ)}). (4.10)

The analogs of Theorem 4.1 (invariance) and positive homogeneity can easily be

shown to hold for both estimation risk and misspecification risk separately. Proofs

follow the lines of the proofs of the cited results.

4.4 Regulatory Capital

One of the most important tasks of a risk management department is to compute

the risk of the portfolio of the financial institution. In this section we illustrate

how the methodology can be used in portfolio risk management, using two financial

time series, the Standard and Poor’s 500 and the £/ $ exchange rate. The data

were obtained from Thomson Datastream (definitions and sources of the data can

be found in Appendix B).

The Bank for International Settlements (BIS) has suggested to set risk-based cap-

ital requirements which are closely related to the value-at-risk methodology. Here,

we show first how the model risk measurement approach can be taken into account

for a (simple) value-at-risk methodology, followed by an example using the expected

shortfall. The derivation of the formulas and the asymptotic distributions used in

these examples are presented in Appendix A.

4.4.1 Examples

Example 4.3 Value-at-Risk

We have available a data set of returns
(
hT

1 , ..., h
T
n

)
of the portfolio under consid-

eration for a period of length nT years (nT = 20, T = 1/252 (one day)). An

elementary VaR model assumes that the data is a realization of a random sample

10An alternative way to ensure nesting is to form convex combinations. Note that, in a context
in which we are concerned with a specific product, it is reasonable to identify models with the
cumulative distribution functions induced by the given product, and in this way it is indeed possible
to consider convex combinations of models. The nesting property can then be guaranteed by
replacing the set Ku by the convex hull of Kr and the original Ku. However, our proposal seems
to be more transparent.
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(
HT

1 , ..., H
T
n

)
where HT

j ∼ N (µT, σ2T ) for j = 1, .., n where µ and σ2 denote an-

nualized mean and variance, respectively. We estimate µ by µ̂ = 1
n

∑n
i=1 h

T
i and σ

by σ̂ =
√

1
n

∑n
i=1 (hT

i − µ̂). Let θ = (µ, σ). The model class M, with typical ele-

ment m(θ) = (IR,B(IR),Pθ) where Pθ ((−∞, x]) = Φ
(

log x−µ
σ

)
, belongs to the class

of lognormal distributions.

Let X0 ∈ IR denote the (model independent) initial capital, and let Π ∈ X (M)

denote the portfolio at time T . To compute the worst cases, we follow the approach

of focusing directly on the given risk measurement method (VaR in this case) and

the given product, as discussed in 4.3.3 above.

First, assume that asset returns are normally distributed and let θ̂ = (µ̂, σ̂) be

the estimate of the parameter θ = (µ, σ). We shall call m(θ̂) the nominal parametric

model. The corresponding value-at-risk of portfolio Π at level p is given by

VaRm(θ̂)

(
Πm(θ̂)

)
= −X0 exp

(
zpσ̂

√
T + µ̂T

)
, (4.11)

where zp denotes the pth quantile of the (standard) normal distribution. Still assum-

ing normality of asset returns, the parametric worst-case value-at-risk is the lower

bound of the (1 − α) confidence interval around VaRm(θ̂)

(
Πm(θ̂)

)
. This lower bound

is given (based on an asymptotic approximation) by

VaRm(θ̂)

(
Πm(θ̂)

)
− zα/2

√
ΣVaR/n, (4.12)

where

ΣVaR = T VaRm(θ̂)

(
Πm(θ̂)

)2 [
σ2 (1 + T/4) + zpσ

3
√
T + z2

pσ
2/2
]
.

Nonparametric versions of VaR may be computed on the basis of the empirical

distribution function, Fn. We denote by mn the model (IR,B(IR),Pn) where Pn is

given by Pn((−∞, x]) = Fn(x). The nominal empirical value-at-risk is given by

VaRmn (Πmn) = −X0 exp
(
hT

n(�pn�+1)

)
, (4.13)

where n (i) denotes the ith order statistic of
(
hT

1 , ..., h
T
n

)
and �a� is the largest integer

that is less than or equal to a. Finally, the worst-case empirical VaR is the lower
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bound of the (nonparametric) confidence interval around VaRmn (Πmn), which may

be computed as

VaRmn (Πmn) − zβ/2

√
p (1 − p)

nf 2(F−1
n (p))

(4.14)

where β is as defined in (4.10) and where f (x) can be estimated using, for instance,

the Rosenblatt-Parzen kernel estimator.11

Example 4.4 Expected Shortfall

For the empirical part we use expected shortfall as well as value-at-risk, so we repeat

the exercise of the previous example for ES. Assume the same setting as before. The

nominal parametric ES (at level p) under normality of the asset returns is given by

ESm(θ̂)

(
Πm(θ̂)

)
= −1

p
exp
(
µ̂T + 1

2
σ̂2T
)
Φ
(
zp − σ̂

√
T
)
. (4.15)

The worst-case parametric ES may be computed as

ESm(θ̂)

(
Πm(θ̂)

)
− zα/2

√
ΣES/n (4.16)

where (writing φ = Φ′)

ΣESm(θ)
= TΨ2

ES

[
σ2 +

(
Tσ −

√
T
φ

Φ

(
zp − σ

√
T
))

σ3

+

(√
Tσ − φ

Φ

(
zp − σ

√
T
))2

σ2/2

]
, (4.17)

where Ψ(ES) = ESm(θ̂)

(
Πm(θ̂)

)
and φ

Φ
(x) = φ(x)

Φ(x)
.

The empirical ES can be computed by

ESmn (Πmn) = − 1

�np� + 1

n∑
i=1

X0 exp
(
hT

j

)
II{(−∞,VaRmn (Πmn )]}

(
hT

j

)
. (4.18)

11In our applications below we have approximately normal data and so we do bandwidth se-
lection by taking h = 1.06sn−1/5, which is the optimal bandwidth in case of a normal N

(
µ, σ2

)
distribution, where s denotes the usual estimate for σ.
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Figure 4.1: Data descriptions
QQ-plot and density comparison of the normal density with nonparametric density
estimate (using a the Rosenblatt-Parzen kernel estimator with Gaussian kernel and
bandwidth h = 1.06sn−1/5) of the daily (total) returns of the S&P 500 and £/ $
exchange rate. The data periods are 26-10-’81 – 29-04-’03 for the S&P 500 and
03-01-’86 – 29-04-’03 for the £ / $ exchange rate.

The empirical worst-case ES can be computed as

ESmn (Πmn) − zα/2

√
ΣESmn

/n (4.19)

where

ΣESmn
=

1

p
IE
[
Y 2 | Y ≤ VaRmn (Πmn)

]
− ES2

mn
(Πmn)

−
(

1 − 1

p

)
VaR2

mn
(Πmn) +

(
2 − 2

p

)
ESmn (Πmn) VaRmn (Πmn) .
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4.4.2 Empirical results

Based on these examples, we now illustrate the methodology. In addition to the

Gaussian models described in the examples we also investigate a GARCH(1, 1) model

with Gaussian innovations that should be more capable of capturing time varying

risk.12 Figure 4.1 shows the normal density with variance equal to the sample

variances of the S&P 500 data and the British pound / US dollar (£/$) exchange

rate data and compares this with a nonparametric density13 estimate of the densities

of the S&P 500 and the £/$ exchange rate. We see that the returns from the S&P 500

and an investment in British money market (for a US investor) account exhibit more

kurtosis than could be expected on the basis of normally distributed returns. This

could be the result of time-varying volatility and, therefore, we use rolling window

versions of our models with a window of 2 years. Based on the graphical analysis

of Figure 4.1, we expect some misspecification error when calculating the value-

at-risk and expected shortfall on the basis of a nominal model assuming normally

distributed returns.

Figure 4.2 shows the estimators for the (annualized) mean and volatility of both

models. We see that both models predict more or less the same means. The dif-

ference between the models is in the predictions of the volatilities. The predictions

of the GARCH(1, 1) model are as expected much more erratic than those of the

Gaussian model.

Next, we investigate the performance of the various models for VaR and ES from

a statistical point of view. We start by investigating VaR. Ideally, the frequency of

excessive losses (FOEL), i.e., the number of days at which the loss exceeds the

predicted VaR, should be close to the VaR levels. As a benchmark we choose the

1% level for VaR, since this is the quantile required by BIS (see Basel Committee

on Banking Supervision (1996a)). In Tables 4.1 and 4.2 we present the results of a

one-sided FOEL test with 95% confidence intervals. We denote by n the number of

12Berkowitz and O’Brien (2002) find that an ARMA(1, 1)-GARCH(1, 1) model with Gaussian
innovations does a good job in forecasting value-at-risk for their portfolios of actual investment
banks. Since we did not find any statistically significant ARMA structure in our data, we restricted
the model to a GARCH(1, 1). For more advanced volatility estimation methods see, for example,
Eberlein, Kallsen and Kristen (2003).

13In view of the approximate normality of the data, the bandwidth h has been set equal to
h = 1.06σ̂n−1/5 which is the optimal bandwidth selection for normally distributed data.
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Figure 4.2: Parameter estimates
The upper panel displays the parameter estimates of the mean and volatility in the
S&P 500 market for both the Gaussian and the GARCH(1, 1) model. The lower
panel displays the parameter estimates of the mean and volatility in the £/$ FX
rate market for both the Gaussian and the GARCH(1, 1) model. For both markets
the estimates are using two-year rolling window models. The data runs from 26-10-
’81−29-04-’03 for the S&P 500 market and from 03-01-’86−29-04-’03.
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Table 4.1: FOEL test VaR for S&P 500
FOEL test for Gaussian VaR, GARCH(1, 1) VaR, and non-parametric VaR models
and their worst-case equivalents (for definitions, see main text). Daily data on S&P
500 (total return) index from 26-10-’81 to 29-04-’03.

model
VaR
level

FOEL 1-sided 95% CI T p-value
VaR level
hypothesis
rejected

Gauss. 2.5% 3.2% (2.7%;−) 2.9 0.00 yes
Gauss. wc 2.5% 2.6% (2.1%;−) 0.37 0.35 no
GARCH(1, 1) 2.5% 3.3% (2.8%;−) 3.1 0.00 yes
GARCH(1, 1) wc 2.5% 3.3% (2.8%;−) 3.1 0.00 yes
NP 2.5% 3.1% (2.6%;−) 2.3 0.01 yes
NP wc 2.5% 2.1% (1.7%;−) −1.9 0.97 no
Gauss. 1% 2.0% (1.6%;−) 5.2 0.00 yes
Gauss. wc 1% 1.7% (1.4%;−) 3.6 0.00 yes
GARCH(1, 1) 1% 2.0% (1.6%;−) 5.2 0.00 yes
GARCH(1, 1) wc 1% 1.7% (1.6%;−) 5.1 0.00 yes
NP 1% 1.6% (1.2%;−) 3.3 0.00 yes
NP wc 1% 1.0% (0.7%;−) −0.45 0.67 no

days in the backtesting period, by f the number of times the VaR level has been

exceeded, and by 1 − p the predicted level of VaR (2.5% or 1% in our case). The

test statistic of the FOEL test (see, for example, Kupiec (1995)) is given by

T =
√
n
f/n− p

p(1 − p)
(4.20)

The results indicate that the Gaussian rolling window and GARCH(1, 1) VaR

models are strongly rejected both in case of the S&P 500 data and in case of the £/$

data. For both the S&P 500 and the £/$ exchange rate, taking estimation risk into

account seems sufficient in case of the 2.5% level for the Gaussian model. In case of

the 1% level, however, taking estimation risk into account does not prevent the VaR

limit from being exceeded too often. If we take misspecification risk into account

by looking at the non parametric worst-case model, the number of times the VaR

limit is crossed does not exceed the level predicted by the model in a statistically

significant way.
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Table 4.2: FOEL test VaR for £/ $ FX rate
FOEL test for Gaussian VaR, GARCH(1, 1) VAR, and non-parametric VaR models
and their worst-case equivalents (for definitions, see main text). Daily data on £/
$ from 03-01-’86 to 29-04-’03.

model
VaR
level

FOEL 1-sided 95% CI T p-value
VaR level
hypothesis
rejected

Gauss. 2.5% 3.3% (2.7%;−) 2.7 0.00 yes
Gauss. wc 2.5% 2.8% (1.2%;−) 1.0 0.15 no
GARCH(1, 1) 2.5% 3.3% (2.7%;−) 2.6 0.01 yes
GARCH(1, 1) wc 2.5% 3.2% (2.6%;−) 2.5 0.01 yes
NP 2.5% 2.6% (2.1%;−) 0.3 0.40 no
NP wc 2.5% 1.6% (1.2%;−) −4.9 1.00 no
Gauss. 1% 1.8% (1.4%;−) 3.8 0.00 yes
Gauss. wc 1% 3.3% (0.9%;−) 1.5 0.06 no
GARCH(1, 1) 1% 2.0% (1.6%;−) 4.6 0.00 yes
GARCH(1, 1) wc 1% 1.9% (1.5%;−) 4.4 0.00 yes
NP 1% 1.1% (0.8%;−) 0.4 0.33 no
NP wc 1% 0.5% (0.3%;−) −3.9 1.00 no

In order to test the performance of the models for predicting expected shortfall,

we use the recently proposed test for expected shortfall in Chapter 2. For ES we

adopt a higher level, namely, the 2.5% level, following arguments given in Chapter 2,

which motivate that for an appropriate comparison between VaR and ES, the latter

should have a higher level. In order to apply the ES test, the return series {ht}n
t=1

is transformed using a probability integral transform to a standardized return series

{yt}n
t=1 which have distributions, {Qt}n

t=1, which under the null hypothesis that the

model correctly predicts the ES equal a standard Gaussian distribution, Qt = Φ, for

every t:

yt = Φ−1

(∫ ht

−∞
pt (u) du

)
= Φ−1 (Pt (ht)) , (4.21)

where {Pt}n
t=1 denotes the cdf of the model forecast distributions (N (µt, σt) in the

case of the Gaussian and GARCH(1, 1) model, where µt and σt are model specific).
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Table 4.3: ES tests
Test of expected shortfall for the nominal Gaussian and GARCH(1, 1) and the nom-
inal non-parametric ES model (for definitions, see main text). The four upper rows
present the results of the S&P 500 and the four bottom rows represent the results
of the £/ $ FX rate. Daily data on the S&P 500 (total return) index from 26-10-’81
to 29-04-’03. Daily data on the £/ $ FX rate index from 03-01-’86 to 29-04-’03.

market model
ES

level
T p-value

ES model
rejected

S&P 500 Gauss. 5% −13.5 0.00 yes
GARCH(1, 1) 5% −12.6 0.00 yes
NP 5% −0.8 0.22 no
Gauss. 2.5% −19.5 0.00 yes
GARCH(1, 1) 2.5% −17.6 0.00 yes
NP 2.5% −0.6 0.28 no

£/ $ Gauss. 5% −7.3 0.00 yes
GARCH(1, 1) 5% −9.8 0.00 yes
NP 5% 1.0 0.84 no
Gauss. 2.5% −9.5 0.00 yes
GARCH(1, 1) 2.5% −13.0 0.00 yes
NP 2.5% 1.58 0.94 no

The test statistic is then given by14

T =
√
n
ESm(Qt) − ESm(Φ)

V
, (4.22)

where V , calculated under the null hypothesis, is given by

V = 1/p− (1 − 1/p2)z2
p + (1 + 1/p)φ(zp)zp/p− φ2(zp)/p

2. (4.23)

The results indicate that both the rolling window Gaussian model and the GARCH(1, 1)

model are strongly rejected. The rolling-window nonparametric model cannot be

rejected for both series. Since the worst-case non-parametric expected-shortfall is

below the nominal non-parametric expected shortfall, it serves as a lower bound.15

14For convenience, contrary to definition 4.4, we write ES as a function of the distribution
function.

15We did not report any results of tests for the worst-case variants of the models for expected
shortfall. In order to perform these tests one needs to make assumptions about the tail behavior
(for example, a shift in all tail observations.)
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One way to investigate the relation between the worst-case risk measure and

the risk measure based on the nominal models is in terms of a multiplication fac-

tor. We define the multiplication factor for VaR or ES as the ratio between the

non-parametric worst-case VaR (ES) based on a 95% confidence interval and the

nominal parametric VaR (ES). Plots of the multiplication factors for the Gaussian

and GARCH(1, 1) models are shown in Figure 4.3. Our definition of the model risk

multiplication factors implies that the capital requirements for a bank are the same

irrespective of the nominal model used. This seems reasonable, since the amount

of regulatory capital should depend on the position that the bank takes and not on

the model it uses.

However, the regulator does not know the position of the bank. The information

that the regulator gathers is based on the results reported by the banks. Thus, if

banks use more accurate models, the regulator has more insight in the risks for the

bank and the financial system. Therefore, the regulator wants to provide incentives

for the banks to use accurate models. One way to do this is to vary the non-

parametric worst case VaR (ES) depending on the backtest. A scheme providing

these incentives would be: in case of a rejected model based on backtesting banks

should use a model risk multiplication factor based on a (95+penalty)% confidence

interval non-parametric VaR (ES), where the penalty increasing with the degree of

rejection (higher penalties for lower p-values).

We see in the upper panels of Figure 4.3 that for the Gaussian model in case of

1% VaR multiplication factors of 2 for the S&P 500 and 1.6 for the £/$ exchange

rate comfortably cover model risk at the 95% confidence level during the full sample

period. In case of the 2.5% ES we find that multiplication factors of 1.7 for the

S&P 500 and 1.5 for the £/$ exchange rate are sufficient for the Gaussian model.

The lowest BIS multiplication factor for both VaR and ES, a multiplication factor

of three, would correspond to a confidence level of about 99.99%. In the right panels

of Figure 4.3 we see that for the GARCH(1, 1) model the model risk multiplication

factors are much higher than for the Gaussian model. This can be explained by the

fact that the GARCH(1, 1) model responds more quickly to periods of low volatility

and then forecasts low values of VaR and ES contrary to the non-parametric worst

case.
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Figure 4.3: Model risk multiplication factors
The upper panels display model risk multiplication factors (on the vertical axis)
of the 1%-VaR and 2.5%-ES for the S&P 500 during the period 26-10-’83 – 29-04-
’03 (left is Gaussian and right GARCH(1, 1)). The lower panels display model risk
multiplication factors of the 1%-VaR and 2.5%-ES for the £/ $ FX rate during the
period 03-01-’88 – 29-04-’03 (left is Gaussian and right GARCH(1, 1)).
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In Figures 4.4 and 4.5 we give the capital requirements based on the BIS capital

requirements. All requirements are based on investments of $100 in the market.

Results can therefore be interpreted as percentages. We have used the BIS backtest

procedure (see Basel Committee on Banking Supervision (1996b)) to backtest the

Gaussian and the GARCH(1, 1) models and to determine the multiplication fac-

tors.16 The capital requirement can then be determined by multiplying the daily

value-at-risks by the multiplication factor and
√

10.17 The capital requirements are

compared to the two-week returns. In addition to the BIS capital requirements we

plot the capital requirements based on the model risk multiplication factors shown

in Figure 4.3. In Figures 4.4 and 4.5 we see that the capital requirements for the

GARCH(1, 1) model are much more variable than those of the Gaussian model. Fur-

thermore, we see that in normal market conditions the model reserves based on the

model risk measures cover the losses safely. The performance in terms of number

of exceedances per daily returns, two week returns, and average regulatory capital,

is more or less the same for both models as can be seen from Table 4.4. In Table

4.4 we see that the number of exceedances of the two-week VaR and ES’s is very

small for all capital requirement schemes. Of course, the capital requirements set by

the BIS are exceeded least, but they are also very large compared to the model risk

multiplication factors. Eventually, the regulator needs to make a trade-off between

the cost of exceedance of the capital requirements and the cost of impeding banks

in their operations by charging high capital requirements.

4.5 Conclusions

In this paper we have presented a framework to set capital requirements for trading

activities in a market, based on the extent to which this market can be reliably

modeled. The framework extends the (market) risk framework set out by Artzner

et al. (1999) and Delbaen (2000) by considering risk measurement methods for a

class of models instead of a risk measure for one particular model. This allows for

16Banks only need to do this every three months. However, in this application we did it on a
daily basis in order to mitigate the effect of the timing of these three month periods. The BIS
capital requirements are therefore not precisely those that would result in practice.

17Though the models are backtested using daily VaR, banks should report two-week VaR. The
BIS allows the scaling by

√
10. Under the Gaussian model assumptions this would be correct.
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Figure 4.4: Capital requirements S&P 500
This figure compares two losses on the S&P 500 to the capital requirements (on the
vertical axis) are given for a firm trading in the S&P 500. Given are the capital
requirements using the BIS regulation and the capital requirements based on a 1%-
VaR and 2.5%-ES model risk multiplication factor. The graph is truncated as in
the GARCH(1, 1) the BIS CR go up to 350 at the time of 1987 stock market crash.
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Figure 4.5: Capital requirements £/ $ FX rate
This figure compares two losses on the £/ $ FX rate to the capital requirements (on
the vertical axis) are given for a firm trading in the £/ $ FX rate. Given are the
capital requirements using the BIS regulation and the capital requirements based
on a 1%-VaR and 2.5%-ES model risk multiplication factor.
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Table 4.4: Capital requirement schemes
This table reports the 1-day average exceedance rate, two-week average exceedance
rate, and the average capital requirements (CR) the capital requirement schemes.
The CR schemes investigated are the BIS CR for the Gaussian model, the BIS CR
for the GARCH(1, 1) model, the VaR model risk multiplication factor based CR,
and the ES model risk multiplication factor based CR. The S&P 500 (for 26-10-’83
– 29-04-’03) and the £/ $ FX rate (for 03-01-’88 – 29-04-’03) are investigated.

market scheme
avg. 1-day
exceedance
per year

avg. two-week
exceedance
per year

avg. CR

S&P 500 BIS Gauss. 0.05 0.05 24.0
BIS GARCH 0.10 0.00 23.0
MRMF VaR 2.52 1.70 9.2
MRMF ES 1.49 1.08 11.0

£/ $ BIS Gauss. 0.00 0.00 14.7
BIS GARCH 0.07 0.07 14.9
MRMF VaR 1.33 0.90 5.9
MRMF ES 1.00 0.70 6.3

a quantification of model risk on top of market risk measurement.

The general framework presented is elaborated in such a manner that it fits well

into the capital adequacy framework set out by the Basel Committee and that of

many internal risk management divisions. The use of risk measurement methods

extends the currently used value-at-risk and the recently proposed coherent risk

measures in a natural way.

We decompose the total model risk into a component due to estimation error

and a component due to misspecification. This is established using a tolerance set

restricted to a model class in order to quantify estimation risk and an unrestricted

tolerance set to quantify misspecification risk. This allows a division of capital

requirements currently used (for example, the multiplication factor of the BIS) in

market risk, model risk (estimation risk and misspecification risk), and residual risks.

Our results suggest that, for commonly used models, a Gaussian and a GARCH(1, 1)

model, misspecification risk dominates estimation risk. The analysis indicates that

the multiplication factor set by the BIS is conservative if it would only be intended

to cover model risk. In general, the confidence levels chosen by the BIS or any other

regulator need to address the trade-off between limiting the probability of excessive
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losses on the one hand and leaving room for operation in the market on the other

hand. Furthermore, besides model risk the multiplication factor set by the BIS

should also cover hard-to-measure risks such as operational risk, legal risk, etc.

Concluding, the framework presented allows regulators to differentiate their capi-

tal requirements on the basis of the extent to which a market can be reliably modeled

on the basis of state-of-the-art technology. Depending on the performance of the

model used for market risk assessment by the individual bank, model risk reserves

can be determined. A further comparison between markets on the basis of the extent

to which they can be reliably modeled and the determination of the size of model

risk reserves for different models is left for future empirical research.
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A Risk measure derivations

A.1 Computation of ES

To compute the ES under normality we use some well-known properties of the normal

and lognormal distribution. We can compute the expected shortfall of X when X

is lognormally distributed, that is,18

L (log (X)) = N
(
µ, σ2

)
.

ESp (X) = −1

p

∫ zp(µ,σ)

−∞
exp (x)

1

σ
√

2π
exp

(
−1

2

(
x− µ

σ

)2
)
dx

= −1

p
exp

(
µ+

1

2
σ2

)∫ zp(µ,σ)

−∞

1

σ
√

2π
exp

(
− 1

2σ2

(
x−

(
σ2 + µ

))2)
dx

= −1

p
exp

(
µ+

1

2
σ2

)∫ zp(µ,σ)−µ−σ2

σ

−∞

1√
2π

exp

(
−1

2
y2

)
dy

= −1

p
exp

(
µ+

1

2
σ2

)
Φ (zp − σ) (4.24)

where zp (µ, σ) denotes the p-quantile of the N (µ, σ2) distribution and is given

by zp (µ, σ) = zpσ + µ, where zp denotes the p-quantile of the standard normal

distribution.

A.2 Asymptotic distribution of VaR and ES

We derive the asymptotic distribution of the VaR and the ES starting with the

parametric case.

Parametric case

We have available a data set of n (for convenience, equally spaced) returns
(
hT

1 , ..., h
T
n

)
on the time interval [0, τ ] which is a realization of a random sample

(
HT

1 , ..., H
T
n

)
,

where HT
j ∼ N (µT, σ2T ) for j = 1, .., n. µ denotes the yearly mean, σ2 the yearly

18L (X) denotes the law of X and N refers to the normal distribution.
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variance, and τ = nT . It is well-known that the Central limit theorem gives

√
n

([
µ̂

σ̂2

]
−
[
µ

σ2

])
d→ N

([
0

0

]
,

[
σ2/T 0

0 2σ4

])
(4.25)

with

µ̂ =
1

τ

n∑
i=1

hT
i

σ̂2 =
1

τ

n∑
i=1

(
hT

i − µ̂T
)2
,

the maximum likelihood estimators for µ and σ2, respectively.

Since the VaR and ES are functions of µ and σ, their asymptotic distribution

can be computed by applying the delta method (see, for example, Van der Vaart

(1998)) to (4.25). We start with VaR. Let θ = (µ, σ) and X0 is the initial capital.

All computations are made with horizon T . For notational convenience, we write19

ΨVaR ≡ VaRm(θ)

(
Πm(θ)

)
= −X0 exp

(
zpσ

√
T + µT

)
. (4.26)

Using the delta method we get the asymptotic distribution of V̂aRm(θ)

(
Πm(θ)

)
√
n
(
V̂aRm(θ)

(
Πm(θ)

)
− VaRm(θ)

(
Πm(θ)

)) d→ N
(
0,ΣVaRm(θ)

)
, (4.27)

where

ΣVaRm(θ)
= TΨ2

VaR

[
σ2 + zpσ

3
√
T + z2

pσ
2/2
]
. (4.28)

The worst-case VaR is computed by

Ψwc
VaR ≡ VaRwc

m(θ)

(
Πm(θ)

)
= VaRm(θ)

(
Πm(θ)

)
− zα/2

√
ΣVaR/n (4.29)

19In the interest of readability the dependence on parameters is suppressed in the notation.
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Again using the delta method we get the asymptotic distribution of V̂aR
wc

m(θ)

(
Πm(θ)

)
√
n
(
V̂aR

wc

m(θ)

(
Πm(θ)

)
− VaRwc

m(θ)

(
Πm(θ)

)) d→ N (0,Σwc
VaR) , (4.30)

where

Σwc
VaRm(θ)

=

(
∂Ψwc

VaR

∂µ

)2
σ2

T
+
∂Ψwc

VaR

∂µ

∂Ψwc
VaR

∂σ
σ3 +

σ4

4

(
∂Ψwc

VaR

∂σ

)2

. (4.31)

For the ES we have

ΨES ≡ ESm(θ)

(
Πm(θ)

)
= −X0

p
exp

(
µT +

1

2
σ2T

)
Φ
(
zp − σ

√
T
)
. (4.32)

The asymptotic distribution of ÊSm(θ)

(
Πm(θ)

)
is then given by

√
n
(
ÊSm(θ)

(
Πm(θ)

)
− ESm(θ)

(
Πm(θ)

)) d→ N
(
0,ΣESm(θ)

)
, (4.33)

where

ΣESm(θ)
= TΨ2

ES

[
σ2 +

(
Tσ −

√
T
φ

Φ

(
zp − σ

√
T
))

σ3

+

(√
Tσ − φ

Φ

(
zp − σ

√
T
))2

σ2/2

]
. (4.34)

The worst-case ES is given by

Ψwc
ES ≡ ESwc

m(θ)

(
Πm(θ)

)
= −X0

p
exp

(
µT +

1

2
σ2T

)
Φ
(
zp − σ

√
T
)
− zα/2

√
ΣESm(θ)

/n. (4.35)

The asymptotic distribution can computed using the delta method to be

√
n
((

ÊS
wc

m(θ)

(
Πm(θ)

)
− ESwc

m(θ)

(
Πm(θ)

))) d→ N
(
0,Σwc

ESm(θ)

)
, (4.36)
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where

Σwc
ESm(θ)

= Tψ2
ES (µ, σ)

[
σ2
(
1 + σ2T/2

)
+

(
Tσ −

√
T
φ

Φ

(
zp − σ

√
T
))

σ3

+

(√
Tσ − φ

Φ

(
zp − σ

√
T
))2

σ2/2

]
. (4.37)

Nonparametric case

We have available a data set of n (equally spaced) returns
(
hT

1 , ..., h
T
n

)
on the interval

[0, τ ] which is a realization of a random sample
(
HT

1 , ..., H
T
n

)
, τ = nT . The empirical

distribution function (EDF) is given by

Fn (y) ≡ 1

n

n∑
i=1

I(−∞,y]

(
HT

i

)
(4.38)

We have
√
n (Fn (y) − F (y))

d→ N (0, F (y) (1 − F (y))) (4.39)

To compute the asymptotic distributions of the VaR and the ES we need to

compute the influence functions20 of the VaR and the ES. The value-at-risk21 is

given by

ΨVaR (F ) ≡ VaRmn (Πmn)

= F−1 (p) , (4.40)

20The influence function of Ψ can be computed as the ordinary derivative

ψ (F ) =
d

dt
|t=0ψ ((1 − t)F + tδx) ,

where δx denotes the Dirac measure.
21The quantile function of CDF F is the generalized inverse F−1 : (0, 1) → IR given by

F−1 (α) = inf {x : F (x) ≥ α}



90 Model Risk and Regulatory Capital

and its influence function by

ψVaR (F ) =
p− II[y,∞) (F−1 (p))

f (F−1 (p))
. (4.41)

We can now compute the asymptotic distribution of V̂aRmn (Πmn) = F−1
n (p) as

√
n
(
V̂aRmn (Πmn) − VaRmn (Πmn)

)
d→ N

(
0,

p (1 − p)

f 2 (F−1 (p))

)
(4.42)

Based on the asymptotic distribution given in (4.42) we can construct a confidence

interval for F−1 (p), namely

CI1−α (VaRmn (Πmn)) =

[
V̂aRmn (Πmn) ± zα/2

√
p (1 − p)

nf 2 (F−1 (p))

]
, (4.43)

where zα denotes the α-quantile of the standard normal distribution. The density

f in (4.43) can be estimated by the Rosenblatt-Parzen kernel estimator

f̂ (x) =
1

nh

n∑
i=1

K

(
xi − x

h

)
. (4.44)

The worst-case VaR is given by

Ψwc
VaR (F ) = VaRwc

mn
(Πmn)

= VaRmn (Πmn) − zα/2

√
p (1 − p)

nf 2 (F−1 (p))
. (4.45)

The influence function of the worst-case VaR is then given by

ψwc
VaR (F ) = −ψVaR (F )

[
1 − zα/2

√
p (1 − p)

n

f
′

f

(
F−1 (p)

)]
, (4.46)

where f ′ can be estimated by

f̂ ′ (x) =
−1

nh2

n∑
i=1

K ′
(
xi − x

h

)
.
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The asymptotic distribution is given by

√
n
(
V̂aR

wc

mn
(Πmn) − VaRwc

mn
(Πmn)

)
d→ N

(
0,Σwc

VaRmn

)
, (4.47)

with

Σwc
VaRmn

= IEψwc2

VaR (F ) .

The expected shortfall is given by

ΨES (F ) = ESmn (Πmn)

= IEF

(
Y | Y ≤ F−1 (p)

)
, (4.48)

and its influence function is given by

ψES (F ) =
1

p

(
y − F−1 (p)

)
II(−∞,F−1(p)] (y) − ΨES (F ) + F−1 (p) . (4.49)

The asymptotic variance of ÊSmn (Πmn) = IEFn (Y | Y ≤ F−1 (p)) is given by

ΣESmn
= IEψ2

ES (F )

=
1

p
IE
[
Y 2 | Y ≤ F−1 (p)

]
− Ψ2

ES (F )

−
(

1 − 1

p

)
F−2 (p) +

(
2 − 2

p

)
ΨES (F )F−1 (p) .

The asymptotic distribution of ÊSmn (Πmn) = IEFn (Y | Y ≤ F−1 (p)) is then given

by
√
n
(
ÊSmn (Πmn) − ESmn (Πmn)

)
d→ N

(
0,ΣESmn

)
. (4.50)

A confidence interval for ESmn (Πmn) = IE (Y | Y ≤ F−1 (p)) can be constructed

using (4.50), namely

CI1−α (ESmn (Πmn)) =

[
ÊSmn (Πmn) ± zα/2

√
1

n
ΣESmn

]
. (4.51)
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The worst case expected shortfall is given by

Ψwc
ES (F ) = ESwc

mn
(Πmn)

= ESmn (Πmn) − zα/2

√
1

n
ΣESmn

, (4.52)

and its influence function is given by

ψwc
ES (F ) = −ψES (F ) − zα/2

2
√
nIEψ2

ES (F )
∗[

1

p2

(
y2 − F−1 (p)

)
II(−∞,F−1(p)] (y)

−IE
[
Y 2 | Y ≤ F−1 (p)

]
/p− F−1 (p) /p

−2ΨES (F )ψES (F ) − 2

(
1 − 1

p

)
F−1 (p)ψVaR (F )

+

(
2 − 2

p

)(
ψES (F )F−1 (p) + ΨES (F )ψVaR (F )

)]
. (4.53)

The asymptotic distribution of ÊS
wc

mn
(Πmn) is then given by

√
n
(
ÊS

wc

mn
(Πmn) − ESwc

mn
(Πmn)

)
d→ N

(
0,Σwc

ESmn

)
, (4.54)

where

Σwc
ESmn

= IEψwc2

ES (F ) .

B Data

This appendix describes the data used in the study. For the S&P 500 series we

use the total return series from Thomson Datastream code: S&PCOMP(RI). The

£/$ exchange rates is given by Thomson Datastream code: USBRITP(ER). For

the US risk free interest rate we have transformed the Thomson Datastream series

ECUSD3M(IR) to continuously compounded interest rates. For the UK risk free

interest rates we use the continuously compounded interest rates of the Thomson

Datastream series ECUKP3M(IR).



Chapter 5

How Risky are Written

Derivatives Positions? A Model

Risk Study

5.1 Introduction

During the nineties we saw a spectacular growth of trading derivatives instruments

which continues in the new millennium. For example, the turnover of exchange-

traded financial derivatives is estimated at about $ 192 trillion and the notional

amount of outstanding OTC contracts is estimated at $ 128 trillion (see Jeanneau

(2002)). Though the larger part consists of (short-term) interest rate derivatives

which are almost exclusively traded between financial institutions, a significant part

is due to equity products traded by the public. Taking into account that the option

buyer has liability limited to the option premium, while the option seller risks losses

that can severely exceed his initial premium it comes as no surprise that the public

prefers to be on the buy side. As each contract needs a buyer and a writer, the

financial institutions need to be short in options in case the public wants to be long

in options. Being short options financial institutions are exposed to several risks.

Derivatives risks can be decomposed into several categories, such as market risk,

credit risk, legal risk, and operational risk. The derivatives community has be-

come increasingly aware of these risks. This contributed to more formal methods of
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derivative risk assessment (see, for example, Basel Committee on Banking Supervi-

sion (1996a)).

Due to the growing complexity of derivatives markets, financial institutions rely

more and more on the use of models to assess the risks to which they are exposed.

The accuracy of these risk assessments depends crucially on the extent to which

a market can be reliably modelled. Choosing an appropriate model for risk as-

sessments is an important and difficult task. It is a widespread feeling among both

academics and practitioners that, although some models do a better job than others,

the search for one ultimate model is futile. An approach that takes the limitations

of our knowledge into account is to develop models — depending on the application

(pricing, hedging, ...) — that capture the most important aspects of a particular

market, and to somehow control for the fact that the assessment of risk is based

on a possibly misspecified model (see, for example, Derman(1996, 2001) for a prac-

titioner’s view). In practice, it has become customary to set aside so-called model

reserves. This means that booking of certain profits on trades is postponed if it is

felt that these profits are sensitive to the model used. The hazard of working with

a potentially misspecified model is termed model risk.

In the early days of option pricing plain vanilla options were not traded very

frequently and, therefore, their pricing posed a modelling challenge. Currently,

the market for (short-term) plain vanilla options is so liquid that pricing does not

require much modelling. A simple interpolation of the implied volatility surface

would already give a reasonable price. Therefore, the pricing model risk is negligible.

However, modelling remains crucial for hedging. Depending on the hedge strategy

used, the risk profile of a derivative can take (very) different forms (see Green and

Figlewski (1999)).1 In this study we focus on the hedging model risk for plain vanilla

options and aim to quantify this.

The main contribution of this chapter is an empirical investigation of the hedging

model risk associated with the industry standard Black-Scholes Greeks in the S&P

500 market and some of the most important currency markets. For this we provide

a framework to chart model risk. We use the model risk framework proposed in

1For exotic options (or illiquid derivatives in general), markets are not as mature as for plain
vanillas. Therefore, in these markets besides hedging model risk also considerable pricing model
risk can exist (see, for example, Hull and Suo (2002) and Hirsa, Courtadon and Madan (2002)).
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Chapter 4 that builds on the axiomatic market/credit risk framework proposed by

Artzner et al. (1999). Furthermore, we provide simulation evidence showing the

hazards of relying on historical simulation to quantify the risk associated with the

writing of options. We propose and use the bootstrap as an alternative.

As pointed out in Green and Figlewski (1999) three important sources of model

risk arise when trading derivatives. First, the model can be misspecified. In case of

pricing (liquid) plain vanilla options, this is not of major concern, since prices can

be readily found in the market. However, the hedge parameters used are based on

modelling assumptions. Second, the option value is derived based on no-arbitrage

assumptions. This means that the model prescribes a hedge strategy which is usually

specified in continuous time. This is not be feasible in practice, since this entails an

infinite number of transactions. Therefore, approximate (delta) hedging in discrete

time is used and we focus in this paper on the risk profile of the cost of hedging

in case of a discrete (daily) hedge strategy. A third source of model risk is the

problem of unobserved model parameters such as, for example, volatility (see the

literature on stochastic volatility models such as Hull and White (1987) and Heston

(1993) amongst others). Though the method presented allows more advanced option

pricing models, we restrict our focus to the Black-Scholes model since this remains

the industry standard for hedging plain vanilla options.

To extend the current practice of computing risk assessments on the basis of

some given (“nominal”) model for the cost of hedging, we also determine a set of

plausible alternative models. In recognition of the fact that each of these models is

a (reasonable) candidate for representing reality, we propose to compute a worst-

case market risk measure of the cost of hedging over the set of alternative models.

Model risk is then defined as the difference between this measure and the market

risk measure computed from the nominal model. Using sets of alternative models

that are or are not restricted to a model class, we distinguish between model risk

due to estimation error and model risk due to misspecification.

We investigate the hedging model risk associated with the Black-Scholes delta

hedge for plain vanilla options. The markets that we investigate are the S&P 500,

and the $/£, £/�, and $/� exchange rates. We find that in our sample the mis-

specification risk is considerable. Further, we find in the S&P 500 market that the
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market sets a premium which could serve as reward for facing the model risk.

The remainder of the paper is structured as follows. The next section considers

the risks associated with derivatives. Section 5.3 sets out the model risk framework.

Section 5.4 describes the methodology used and provides supporting simulation ev-

idence and empirical analysis. In Section 5.5 the results are presented. Finally,

Section 5.6 concludes.

5.2 Derivatives risks

Theoretically, derivative assets can be exactly replicated (in case of a complete

market) by a (dynamic) position in the underlying asset and some numeraire asset.

In practice, these replicating strategies are not feasible due to transaction costs

and the inability to trade continuously. Therefore, financial institutions rely on

hedge strategies in discrete time. However, by hedging in discrete time the position

consisting of the derivative and the hedging portfolio is no longer risk free and

subjected to market risk. We use this market risk to get to a definition of the risk

associated with a derivative.

5.2.1 Cost of Hedging

For a portfolio of basis assets it is natural to determine the market risk (by a risk

measure such a value-at-risk or expected shortfall) on the distribution of the portfolio

at the relevant time horizon, say T . In principle, the same can be done for deriva-

tives using the maturity date as the relevant time horizon T . However, this would

ignore the fact that financial institutions have the possibility (and extensively use it)

to hedge their derivatives portfolios. Indeed, Green and Figlewski (1999) found that

derivative risks, as expected, can be reduced considerably by delta hedging. There-

fore, the hedge strategy of the financial institution should be taken into account

when calculating the market risk of a derivative. We suggest to define the market

risk of a derivative as the market risk of the cost of hedging of this derivative. The

cost of hedging C (X; γ) of claim X, say a call option, using trading strategy γ on
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a discrete set of time points {t0, ..., tn = T} is given by2

C (X; γ)

N
(0) ≡ X

N
(T )−

n∑
i=1

γ (ti−1) ·∆
(
S

N

)
(ti)−

n∑
i=1

γ (ti−1) ·
δ � S

N
(ti) (ti − ti−1) ,

(5.1)

where S denotes the prices of the underlying asset(s), N denotes the price of a nu-

meraire asset, δ denotes the dividend process, and ∆
(

S
N

)
(ti) ≡

(
S
N

)
(ti)−

(
S
N

)
(ti−1).

The first term of (5.1) denotes the discounted payoff at T = tn, the second gives the

discounted gains/losses over time and the final term gives the dividend payouts.

The trading strategy γ used does not have to be related to the pricing model. For

example, in the following sections we mostly use market prices (model independent)

and hedge using the Black-Scholes delta hedge with historical (implied) volatilities.

5.3 Model risk

Market risk measures such as value-at-risk and expected shortfall are typically based

on a class of scenarios together with a base probability measure; both items are

provided by a model m. Therefore, the market risk measure can be computed once

the model is selected. However, there is uncertainty about which model to use.

A financial institution’s perception of market risk can deviate substantially from

the actual market risk due to the fact that the actual dynamics are insufficiently

represented by the model dynamics. Due to the use of an incorrect model, the

financial institution may accept risks that it would find unacceptable in case it

would know the actual dynamics. The risk associated to the mismatch between

model dynamics and actual dynamics is called model risk.

5.3.1 Notation and definitions

Since in this paper we are interested in model risk for written derivatives positions,

we are working with classes of models rather than with a single model. It is not

always convenient to use the same probability space for each of these models. There-

fore, we start by a formal description of a setting that allows the use of multiple

2The symbol � denotes the Hadamard product, that is, x � y = (x1y1, ..., xnyn) (see, for
example, Magnus and Neudecker (1999)).
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probability spaces (see also Chapter 4).We define a model as a probability space

(Ω,F ,P) with Ω the sample space, F the set of events, and P the probability mea-

sure. This setting could be extended to more elaborate probabilistic settings; in

particular, a filtration might be assumed given.3 For simplicity, we focus on final

payoffs of the derivatives in this chapter so that the above notion will be sufficient

for the purposes of this chapter. For any model m, let R(m) denote the space of

equivalence classes of measurable real-valued functions on (Ω,F). If a model m is

given, a risk is defined on m as an element of R(m). This definition, in which a

“risk” is a random variable defined on a given probability space, follows the termi-

nology of Artzner et al. (1999) and Delbaen (2000). We introduce a similar concept

for model classes rather than for individual models. M denotes the class of mod-

els. A product can then be defined on M as a mapping that assigns to each model

m ∈ M a risk defined on m. The set of all products defined on M is denoted by

X (M). The risk induced by a product Π on a model m will be denoted by Πm. The

product that we use in this paper is the delta-hedged derivative given in (5.1).

We now proceed to risk measures, again starting with the definition for an indi-

vidual model. A risk measure defined on m is a map from R(m) to IR∪{∞}.4 The

notion of a risk measure can be generalized to a class of models using so-called risk

measurement methods. A risk measurement method defined on a class of models

M is a mapping that assigns to each model m ∈ M a risk measure defined on

m. Suppose that the financial institution uses a risk measurement method RMM

to assess the acceptability of a product (portfolio) Π. In model m, the risk of the

product Π is computed as RMMm(Πm). To take into account model uncertainty, we

take a set of alternative dynamics K around m and compute the worst-case market

risk measure (with respect to K), which is given by supk∈K RMMk(Πk). Model risk

may now be quantified as follows.

3In case of (5.1) we should introduce a filtration for a formal definition such that the underlying
process and the trading strategy are well defined w.r.t. this filtration. However, since we are only
interested in (discounted) final payoffs of the derivative we do not need to go beyond the static
model. If we would also be interested in payoffs during the life of the option, we would need
to extend the framework by using stochastic processes instead of random variables (see Artzner,
Delbaen, Eber, Heath and Ku (2002)).

4Including ∞ allows risks to be defined on more general probability spaces, see Delbaen (2000).
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Definition 5.1 (Model risk measure)5 Let M be a class of models, letm be a model

in M, and let K be a subset of M containing m. Furthermore, let Π be a product

defined on M and let RMM be a risk measurement method for M. The model risk

associated to the method RMM of product Π, with respect to the nominal model m

and the tolerance set K, is given by

φRMM(Π,m,K) = supk∈K RMMk(Πk) − RMMm(Πm). (5.2)

The model risk measure that we have defined may have some desirable prop-

erties depending on the market risk measurement method from which it has been

derived. In Chapter 4 invariance and positive homogeneity are proved. In gen-

eral, the model risk measure does not satisfy subadditivity and convexity, but this

presents no problems (see Chapter 4 for a discussion).

5.3.2 Decomposition of Model Risk

In the previous section we did not specify a model m or a set of alternative mod-

els K. In this section we discuss some possible choices for the set of alternative

dynamics K. In practice, one starts with a (usually parametric) model class, say

M (Θ) ≡ {(Ω,F ,Pθ) : θ ∈ Θ} ⊂ M. Using an estimation or calibration procedure,

a particular element m(θ̂) is chosen from M (Θ). Even if the actual dynamics, say

m0, belong to the parametric model class M (Θ), that is m0 = m (θ0) for some

θ0 ∈ Θ, the financial institution faces the risk of selecting the wrong element m(θ̂).

This risk is called model risk due to estimation error. To define a neighborhood of

plausible models around m(θ̂), one typically uses confidence regions. Depending on

a chosen level α we take a (1 − α) % confidence region around θ̂. A general case

is treated in Chapter 4, but here we limit our focus. Since we are interested in a

specific market risk measurement method RMM and a specific product Π, we use a

5The case where RMMm(Πm) = ∞ is uninteresting since the financial institution will never
accept the product Π in its portfolio.
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confidence interval around the risk measurement method K defined by6

K (α) =
{
m (θ) ∈ M (Θ) : RMMm(θ)

(
Πm(θ)

)
∈ CI1−α

(
RMMm(θ̂)

(
Πm(θ̂)

))}
.

(5.3)

We define model risk due to estimation error, or simply estimation risk, as the model

risk that is obtained from a tolerance set derived from confidence regions within the

model class.

Now let us consider the situation where the actual dynamics may not belong to

M (Θ). As above, we can define tolerance sets that are specifically tied to a given

risk measurement method and a given product. Along this line, one may estimate

RMMm (Πm) first and define a tolerance set based on a confidence region CI1−α for

the estimate

K (α) = {m : RMMm (Πm) ∈ CI1−α} . (5.4)

In general, we can determine tolerance sets that are restricted or are not restricted

to a model class (unrestricted, in the sequel). As above, one may define model risk

due to estimation error as the model risk restricted to the model class M (Θ).

The amount that has to be added to arrive at the model risk determined from the

unrestricted method may be termed model risk due to misspecification or simply

misspecification risk. In other words, if Kr is the restricted tolerance set and Ku is

the unrestricted one, then we define the misspecification risk for a given product Π

as

φRMM (Π,Kr, Ku) = supk∈Ku
RMMk (Πk) − supk∈Kr

RMMk (Πk). (5.5)

However, the quantity defined above may in some cases be less than zero, whereas

we would prefer to define misspecification risk in such a way that it is always non-

negative. To achieve this with the above definition, we have to make sure that the

set Kr is nested in Ku. We do this by using a family {Ku(α)} of tolerance sets

parameterized by confidence level α. For a given confidence level α and a given

tolerance set Kr, which may have been selected on the basis of the same confidence

6CI1−α

(
RMMm(θ̂)

(
Πm(θ̂)

))
denotes the (1 − α) % -confidence interval for

CI1−α

(
RMMm(θ0)

(
Πm(θ0)

))
.
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level, we then take Ku = Ku(β) where β is defined by

β = min(α, sup {γ ∈ (0, 1) : Kr ∈ Ku (γ)}). (5.6)

Chapter 4 provides some alternatives for nesting Kr in Ku.

5.4 Methodology

5.4.1 Set-up of experiment

We investigate several major markets on which financial options are actively traded:

The Standard and Poor’s 500 (SPX) for equity options, the U.S. dollar / British

pound ($/£), British pound / Japanese yen (£/�), and the U.S. dollar / Japanese

yen ($/�) foreign exchange (FX) options. Sample periods vary depending on data

availability. The data were obtained from Thomson Datastream and ABN-AMRO

Bank (definitions and sources of the data can be found in Appendix B). The models

that we investigate all come from the Black-Scholes (BS) framework. More advanced

option pricing models have been used in the literature (see, for example, Carr,

Geman, Madan and Yor (2002)), but these are mainly used for calibration to plain

vanilla instruments and pricing of exotics. For hedging of plain vanillas options the

Black-Scholes type models remain the most widely used derivatives models.

The original BS model (see Black and Scholes (1973)) was designed for European

options on non-dividend paying stock. Since the SPX consists of dividend paying

stocks, we use the adjusted BS model of Merton (1973) which allows for a continuous

proportional dividend yield δ. Since future dividends are unknown, this represents

another source of risk in trading derivatives, namely dividend risk. We neglect this

type of risk and compute the option prices using the realized dividend yield. Since

dividends are usually quite stable over time this seems to be of minor influence.

For FX options we use the Garman-Kohlhagen model which adjusts the original BS

model for options on foreign currencies. For the pricing formulas we refer to the

original papers (see Garman and Kohlhagen (1983) and the citations above or a

standard textbook such as Hull (2002)).

To compare risks of derivatives with different characteristics (call/put flag, mon-
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eyness, and time to maturity) we always write enough contracts to generate a pre-

mium (initial value) of $100. For example, if an option is valued at $5, we write 20

contracts. The results can then be interpreted as a dollar return on an investment

of $100 in the specified contract or percentage returns per dollar of option premium.

To limit derivatives risk one can essentially distinguish three strategies. The first

strategy is to diversify using derivatives with different characteristics and other risky

assets. The second approach is using cash flow matching which consists of creating

offsetting positions with different counterparties such that the derivatives contract

is replicated. Though cash flow matching is the most precise method of hedging

and, furthermore, model independent, it is rarely possible for a financial institution

to construct a cash flow matching hedge. In general, the public wants to be long in

options which brings about the short options position of the financial industry and,

thereby, making it impossible for the financial institution to match all of its cash

flows. Finally, the financial institution can hedge using delta hedging to hedge the

derivatives risk.7 Since cash flow matching is impractical and Green and Figlewski

(1999) showed that delta hedging is far superior to hedging by diversification, we

restrict ourselves to delta hedging which is also the most often used hedge strategy

in the financial industry.

Since option traders are usually restricted in taking directional bets on the mar-

ket, we investigate straddles instead of individual calls and puts. ITM options end

in the money much more than OTM options. This could result in differences in the

effectiveness of the hedge strategy. To investigate the influence of moneyness we

compare the results for ITM, ATM, and OTM options where we take OTM options

with a moneyness of 5% out of the money and ITM options with a moneyness of

5% in the money.8 For a straddle it is not clear what OTM or ITM is, since when

the call is ITM the put is OTM and vice versa. In our terminology the moneyness

of the call gives the moneyness of straddle.

7Traders also often hedge other greeks (gamma, vega, etc.). As argued by Green and Figlewski
(1999) this requires, however, other options which need to be bought from other financial institu-
tions. The overall financial industry is therefore restricted to delta hedging.

8Moneyness is defined as m = log(F/κ) for calls and as m = log(κ/F ) for puts, where F denotes
the futures price, e.g. F = SerT with T the time to maturity and r the riskless interest rate.
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5.4.2 Estimation risk and misspecification risk

In order to decompose the model risk into estimation risk and misspecification risk

we need to determine the sets (5.3) and (5.4).

Let G denote the distribution function of the cost of hedging. This distribution

depends on the distribution of the underlying, F , and the hedging strategy, γ, but

for notational convenience we suppress the dependence on the hedging strategy and

write G = G(F ). In case we can parameterize F , we write Fθ and F̂ denotes Fθ̂.

We can use the standard expansion to take estimation risk into account (see, for

example, Van der Vaart (1998))

√
T (�(G(F̂ )) − �(G(F ))

d−→ N
(
0, IEφ2

ρ◦G(ht)
)
, (5.7)

where φρ◦G(ht) = φG(F )◦ψF (ht) (see Van der Vaart and Wellner (1996) Lemma 3.9.3)

denotes the composite influence function of observation t, φG(F ) denotes the influence

function of the risk measure, ψF (ht) the influence function of the underlying, and

F̂ = FT , the empirical distribution function, if F cannot be parameterized.

Unfortunately, G is not known analytically. However, it can be retrieved by

simulation. Let �k(G(F̂ )) denote the estimator for �(G(F̂ )) using k simulations.

The asymptotic distribution can be written as

√
k
(
�k(G(F̂ )) − �(G(F̂ ))

)
d−→ N

(
0, S2

	(G(F̂ ))

)
(5.8)

for all risk measures � considered in this paper. Thus, by taking k large enough

�(G(F̂ )) can be approximated as closely as desired.

Though we cannot analytically compute the asymptotic variance of (5.7), we can

determine it by applying the bootstrap. We use the fact that
√
T (�(G(F̂ ))−�(G(F ))

has the same asymptotic variance as
√
T (�(G(F̂ ∗))−�(G(F̂ )), where F ∗ denotes the

bootstrap empirical distribution (see Van der Vaart and Wellner (1996) Theorem

3.9.11).9,10

9Let FT denote the empirical measure of an i.i.d. sample X1, ...,XT from a distribution F .
Given the sample values, let X∗

1 , ...,X
∗
T be a i.i.d. sample from FT . The bootstrap empirical

distribution is then given by 1/T
∑T

t=1 δX∗
t
, where δX∗

t
denotes the Dirac measure in X∗

t .
10Due to the simulation error, we actually compute

√
T (�k(G(F̂ ∗)) − �k(G(F̂ ))). However,

by using the same random seed for all bootstrap samples, the influence of simulation error is
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The bootstrap procedure works as follows: At time t we have n returns hs
t−n+1;t ≡{

hs
t−n+1, ..., h

s
t

}
for the underlying and returns for a numeraire hn

t−n+1;t ≡
{
hn

t−n+1, ..., h
n
t

}
.

The period {t−n+1, ..., t} is termed the estimation period. We compute for these es-

timation periods �k(G(F̂ )) for k = 5, 000 as estimator for �(G(F̂ )). For the determi-

nation of the asymptotic variance in (5.7) we create B bootstrap estimation samples(
hs,b

t−n+1;t

)B

b=1
and

(
hn,b

t−n+1;t

)B

b=1
.11 Computing �(G(F̂ ∗,b)) for b = 1, ..., B we can es-

timate the asymptotic variance of (5.7) with the sample variance of
{
�(G(F̂ ∗,b))

}B

b=1

and construct confidence intervals for �(G(F̂ )). In the restricted case, F = Fθ, this

confidence interval gives the set (5.3) and for the unrestricted case it gives the set

(5.4).

5.4.3 Hedging: historical versus implied volatility

For pricing of liquid derivatives, implied volatility is by definition superior to his-

torical volatility, since by definition implied volatilities recover the market prices.

Although in practice usually implied volatilities are used for hedging as well, it is

by no means obvious that using implied volatilities for hedging outperforms using

historical volatilities. The usual argument in favor of using implied volatilities is

that the implied volatility should be a better predictor for future volatility than

historical volatility. However, the evidence for this statement is rather scant (see,

for example, Canina and Figlewski (1993)). Furthermore, implied volatilities are

subject to severe measurement errors (see, for example, Christensen and Prabhala

(1998)). This comes as no surprise, if one considers the fact that implied volatility

can be seen as the garbage bin of the Black-Scholes formula and therefore captures

all misspecifications of the model. On the other hand, historical volatility has also

not proven to be a very reliable estimator of future volatility, but has the advantage

that it is equal for all the derivatives on the same underlying. In order to investigate

the hedging performance of historical and implied volatilities we compute one-day

relative hedge errors using both the implied and historical volatility estimators for

suppressed.
11The bootstrap draws time points from the estimation period and uses both the return of the

underlying and the numeraire at these time points.
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the $/�, $/£, and £/� exchange rates.12

We find that in most cases using implied volatilities lead to slightly better hedg-

ing performance measured in terms of mean, variance, 1% VaR, and 2.5% ES. This

performance is often statistically significant, but comparing the performance mea-

sures one may conclude that the economic significance is small. Since using historical

volatilities leads to (slightly) worse values for value-at-risk and expected shortfall

this implies that the misspecification risk is somewhat overestimated in our analysis.

5.4.4 Historical simulation versus bootstrap

In order to determine an estimate of the empirical distribution of the cost of hedging,

we have two alternatives. First, we can rely on historical simulation, following,

among others, Galai (1977), Merton, Scholes and Gladstein(1978, 1982), and Green

and Figlewski (1999). In case of historical simulation the amount of data available

for estimation is rather limited unless one uses overlapping samples as is common in

the literature. Though historical simulation produces consistent estimates in case

of overlapping samples, standard errors are hard to estimate in finite samples.

To perform the historical simulation we need data of the underlying {s0, ..., sn}
and from this we can get the (daily) log returns {h1, ..., hn}. We start by writing

an option f at time t = 0 and continue this until t = n − k, where k = T ∗
no, and T denotes the maturity of the option in years and no is the number of

days in a year. In addition to the option prices {f(0), ..., f(n− k)} we compute

the actual cost of hedging the option, using the specified hedge strategy, to get

{C(0), ..., C(n− k)} (see eq. (5.1)). Using this data we compute an estimator for

the risk profile (cumulative distribution function) of the (discounted) final profit

and loss (P&L) account P&L ≡ f − C. The risk profile of the P&L can be seen

as the return distribution of pricing derivatives with the specified pricing model (in

our case the BS model with historical or implied volatility) and the specified hedge

strategy (daily hedge based on BS deltas using historical volatility). For this risk

profile we can then compute the value-at-risk and expected shortfall. In doing so we

need to take into account the fact that the set f(0) − C(0), ..., f(n− k) − C(n− k)

12The one period relative hedge error is defined as f(t+1)−γ(t)S(t+1)
f(t)−γ(t)S(t) − 1. Using relative hedge

errors has the advantage that these are invariant to position size.
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is subject to the overlapping samples problem. We handle this problem by using

the method of Newey and West (1987).

We have performed a simulation study to investigate the performance of confi-

dence intervals resulting from the historical simulation method using both the stan-

dard confidence intervals as those computed using Newey-West standard errors. We

simulated K = 5, 000 daily return time series of 20 years following the Black-Scholes

world assumptions with mean and variance estimated on daily returns data on the

S&P500 from October 26, 1981 to April 26, 2003. For each of these time series we

estimated the mean, 1% VaR, and 2.5% ES for a 3 months ATM call option and

their asymptotic normal distributions. We compared these with the “true” mean,

1% VaR, and 2.5% ES of the distribution of the cost of hedging of a 3 months ATM

call option computed based on 100,000 cross-sectional simulations.13 We compared

these “true” values to the asymptotic distribution by computing for each time series

to which the quantile the realization corresponds. In case the asymptotic distribu-

tion is correct this should result in a uniform distribution. In Figure 5.1 we see that

this is far from the case. In case we correct for the overlapping samples problem

using the Newey-West (see Newey and West (1987)) asymptotic distribution the

situation is much better than using the standard asymptotic distribution, but still

far from good.14 Only in 70% (22%), 70% (43%), and 74% (38%) of the ideally

95% of the cases the true mean, 1% VaR, and 2.5% ES, respectively are within the

computed Newey-West (usual) confidence intervals.15

A second approach is to use the bootstrap (see Efron (1979) for the original

work and Horowitz (1999) for an overview). A problem arising with the bootstrap

methodology is that it is more problematic to use implied volatility for hedging,

because for bootstrap time series of the underlying no implied volatilities are avail-

able.16 However, in Section 5.4.4, we saw that, although for hedging purposes his-

13The standard errors on the risk measures based on 100, 000 simulations are so small that these
can be taken as the “true” values.

14In their analysis Green and Figlewski (1999) do not correct for the overlapping samples problem
and therefore their standard errors are an underestimation of the true standard errors.

15We did the same analysis for different option characteristics such as time to maturity, money-
ness and option type, but the conclusions remain the same. We also varied the number of lags to
be used in the Newey-West procedure, but this only led to minor changes in the results.

16One can, of course, use a simultaneous bootstrap of the returns and the implied volatilities, but
this requires assumptions on the dependence between the implied volatilities and the underlying
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Figure 5.1: Performance historical simulation
This figure shows the distribution of the quantiles of the asymptotic distributions
(both standard and Newey-West (with the number of lags equal to the overlapping
period)) of the mean, 1% VaR, and 2.5% ES corresponding to the “true” mean,
1% VaR, and 2.5% ES. The derivative used in this analysis is a 3 month ATM call
option on the S&P 500.
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Table 5.2: Test results bootstrap
In this table we present the standard errors for market risk estimates. The column of
simulation gives the results based on monte-carlo simulation. The column bootstrap
mr gives the results for the bootstrap using MC simulation in order to estimate the
risk measures. Finally, the column bootstrap ms gives the results for the bootstrap
using drawing with replacement to estimate the risk measures.

simulation bootstrap mr bootstrap ms

ITM
ATM
OTM

VaR ES
2.80 2.75
3.22 3.18
3.26 3.21

VaR ES
2.88 2.89
3.09 3.06
2.82 2.82

VaR ES
3.50 3.45
3.15 3.12
3.40 3.39

torical volatility estimators slightly underperform implied volatility, the differences

are small. Therefore, the misspecification risk is only slightly overestimated. We

have also performed a simulation experiment to check the accuracy of the bootstrap

methodology. We have simulated 1, 000 times a 3 years history according to the

Black-Scholes world assumptions again using the mean and variance estimated on

the S&P 500 data from October 26, 1981 to April 26, 2003. For each simulated

history, we compute 1% value-at-risk and 2.5% expected shortfall using K = 5, 000

simulations. This allows us to compute confidence intervals for the risk measures.

For one of the simulated histories, we use the bootstrap to generate 199 bootstrap

samples. For each of the bootstrap samples the risk measures are determined using

1) simulation from the normal distribution with mean and variance equal to those

of the data in order to get the market risk, 2) drawing with replacement from the

data in order to get the misspecification risk (which equals zero in this experiment).

In Table 5.2 we see that the variance estimated using the bootstrap for market risk

is very similar to that of the “true” variance computed using simulation. Further-

more, we see that the variance estimated using bootstrap for misspecification risk

is somewhat higher, but not drastically so. Therefore, we may conclude that the

bootstrap gives reliable estimators for the variance of our estimates of market risk.

asset.
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5.5 Results

We have conducted an empirical analysis of the one-month and three-month S&P

500 5% ITM, ATM, and 5% OTM straddles. Furthermore, we conducted an em-

pirical analysis of the one-month and three-months ATM straddles for the $/£,

$/�, £/� FX markets. For the FX straddles contracts with maturities equal to

one-month and three-months were readily available. For the S&P 500 straddles ma-

turity dates are fixed and therefore option time to maturities vary in our data. We

have selected the straddles closest to the desired characteristics (time to maturity

and moneyness) and used linear interpolation of the volatility term structure to get

the volatilities for the one and three month straddles. In order to get estimates for

the market, estimation, and misspecification risk, we used historical volatilities to

price and hedge the options. We also conducted the analysis using market prices

(still hedging using historical volatilities) to investigate whether the markets want

to be compensated for bearing the misspecification risk.

Figure 5.2 presents the historical and ATM implied volatilities for the markets

investigated. We see that in most markets the implied volatilities are on average

somewhat higher than the historical ones, but in the FX markets periods of higher

implied than historical and lower implied than historical volatilities alternate. In

case of the S&P 500 we clearly see that the implied volatilities exceed the histori-

cal volatilities and, furthermore, that this difference increases under more volatile

conditions.

In Figure 5.3 we present the results for the market risk, estimation risk, and

misspecification risk based on the 1% value-at-risk measure for the 3 month ITM

straddles on the S&P 500 market. We employed a three year rolling window estima-

tion period to estimate the historical volatility. The frequency of the results in two

months (other values are interpolated). We find that the estimation risk is rather

consistently around 4, while the misspecification risk (on top of the estimation risk)

varies between 4 and 30. In percentage terms we find that about 50 to 60% of the

total risk can be explained by the market risk estimate. Between 5 and 10% is

due to estimation risk and misspecification risk ranges from 20% to around 40% in

some periods. In the lower panel of Figure 5.3 we present the results where option

values are calculated using implied volatilities (that is, market prices). We see that
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Figure 5.2: Comparison historical vs ATM implied volatilities
In this figure we plotted the three-year rolling window historical volatilities against
the one-month ATM implied volatilities for the £/$, £/�, and the $/� exchange
rate. In case of the S&P 500 the 3 month ATM implied volatilities are used. Data is
from 02-01-92−29-08-97 for the S&P 500 and from 09-08-1995−01-04-2003 for the
$/£, £/�, and the $/� exchange rates.

after 1994 the gap between historical and implied volatilities is so large that the

misspecification risk is reduced to zero.

Figure 5.4 presents the results for the market risk, estimation risk, and misspec-

ification risk based on the 2.5% expected shortfall measure for the 1 month ATM

straddles on the £/� market. We find that the estimation risk is rather consistently

around 8.5 (see Table 5.4), while the misspecification risk (on top of the estimation

risk) varies between 30 to over 100. The large values for misspecification risk are

mainly due to the highly volatile markets in 1999 around the LTCM crisis. Since

we use a three year rolling window this has an aftereffect on the estimates of mis-

specification risk. Ignoring the “tub” after 1999, market risk accounts for about 50

to 60% of the total risk. Around 5% is due to estimation risk and misspecification

risk ranges around 40%. In the lower panels of Figure 5.4 we give the results where

option values are calculated using market values. We see that under “normal” mar-
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Figure 5.3: Model Risk VaR S&P 500
This figure presents the market, estimation, and misspecification risk based on the
1% value-at-risk measure for 3 month ITM straddles in the S&P 500 market. The
upper panel gives the 1% value-at-risk for a position of $100 with straddles sold
at Black-Scholes prices using historical volatilities. The middle panel gives the
percentages due to market, estimation, and misspecification risk. The lower panel
again presents the 1% value-at-risk for a position of $100, but the straddles sold at
market prices.

ket conditions (that is, excluding the tub) misspecification risk is reduced, while in

the tub misspecification risk is higher.

Table 5.3 presents the results of the market, estimation, and misspecification

risk for the S&P 500 market. We see that the market risk and misspecification

risk is far larger for the ATM straddles than for the ITM and OTM straddles for

both maturities. This can be explained by the fact that ATM straddles have a

higher gamma position than ITM and OTM straddles, which makes delta hedging

more variable. As can be expected, we find that all market risks estimates are

statistically significantly different from zero at the 5% level. Furthermore, we find

that estimation risk is fairly large for most cases and highly statistically significant.

Misspecification estimates for the one-month straddles are economically significant,
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Table 5.3: Results S&P 500 market
In this table we present the results for the 1 and 3 month S&P 500 straddles based
on 1% value-at-risk and 2.5% expected shortfall. We present averages of the market
risk, estimation risk, and misspecification risk (standard errors in brackets). The
column, TR IV, gives the total risk (that is, cumulative market, estimation, and
misspecification risk) if the market prices were used. Asterisks denotes significance
at 5% level.

RM Ttm moneyness
market

risk
est.
risk

miss.
risk TR IV

miss.
high

miss.
low

VaR 1m OTM
∗22.0
(10.9)

∗9.5
(1.4)

8.9
(4.9)

15.0
(37.8)

29.5 7.1

VaR 1m ATM
∗55.8
(4.5)

∗7.0
(0.4)

51.5
(30.7)

100.0
(68.9)

148.0 26.7

VaR 1m ITM
∗20.3
(9.0)

∗6.7
(1.7)

20.3
(22.0)

39.3
(56.1)

89.5 7.4

ES 1m OTM
∗22.1
(10.7)

∗9.3
(1.4)

8.9
(5.6)

16.2
(38.4)

29.6 5.4

ES 1m ATM
∗57.0
(4.7)

∗6.9
(0.4)

51.4
(30.0)

100.8
(68.1)

178.9 15.8

ES 1m ITM
∗21.1
(8.8)

∗6.6
(1.7)

20.0
(20.8)

39.5
(55.1)

108.2 4.4

VaR 3m OTM
∗20.3
(7.0)

∗7.1
(0.7)

∗11.5
(3.9)

10.5
(25.6)

28.0 12.9

VaR 3m ATM
∗34.1
(2.2)

∗3.2
(0.3)

∗20.0
(8.3)

28.4
(27.2)

46.8 10.0

VaR 3m ITM
∗22.8
(3.9)

∗3.9
(0.4)

∗13.2
(6.7)

14.6
(27.0)

35.3 7.0

ES 3m OTM
∗20.6
(6.9)

∗7.1
(0.71)

∗11.9
(4.1)

11.0
(25.7)

29.0 13.4

ES 3m ATM
∗34.8
(2.1)

∗3.1
(0.3)

∗20.5
(8.6)

29.3
(27.5)

49.5 10.2

ES 3m ITM
∗23.1
(3.8)

∗3.8
(0.4)

∗13.6
(6.9)

15.2
(27.2)

36.1 7.1
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Figure 5.4: Model Risk ES £/� FX rate
This figure presents the market, estimation, and misspecification risk based on the
2.5% expected shortfall measure for 1 month ATM straddles in the £/� market.
The upper panel gives the 2.5% value-at-risk for a position of $100 with straddles
sold at Black-Scholes prices using historical volatilities. The middle panel gives the
percentages due to market, estimation, and misspecification risk. The lower panel
presents the 2.5% expected shortfall for a position of $100, but the straddles sold at
market prices.

but statistically not significant. For the three-months straddles, we find that the

misspecification risks estimates are also high (though below those for the one month),

and statistically significant. Interestingly, the average estimates for total risk (that

is, market, estimation, and misspecification risk) is below the market risk estimate

using prices based on historical volatilities in case of the 3 months straddles, if we

compare the hedging cost of the derivative to the market price. The market seems

to demand a risk premium for running misspecification risk.

Table 5.4 presents the results for the FX markets. Again we find that market

risk and estimation risk are economically and statistically significant for all markets.

Comparing the results to the ATM straddles in the S&P 500 market, we find that

market and estimation risk estimates are about the same. Misspecification risk
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Table 5.4: Results FX markets
In this table we present the results for the 1 and 3 month ATM straddles for the
$/£, $/�, and £/� markets based on 1% value-at-risk and 2.5% expected short-
fall. We present averages of the market risk, estimation risk, and misspecification
risk (standard errors in brackets). The column, TR IV, gives the total risk (that
is, cumulative market, estimation, and misspecification risk) if the market prices
were used. Furthermore, the maximum and minimum misspecification risk is given.
Asterisks indicate significant at a 5% level.

RM Ttm market
market

risk
est.
risk

miss.
risk TR IV

miss.
high

miss.
low

VaR 1m $/£
∗57.7
(6.2)

∗6.9
(0.7)

100.5
(78.4)

∗165.1
(78.0)

221.9 18.5

VaR 1m $/�
∗54.5
(5.2)

∗8.5
(0.8)

∗152.1
(74.7)

∗215.1
(76.8)

286.5 31.1

VaR 1m £/�
∗55.6
(4.2)

∗7.9
(0.5)

∗68.5
(30.4)

∗132.0
(30.9)

139.3 25.5

ES 1m $/£
∗58.3
(5.9)

∗6.7
(0.7)

98.0
(78.4)

∗163.1
(73.5)

208.6 17.9

ES 1m $/�
∗55.7
(4.9)

∗8.3
(0.8)

∗146.0
(68.8)

∗210.0
(71.0)

260.0 31.9

ES 1m £/�
∗56.0
(4.2)

∗7.7
(0.5)

∗68.9
(30.5)

∗132.6
(31.1)

137.3 25.7

VaR 3m $/£
∗44.0
(7.2)

∗6.4
(1.9)

44.6
(36.4)

∗88.8
(40.4)

106.4 10.5

VaR 3m $/�
∗32.7
(5.1)

∗4.9
(0.6)

∗72.8
(34.9)

121.2
(62.3)

137.3 19.2

VaR 3m £/�
∗32.3
(4.4)

∗4.2
(0.3)

∗33.7
(14.8)

∗78.6
(33.8)

69.0 13.6

ES 3m $/£
∗44.5
(7.1)

∗6.2
(1.8)

45.7
(36.7)

∗90.1
(40.7)

104.9 10.5

ES 3m $/�
∗33.2
(5.1)

∗4.8
(0.6)

∗74.4
(35.8)

123.3
(63.0)

143.1 19.7

ES 3m £/�
∗32.8
(4.4)

∗4.1
(0.3)

∗34.4
(15.2)

∗79.8
(34.2)

71.7 13.3
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estimates are much higher, but also have higher standard errors. We find that for

both �markets the misspecification risk is statistically significant. An interesting

difference with the S&P market is that the total risk based on market prices is much

higher than for the S&P 500 market. Furthermore, contrary to the results for the

S&P 500 market almost all total risk estimates are statistically different from zero.

It appears that in the FX markets hardly any risk premium is demanded for the

misspecification risk.

5.6 Conclusions

In this paper we have empirically investigated the model risk associated with writing

plain vanilla straddles in the S&P 500 equity derivatives market and the $/£, £/�,

and the $/� FX derivatives markets.

We apply the bootstrap method to take estimation risk and misspecification

risk into account when estimating market risk of written derivative positions. To

support this method in favor of the more often used method of historical simulation

we have provided simulation evidence that historical simulation does a poor job

in estimating estimation risk in samples with sample sizes realistic for financial

applications. Furthermore, we find that hedging using historical volatilities does

not economically significantly underperform hedging using implied volatilities.

We find in our samples that for the S&P 500 market considerable estimation

and misspecification risk is present. Estimation risk is found to be significant for

all products, while misspecification risk is significant for all three months options.

Furthermore, we find that the market demands a risk premium for bearing the

misspecification risk and this premium increases towards the end of our sample. For

the FX markets we also find substantial misspecification risk, which is found to be

statistically significant for the $/� and £/� markets. Interestingly, in our sample

there does not appear to be a risk premium for bearing the misspecification risk.
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A Data

We have available option data on the S&P 500 ranging from January 2, 1992 till Au-

gust 29, 1997. Quotes on the straddles are the end-of-day quotes with synchronous

observations of the underlying index. For the rolling volatility estimators before

January 2, 1992 we use the (total) return index of the S&P 500 from Thomson

Datastream. For the exchange rates we have ATM volatilities, exchange rates, in-

terbank rates matching the option maturities, for the $/£, $/�, and the £/�. The

data runs from 09 − 08 − 1995 to 01 − 04 − 2003.17

17All option data were kindly shared by ABN-AMRO Bank.





Part II

Pricing interest rate derivatives

119





Chapter 6

Observational Equivalence of

Discrete String Models and

Market Models

6.1 Introduction

In this chapter we discuss the discrete string model as used by Longstaff, Santa-

Clara and Schwartz (2001a) and Longstaff, Santa-Clara and Schwartz (2001b) (LSS

papers) and its relation to familiar models, namely, the LIBOR market model

(LMM) as introduced by Miltersen, Sandmann and Sondermann (1997), Brace,

Gatarek and Musiela (1997), and Jamshidian (1997) and the HJM framework (see

Heath, Jarrow and Morton (1992)). We show that the discrete version of the string

model for LIBOR rates is observationally equivalent to the LMM and thereby a spe-

cial case of the HJM framework. Since there has been some mysticism surrounding

string models and, in particular, the estimation/calibration of the correlation matrix

we provide some guidelines and references for estimation/calibration.

The structure of this chapter is as follows. In Section 6.2, the discrete version

of the string model as used in the LSS papers and the LMM are described. Section

6.3 shows the observational equivalence of the two models and relates them to the

HJM framework. Furthermore, the parsimony of the models is determined. For

illustrative purposes an example of the estimation/calibration of the models and a
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numerical example are provided in Section 6.4. Section 6.5 concludes.

6.2 Description of the models

First, the discrete version of the string model as used in the LSS papers is

described. Second, a description of the LIBOR market model is given.

6.2.1 Discrete string model

Kennedy (1994) introduced the idea to model the evolution of the term structure

of forward rates as a stochastic string. His analysis has been generalized in Kennedy

(1997), Goldstein (2000), and Santa-Clara and Sornette (2001). By construction,

the string model is high-dimensional (infinite dimensional if we model a continuum

of forward rates), since each rate has its own perturbation. Here, we describe the

string model based on a finite number of forward LIBOR rates. First, we define a

finite set of dates, the so-called tenor structure

T0 < T1 < T2 < . . . < TN+1. (6.1)

We indicate the current time by T0 and T1, ..., TN+1 denote the forward tenor dates.

This gives a spot LIBOR rate (for [T0, T ]) and N forward LIBOR rates from (for

[Ti, Ti+1], i = 1, ..., N ). We define δi = δ (Ti, Ti+1) as the so-called daycount fractions

(for an extensive treatment on day-count fractions, see Miron and Swannell (1992)),

which are determined by the maturity of the LIBOR rate and are most often equal

to approximately 3 or 6 months. Let the forward LIBOR rate from Ti to Ti+1 at

time T0 be denoted by F (T0, Ti, Ti+1) which is defined as

F (T0, Ti, Ti+1) ≡
1

δi

(
D (T0, Ti) −D (T0, Ti+1)

D (T0, Ti+1)

)
, (6.2)

where D (T0, T ) denotes the value of a discount bond at time T0 with maturity T .

For notational convenience, we define Fi (T0) ≡ F (T0, Ti, Ti+1) . The string model
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specifies the following dynamics for the N individual forward rates

dFi (t)

Fi (t)
= αM

i (t) dt+ σidZ
M
i (t) , i = 1, ..., N, (6.3)

where
{
ZM

i (t)
}N

i=1
are (correlated) Wiener processes under probability measure M

with

d
[
ZM

i , ZM
j

]
(t) = ρijdt, i, j = 1, ..., N.

If Qi+1 denotes the probability measure (equivalent to M) associated with the nu-

meraire D (•, Ti+1)
1 we know from the first fundamental theorem of asset pricing

(see Delbaen and Schachermayer (1994)) that in order to exclude arbitrage possi-

bilities αQi+1

i (t) equals 0. Due to market completeness and absence of arbitrage

possibilities the drift term αM
i (t) is uniquely determined for the equivalent proba-

bility measure M used in (6.3). The volatility functions {σi}N
i=1 and the correlation

parameters {ρij}N
i,j=1 do not change under a change of measure and are taken to

be constant for ease of exposition, but can easily be extended to be deterministic

functions of time.

We can stack the individual Wiener processes in a vector ZM =
[
ZM

1 · · · ZM
N

]′
.

The correlation matrix Ψ (with rank K ≤ N) of Z is given by

Ψ =


1 · · · ρ1N

...
. . .

...

ρN1 · · · 1

 . (6.4)

The volatility functions {σi}N
i=1 together with the correlations of the Wiener

processes determine the covariance matrix of the forward rate changes. In case Ψ

is of full rank, we have to estimate N (N + 1) /2 parameters (N volatility functions

σi and N (N − 1) /2 correlation parameters ρij (ρij = ρji)). For Ψ of rank K < N ,

1Under Qi+1 the value of every tradable asset, say X, satisfies

X (t)
D (t, Ti+1)

= IEQi+1
[

X (T )
D (T, Ti+1)

|Ft

]
for T ≤ Ti+1.
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see Section 6.3.2 . We can write the model in matrix notation as follows
dF1(t)
F1(t)

...
dFN (t)
FN (t)

 =


αM

1 (t)
...

αM
N (t)

 dt+


σ1 ∅

. . .

∅ σN

 dZM (t) . (6.5)

The covariance matrix of the log forward rate changes is then given by

Σ =


σ2

1 · · · ρ1Nσ1σN

...
. . .

...

ρ1Nσ1σN · · · σ2
N

 . (6.6)

6.2.2 LIBOR market model

The LMM as introduced by Miltersen et al. (1997), Brace et al. (1997), and Jamshid-

ian (1997) is usually specified in the following form:

dFi (t)

Fi (t)
= µM

i (t) dt+ Γ
′
idW

M (t) , i = 1, ..., N, (6.7)

where WM denotes an K-dimensional standard Wiener process (K ≤ N) under

probability measureM ,WM =
[
WM

1 · · · WM
K

]′
and Γi is a constantK-dimensional

volatility function Γi =
[

Γi1 · · · ΓiK

]
. Just as the volatility functions {σi}N

i=1

in the discrete string model, the volatility functions Γi can easily be extended to

be deterministic functions of time. In some papers the LMM is specified with a

correlated Wiener process W ∗M , but by suitable rotation of Γi and W ∗M we can

always rewrite it in the form of (6.7) (see Section 6.4.1).

As in the discrete string model the drift term µM
i (t) is uniquely determined by

the probability measure M used in (6.7) due to market completeness and absence

of arbitrage possibilities. Again the first fundamental theorem of asset pricing gives

that in order to exclude arbitrage possibilities µQi+1

i (t) equals 0. Putting the LMM
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in matrix notation gives
dF1(t)
F1(t)

...
dFN (t)
FN (t)

 =


µM

1 (t)
...

µM
N (t)

 dt+


Γ11 · · · Γ1K

...
. . .

...

ΓN1 · · · ΓNK

 dWM (t)

= µM (t) dt+ ΓdWM (t) . (6.8)

The covariance matrix of the log forward rate changes is given by

ΓΓ′ =


‖Γ1‖2 · · · Γ

′
1ΓN

...
. . .

...

Γ
′
NΓ1 · · · ‖ΓN‖2

 , (6.9)

where ‖·‖ denotes the Euclidean norm, Γ is of dimension N×K, and the N volatility

functions {Γi}N
i=1 are of dimension 1 ×K.

6.3 Observational equivalence

In this section we show that the discrete string model and the LMM are observation-

ally equivalent. By observational equivalence we mean that for every specification in

the class of discrete string models one can find a specification in the class of market

models with the same probabilistic properties and vice versa. By Girsanov’s the-

orem we know that the volatility and correlation structure determines the change

of drift in (6.3) and (6.7) in case of a change of measure. We saw already that

αQi+1

i (t) = µQi+1

i (t) = 0 and therefore the drift terms in both models are equal

under each equivalent measure M iff the volatility and correlation structure is the

same. Thus, given a discrete string model specification σ = (σ1, ..., σN ) and Ψ, we

need to show that {Γi}N
i=1 exist such that Γ

′
iW

M (t)
d
= σiZ

M
i (t) for every i, where

d
=

denotes ‘equal in distribution’. Given a LMM specification {Γi}N
i=1 we need to find

a σ and Ψ such that σiZ
M
i (t)

d
= Γ

′
iW

M (t) for every i.

The first part of showing the observational equivalence consists of finding a spec-

ification for the LMM in case the discrete string model is given with σ and Ψ(K),

where superscript (K) denotes the rank of Ψ.
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The spectral decomposition of Ψ(K) in (6.4) is given by Ψ(K) = UΛU ′, where U

is a matrix of orthonormal eigenvectors and Λ an ordered diagonal matrix with the

eigenvalues on the diagonal.2 We have

UΛ
1
2 =
[√

λ1u1 . . .
√
λNuN

]
,

where ui denotes the orthonormal eigenvector corresponding to eigenvalue λi. In

case of a K-factor model, λK+1 = ... = λN = 0. We take

A =
[√

λ1u1 . . .
√
λKuK

]
, (6.10)

which gives Ψ(K) = AA′. Taking

Γ =


σ1 ∅

. . .

∅ σN

A (6.11)

gives Σ(K) = ΓΓ′. Therefore,

Z (t)
d
= AW (t) (6.12)

and 
σ1 ∅

. . .

∅ σN

Z (t)
d
= ΓW (t) . (6.13)

Alternatively, we could have computed Σ(K) = diag (σ) Ψ(K)diag (σ), where diag (σ)

denotes a diagonal matrix with size of σ and its elements on the diagonal. Decom-

posing Σ(K) = V DV ′ gives Γ∗ = V D
1
2 =

[√
η1v1 . . .

√
ηKvK

]
, where (ηi, vi) denotes

the ith (eigenvalue, eigenvector) pair of Σ(K). Note that Γ∗ has orthogonal columns

and is in general not equal to Γ, but of course Γ∗Γ∗′ = ΓΓ′ = Σ(K).

The second part consists of finding a specification of the discrete string model

when a LMM with Γ is given. We have Σ(K) = ΓΓ′. Since Σ(K) is as in (6.9), we

2Without loss of generality, we can take (λi, ui) to denote the ith largest (eigenvalue, eigenvector)
pair.
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can take

σ =


‖Γ1‖

...

‖ΓN‖

 and Ψ(K) =


1 · · · Γ′

1ΓN

‖Γ1‖‖ΓN‖
...

. . .
...

Γ′
NΓ1

‖ΓN‖‖Γ1‖ · · · 1

 (6.14)

as the discrete string model specification.

The discrete string model is therefore always just a convenient way to model

term structure dynamics when the correlation structure is an input to the model.

6.3.1 Relation with HJM framework

The continuous tenor string model described in Santa-Clara and Sornette (2001)

extends the HJM framework (see Heath et al. (1992)). However, in practice one is

limited to using discrete string models and it is therefore interesting from a practical

point of view to know whether discrete string models belong to the HJM framework.

If one specifies a discrete string model for the instantaneous forward rates one can

show analogously to the procedure described in Section 6.3 that it is observationally

equivalent to the HJM model. It is somewhat harder to show that the discrete string

model for forward LIBOR rates fits into the HJM framework. The discrete string

model for forward LIBOR is defined only on a discrete tenor structure.

In order to find a HJM specification that results in the same behavior for the

forward LIBOR rates as the discrete string model, we need to use a continuous tenor

HJM specification. The resulting HJM specification is derived in Miltersen et al.

(1997) for the LMM.

By the observational equivalence of the discrete string model for forward LIBOR

rates and the LMM established above, we know that this HJM specification also

applies to the discrete string model for forward LIBOR rates.

6.3.2 Parsimony of the models

From casual observation one might be inclined to think that a K-factor LI-

BOR market models needs NK parameters, while the discrete string model only

needs K (K + 1) /2 parameters (see LSS papers). Note, however, that as a con-
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sequence of the observational equivalence of the two models, it necessarily follows

that they must need the same number of identifying parameters. Below we demon-

strate that in fact both models can be identified by NK−K (K − 1) /2 parameters.

As a simple example demonstrating that a discrete string model needs more than

K (K + 1) /2 parameters, note that the K = 1 dimensional discrete string model

requires N (> K (K + 1) /2 = 1) parameters to specify the volatility functions. Fur-

ther, we demonstrate below that there are some ”hidden” restrictions that reduce

the number of free parameters in the LMM from NK to NK −K (K − 1) /2.

We can represent the covariance matrix Σ(K) in its spectral decomposition3

Σ(K) = V DV ′ = ΓΓ′ =
K∑

i=1

ηiviv
′
i (6.15)

where V is a matrix with orthonormal eigenvectors and D is an ordered diagonal

matrix with the eigenvalues of Σ(K) with ηK+1 = ... = ηN = 0. At first it seems

that NK parameters are necessary. However Γ is not unique. Consider a K × K

orthonormal matrix T . Then using Γ∗ = AT and W ∗ = T ′W gives the same

dynamics as using Γ and W, where W ∗ is also a standard Wiener process, since

T ′W (t)
d
= N (0, T ′Tt) = N (0, It).

The number of necessary parameters to be estimated can be found using (6.16).

We have K unknown eigenvalues {ηi}K
i=1. Furthermore, we have K N -dimensional

eigenvectors {vi}K
i=1 which gives an additional NK unknown parameters. These

eigenvectors {vi}K
i=1 need to be orthonormal which leads to K (K + 1) /2 restrictions

as can be seen from Table 6.1. Using

number of parameters = degrees of freedom + number of restrictions (6.16)

we find that the degrees of freedom equals NK − K (K + 1) /2. Adding the K

eigenvalues {ηi}K
i=1 we have NK−K (K − 1) /2 parameters to estimate. Therefore,

by suitable rotation of Γ we can get a Γ̃ such that the first K rows and columns

3The spectral decomposition can also be performed on the correlation matrix Ψ(K). This would
lead to different eigenvalues and eigenvectors. The number of parameters that need to be estimated
is the same (see Basilevsky (1995)).
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Table 6.1: Restrictions on the eigenvectors
Restrictions on the eigenvectors {vi}K

i=1 of the spectral decomposition in (6.15).

v1 v2 · · · vK

v1 ‖v1‖2 = 1

v2 v1 · v2 = 0 ‖v2‖2 = 1
...

...
...

. . .

vK v1 · vK = 0 v2 · vK = 0 · · · ‖vK‖2 = 1

form a lower triangular matrix, that is,

Γ̃ =



Γ̃11 ∅
...

. . .

Γ̃K1 · · · Γ̃KK

...
. . .

...

Γ̃N1 · · · Γ̃NK


. (6.17)

6.4 Estimation of the models and numerical ex-

ample

Since string models have been introduced only recently, there is some mysticism sur-

rounding them, in particular, the treatment and estimation of the covariance/correlation

matrix. We showed in Section 6.3 that the discrete string model is observationally

equivalent to the LMM. This implies that we can apply the same calibration tech-

niques for the discrete string model as for the LMM, which we briefly outline below.

One starts by determining the covariance matrix Σ or correlation matrix Ψ and

volatilities σ of the log forward rates {Fi (T0)}N
i=1 based on historical rates or cali-

bration to caps and swaptions. A common approach is to use principal components

analysis (PCA) (see Basilevsky (1995) for an in-depth discussion of PCA) in order

to determine the number of factors and estimation of the eigenvalues and eigenvec-

tors. The PCA can be done both on the covariance or correlation matrix. The LSS

papers and de Jong, Driessen and Pelsser (2002) capably illustrate this technique

empirically. Therefore, we provide some stylised examples to illustrate advantages

and disadvantages of both methods.
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6.4.1 PCA on covariance matrix

We start from a two factor LMM specification with correlated Wiener processes for

four six month forward LIBOR rates (K = 2, N = 4),

dFi (t)

Fi (t)
= σ1 exp (κ1 (Ti − t)) dW

Qi+1

1 (t)+σ2 exp (κ2 (Ti − t)) dW
Qi+1

2 (t) , i = 1, ..., 4,

(6.18)

with d [W1,W2] (t) = ρdt. As parameter values we take σ1 = 0.3, σ2 = 1.5, κ1 =

−0.1, κ2 = −4.0, and ρ = −0.6.

We rewrite the model in the set-up of (6.7) and derive the discrete string model

specification. We can compute the corresponding covariance matrix Σ(2) as

Σ(2) =


σ1 exp (0.5κ1) σ2 exp (0.5κ2)

σ1 exp (κ1) σ2 exp (κ2)

σ1 exp (1.5κ1) σ2 exp (1.5κ2)

σ1 exp (2κ1) σ2 exp (2κ2)


[

1 ρ

ρ 1

]
σ1 exp (0.5κ1) σ2 exp (0.5κ2)

σ1 exp (κ1) σ2 exp (κ2)

σ1 exp (1.5κ1) σ2 exp (1.5κ2)

σ1 exp (2κ1) σ2 exp (2κ2)


′

Decomposing Σ
(2)
Σ (subscript denotes that the PCA is performed on Σ) as V DV ′

gives Γ
(2)
Σ =

[
v1
√
η1 v2

√
η2

]
for the LMM,

Γ
(2)
Σ =


0.1883 −0.1330

0.2551 0.0207

0.2529 0.0396

0.2420 0.0403

 . (6.19)

For the discrete string model we have Σ
(2)
Σ = diag (σΣ) Ψ

(2)
Σ diag (σΣ) with

σΣ =


0.2305

0.2559

0.2560

0.2453

 , Ψ
(2)
Σ =


1 0.7675 0.7178 0.7108

0.7675 1 0.9972 0.9964

0.7178 0.9972 1 1

0.7108 0.9964 1 1

 . (6.20)

If we would have done PCA for a two factor model on the correlation matrix in

the above example, we would have found exactly the same results, since we started
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with an exact two factor specification. In practice, however, one starts with an

estimated covariance matrix, which is usually of full rank, and wants to estimate a

K factor model on it. Then the results differ in general in finite samples, though

they should converge if the data is generated from a true K-factor model.

6.4.2 PCA on correlation matrix

In our second example, we start with an estimated full rank covariance matrix Σ and

use PCA in order to determine the two-factor versions of the discrete string model

and the LMM. We do this for four six-month forward LIBOR rates (K = 2, N = 4).

For ease of exposition, we have given an estimated correlation matrix, Ψ with Ψij =

ρ|i−j|, ρ = 0.8 a parametric structure, and Σ = diag (σ) Ψdiag (σ)

σ =


0.13

0.14

0.15

0.14

 , Ψ =


1 0.800 0.640 0.512

0.800 1 0.800 0.640

0.640 0.800 1 0.800

0.512 0.640 0.800 1

 . (6.21)

We perform the PCA on Ψ = UΛU ′ with K = 2. This gives A
(2)
Ψ = UΛ

1
2 and

Ψ
(2)
Ψ = A

(2)
Ψ A

(2)′
Ψ (subscripts denote that the PCA is performed on Ψ). However, we

should note that Ψ
(2)
Ψ is not a proper correlation matrix in case K < N , since it

does not have ones on the diagonal.4

Ψ
(2)
Ψ =


0.9319 0.8759 0.6680 0.4653

0.8759 0.8993 0.8067 0.6680

0.6680 0.8067 0.8993 0.8759

0.4653 0.6680 0.8759 0.9319


The covariance matrix Σ

(2)
Ψ resulting from Σ

(2)
Ψ = diag (σ) Ψ

(2)
Ψ diag (σ) is, however, a

4In practice, the diagonal elements are usually much closer to one, but we chose this stylised
example to emphasize the point of improper correlation matrices.
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valid covariance matrix. Therefore, we can take Γ
(2)
Ψ = diag (σ)A

(2)
Ψ for the LMM,

Γ
(2)
Ψ =


0.1087 −0.0628

0.1293 −0.0301

0.1385 0.0323

0.1170 0.0676

 . (6.22)

Decomposing Σ
(2)
Ψ as Σ

(2)
Ψ = diag (σΨ) Ψ

(2)∗
Ψ diag (σΨ) with Ψ

(2)∗
Ψ a proper correlation

matrix gives the specification for the discrete string model,

σΨ =


0.1255

0.1328

0.1422

0.1352

 and Ψ
(2)∗
Ψ =


1 0.9767 0.8597 0.7300

0.9797 1 0.9493 0.8597

0.8597 0.9493 1 0.9767

0.7300 0.8597 0.9767 1

 . (6.23)

Note that the two largest eigenvalues and corresponding eigenvectors of Ψ do not

match the eigenvalues and eigenvectors of Ψ
(2)∗
Ψ . As noted before, if the data on

which we estimate our K-factor model would be generated by a true K-factor model

they converge asymptotically. However, in finite samples the problem of an non-

proper Ψ
(2)
Ψ still exists. For this reason one might prefer to use the PCA on the

covariance matrix. On the other hand the PCA on the correlation matrix is preferred

from a numerical point of view, since it does not have scaling problems. In the

above example performing the PCA on the covariance matrix only gives marginally

different results. For practical purposes we would advise to do both PCA on the

covariance and on the correlation matrix and compare the results. For some recent

work on optimal calibration of the covariance/correlation matrix of the LMM and

discrete string model, see, for example, Zhang and Wu (2001).

6.4.3 Numerical example

Since LIBOR market models and the discrete string model allow for Black-type

analytical formulas for the valuation of caplets (and floorlets), we illustrate that

both models result in the same prices for caplets. The Black formula for pricing of
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Table 6.2: Prices of caplets and floorlets for the discrete string model and
LIBOR market model.

Maturity σΣ,i

∥∥∥Γ(2)
Σ,i

∥∥∥ capletΣ σΨ,i

∥∥∥Γ(K)
Ψ,i

∥∥∥ capletΨ

T1 = 0.5 0.2305 0.2305 3, 247.5 0.1255 0.1255 1, 803.8
T2 = 1.0 0.2559 0.2559 5, 090.8 0.1328 0.1328 2, 719.5
T3 = 1.5 0.2560 0.2560 6, 228.6 0.1422 0.1422 3, 566.6
T4 = 2.0 0.2453 0.2453 6, 885.7 0.1352 0.1352 3, 880.2

caplets with strike κ is given by

cpli (t) = δiP (t, Ti+1) [Fi (t) Φ (d+) − κΦ (d−)] (6.24)

with

d± =
log (Fi (t) /κ) ± 1

2
(Ti − t) νi√

(Ti − t) νi

, (6.25)

where νi = σ2
i for the discrete string model and νi = ‖Γi‖2 for the LMM. In Table 6.2

we price 4 ATM caplets/floorlets (caplet and floorlet prices are the same for ATM

options) with for both examples a flat initial term structure with Fi (T0) = 0.05,

i = 1, ..., 4 and notional equal to one million.

6.5 Conclusion

In this chapter we have shown that discrete string models are observationally equiv-

alent to market models. We derive that the number of parameters needed for the

estimation these models equals NK−K (K − 1) /2. As a consequence of the obser-

vational equivalence discrete string models are a special case of the HJM framework.

The discrete string models can be estimated/calibrated using principal components

analysis in the same manner as the market models.





Chapter 7

Factor Dependence and

Estimation Risk for Cap-Related

Interest Rate Exotics

7.1 Introduction

During the nineties we witnessed a spectacular growth of trading derivative in-

struments that continues in the new millennium. For example, the turnover of

exchange-traded financial derivatives is estimated at about $ 192 trillion (see Jean-

neau (2002)). The notional amount of outstanding OTC contracts is estimated at

$ 128 trillion (see Jameson and Gadanecz (2003)) consisting for the larger part of

(short-term) interest rate products.

The two main liquid interest rate derivatives markets are the caps (floors) and

swaptions market. Though the largest part of derivatives traded in these markets

are the plain vanilla caps, floors, and swaptions there exists a sizable market in

more exotic products. These products can be traded separately or, as is often the

case, as part of a more complex structured deal. In either case these deals are

over-the-counter and not very liquid. Therefore, in these markets besides hedging

model risk also considerable pricing model risk can exist (see, for example, Hull and

Suo (2002)). Both for traders and for risk management divisions it is, therefore,

important to get an idea about the price range of the value of the exotic. In this
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chapter we investigate the estimation risk involved in pricing exotic interest rate

derivatives. Estimation risk can provide risk management divisions guidelines in

setting model reserves for the various products and traders about bid-ask spreads.

We adopt the popular Libor market model (see Brace et al. (1997), Miltersen

et al. (1997), and Jamshidian (1997)) for analyzing several cap related interest rate

exotics: deferred caps, autocaps, sticky caps, ratchet caps, and discrete barrier caps.

Contrary to ordinary caps, these products are sensitive to the joint distribution of

the forward rate term structure. In case of the Libor market model, this means the

specification of the correlation matrix of the forward rates. In practice, this corre-

lation matrix is either estimated historically or calibrated to the swaption market

as swaptions are correlation sensitive liquid products. Unfortunately, the relation of

caps and swaptions markets remains somewhat unclear (see, for example, Longstaff

et al. (2001a) and de Jong, Driessen and Pelsser (2001)). Calibration of the Libor

market model to swaption prices often results in unrealistically unstable correla-

tion matrices and thereby prices and especially sensitivities. Therefore, we adopt

historical correlation in this chapter.

The Libor market model can be specified in numerous ways. Among other things,

the number of factors needs to be specified. In this chapter we investigate to which

extent the cap related exotics are sensitive to the number of factors used in estimat-

ing the correlation matrix. We find that the autocap, ratchet cap, and sticky caps

are very sensitive to the number of factors used. Furthermore, we investigate the

estimation risk in pricing the exotics. This is done using the stationary bootstrap of

Politis and Romano (1994) and the window length selection method of Politis and

White (2003). As one would expect, the prices of the correlation sensitive products

also contain a substantial degree of estimation risk.

The remainder of the chapter is structured as follows. The next section in-

troduces notation and reviews the Libor market model and discrete string model.

Section 7.3 describes the exotic derivatives investigated. Section 7.4 discusses the

bootstrap technique for determining estimation risk. Results are presented in Sec-

tion 7.5. Finally, Section 7.6 concludes.
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7.2 Notation and Models

7.2.1 Notation

In this section we introduce notation necessary for the remainder and give a descrip-

tion of the Libor market model / Discrete string model. First, we define a finite set

of dates, the so-called tenor structure

t = T0 < T1 < T2 < . . . < TN+1. (7.1)

We indicate the current time by t and T1, ..., TN+1 denote the forward tenor dates.

This gives a spot LIBOR rate (for [T0, T1]) and N forward LIBOR rates from (for

[Ti, Ti+1], i = 1, ..., N). We define δi = δ (Ti, Ti+1) as the so-called daycount fractions

(for an extensive treatment on day-count fractions, see Miron and Swannell (1992)),

which are determined by the maturity of the LIBOR rate and are most often ap-

proximately equal to 3 or 6 months. Let the forward LIBOR rate from Ti to Ti+1 at

time t ≤ Ti be denoted by F (t, Ti, Ti+1) which is defined as

F (t, Ti, Ti+1) ≡
1

δi

(
D (t, Ti) −D (t, Ti+1)

D (t, Ti+1)

)
, t ≤ Ti and i = 1, ..., N, (7.2)

where D (t, T ) denotes the value of a discount bond at time t with maturity T . For

notational convenience, we define Fi (t) ≡ F (t, Ti, Ti+1) .

7.2.2 Libor market model

In this section, we briefly describe the Libor market model (introduced by Brace

et al. (1997), Miltersen et al. (1997), and Jamshidian (1997)). In Chapter 6 we have

shown that this model is observationally equivalent to the discrete string model

(introduced by Longstaff et al. (2001b) and Longstaff et al. (2001a)). The models

are characterized by the following dynamics for the N individual forward rates

dFi(t)

Fi(t)
= αM

i (t)dt+ σi(t)dZ
M
i (t) (7.3)

= αM
i (t)dt+ Γi(t)

′
dWM(t), i = 1, ..., N, (7.4)



138 Factor Dependence and Estimation Risk

where
{
ZM

i (t)
}N

i=1
are (correlated) Wiener processes under probability measure M

with

d
[
ZM

i , ZM
j

]
(t) = ρi,jdt, i, j = 1, ..., N,

WM denotes an K-dimensional (K ≤ N) standard Wiener process and ρi,j denotes

the instantaneous correlation between Zi and Zj. The first line, that is (7.3), cor-

responds to the discrete string model (DSM) setting, while the second line, that is

(7.4), corresponds to the Libor market model (LMM) setting. Due to absence-of-

arbitrage restrictions, αM
i = 0 if M = Qi+1, the Ti+1− forward martingale measure

associated with numeraire D(•, Ti+1).

The covariance matrix (in DSM notation, and constant for notational conve-

nience) of the log forward rate changes is given by

Σ =


σ2

1 · · · ρ1,Nσ1σN

...
. . .

...

ρ1,Nσ1σN · · · σ2
N

 . (7.5)

7.2.3 Monte-Carlo Pricing

The forward rate dynamics of Fi given in (7.3) are easily generated using Monte-

Carlo methods under the Ti−forward martingale measure using an Euler method,

for all i. In the sequel we are interested in pricing derivatives that depend on

several forward rate settings, which complicates the pricing. Therefore, we want to

model the dynamics of all forward rates under one measure. Though in principle the

choice of measure is arbitrary, it is convenient to use the TN+1−forward measure,

also referred to as the terminal measure. Changing the measure from the Ti−forward

martingale measure to the terminal measure gives the following drifts for (7.3) and

(7.4)

αN+1
i (t) = −σi(t)

N∑
k=i+1

δkFk(t)

1 + δkFk(t)
σk(t)ρi,k, i = 1, ..., N. (7.6)

Note that the dynamics now have a stochastic drift term, and therefore in an Euler

scheme the dynamics of the forward rates are no longer exact but for the last forward

rate. More advanced methods exist to approximate the stochastic drift term in (7.6),

such as the predictor-corrector method proposed in Hunter, Jäckel and Joshi (2001)
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(see Kloeden and Platen (1999) for more general predictor-corrector methods) and

are employed in this chapter.

For the exotic derivatives treated in the sequel no analytical formula is available

in the Libor market model. In computing the prices several variance reduction

techniques can be applied. Since for caps and floors analytical prices are available,

these are used as control variates. Furthermore, antithetic variables are used.

7.3 Exotic interest rate derivatives

In this section we describe a number of commonly used cap related exotic interest

rate derivatives. For a more extensive list of interest rate exotics, see, for example,

Brigo and Mercurio (2001), Rebonato (2002), Pelsser (2000), and Hunt and Kennedy

(2000). For all products a unit notional amount is assumed.

7.3.1 Cap / floor

We start with the most basic instruments, caps and floors. A cap (floor) is portfolio

of options on LIBOR rates called caplets (floorlets). Caps (floors) provide protection

against high (low) interest rates. The payoff of a caplet (floorlet) fixing at Ti and

paying at Ti+1 is given by

Cpli(Ti+1) = δi (Fi(Ti) − κ)+ (7.7)

Frli(Ti+1) = δi (κ− Fi(Ti))
+ . (7.8)

Choosing the discount bond maturing at Ti+1, D(Ti, T i+ 1), as numeraire and work-

ing with the associated martingale measure (usually denoted as the Ti+1-forward

measure) we find convenient pricing equations for caplets and floorlets.

Cpli(T0) = δiD(T0, Ti+1)IE
i+1
0

[
(Fi(Ti) − κ)+] (7.9)

Frli(T0) = δiD(T0, Ti+1)IE
i+1
0

[
(κ− Fi(Ti))

+] , (7.10)

where IEi+1
0 denotes the conditional expectation with respect to the measure Qi+1

at time T0.
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In the LMM, where the forward LIBOR rates follow a lognormal distribution,

caplets and floorlets can be priced explicitly using the Black formula (see Black

(1976))

Cpli(T0) = δiD(T0, Ti+1) (Fi(Ti)Φ(d+) − κΦ(d−)) (7.11)

Frli(T0) = δiD(T0, Ti+1) (κΦ(−d−) − Fi(Ti)Φ(−d+)) , (7.12)

where Φ denotes the cumulative distribution of the standard Gaussian distribution

and

d± =
log(Fi(Ti)/κ) ± 1

2
Σ2

i

Σi

, and Σ2
i =

∫ Ti

0

σ2
i (s)ds. (7.13)

7.3.2 Deferred cap

The standard cap / floor caplet / floorlet payment occur at their ”natural” times,

that is, one period after their setting. There also exist caps / floors in the market

for which all caplet / floorlet payments occur at the final time, TN+1. We term this

a deferred cap / floor. The value of a deferred cap is given by

DC(T0) = D(T0, TN+1)
N∑

i=1

δiIE
N+1
0

[
(Fi(Ti) − κ)+

]
, (7.14)

Similar valuation formulas can be derived for deferred floors. We expect the deferred

cap / floor to be sensitive to the shape of the term structure. It should be slightly

sensitive to correlation (see correlation in the drift term in (7.6)), but probably not

too much.

7.3.3 Autocap

An autocap (autofloor) is similar to an ordinary cap (floor), but the holder is only

allowed to exercise l ≤ N instead of the normal N caplets (floorlets). Furthermore,

the caplets (floorlets) must be exercised when they are in the money at a settlement

date. The value of an autocap can be written as

ACl
1:N(T0) =

N∑
i=1

D(T0, Ti+1)δiIE
i+1
0

[
(Fi(Ti) − κ)+

]
II {Ei} , (7.15)
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where

Ei =

{
i−1∑
j=1

II(Fj(Tj) > κ) ≤ l − 1

}
.

A similar formula can be derived for autofloors. One should note that the {Ei}N
i=1

not only depends on the current rate, but also on the previously observed spot Libor

rates, {Fn(Tn)}i
n=1.

7.3.4 Discrete barrier cap

A discrete barrier cap (floor) is similar to a standard cap (floor) with the difference

that the payoff of its underlying caplets (floorlets) are conditional on the event that

previous spot Libor rates have or have not (depending on the type of barrier option)

hit a certain level, known as the barrier. Though more complex variants exist, we

consider discrete barrier caps where the barrier condition is only reviewed at fixing

dates. The discrete barrier cap (floor) is characterized by a series of strikes, {κi}N
i=1,

and barriers, {Hi}N
i=1. The value of an up-and-out discrete barrier cap is given by

DBCuo(T0) =
N∑

i=1

D(T0, Ti)δiIE
i+1
0

[
(Fi(Ti) − κi)

+
i∏

n=1

II(Fn(Tn) < Hn)

]
. (7.16)

From (7.16) we see that caplet i only pays out in case all previous spot Libor rates,

{Fn(Tn)}i
n=1, are below their barriers. The discounted payoff of a down-and-in

barrier cap is given by

DBCdi(T0) =
N∑

i=1

D(T0, Ti)δiIE
i+1
0

[
(Fi(Ti) − κi)

+

(
1 −

i∏
n=1

II(Fn(Tn) > Hn)

)]
.

(7.17)

Thus, a down-and-in discrete barrier caplet i pays out if at least one of the previous

spot Libor rates, {Fn(Tn)}i
n=1 was set below its barrier. A portfolio of an up and in

and an up and out barrier caplet equals an ordinary caplet. Combining the following

features: in/out, up/down, standard/digital and cap/floor results in sixteen different

types of discrete (digital) barrier caps and floors.
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7.3.5 Ratchet cap

A ratchet option (also denoted a one-way floater) is similar to a standard cap/floor

with the difference that the strikes are variable over time and depend on settings of

previous spot Libor rates. The value of a ratchet option is given by

Ra(T0) =
N∑

i=1

D(T0, Ti+1)δiIE
i+1
0

[
(Fi(Ti) − κi)

+] , (7.18)

where κ1 is given and for i > 1

κi = κ (κi−1, ..., κ1;Fi−1(Ti−1), ..., F1(T1)) . (7.19)

In the sequel we consider a ratchet option with as strike the spot Libor at the

previous setting

κi = Fi−1(Ti−1). (7.20)

Furthermore, we consider a sticky cap where the strike equals the minimum of the

spot Libor at the previous setting and the previous strike

κi = Fi−1(Ti−1) ∧ κi−1. (7.21)

Both the ratchet and the sticky cap are expected to be very sensitive to the corre-

lation matrix.

7.4 Estimation risk in the LMM

From the dynamics of the forward rates given in (7.3) and (7.4) combined with (7.6)

it is clear that the prices of the exotic derivatives treated in the previous section are

dependent on the volatility functions, {σi(t)}N
i=1 and the correlation matrix, which

we denote by ρ. If we have an analytical pricing formula, say f , which is a function of

θ ≡ (σ1, ..., σN , ρ1,2, ..., ρN−1,N ) an application of the delta method (see, for example,

Van der Vaart (1998)) gives the standard errors of the option prices

√
T
(
f(θ̂) − f(θ)

)
d→ N

(
0,
∂f

∂θ′ Σθ
∂f

∂θ

)
, (7.22)
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where Σθ denotes the covariance matrix of θ. However, for the exotic derivatives

discussed in Section 7.3 no analytical formula is available and prices need to be

determined using numerical methods. In principle one could try to determine the

standard errors by numerically computing the partial derivatives of f , but this does

not look very attractive and it contains more information than needed.

A second and more promising method to get standard errors of the option prices

is using the bootstrap (see Efron (1979) for the original work). Loosely speaking,

the bootstrap theorem (under some regularity conditions) says that

√
T
(
f(θ̂∗) − f(θ̂)

)
d→ N

(
0,
∂f

∂θ′ Σθ
∂f

∂θ

)
, (7.23)

where θ̂∗ is estimated on a bootstrap sample of the original data. For the ordinary

bootstrap, a bootstrap sample is a sample drawn with replacement from the original

sample,{X1, ..., XT}, say, {X∗
1 , ..., X

∗
T} with the original sample length.1

A problem with the ordinary bootstrap is that it does not take time dependence

of the observations into account. A method that can take time-dependence into

account is the moving block bootstrap, where one draws blocks of observations

instead of single observations. This method can generate time dependence in the

data; however the bootstrap samples resulting from a moving block bootstrap are

not necessarily stationary even if the original data are. In case of the LMM the

(return) data are generated from a stationary process.2 An alternative method able

to take time dependence and stationarity into account is the stationary bootstrap

(see Politis and Romano (1994)). This method can be described as follows. First,

we randomly select a bootstrap observation X∗
1 from the original T observations.

Suppose thatX∗
1 = Xj. The second bootstrap observation is then equal toXj+1 with

probability 1−p; otherwise, it is picked at random from the original T observations,

where p is a given positive constant smaller than or equal to 1.3 Thus, having the ith

bootstrap observation X∗
i = Xi∗ , we take the next bootstrap observation according

1One can also draw samples smaller than the original sample, in which case we speak of sub-
sampling (see Politis, Romano and Wolf (1999) for an excellent treatment.)

2Strictly speaking this only holds for a forward rate under its own forward martingale measure
due to the stochastic drift under a different measure, but this effect is minor.

3Of course, p = 1 gives the ordinary bootstrap.
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to

X∗
i+1 =

Xi∗+1 with prob. 1 − p

a random draw from {X1, ..., XT} with prob. p,
(7.24)

for i = 1, ..., T .

By applying the stationary bootstrap to our data of forward rates we can get

B bootstrap estimators θ̂∗, where B denotes the number of bootstraps. For each

bootstrap estimator θ̂∗ we can compute the prices of the exotic options using the

Monte-Carlo simulation method resulting in an estimator for standard errors of the

option prices. Using (7.22) confidence intervals are easily constructed.

7.5 Results

We use the US forward curve from March 19, 1997 to May 14, 2003 on weekly basis

to estimate correlations. We investigate quarterly compounding cap products, as

these are the most liquid for the US market. First, we investigate which products are

most sensitive to the number of factors used. In case of aK factor model, we perform

principal components analysis (PCA) on the historical covariance matrix and set all

but the K largest eigenvalues equal to zero. From the resulting covariance matrix,

we compute the correlation matrix and transform this into the LMM covariance

matrix using the volatility term structure which can be calibrated to market prices

of caps.4 PCA can also be done on the correlation matrix (see, for example, Chapter

6 for an application to Libor market models and Basilevsky (1995) in general).

In Table 7.1 we present the prices in basis points of the various products using a

one factor LMM with a flat term structure at 4% and a flat volatility term structure

at 20%. Besides prices also simulation standard errors are given. Cap prices are

computed using the analytical Black formula and therefore do not contain simulation

error.

In Figure 7.1 we investigate the influence of the number of factors used in fitting

the correlation matrix. We see that the deferred cap is as expected hardly sensitive

to correlation. The up-and-in barrier cap is somewhat sensitive to the number of

4Historical and implied volatility functions can therefore differ.
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Figure 7.1: Factor dependence
This figure gives the prices of the K−factor model relative to the one-factor model
for the deferred cap, autocap, sticky cap, ratchet cap, and up and in discrete barrier
cap. The term structure is assumed to be flat at 4% and the volatility term structure
is assumed flat to be at 20%. All products are ATM, the barrier for the up-and-in
barrier cap equals 5%, the start strike for the sticky cap and ratchet cap equals 4%
and the number of caps for the autocap equals half the number of settings. The
upper panel gives a 3 year deal and the lower panel a 5 year deal. The number of
simulations equals 10,000.
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Table 7.1: One factor model prices
This table gives the prices for the cap, deferred cap, autocap, sticky cap, ratchet
cap, and up-and-in barrier cap for a one factor Libor market model. The initial term
structure is flat at 4% and the volatility term structure is flat at 20%. The strike
for the deferred cap, autocap, sticky cap (initial strike), and ratchet cap (initial
strike) equals 4%. The barrier for the up and out barrier equals 5%. The number of
simulations equals 10,000 and the simulation standard errors are between brackets.

maturity Cap
Deferred

cap
Autocap

Sticky
cap

Ratchet
cap

UI barrier
cap

1Year
16.01
(0.00)

15.87
(0.07)

1.32
(0.13)

19.01
(0.03)

11.71
(0.08)

10.98
(0.12)

2Years
50.79
(0.00)

49.28
(0.31)

4.29
(0.42)

67.96
(0.12)

26.70
(0.35)

20.67
(0.44)

3Years
94.82
(0.00)

89.85
(0.64)

7.89
(0.81)

133.45
(0.24)

40.81
(0.70)

26.04
(0.84)

4Years
145.22
(0.00)

134.15
(1.00)

12.11
(1.27)

210.32
(0.37)

54.52
(1.11)

29.49
(1.30)

5Years
200.31
(0.00)

180.14
(1.37)

17.23
(1.76)

295.33
(0.51)

68.05
(1.57)

32.21
(1.79)

factors in the correlation matrix; prices computed using more than one factor are

between 90% and 100% of the one factor price. We find that the sticky and ratchet

cap are rather sensitive to the number of factors, although in case of the sticky cap

the prices flatten out after factor 4 at about 1.3 times the one-factor price. The

autocap is very sensitive to correlation matrix. Even for a small number of factors

prices are already up twice the one-factor price. However, for all products, one

should be careful when looking at high factor models as part of the correlation in

the correlation matrix is due to noise. It is quite likely that high factor models are

overfitting noise instead of “true” correlation.

In Figure 7.3 we also investigate the factor dependence of the various products,

this time with a hump shaped volatility term structure given in Figure 7.2. We find

that in this case all products but the ratchet are less sensitive to the number of

factors used. Besides the ratchet, the autocap is most sensitive. However, in this

situation the autocap is valued higher with the one-factor model than the more than

one factor models.
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Figure 7.2: Hump shaped volatility term structure
This figure presents the hump shaped volatility term structure used for Figures
7.3 and 7.5. On the vertical axis the level of caplet volatility is given and on the
horizontal axis the time to maturity.

In order to compute the standard errors of the computed prices, we use the

stationary bootstrap with p = 0.1 (expected block size equals ten), where p was

determined using the automatic block size determination method of Politis and

White (2003) on spot Libor rates. For each bootstrap sample we compute the LMM

covariance matrix using PCA as described above. In Figures 7.4 and 7.5 we present

the relative prices of the autocap, sticky cap, ratchet cap, and up-and-in barrier cap

with their 95% confidence intervals. Results of the deferred cap are not shown as

it has hardly any estimation risk. We clearly see that, in case one uses a model

with more than one factor, estimation risk can be considerable. Furthermore, we

see that for all but the up-and-in barrier cap the confidence regions grow with the

number of factors, but as expected the growth rate decreases with the number of

factors. We see that for the up-and-in barrier option the price range computed using

two factors more or less covers all prices computed by higher factor models and one

might be inclined to conclude that two factors suffice in pricing the up-and-in barrier.

However, risk management divisions are advised to set a model reserve larger than

or equal to the worst-case limit of the price range (depending on whether the bank

is on the buy or sell side, this is the upper or lower confidence limit). For autocaps

and sticky caps, the price range given by the 5 factor model more or less covers the

prices computed by the higher factor models. For the ratchet cap things are not so

clear and risk management divisions are advised to set considerable model reserves.
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Figure 7.3: Factor dependence hump shaped volatility
This figure gives the prices of the K−factor model (number of factors on the hor-
izontal axis) relative to the one-factor model for the deferred cap, autocap, sticky
cap, ratchet cap, and up and in discrete barrier cap. The term structure is assumed
to be flat at 4% and the volatility term structure is assumed hump shaped. All
products are ATM, the barrier for the up-and-in barrier cap equals 5%, the start
strike for the sticky cap and ratchet cap equals 4% and the number of caps for the
autocap equals half the number of settings. The upper panel gives a 3 year deal and
the lower panel a 5 year deal. The number of simulations equals 10,000.
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Figure 7.4: Estimation risk
This figure gives the prices of theK−factor model (number of factors on the horizon-
tal axis) relative to the one-factor model including the 95% confidence regions. The
term structure is assumed flat at 4% and the volatility term structure is assumed
flat at 20%. All products are ATM, the barrier for the up-and-in barrier cap equals
5%, the start strike for the sticky cap and ratchet cap equals 4% and the number of
caps for the autocap equals half the number of settings. The upper panels present
the results of a 3 year deal and the lower panels present the results of a 5 year deal.
The number of simulations equals 10,000.
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Figure 7.5: Estimation risk hump shaped volatility
This figure gives the prices of the K−factor model (number of factors on the hori-
zontal axis) relative to the one-factor model including the 95% confidence regions.
The term structure is assumed flat at 4% and the volatility term structure is as-
sumed to be hump shaped. All products are ATM, the barrier for the up-and-in
barrier cap equals 5%, the start strike for the sticky cap and ratchet cap equals 4%
and the number of caps for the autocap equals half the number of settings. The
upper panels present the results of a 3 year deal and the lower panels present the
results of a 5 year deal. The number of simulations equals 10,000.
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7.6 Conclusions

In this chapter, we provide a method to take estimation risk into account when

computing exotic interest rate derivatives prices. This provides traders and risk

managers with a price range of values for the exotic product contrary to a sin-

gle estimate. We find that this estimation risk is very much product dependent.

Autocaps, sticky caps, and especially ratchet caps are very sensitive to correlation

resulting in considerable standard errors for the products. For some products risk

managers are advised to set reserves up to the price of the product.





Chapter 8

Conclusions and Directions for

Further Research

8.1 Summary and conclusions

Since the mid nineties the quantitative risk management literature surged. The first

part of this thesis adds to that literature from both a theoretical and empirical point

of view on model risk.

In Chapter 2 we introduce a backtest framework for, among other things, the

most popular risk measurement methods, value-at-risk and expected shortfall. We

provide ample simulation evidence that for appropriately adjusted levels (in case of

the Gaussian distribution this means that a 1% value-at-risk about equals a 2.5%

expected shortfall) our expected shortfall test has equal size, but considerably bet-

ter power. Since the probability of detecting a misspecified model is higher for a

given value of the test statistic, this allows the regulator to set lower multiplica-

tion factors. We suggested a scheme for determining multiplication factors. This

scheme results in less severe penalties for the backtest based on expected shortfall

compared to backtests based on value-at-risk, and compared to the current Basel

Accord backtesting scheme in case the test incorrectly rejects the model. Therefore,

we conclude that the prospects for setting up viable capital determination schemes

based on expected shortfall are promising.

In Chapter 3 we apply the backtest framework set out in Chapter 2 to positions
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containing derivatives. Where value-at-risk can be tested using a binomial test, this

is not the case for expected shortfall and we need information of the distribution in

the tail. By nature, the characteristics of derivatives positions change over time. To

overcome this problem, we present a transformation procedure. We tested several

risk management models for computing expected shortfall and value-at-risk for one-

period hedge errors of hedged derivatives positions. We found that the practically

popular method of historical simulation provides the reasonably accurate estimates

of the risk of a derivative portfolio.

Chapter 4 presents a model risk measurement framework. Our framework ex-

tends the (market) risk framework set out by Artzner et al. (1999) and Delbaen

(2000) by considering risk measurement methods for a class of models instead of

a risk measure for one particular model. This allows for a quantification of model

risk on top of market risk measurement. This allows regulators to set capital re-

quirements for trading activities in a market, based on the extent to which this

market can be reliably modeled. The general framework presented is elaborated

in such a manner that it fits well into the capital adequacy framework set out by

the Basel Committee and that of many internal risk management divisions. Our

results suggest that, for commonly used models, a Gaussian and a GARCH(1, 1)

model, misspecification risk dominates estimation risk. The analysis indicates that

the multiplication factor set by the BIS is conservative if it would only be intended

to cover model risk.

In Chapter 5 we have empirically investigated the model risk associated with

writing plain vanilla straddles in the S&P 500 equity derivatives market and the

$/£, £/�, and the $/� FX derivatives markets. We found that in our samples for

the S&P 500 market considerable estimation and misspecification risk is present.

Estimation risk is found to be significant for all products, while misspecification risk

is significant for all three months options. Furthermore, we find that in the S&P

500 market a risk premium is demanded for bearing the misspecification risk and

this premium increases towards the end of our sample. For the FX markets we also

find substantial misspecification risk, which is found to be statistically significant

for the $/� and £/� markets. Interestingly, in our sample there does not appear

to be a risk premium for bearing the misspecification risk.
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In the second part of the thesis we investigate some models and products in the

interest rate derivatives markets. Chapter 6 refutes a claim by Longstaff et al.(2001a,

2001b) that their discrete string model is more parsimonious than the Libor market

model. It is shown that discrete string models are observationally equivalent to

market models. We derive that the number of parameters needed for the estimation

these models equals NK −K (K − 1) /2 in case of N Libor rates and a K−factor

model. As a consequence of the observational equivalence discrete string models are

a special case of the HJM framework.

Chapter 7 investigates the factor dependence and estimation risk for some com-

monly used exotic interest rate derivatives. We suggest the (stationary) bootstrap

for computing the estimation risk for the exotics. We find that autocaps, sticky caps,

and ratchet caps are sensitive to the number of factors used and have considerable

estimation risk.

8.2 Directions for Further Research

The research conducted in this thesis can be extended in various ways. The discus-

sion between value-at-risk and expected shortfall addressed in Chapters 2 to 4 can

be continued by investigating both capital requirement schemes in market crises;

which method has the most prevention power? Furthermore, more empirical evi-

dence is needed to identify the extent to which markets can be reliably modeled for

different markets.

In order to investigate the model risk of writing derivatives one can investigate

more advance option pricing models such as, for example, stochastic volatility mod-

els. Furthermore, alternative hedge strategies can be conducted. An important

property of hedge strategies related to model risk is robustness. Exposure to model

risk can be reduced by use of robust hedging strategies. A hedging strategy is called

“robust” if it performs well under a wide range of model assumptions. For example,

if a bank does not want any exposure to model risk for a certain type of derivative

it can get rid off the model risk by selling the security (we abstract here from credit

risk). However, such a hedge, a perfect static hedge, is rarely possible in practice

and banks need to rely on quasi-static and dynamic hedges. In general one expects
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that the performance of a hedging strategy will depend on how far reality is from

the nominal model that has served as a basis for the construction of the strategy.

A hedging strategy that is designed for a particular model cannot be expected to

do well in a world that is totally different from the model assumptions. Therefore,

robustness has to be measured in terms of performance degradation with respect

to models that are in some sense close to the nominal one. The value-at-risk and

expected shortfall measures used in this thesis could serve the role of a distance

measure for the degradation in performance.

Obviously the choice of instruments to be used in hedging plays an important

role. In cases in which there is a fairly wide choice of possible hedging instruments,

such as in the fixed-income markets, one may optimize for robustness of the hedging

strategies over the various possible choices of instruments. Using, for instance, value-

at-risk or expected shortfall as distance measures, one can define a strategy to be

“optimally robust” with respect to a certain tolerance if it optimizes the performance

that it guarantees over the set of models that lie within the specified tolerance (in

the sense of the chosen distance measure) of a nominal model.

Often, model parameters are calibrated on the basis of observed prices rather

than estimated from historical data. There are several ways in which the study of

robust hedging is connected to calibration. Robustness studies could help to iden-

tify the model parameters that are critical to hedge performance and that therefore

must be determined accurately. Even more importantly perhaps, robustness con-

siderations may lead to adaptations in pricing models and will in this way have an

impact on calibration.

Most of the suggestions for further research addressed above can be investigated

both from a theoretical and empirical point of view. However, a number of financial

markets are not mature enough (for example, the strongly growing and important

credit derivatives market) to provide enough data for empirical analysis. Finding

relevant sets of alternative models for these markets poses an interesting challenge.
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Nederlandse Samenvatting

Gedurende de laatste decennia zijn we getuige geweest van een toenemende com-

plexiteit van producten in de financiële markten. Dit heeft ertoe geleid dat financiële

instellingen steeds meer gebruik zijn gaan maken van kwantitatieve modellen. Naast

een toenemende complexiteit, is ook de omvang van de financiele markten spectac-

ulair toegenomen.

De groeiende complexiteit en handelsvolume van financiële markten maakt de

taak voor regulerende instanties lastiger en belangrijker. Dezer dagen bestaat de

portefeuille van een bank ook voor een groot gedeelte uit afgeleide instrumenten

(derivaten) wiens waarde afhangt van traditionelere instrumenten zoals aandelen,

obligaties, en wisselkoersen, maar ook exotischere onderliggende waarden zoals volatiliteit

en kredietrisico. Een van de meest in het oog springende verschillen tussen derivaten

en de meer fundamentele waarden, zoals aandelen en obligaties, is het belang van

theoretische waarderingsmodellen. Deze modellen worden gebruikt om het gedrag

van de rentetermijnstructuur, volatiliteitstermijnstructuur, aandelen, etc te voor-

spellen. Hierdoor wordt een nieuw soort risico gëıntroduceerd; modelrisico.

Hoewel modelrisico het meest prominent is in derivatenmarkten is het zeker niet

beperkt tot derivatenmarkten. Zo gebruiken risicomanagers allerlei modellen om

(neerwaartse) risicomaten te berekenen om het risico van portefeuilles in te schat-

ten. Ze gebruiken modellen die de dynamiek van de portefeuille moeten beschrijven.

Indien deze modellen de dynamiek niet accuraat beschrijven volgt een troebele in-

schatting van het risico. Deze inschatting is van belang voor de bank zelf, alsmede

voor de regelgevers die op basis ervan de reserves voor een bank bepalen. Met

behulp van een kwaliteitstoets wordt de kwaliteit van het model onderzocht en

afhankelijk van de resultaten wordt de reserve berekend. In hoofdstuk 2 presenteren
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we een raamwerk voor deze kwaliteitstoetsen. Dit raamwerk is toepasbaar op alle

hedendaags populaire risicomaatstaven. Het geeft een vergelijking tussen de value-

at-risk, de huidige risicomaatstaf van het Basel akkoord, en expected shortfall, de

in de academische literatuur populaire tegenhanger. We vinden dat de kwaliteit

van modellen gebruikt voor het bepalen van expected shortfall beter gemeten kan

worden dan die van modellen voor het bepalen van value-at-risk.

Hoofdstuk 3 gebruikt het raamwerk van hoofdstuk 2 om het risico van porte-

feuilles met derivaten te bepalen. Het behandelt met name het probleem dat

derivatenportefeuilles van samenstelling veranderen over de tijd zonder dat de porte-

feuille wordt aangepast, aangezien looptijd en moneyness over de tijd veranderen.

Benaderingsformules worden bepaald waardoor derivatenportefeuilles in het raamw-

erk van hoofdstuk 2 kunnen worden geplaatst.

Handelaren zijn zich wel degelijk bewust van het feit dat de modellen die ze

gebruiken niet geheel correct zijn en proberen ze aan te passen aan de marktsituatie.

Zo gebruiken ze nog steeds overvloedig het Black-Scholes model ondanks dat de

gebreken van dit model veelvuldig zijn aangetoond. Met vuistregels gebaseerd op

marktkennis bereiken ze echter bevredigende resultaten.

Risicomanagers zijn in het algemeen verder van de markt verwijderd en moeilijker

is staat subjectieve correcties aan modellen te maken. Daardoor is modelrisico voor

risicomanagers wat lastiger te interpreteren en kwantificeren dan de traditionele

risicos, zoals marktrisico, kredietrisico, etc. Een mogelijke oplossing is het zetten van

modelreserves voor handelaren. Idealiter zijn deze modelreserves afhankelijk van de

markt en het product dat verhandeld wordt, aangezien sommige markten/producten

gemakkelijker te modelleren zijn dan anderen. In hoofdstuk 4 presenteren we een

raamwerk voor de kwantificering van modelrisico. Het raamwerk is gebaseerd op het

berekenen van een risicomaatstaf in een slechtst mogelijk geval in een verzameling

van modellen in de buurt van een referentiemodel. Het maakt een opslitsing tussen

schattingsrisico en misspecificatierisico. In de behandelde empirische toepassing

blijkt het misspecificatierisico veel belangrijker dan het schattingsrisico.

Met de toenemende liquiditeit van optiemarkten is het prijzen van standaardpro-

ducten, zoals call- en putopties, niet echt meer een uitdaging. Door marktprijzen op

een handige manier te interpoleren kan al gauw een goede inschatting voor een stan-
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daardproduct gevonden worden. Het modelrisico van het prijzen van derivaten is

daardoor te verwaarlozen (dit is niet het geval voor exotische derivaten, wat in hoofd-

stuk 7 aan de orde komt). De risico’s van de standaardproducten moeten echter ook

worden afgedekt en de resultaten hiervan hangen af van de risicoafdekkingsstrate-

gie. In hoofdstuk 5 bekijken we empirisch het modelrisico van risicoafdekken. We

bestuderen de S&P 500, en de belangrijkste wisselkoersen. We gebuiken hiervoor

de bootstraptechniek en beargumenteren waarom deze te preferen is boven de tot

nu toe gebruikte techniek van historische simulatie. We vinden ook hier dat het

misspecificatierisico aanzienlijk is.

In hoofdstuk 6 laten we zien dat 2 modellen, het libor marktmodel en het dis-

crete stringmodel, die tot nu toe als verschillend werden verondersteld eigenlijk het-

zelfde zijn. Deze modellen dienen dus voor risicomanagementdoeleinden als gelijk

te worden behandeld. Hoofdstuk 7 behandelt de factorafhankelijkheid en het schat-

tingsrisico van deze modellen voor het waarderen van exotische producten. Het laat

zien dat het modelrisico voor het prijzen van derivaten zeker niet te verwaarlozen is

voor exotische derivaten.
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