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Abstract

Based on a type-2 censored sample we consider a likelihood-based
inference for the reliability parameter R(t) of the location and scale
exponential distribution. More specifically, we derive the profile and
marginal likelihoods of R(t). A numerical example is presented demon-
strating the flavor of results that can be obtained by likelihood-based
methods.

Key Words: Life testing; Likelihood interval; Location and scale
exponential distribution; Marginal likelihood; Plausibility; Profile like-
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1 Introduction

In this note we apply the likelihood approach to draw likelihood-based in-
ference on the reliability parameter associated with a scale and location
exponential distribution. The likelihood-based approach for inference has
been thoroughly developed for about two decades from mid-sixties to mid-
eighties and has been widely applied to various areas, such as time series,
linear models and psychological stochastic learning. The likelihood approach
was first suggested by Fisher (1934) and later developed by many authors
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and applied in various contexts. A good survey of likelihood-based meth-
ods can be found in Severini (2000), Pace and Salvan (1997, Chapter 4),
Royall (1997) and Kalbfleisch (1985). Applications of likelihood-based in-
ference to some problems in life testing can be found in the above cited
references. A recent reference is Bar-Lev (2003) in which likelihood-based
methods were employed for inference on the shape parameter of the scale
and shape Weibull distribution.

Basically, this approach embraces the likelihood principle stating that
the likelihood function contains all available information on the unknown
parameters that can be extracted from the sample. Those parameter values,
for which there is a relatively large probability of obtaining the observed
sample, are considered as being supported by the data and are therefore
regarded more plausible; and vice versa. The most plausible value of an
unknown parameter is obviously its related maximum likelihood estimate
(MLE). If L(ω) is the likelihood function of ω (possibly a vector), based
on a given sample, and ω̂ is the MLE of ω, then the relative likelihood
function of ω is the ratio R(ω)

.
= L(ω)/L(ω̂) which ranges between 0 to

1. Values of ω for which R(ω) is ”small” can be regarded as implausible,
whereas values of ω making R(ω) ”large” can be viewed as plausible. The
set {ω : R(ω) ≥ α} is called a 100α% likelihood interval for ω. Accordingly,
one might consider values of ω within a 90% or a 95% likelihood intervals as
highly plausible whereas values of ω ranging outside a 5% or a 10% likelihood
intervals as being highly implausible. Several comments regarding the use of
the likelihood principle for inference are presented in the concluding section.

Consider now a random sample x
¯
drawn from a two-parameter ω =

(ω1,ω2) distribution. Let f(x
¯
: ω) and L(ω) = L(ω : x

¯
) denote, respectively,

the probability density function (p.d.f.) of x
¯
and the likelihood function of

ω based on the sample x
¯
. In various inferential situations, as in the present

note, it is required to draw inference on a sub-parameter of ω, say ω1, only.
In such situations the sub-parameter of interest is called the structural pa-
rameter whereas ω2 is regarded as the nuisance parameter. Inferences on
the structural parameter ω1 can be deduced by eliminating the nuisance
parameter ω2 from the model and constructing a likelihood which depends
on ω1 only. Several likelihood-based methods have been suggested in the
literature for such an elimination, all resulting in likelihoods depending on
ω1 only. Resulting likelihoods are called profile, marginal, conditional and
integrated likelihoods. The first two, which are utilized in this paper, are
briefly outlined in Section 2. In Section 3 we treat the location-scale ex-
ponential distribution. Based on a type-2 censored sample we derive the
profile and marginal likelihoods of the associated reliability parameter. Sec-
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tion 4 briefly outlines some frequency-based and fiduicial results obtained
in the literature concerning the reliability parameter. A numerical exam-
ple is provided in Section 5. Some concluding remarks regarding the use of
likelihood-based approach are presented in Section 6.

2 Profile and marginal likelihoods

We first briefly outline the concept of a profile likelihood and then that
of a marginal likelihood. Relevant references in this context are Sprott
and Kalbfleisch (1969), Kalbfleisch and Sprott (1973), Barndorff-Nielsen
(1978), Kalbfleisch (1987), Pace and Salvan(1997), Royall (1997) and Sev-
erini (2000).

The Profile likelihood of ω1 eliminates ω2 by simply replacing it with
ω̂2(ω1), the MLE of ω2 when ω1 is held fixed. The profile and relative
profile likelihoods of ω1 are then defined, respectively, by

P (ω1) = sup
ω2
L(ω1,ω2) = L(ω1, ω̂2(ω1))

and
RP (ω1)

.
= P (ω1)/ sup

ω1
P (ω1). (1)

The main disadvantage of the use of RP (ω1) for likelihood inference on ω1
is that it assumes that for any fixed ω1 the nuisance parameter ω2 attains its
most likely value. This may lead to a loss of accuracy concerning inferential
statements on ω1, especially when the sample size is small.

The marginal likelihood of ω1 eliminates ω2 in a more ”sophisticated”
way as follows. Consider a minimal sufficient statistic y = y(x

¯
) for (ω1,ω2).

Assume that y can be partitioned as y = (y1, y2) such that y1 is an ancillary
statistic for ω1 in the presence of ω2; i.e., the p.d.f. of (y1, y2) can be
decomposed as

f(y1, y2 : ω1,ω2) = g(y1 : ω1)h(y2 : ω1,ω2 | y1), (2)

where g and h denote, respectively, the marginal p.d.f. of y1 and the
conditional p.d.f. of y2 given y1. In this case, inference on ω1 can be based
on the marginal submodel g(y1 : ω1). The marginal and relative marginal
likelihoods of ω1 are therefore defined, respectively, by

M(ω1)
.
= g(y1 : ω1), (3)
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and

RM(ω1)
.
=

M(ω1)

supω1M(ω1)
. (4)

One drawback of the marginal procedure is that there should exist an ancil-
lary statistic y1 allowing the decomposition of the form given in (2). In case
that more than one ancillary statistic exists, the problem arises which one
to choose. However, a more substantial drawback of this procedure is, that
even in case that (2) holds, the information on ω1 that might be contained
in the conditional submodel h(y2 : ω1,ω2 | y1) is ignored. This potential
loss of information has motivated numerous authors to define the notion of
a nonformative conditional submodel with respect to ω1 in the presence of
a nuisance parameter ω2, i.e., a submodel which contains no available infor-
mation on ω1 in the absence of knowledge of ω2. Indeed, various definitions
have been proposed for this notion implying that a marginal likelihood is not
unique. A good description of this problem, i.e., whether there is a univer-
sal definition for a conditional submodel to be nonformative for a structural
parameter in the presence of a nuisance parameter, as well as additional
relevant references can be found in Jorgensen (1993).

3 An application to the reliability parameter of
the location-scale exponential distribution

The location-scale exponential distribution has, respectively, a p.d.f. and a
cumulative distribution function (c.d.f.) of the form

f(x : θ, δ) = θ−1 exp {−(x− δ)/θ} I(δ,∞)(x) (5)

and

F (t : θ, δ) = [1− exp {−(t− δ)/θ}] I(δ,∞)(t), (6)

where both parameters θ ∈ R+, δ ∈ R are unknown and IA(x) is the indicator
function of a set A. This distribution is designated henceforth by exp(θ, δ).

The reliability function at the point t associated with (6) is

R(t) = R
.
= 1− F (t : θ, δ) =

�
exp {−(t− δ)/θ} , t > δ
1, t < δ.

(7)

An inference on R(t) is considered to be based on a type-2 censored sample
stemming from (6). More specifically, n items with survival density (5) are
placed on a test. The test is stopped once a predetermined r − th failure
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time, 1 ≤ r ≤ n, occurs. Let x1 ≤ x2 ≤ ... ≤ xr denote the r failure times,
then their respective joint p.d.f. is

f(x1, ..., xr : θ, δ) = Cr,nθ
−r exp {−T (xr − δ)/θ} I(δ,∞)(x1), (8)

where Cr,n
.
= n!/(n− r)! and

T (xr − δ)
.
=

r[
i=1

(xi − δ) + (n− r)(xr − δ). (9)

In the next two subsections we derive the profile and marginal likelihood of
R(t).

3.1 The profile likelihood of R(t)

The likelihood function of (θ, δ) is proportional to (8) up to a constant which
does not depend on (θ, δ). For deriving the profile likelihood of R = R(t)
we shall consider here a reparameterization of the location-scale exponential
distribution by (R, δ) rather than by (θ, δ), i.e., in terms of the general
setting of Section 2, (R, δ) = (ω1,ω2) with R and δ being the structural and
nuisance parameters, respectively. Indeed, by using (7), we obtain that for
t > δ, θ = (t− δ) /(lnR−1). Hence the joint likelihood function of (R, δ),
denoted by L(R, δ : x1, ..., xr) = L(R, δ), is given by

L(R, δ) =

�
lnR−1

t− δ

�r
exp

�
−( lnR

−1

t− δ
)T (xr − δ)

�
, δ < min(t, x1), 0 < R < 1.

(10)
Employing (1), the relative profile likelihood of the structural parameter R
is defined by

RP (R) =
L(R, δ̂(R))

supR L(R, δ̂(R))
=
L(R, δ̂(R))

L(R̂, δ̂)
, (11)

where L(R, δ̂(R))
.
= supδ L(R, δ). To find the supremum in (11), one should

distinguish between two cases: (i) min(t, x1) = x1, and (ii) min(t, x1) = t.
For case (i), L(R, δ)) is increasing in δ < x1 < t for any given R. Hence
L(R, δ̂(R)) = L(R, x1) and supRL(R, x1) is obtained at

R̂ = exp [−r(t− x1)/T (xr − x1)] .
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Substituting this in (11) we obtain

RP (R) =

�
lnR−1

(t− x1)
T (xr − x1)

r

�r
exp

�
− lnR

−1

t− x1 T (xr − x1) + r
�
, x1 < t.

(12)
For case (ii), the quantities in (11) are obtained by a straightforward dif-
ferentiation, yielding δ̂(R) = t + r−1T (xr − t) lnR and supR L(R, δ̂(R)) =
L(1, δ̂(1)). Hence

RP (R) = Rn, t < x1. (13)

Remark 1. Note that RP (R) in (13) depends on n but remains constant
in t regardless of the value of t < x1. Such a result is, however, not too sur-
prising. Indeed, since δ is unknown, then x1, a strongly consistent estimate
for δ, solely provides the only information on the ”location” of δ < x1. For
an arbitrary choice of t (< x1), it is not feasible to determine whether or not
t is still larger than δ. Hence, the constancy of RP (R) in t, for any t < x1, is
reasonable as it serves as a measure of our ignorance regarding the location
of δ. Moreover, the dependence of RP (R) on n is reasonable too since the
larger the sample size n is the closer x1 gets to δ, and, consequently, more
information on R is gained. This can be seen in both Table 1 and Figure
1. Table 1 displays, for increasing n, 10% relative profile likelihood intervals
for R, while Figure 1 plots the relative profile likelihood of R(t) for n = 2, 5,
and 20.

n 2 5 20 100

10% likelihood intervals for R (t) (.32,1) (.63,1) (.89,1) (.98,1)

Table 1. 10% profile likelihood intervals for R (t) based on (13)

10.750.50.250

1

0.75

0.5

0.25

0

R(t)R(t)

Figure 1. RP (R) in (13) for n=2,5,20.
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Combining the two cases (i) and (ii) in (12) and (13), respectively, we
obtain that the relative profile likelihood interval for R (t) is

RP (R) =


k
lnR−1
(t−x1)

T (xr−x1)
r

lr
exp

q
− lnR−1t−x1 T (xr − x1) + r

r
, x1 < t

Rn, t < x1.
(14)

3.2 A marginal likelihood of R (t)

We use (4) to obtain the marginal likelihood of R (t). It can be readily seen
that the statistic (x1, T (xr − x1)) is minimal sufficient for (θ, δ). Conse-
quently, the statistic (n(x1− t)/T (xr−x1), T (xr−x1)) is minimal sufficient
for (R, θ). Here, we shall use the parameterization (ω1,ω2) = (R, θ), i.e.,
with R and θ being the structural and nuisance parameters, respectively.

In order to derive the marginal likelihood of R (t) we use the decom-
position in (2) as applied to joint p.d.f. of the minimal sufficient statistic.
Indeed, letting

(y1, y2)
.
= (n(x1 − t)/T (xr − x1), T (xr − x1)), (15)

we will show that the joint density of (y1, y2) can be decomposed as

f(y1, y2 : R, θ) = g(y1 : R)h(y2 : R, θ | y1), (16)

where the marginal density g of y1 depends on R only, meaning that y1 is
ancillary for θ for any given R; whereas the conditional density of y2 given y1
depends on both R and θ but contains no information on R in the absence
of knowledge of θ (in the sense of Sprott and Kalbfleisch, 1969, and Sprott,
1975). To observe this we use the following lemma.

Lemma 1. For r > 1, the joint density of (y1, y2) defined by (15) and
the marginal density of y1 in (16) are given, respectively, by

f(y1, y2 : R, θ) =
1

(r − 2)!θrR
n exp

�−y2(y1 + 1)
θ

�
yr−12 I(0,∞)(y2)(17)

× I(nθ lnR,∞)(y1y2) (18)

and

g(y1 : R) =


(r−1)Rn
(y1+1)r

�
1−

r−1S
i=0

1
i!

�
y1+1
y1

lnRn
�i
exp

�
−y1+1y1

lnRn
��
, y1 < 0

(r−1)Rn
(y1+1)r

, y1 > 0.

(19)

7



The expression (17) is simply obtained by transforming (u1, u2)
.
= (n(X1 −

δ), T (Xr −X1)) → (y1, y2) and noting that u1 ⊥ u2 with u1 ∼ exp (θ) and
u2 ∼ gamma(r− 1, θ). (19) then follows by integrating (17) with respect to
y2.

Note that the two conditions y1 < 0 and y1 > 0 are equivalent to the
conditions t > x1 and t < x1, respectively. Hence, by using (19) we obtain
that up to a constant not depending on R the marginal likelihood of R is

M(R) =


Rn
�
1−

r−1S
i=0

1
i!(
T (xr−t)
n(x1−t) )

i (lnRn)i exp
�
−T (xr−t)n(x1−t) lnR

n
��
,

if x1 < t
Rn, if t < x1,

(20)
To show thatM(R) contains all available information onR in the absence

of knowledge of θ, we use the fact that the conditional distribution of y2/θ
given y1 does not depend on θ. Hence, the r.v. y2/θ conditional on y1 is a
pivotal quantity for θ. This result satisfies one of the criteria given in Sprott
and Kalbfleisch (1969) (see also Sprott, 1975) required for the conditional
model h(y2 : R, θ | y1) to be nonformative with respect to R in the absence of
knowledge of θ. Hence, by that criterion, M(R) contains all of the available
information on R that can be extracted from the sample.

Note also that for t < x1, the supremum of the second term in (20) is
obtained at R̂ = 1 and hence RM(R) = Rn. This term coincides with that
of RP (R) in (14). For t > x1, the supremum of the first term of (20) cannot
be expressed explicitly and should be solved numerically for specific sample
observations. Accordingly, the resulting form of RM(R) is

RM(R) =



�
supRR

n

�
1−

r−1S
i=0

1
i!(
T (xr−t)
n(x1−t) )

i (lnRn)i exp
�
−T (xr−t)n(x1−t) lnR

n
���−1

×Rn
�
1−

r−1S
i=0

1
i!(
T (xr−t)
n(x1−t) )

i (lnRn)i exp
�
−T (xr−t)n(x1−t) lnR

n
��
,

if t > x1,
Rn, if t < x1.

(21)
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4 Some frequency-based and fiduicial approach re-
sults

The MLE of (θ, δ) is (T (xr − x1)/r, x1). Hence, using (7), the MLE for
R = R(t) is

R̂ = exp

�
− (t− x1)
T (xr − x1)/r

�
, t > x1. (22)

Pugh (1963) derived an expression for the minimum variance unbiased esti-
mate for R(t) for the non-censored sample case and δ = 0. Balasubramanian
and Balakrishnan (1992) dealt with parameter estimation for the location
and scale exponential distribution under multiple type-2 censoring. Addi-
tional references can be found in Johnson, Kotz and Balakrishnan (1994,
pp. 507-509). Engelhardt and Bain (1978) derived the distribution (19) of
the ancillary statistic y1 = n(x1 − t)/T (xr − x1) and used it to construct
confidence limits for R(t). The resulting limits can be calculated only nu-
merically due to the rather cumbersome expression of the p.d.f. of y1. More
specifically, if tp = δ + θ[− log (1− p)] denotes the p-th quantile of (5), En-
gelhardt and Bain used the pivotal quantity Zp = r(x1 − tp)/T (xr − x1) to
base confidence intervals for tp by utilizing the relation

γ = P (Zp ≤ ζp,γ) = P (tp ≥ x1 − ζp,γT (xr − x1)/r),

where ζp,γ designates the γ-th quantile of Zp. Such confidence intervals
can be converted to confidence intervals for R(t) by employing the relation
P (tp ≥ t) = P (R(t) ≥ 1−p). Their calculations require though an intensive
simulation work

A fiducial approach was carried out by Pierce (1973) and Grubbs (1971).
Pierce derived a version of fiducial distribution of R(t) from the joint fiducial
distribution of (θ, δ). For obtaining the latter joint distribution, he used
a prior distribution for (θ, δ) being proportional to θ−1 multiplied by the
likelihood function of (θ, δ). Grubbs (1971) used a fiducial procedure to
obtain an approximate one-sided confidence interval for R(t). By holding x1
and θ̃

.
= T (xr−x1)/(r−1) fixed and letting w = (t−x1)/ (r − 1) θ̃, Grubbs

presented the quantity

Q
.
= ln

�
1

R(τ)

�
=
t− δ

θ
=
x1 − δ

θ
+w

(r − 1) θ̃
θ

.

He then used the fact that 2n(x1−δ)/θ ∼ χ2(2) and 2 (r − 1) θ̃/θ ∼ χ2(2r−
2) as well as some known approximations to represent Q, properly normal-
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ized, as a standard normal variate. These lead to

P

�
R(t) > exp

�
−m

k
1− v

3m2
+
z1−α
3m

v1/2
l3�� ∼= 1− α, (23)

as an approximated (1− α) one-sided confidence interval for R(t), where
m = 1/n + (r − 1)w, v = 1/n2 + (r − 1)w2 and zp designates the p-th
quantile of standard normal variate. Grubbs’ expression in (23) does not
distinguish, however, between the two cases t > x1 and t < x1 that separate
the two terms of RP (R) and RM(R) in (14) and (21), respectively. For
some values of t < x1, such an oversight may lead to unacceptable values of
R(t) such as P (R(t0) > 1) = .9, for some t0 < x1.

5 A numerical example

A type-2 censored sample with entries n = 8 and r = 3 was generated
from an exp(10, 1) distribution. The first three failure times were x1 =
2.02, x2 = 7.68 and x3 = 9.91. We shall derive the relative profile and
marginal likelihoods of R(t) for t = 4 and t = 8 (i.e., for the case where t >
x1), plot these likelihoods and present a table displaying various likelihood
intervals.

Note that the MLE R̂ = R̂(t) defined in (22) maximizes the relative
profile likelihood in (14). The value of R which maximizes the marginal
likelihood in (20) is called maximum marginal likelihood estimate (MMLE)
and is denoted by R̂M = R̂M(t). As already indicated earlier, the MMLE,
as opposed to the MLE, cannot be solved analytically but only numerically.
Based on the above data, the following table compares, for t = 4, 8, the true
value of R(t) and the numerical values of the MLE and the MMLE.

t R(t) R̂(t) R̂M(t)

4 .7408 .8940 .8580

8 .4966 .7129 .7065

Table 2. R(t), R̂(t) and R̂M(t)

For this specific censored sample and t = 8 both MLE and MMLE de-
viate significantly from the true value. This deviation seems to be mainly
due to the relatively small censored sample size. Note however that for both
cases of t, the numerical values of the MMLE are closer to the true values
of R(t) than those of the MLE.
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Expressions of the relative profile and marginal likelihoods of R = R(t)
for t = 4, 8, as extracted from (14) and (21) are given, respectively, by

RP (R(4)) = −14268R26. 768 ln3R , (24)

RP (R(8)) = −517. 9R8. 862 9 ln3R, (25)

RM(R(4)) = 6. 213R8 − 6. 213R26. 768 + 116. 6R26. 768 lnR
− 1094.2R26. 768 ln2R (26)

and

RM (R(8)) = 4471R8 − 4471R8. 862 9 + 3857. 7R8. 862 9 lnR
− 1664. 4R8. 862 9 ln2R. (27)

Figures 2 and 3 plot, respectively, RP (R(4)) and RM(R(4)) versus R(4)
and RP (R(8)) and RM (R(8)) versus R(8). It can be seen from Figure 3
that RP (R(8)) and RM (R(8)) almost coincide and are rather symmetri-
cal around their maximizing values (MLE and MMLE, respectively). The
plausibilities of the true value R(8) =.4966 (Table 2) under RP (R(8)) and
RM (R(8)) are .359 and .389, respectively. The situation in Figure 2 is
rather different; whereas RP (R(4)) is almost symmetrical, RP (R(4)) has
much slower tailing off for smaller values of R(4). Moreover, the plausibili-
ties of the true value R(4) =.7408 under RP (R(4)) and RM(R(4)) are .125
and .518, respectively, implying that this true value of R(4) is 4.1 times
more likely under RM(R(4)) than under RP (R(4)). The latter result seems
to be related to the fact that the marginal likelihood was shown to contain,
at least by one criterion, all of the available information on R(t) that can
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be extracted from the sample.

10.750.50.250
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R(4)R(4)

Figure 2. Relative profile (dash) and marginal (solid)
likelihoods of R(4)

10.750.50.250

1

0.75

0.5

0.25

0

R(8)R(8)

Figure 3. Relative profile (dash) and marginal (solid)
likelihoods of R(8)

Characteristics similar to those demonstrated in Figures 2 and 3 can
also be seen from Table 3 which displays 10% and 90% relative profile and
marginal likelihood intervals.

Interval type t = 4 t = 8

10% profile likelihood interval (.7310,.9766) (.3882,.9310)

10% marginal likelihood interval (.5971,.9698) (.3785,.9321)

90% profile likelihood interval (.8655,.9766) (.6465,.7738)

90% marginal likelihood interval (.8169,.8924) (.6391,.7699)

Table 3. 10% and 90% relative profile and marginal likelihood intervals

12



For the sake of completeness, we also present 90% confidence intervals for
R(t), t = 4, 8, based on the above data and Grubbs’ fiduicial approach (c.f.,
((23)). These 90% fiduicial intervals are (.7451,1) for R(4) and (.5984,1) for
R(8).

6 Some concluding remarks

In this note we have been trying to invigorate the use of the likelihood princi-
ple by applying it to derive likelihood intervals for the reliability parameter of
the location and scale exponential distributions. The resulting likelihood in-
tervals provide at least a rough idea of reasonable and non-reasonable values
of the parameter involved. However, a 10% likelihood interval is not com-
parable with a 90% level two-sided confidence interval. These two intervals
have different meanings and interpretations. Whereas confidence intervals
are based on hypothetically many repetitions of the same experiment, like-
lihood intervals are based on a particular experiment and parameter values
are ranked by how likely they make an observed sample.

The question whether to use the likelihood-based approach for inference
or the more commonly used frequency-based approach has no simple answer.
Many of the commonly used criteria for evaluating various statistical proce-
dures, such as variance, biasedness and coverage probabilities, may be justi-
fied only by repeated sampling. If repetitions are not made or planned, then
to this end at least, the likelihood approach seems to be more appropriate.
In his monograph on Statistical Evidence, Royal (1997) strongly supports
the law of likelihood for likelihood inferential statements. While comment-
ing on the strength of statistical evidence he states (p. 11): "How strong is
the evidence when the likelihood ratio is 2?...Or 20? Many scientists (and
journal editors) are comfortable interpreting a statistical significance level of
0.05 to mean that the observations are ’pretty strong evidence’ against the
null hypothesis, and a level of 0.01 to mean ’very strong evidence’. Are there
reference values of likelihood ratios where corresponding interpretations are
appropriate?" His monograph is devoted to providing a definitively affirma-
tive response to the latter question. He states that (p.31): "The law of
likelihood is intuitively reasonable, consistent with the rules of probability
theory, and empirically meaningful. It is, however, incompatible with to-
day’s dominant statistical theory and methodology, which do not conform
to the law’s general implications, the irrelevance of the sample space and
the likelihood principle, and which are articulated in terms of probabilities,
which measure uncertainty, rather than likelihood ratios, which measure
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evidence".
Classical practitioners have refrained though from using likelihood-based

methods not only because these methods stem from a different approach but
possibly also because of the computational complexity involved. However,
such complexity seems to be resolved with the present availability of com-
puters and adequate mathematical software. Indeed, the computations in
this paper have been conducted easily with a MAPLE package installed in
a personal computer. In conclusion, we believe that although the likelihood
principle-based approach for inference, cannot serve as a replacement for the
traditional classical approach, it has its own merits and can be viewed as
complementary to it.

It is however beyond the scope of this note to deeply discuss the various
aspects of the likelihood approach for inference and the reader is referred to
the references cited in this note. Additional references which advocate the
use of likelihood-based methods are Basu (1977), Ghosh (1988). The mono-
graph by Royall (1997) contains a rich list of further advocating references.
Arguments against the use of the likelihood-based approach can be found in
Berger and Wolpert (1988).
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