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Abstract

In this paper we characterize the class of games for which the core
coincides with the core cover (compromise stable games). Moreover
we will develop an easy explicit formula for the nucleolus for this class
of games, using an approach based on bankruptcy problems. Also the
class of convex compromise stable games is characterized. The relation
between core cover and Weber set is studied and it is proved that under
a weak condition their intersection is nonempty.

Keywords: Core cover, core, nucleolus.

JEL Classification Number: C71.

1Corresponding author. Email: Quant@uvt.nl
2Department of Econometrics & OR and CentER, Tilburg University, P.O. Box 90153,

5000 LE, Tilburg, The Netherlands.
The authors wish to thank Henk Norde and Jos Potters for their helpful comments.

1



1 Introduction

An important issue in cooperative game theory is the allocation of the value
of the grand coalition of a game to the players of this game. To this aim
various solution concepts have been developed. They can be categorized in
one point solution concepts, e.g. the Shapley value (Shapley (1953)), the
nucleolus (Schmeidler (1969)) and the compromise value (Tijs (1981)), and
set-valued solutions concepts, e.g. the core (Gillies (1953)), the core cover
(Tijs and Lipperts (1982)) and the Weber set (Weber (1988)). The core is
contained in the Weber set and the core cover. And, the nucleolus is an
element of the core. It is established that a game is convex (Shapley (1971),
Ichiishi (1981)) if and only if the Weber set coincides with the core.

In this paper we characterize the class of games for which the core co-
incides with the core cover (compromise stable games). This class contains
the class of bankruptcy games (Curiel, Maschler, and Tijs (1988)), big boss
games (Muto, Nakayama, Potters, and Tijs (1988)) and clan games (Potters,
Poos, Muto, and Tijs (1989)). Moreover we will develop an easy explicit for-
mula for the nucleolus for this class of games, using an approach based on
bankruptcy problems. As an application we provide an easy proof of the
formula for the nucleolus of big boss and clan games as derived by Muto
et al. (1988) and Potters et al. (1989). Furthermore the class of convex
compromise stable games is characterized. Finally the relation between the
core cover and the Weber set is studied. It is proved that under a weak
condition their intersection is nonempty.

In section 2 we recall some game theoretic notions. Section 3 deals with
the characterization of the class of compromise stable games. Section 4
derives an explicit formula for the nucleolus for compromise stable games
and applications to big boss and clan games are provided. In the final section
the relation between the core cover and the Weber set is studied.

2 Preliminaries

This section reviews some general notions about transferable utility games.
A transferable utility game (TU-game) consists of a pair (N, v), in which
N = {1, . . . , n} is a set of players and v : 2N → R is a function assigning to
each coalition S ∈ 2N a payoff v(S), by definition v(∅) = 0. The set of all
transferable utility games with player set N is denoted by TUN . A game
(N, v) is additive if there exists a vector a ∈ RN such that v(S) =

∑
i∈S ai

for all S ∈ 2N . The game (N, v) is then denoted by (N, a). A game (N, v)
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is strategically equivalent to (N,w) if there exist a positive real number
k and an additive game (N, a) such that w = a + kv. A game (N, v) is
superadditive if for all S, T ⊂ N with S ∩ T = ∅ it holds that:

v(S) + v(T ) ≤ v(S ∪ T ).

The core of a TU-game (N, v) is given by:

C(v) =
{

x ∈ RN |
∑

i∈N

xi = v(N),
∑

i∈S

xi ≥ v(S), ∀S ∈ 2N\{∅}
}

.

The core of a game consists of those payoff vectors such that no coalition
has an incentive to split off. The core of a game might be empty. A game
is called balanced if it has a non-empty core.

A special class of TU-games is the class of bankruptcy games (O’Neill
(1982)). These games arise from so-called bankruptcy situations. These
situations are formalized by a triple (N, E, d), or a pair (E, d). E ≥ 0 is
the estate which has to be divided among the claimants. N is the set of
claimants and d ≥ 0 is a vector of claims. By the nature of a bankruptcy
problem it holds that:

E ≤
∑

i∈N

di.

One can associate a bankruptcy game vE,d to a bankruptcy problem
(E, d). The value of a coalition S is determined by the amount of E that is
not claimed by N\S:

vE,d(S) = max
{

0, E −
∑

i∈N\S
di

}
.

An order of N is a bijective function σ : {1, . . . , n} → N . The player at
position i in the order σ is denoted by σ(i). The set of all orders of N is
denoted by Π(N). For σ ∈ Π(N) the corresponding marginal vector mσ(v)
measures the marginal contribution of the players with respect to σ, i.e.

mσ
σ(i)(v) = v

({σ(1), . . . , σ(i)})− v
({σ(1), . . . , σ(i− 1)}), i ∈ {1, . . . , n}.

The Shapley value (Shapley (1953)) φ(v) is computed by taking the
average of all marginal vectors:

φ(v) =
1
|N |!

∑

σ∈Π(N)

mσ(v).
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The Weber set is the convex hull of all marginals vectors:

W (v) = conv{mσ(v) | σ ∈ Π(N)}.
An important relation between core and Weber set is given in the following
proposition:

Proposition 2.1 (Weber (1988)) Let v ∈ TUN , then C(v) ⊂ W (v).

A game (N, v) is convex if for all i ∈ N and all S ⊂ T ⊂ N\{i} it holds
that:

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ).

For convex games the marginal contribution of a player increases if this
player joins a larger coalition. Shapley (1971) and Ichiishi (1981) proved
that a game (N, v) is convex if and only if C(v) = W (v). For example
bankruptcy games are convex games.

The utopia vector M(v) of a game (N, v) consists of the utopia demands
of all players. The utopia demand of a player i ∈ N is given by:

Mi(v) = v(N)− v(N\{i}).
The minimum right of player i corresponds to the minimum value this player
can achieve by satisfying all other players in a coalition by giving them their
utopia demands:

mi(v) = max
S:i∈S

{
v(S)−

∑

j∈S\{i}
Mj(v)

}
.

For a convex game (N, v) it is easily verified that mi(v) = v({i}) for all
i ∈ N .

Using these two vectors one can introduce the core cover, CC(v), of a
game (N, v). The core cover consists of all efficient payoff vectors, giving
each player at least his minimum right, but no more than his utopia demand:

CC(v) =
{

x ∈ RN |
∑

i∈N

xi = v(N), m(v) ≤ x ≤ M(v)
}

.

The elements of the core cover can be interpreted as possible allocations
of the value of the grand coalition and can be seen as compromise values
between m(v) and M(v). Note that the core cover of a game can be empty.
A game v ∈ TUN is said to be compromise admissible if:

m(v) ≤ M(v) and
∑

i∈N

mi(v) ≤ v(N) ≤
∑

i∈N

Mi(v).
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Clearly the core cover of (N, v) is non-empty if and only if (N, v) is compro-
mise admissible. The class of all compromise admissible games with player
set N is denoted by CAN . The following result about the core and the core
cover is well known:

Proposition 2.2 (Tijs and Lipperts (1982)) Let v ∈ TUN , then C(v) ⊂
CC(v).

The extreme points of the core cover can be described by larginal vectors.
The definition of a larginal vector is similar to the definition of a marginal
vector. For σ ∈ Π(N) the larginal lσ(v) is the efficient payoff vector giving
the first players in σ their utopia demands as long as it is still possible to
satisfy the remaining players with at least their minimum rights.

Definition 2.1 Let v ∈ CAN and σ ∈ Π(N). The larginal vector lσ(v) is
defined by:

lσσ(i)(v) =





Mσ(i)(v) if
i∑

j=1

Mσ(j)(v) +
n∑

j=i+1

mσ(j)(v) ≤ v(N),

mσ(i)(v) if
i−1∑

j=1

Mσ(j)(v) +
n∑

j=i

mσ(j)(v) ≥ v(N),

v(N)−
i−1∑

j=1

Mσ(j)(v)−
n∑

j=i+1

mσ(j)(v) otherwise,

for every i ∈ {1, . . . , n}.

The concept of larginal vectors is also used in González Dı́az, Borm, Hen-
drickx, and Quant (2003). An alternative way to describe the core cover is
by means of the larginals:

CC(v) = conv
{
lσ(v) | σ ∈ Π(N)

}
.

The first player with respect to σ that does not receive his utopia payoff
is called the pivot of lσ(v). In case every player gets his utopia payoff, the
pivot is the last player. Note that each larginal vector contains exactly one
pivot. The following example illustrates the notion of larginal vectors and
pivots.

Example 2.1 Let v ∈ CAN be the game defined by:
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S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N
v(S) 1 0 0 0 1 2 1 2 2 2 7 4 6 8 10

Then M(v) = (2, 4, 6, 3) and m(v) = (1, 0, 1, 0). For σ = 1234 the larginal
lσ(v) equals (2, 4, 4, 0) and player three is the pivot of this larginal. If σ =
3421 the corresponding larginal equals lσ(v) = (1, 0, 6, 3) and player two is
the pivot. The core cover of (N, v) can be described by:

CC(v) = conv
{
lσ(v) | σ ∈ Π(N)

}

= conv
{
(2, 4, 4, 0), (2, 4, 1, 3), (2, 2, 6, 0), (2, 0, 6, 2), (2, 0, 5, 3),
(1, 4, 5, 0), (1, 4, 2, 3), (1, 0, 6, 3), (1, 3, 6, 0)

}
.

Since for all σ ∈ Π(N) it holds that lσ(v) ∈ C(v), we may conclude that
C(v) = CC(v).

Tijs (1981) introduced the compromise value, also known as the τ -value,
as a one point solution concept based on the utopia vector and the minimum
right vector. The compromise value τ(v) of a compromise admissible game
(N, v) is the efficient convex combination of M(v) and m(v):

τ(v) = αM(v) + (1− α)m(v),

with α ∈ [0, 1] such that:
∑

i∈N

τi(v) = v(N).

The nucleolus ν(v) of a game (N, v) is introduced by Schmeidler (1969)
and is an element of the imputation set. The imputation set of a game
(N, v) is defined as:

I(v) = {x ∈ RN |
∑

i∈N

xi = v(N), xi ≥ v({i}), ∀i ∈ N}.

For an imputation x ∈ I(v) the excess of coalition S with respect to x
measures the complaint of coalition S:

E(S, x) = v(S)−
∑

i∈S

xi.

The vector θ(x) contains the complaints of all coalitions with respect to x in
decreasing order. The nucleolus ν(v) is the unique imputation minimizing
the maximum complaint, i.e. the nucleolus is the lexicographic minimum of
the set {θ(x) | x ∈ I(v)}.
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3 Core and core cover

In this section we characterize the class of compromise stable games. Fur-
thermore the class of convex compromise stable games is characterized as
well.

We are interested in the class of compromise stable games. For example
bankruptcy games, big boss games and clan games (the precise definitions
are provided later on) are compromise stable games.

Definition 3.1 Let v ∈ TUN , then (N, v) is compromise stable if C(v) =
CC(v).

The following theorem characterizes the class of compromise stable games.

Theorem 3.1 Let v ∈ CAN , then C(v) = CC(v) if and only if for all
S ∈ 2N\{∅} the following is true:

v(S) ≤ max
{∑

i∈S

mi(v), v(N)−
∑

i∈N\S
Mi(v)

}
. (1)

Proof: Let v ∈ CAN . First suppose that C(v) = CC(v). Then it holds
for all σ ∈ Π(N) that lσ(v) ∈ C(v). Let S ∈ 2N\{∅}, we have to show that
(1) holds. Let σ ∈ Π(N) begin with all players of N\S and end with the
players of S. Hence for i ∈ {1, . . . , |N\S|} it holds that σ(i) ∈ N\S. Let
lσ(v) be the corresponding larginal vector. There are two possibilities:

• The pivot of lσ(v) is an element of N\S. Hence each player of S has
a payoff equal to his minimum right. We can conclude that:

v(S) ≤
∑

i∈S

lσi (v)

=
∑

i∈S

mi(v).

• The pivot of lσ(v) is an element of S. This implies that each player in
N\S achieves a payoff equal to his utopia demand. It follows that:

v(S) ≤
∑

i∈S

lσi (v)

= v(N)−
∑

i∈N\S
lσi (v)

= v(N)−
∑

i∈N\S
Mi(v).
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Combining these two cases yields that:

v(S) ≤ max
{∑

i∈S

mi(v), v(N)−
∑

i∈N\S
Mi(v)

}
.

Secondly, assume that inequality (1) holds for each S ∈ 2N\{∅}. By
convexity of the core it suffices to show that for each order σ ∈ Π(N), lσ(v)
is an element of the core. Let σ ∈ Π(N) and S ∈ 2N\{∅}. Then at least one
of the following statements is true:

v(S) ≤ v(N)−
∑

i∈N\S
Mi(v)

≤ v(N)−
∑

i∈N\S
lσi (v)

=
∑

i∈S

lσi (v),

or,

v(S) ≤
∑

i∈S

mi(v)

≤
∑

i∈S

lσi (v).

In both cases the core condition concerning coalition S is satisfied. Hence,
lσ(v) is an element of C(v). ¤
In the following example Theorem 3.1 is illustrated.

Example 3.1 Consider the game of Example 2.1. For every coalition S it
holds that (1) is valid. For example if S = {1, 2}, it holds that v({1, 2}) ≤
m1(v) + m2(v) and if S = {2, 3} it holds that v({2, 3}) ≤ v(N) −M1(v) −
M4(v). So according to Theorem 3.1 it holds that C(v) = CC(v).

The following theorem describes the class of convex compromise stable
games. This class contains exactly the games that are strategically equiv-
alent to bankruptcy games. Because each bankruptcy game is convex and
compromise stable, this gives a characterization of the class of bankruptcy
games.

Theorem 3.2 (N, v) is a convex compromise stable game if and only if
(N, v) is strategically equivalent to a bankruptcy game.

8



Proof: Let (N, v) be a convex compromise stable game. Define ai =
v({i}) = mi(v) (the last equality holds because (N, v) is a convex game) and
w(S) = v(S) − ∑

i∈S ai for all S ∈ 2N . Then (N,w) is a zero-normalized
convex game and C(w) = CC(w)(= W (w)). Furthermore the following
equations hold:

M(w) = M(v)−m(v),
m(w) = 0.

We will show that (N, w) is the bankruptcy game (N, vE,d) with E = w(N)
and d = M(w). For S ∈ 2N\{∅} it holds that:

vE,d(S) = max
{

0, E −
∑

i∈N\S
Mi(w)

}

= max
{∑

i∈S

mi(w), E −
∑

i∈N\S
Mi(w)

}
.

Theorem 3.1 implies that w(S) ≤ vE,d(S) for all S ⊂ N . Now suppose that
there exists a coalition S ∈ 2N\{∅} such that w(S) < vE,d(S). Because
(N, w) is a convex game, it holds that w(S) ≥ ∑

i∈S w({i}) =
∑

i∈N mi(w)
and hence:

w(S) < E −
∑

i∈N\S
Mi(w)

= w(N)−
∑

i∈N\S
Mi(w).

Consider a permutation σ ∈ Π(N) that begins with the players of S and
ends with the players of N\S, i.e. σ(i) ∈ S for i ∈ {1, . . . , |S|}. The payoff
of coalition N\S according to the marginal vector mσ(w) is given by:

∑

j∈N\S
mσ

j (w) = w(N)− w(S)

>
∑

j∈N\S
Mj(w).

This implies that mσ(w) 6∈ CC(w). This contradicts CC(w) = C(w) =
W (w).

The converse is also true because bankruptcy games are convex games
and the core of a coincides with the core cover (Curiel et al. (1988)). ¤
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It is trivial to show that a 3-player TU-game is balanced if and only if
it is compromise admissible. Moreover for any 3-player game (N, v) it holds
that C(v) = CC(v). From Theorem 3.2 it then follows that each convex
three player game is strategically equivalent to a bankruptcy game.

4 Compromise solutions based on bankruptcy

There are several well-known solutions for bankruptcy problems. These
solutions are called bankruptcy rules. Let (E, d) be a bankruptcy problem
and i ∈ N . The following bankruptcy rules are often used:

• Constrained equal award rule (CEA):

CEAi(E, d) = min{α, di},

with α such that
∑

i∈N min{α, di} = E.

• Proportional rule (PROP):

PROPi(E, d) =
di∑

j∈N dj
· E.

• Talmud rule (TAL):

TALi(E, d) =





CEAi(E, 1
2d) if

∑

j∈N

dj ≥ 2E

di − CEAi

( ∑
j∈N dj − E, 1

2d
)

if
∑

j∈N

dj < 2E.

• Run to the bank rule (RTB):

RTBi(E, d) =
1
|N |!

∑

σ∈Π(N)

rσ
i (E, d).

The value of rσ
σ(j)(E, d), σ ∈ Π(N), depends on the amount left of E if all

players which are before σ(j) in σ get their claim (as far as this is possible):

rσ
σ(j)(E, d) = max

{
min{dσ(j), E −

j−1∑

k=1

dσ(k)}, 0
}

.
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A bankruptcy rule f is self-dual if:

f(E, d) = d− f
( ∑

i∈N

di −E, d
)
.

It is easy to see that the proportional rule is self-dual. Curiel (1988) proves
that the Talmud rule and the run to the bank rule are self-dual. Note that
if f is self-dual and

∑
i∈N di = 2E, then f(E, d) = 1

2d.
Bankruptcy games have some nice properties. For example Aumann and

Maschler (1985) proved that the nucleolus of a bankruptcy game (N, vE,d)
is given by:

ν(vE,d) = TAL(E, d).

Furthermore the Shapley value can be computed by (cf. O’Neill (1982)):

φ(vE,d) = RTB(E, d).

This result gives rise to the thought that it is interesting to approach
allocation problems in TU-games from the point of view of bankruptcy prob-
lems. We will consider an approach based on the core cover, which consists
of all efficient compromise solutions between m(v) and M(v). Let v ∈ CAN

and f be a bankruptcy rule, then one could consider the following type of
compromise solution γ:

γ(v) = m(v) + f
(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)
)
. (2)

From this point of view, one could rewrite the compromise value as:

τ(v) = m(v) + PROP
(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)
)
.

Theorem 3.2 enables us to establish a relation between the Shapley value
and the run to the bank rule for convex compromise stable games. A one
point solution f is relative invariant with respect to strategic equivalence if
f(w) = a+kf(v) if w = a+kv. The Shapley value is relative invariant with
respect to strategic equivalence. The relation between the Shapley value
and the run to the bank rule for bankruptcy games in combination with
Theorem 3.2 yields the following result:

Corollary 4.1 Let (N, v) be a convex compromise stable game, then:

φ(v) = m(v) + RTB
(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)
)
.
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The following theorem shows that the nucleolus for compromise stable
games can be computed by taking the Talmud rule as bankruptcy rule in
(2). In the proof the following important result is used:

Theorem 4.1 (Potters and Tijs (1994)) Let (N, v) and (N,w) be two
games such that (N, v) is a convex game and C(v) = C(w). Then the
nucleoli of (N, v) and (N,w) coincide:

ν(v) = ν(w).

Theorem 4.2 Let v ∈ CAN be compromise stable. Then:

ν(v) = m(v) + TAL
(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)
)
. (3)

Proof: Let v ∈ CAN be compromise stable. Define the additive game
(N, a) by taking ai = mi(v) for all i ∈ N , and define w(S) = v(S)−∑

i∈S ai,
S ∈ 2N . Because the nucleolus is relative invariant with respect to strategic
equivalence, it holds that:

ν(v) = a + ν(w)
= m(v) + ν(w).

For (N, w) the following assertions can easily be verified:

M(w) = M(v)−m(v),
m(w) = m(v)−m(v) = 0,

w(N) = v(N)−
∑

i∈N

mi(v),

C(w) = CC(w)

=
{

x ∈ RN |
∑

i∈N

xi = w(N), 0 ≤ x ≤ M(w)
}

.

Consider the bankruptcy problem defined by E = w(N) and d = M(w).
For the corresponding bankruptcy game (N, vE,d) it holds that:

vE,d(N) = w(N).

12



Using the convexity of (N, vE,d), it holds for i ∈ N that:

Mi(vE,d) = min{E, di},
mi(vE,d) = vE,d({i})

=
(
E −

∑

j∈N\{i}
dj

)
+

=
(
w(N)−

∑

j∈N\{i}
Mj(w)

)
+

= 0.

The last equality follows from the fact that mi(w) = 0, and mi(w) ≥ w(N)−∑
j∈N\{i}Mj(w). The core of (N, vE,d) can now be written as:

C(vE,d) = CC(vE,d)

=
{

x ∈ RN |
∑

i∈N

xi = E, 0 ≤ xi ≤ min{E, di}, ∀i ∈ N
}

=
{

x ∈ RN |
∑

i∈N

xi = w(N),

0 ≤ xi ≤ min
{
w(N),Mi(w)

}
, ∀i ∈ N

}

=
{

x ∈ RN |
∑

i∈N

xi = w(N), 0 ≤ x ≤ M(w)
}

= CC(w)
= C(w).

Since (N, vE,d) and (N, w) have the same core, and (N, vE,d) is convex,
we can apply Theorem 4.1. This yields:

ν(w) = ν(vE,d)
= TAL

(
E, d

)

= TAL
(
w(N), M(w)

)

= TAL
(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)
)
.

Furthermore, the nucleolus of (N, v) is now given by:

ν(v) = m(v) + ν(w)

= m(v) + TAL
(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)
)
.
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¤
For any 3-player game (N, v) it holds that C(v) = CC(v). Hence Theorem
4.2 provides a tool that can be used to compute the nucleolus for 3-player
games:

Corollary 4.2 Let (N, v) be a balanced game with three players. Then
C(v) = CC(v) and:

ν(v) = m(v) + TAL
(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)
)
.

In the following example Theorem 4.2 is used to compute the nucleolus
of Example 2.1.

Example 4.1 Consider the game (N, v) of Example 2.1. Then M(v) =
(2, 4, 6, 3) and m(v) = (1, 0, 1, 0). Using Theorem 4.2, the nucleolus of (N, v)
is given by:

ν(v) = m(v) + TAL
(
v(N)−

∑

i∈N

mi(v), M(v)−m(v)
)

= (1, 0, 1, 0) + TAL
(
8, (1, 4, 5, 3)

)

= (1, 0, 1, 0) + (1, 4, 5, 3)− CEA
(
5, (1

2 , 2, 21
2 , 11

2)
)

= (2, 4, 6, 3)− (1
2 , 11

2 , 11
2 , 11

2)
= (11

2 , 21
2 , 41

2 , 11
2).

We now consider an application of Theorem 3.1 and Theorem 4.2 with
respect to big boss and clan games. In a clan game a coalition can not make
any profit if a certain group (CLAN) is not part of this coalition. A game
v ∈ TUN is a clan game if v(S) ≥ 0 for all S ∈ 2N , Mi(v) ≥ 0 for all i ∈ N
and if there exists a nonempty coalition CLAN ⊂ N such that:

(i) v(S) = 0 if CLAN 6⊂ S

(ii) v(N)− v(S) ≥ ∑
i∈N\S Mi(v), for all S with CLAN ⊂ S.

The last property is also known as the union property. Clan games for which
CLAN = {i∗} are also known as big boss games. 1 In the following corollary

1This definition differs from the definition of big boss games given in Muto et al. (1988)
in the sense that it is now required that v(S) ≥ 0 for all S ∈ 2N and the requirement of
monotonicity is weakened to M(v) ≥ 0. A game (N, v) is monotonic, if v(S) ≤ v(T ) if
S ⊂ T .
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several (known) properties of clan games are easily proved with the aid of
Theorems 3.1, 3.2 and 4.2. Since for big boss games some additional results
can be achieved, the results for this class of games are treated separately.

Corollary 4.3 (cf. Potters et al. (1989)) Let (N, v) be a clan game with
|CLAN| ≥ 2. Then v ∈ CAN , C(v) = CC(v) and for the nucleolus of (N, v)
it holds that:

ν(v) = CEA
(
v(N), 1

2M(v)
)
.

Proof: Let (N, v) be a clan game, with |CLAN| ≥ 2. Then the following is
true:

Mi(v) = v(N), if i ∈ CLAN.

Let i ∈ N and S ⊂ N such that i ∈ S. Then if CLAN ⊂ S it can be deduced
from the union property that:

v(S)−
∑

j∈S\{i}
Mj(v) ≤ v(N)−

∑

j∈N\{i}
Mj(v)

≤ 0.

The last inequality follows from M(v) ≥ 0. Since v(S) = 0 if CLAN 6⊂ S,
it follows that (by taking S = {i}) mi(v) = 0. It holds that m(v) ≤ M(v)
and because v(N) ≥ 0 and M(v) ≥ 0 it is true that

∑
i∈N mi(v) ≤ v(N) ≤∑

i∈N Mi(v). Hence v ∈ CAN .
Let S ∈ 2N\{∅}, if CLAN ⊂ S, then (1) is satisfied by condition (ii). If

CLAN 6⊂ S, then v(S) = 0 and formula (1) follows from m(v) = 0. Theorem
3.1 yields that C(v) = CC(v). According to Theorem 4.2 the nucleolus of
(N, v) can be computed by:

ν(v) = TAL
(
v(N),M(v)

)
.

Since |CLAN | ≥ 2, we have that
∑

i∈N Mi(v) ≥ 2v(N). Hence,

ν(v) = CEA
(
v(N), 1

2M(v)
)
.

¤

Corollary 4.4 (cf. Muto et al. (1988)) Let (N, v) be a big boss game
with clan i∗. Then v ∈ CAN , C(v) = CC(v), τ(v) = ν(v) and:

νj(v) =
{ 1

2Mj(v) if j ∈ N\{i∗}
v(N)− 1

2

∑
k∈N\{i∗}Mk(v) if j = i∗.

Moreover, if (N, v) is convex then τ(v) = ν(v) = φ(v).

15



Proof: Let v ∈ TUN be a big boss game and let i∗ ∈ N denote the clan
of (N, v). Then it holds that:

Mi∗(v) = v(N)− v(N\{i∗})
= v(N).

Let j ∈ N\{i∗} and S ⊂ N such that j ∈ S. If i∗ ∈ S it holds that:

v(S)−
∑

k∈S\{j}
Mk(v) ≤ v(N)−

∑

k∈N\{j}
Mk(v)

≤ 0,

because of (ii) and the fact that M(v) ≥ 0 and Mi∗ = v(N). If i∗ 6∈ S, then
v(S) = 0, in particular this holds for S = {j}. We conclude that:

mj(v) = 0, ∀j ∈ N\{i∗}.
It can be derived from the union property that:

v(S)−
∑

j∈S\{i∗}
Mj(v) ≤ v(N)−

∑

j∈N\{i∗}
Mj(v),

for all S ⊂ N and i∗ ∈ S. Hence:

mi∗(v) = v(N)−
∑

j∈N\{i∗}
Mj(v). (4)

Since M(v) ≥ 0 it follows that m(v) ≤ M(v) and
∑

j∈N mj(v) ≤ v(N) ≤∑
j∈N Mj(v) and hence v ∈ CAN .
We have that (1) holds for all S with i∗ ∈ S, since (N, v) satisfies the

union property. If i∗ 6∈ S, then v(S) = 0 and (1) holds, because mj(v) = 0
for all j ∈ N\{i∗}. It follows from Theorem 3.1 that C(v) = CC(v) and
from Theorem 4.2 that:

ν(v) = m(v) + TAL
(
E, d

)
,

with E = v(N)−∑
i∈N mi(v) and d = M(v)−m(v). Substituting the value

of M(v) and m(v) yields:

E = v(N)−
∑

j∈N

mj(v)

= v(N)−mi∗(v)

=
∑

j∈N\{i∗}
Mj(v),
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where the last equality holds because of (4). Furthermore it holds that:

dj =
{

Mj(v) if j ∈ N\{i∗}∑
k∈N\{i∗}Mk(v) if j = i∗.

Observe that it holds that
∑

j∈N dj = 2E. By self-duality of the Talmud
rule and the proportional rule it follows that:

τ(v) = ν(v) = m(v) +
1
2
d.

Substituting the value of d yields for j ∈ N :

νj(v) =
{ 1

2Mj(v) if j ∈ N\{i∗}
v(N)− 1

2

∑
k∈N\{i∗}Mk(v) if j = i∗.

If (N, v) is convex, then it follows from Corollary 4.1 and the self-duality of
the run to the bank rule that:

τ(v) = ν(v) = φ(v).

¤

5 Core cover and Weber set

In this section the relation between the core cover and the Weber set is
examined.

For a balanced TU-game the intersection of the core cover and the Weber
set always contains the core. Hence, the core cover and the Weber set have
points in common. This inspires us to investigate whether the intersection
of the core cover and the Weber set is non-empty. We will show that under
a weak condition this holds true. For the proof of this theorem the following
lemma is needed:

Lemma 5.1 For all n ∈ N and all d, y ∈ Rn such that:

y1 ≤ . . . ≤ yn, (5)
k∑

i=1

di ≤ 0 for all k ∈ {1, . . . , n− 1}, (6)

and
n∑

i=1

di = 0, (7)
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it holds that:

d · y =
n∑

i=1

diyi ≤ 0.

Proof: The proof is given by an induction argument to n. For n = 1 the
assertion is true, since d1 = 0. Assume that the lemma holds for k = n− 1.
Let y, d ∈ Rn such that the formulas (5)–(7) are true. One can conclude
that:

n∑

i=1

diyi =
n−2∑

i=1

diyi + dn−1yn−1 + dnyn−1 + dn(yn − yn−1)

= (
n−2∑

i=1

diyi + (dn−1 + dn)yn−1) + dn(yn − yn−1)

≤ 0 + dn(yn − yn−1)
≤ 0.

The first inequality follows from the induction hypothesis and the second
inequality follows from the fact that dn ≥ 0 and yn − yn−1 ≥ 0. ¤

Theorem 5.1 Let v ∈ CAN such that for all S ∈ 2N it holds that:

v(S) +
∑

j∈N\S
mj(v) ≤ v(N), (8)

then CC(v) ∩W (v) 6= ∅.
Proof: Let v ∈ CAN such that for all S ∈ 2N (8) is satisfied. Suppose that
CC(v)∩W (v) = ∅. Since CC(v) and W (v) are both closed and convex sets
we can separate these sets with a hyperplane. This means that there exists
a vector y ∈ RN such that:

m · y > l · y for all m ∈ W (v), l ∈ CC(v). (9)

Let σ ∈ Π(N) an order such that:

yσ(1) ≤ yσ(2) ≤ . . . ≤ yσ(n)

Consider the larginal lσ(v) and the marginal mσ(v), then:

mσ(v) · y − lσ(v) · y = (mσ(v)− lσ(v)) · y

=
n∑

i=1

(
mσ

σ(i)(v)− lσσ(i)(v)
)
yσ(i).
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Because (N, v) is compromise admissible and hence m(v) ≤ M(v), it holds
that for all i ∈ N and for all S ⊂ N with i ∈ S:

v(S)−
∑

j∈S\{i}
Mj(v) ≤ max

T :i∈T

{
v(T )−

∑

j∈T\{i}
Mj(v)

}

= mi(v)
≤ Mi(v).

This yields that for all S ∈ 2N :

v(S) ≤
∑

i∈S

Mi(v). (10)

From (8) it follows that:

v(S) ≤ v(N)−
∑

j∈N\S
mj(v). (11)

Define dσ(i) = mσ
σ(i)(v)− lσσ(i)(v), then it holds that:

k∑

i=1

dσ(i) =
k∑

i=1

(
mσ

σ(i)(v)− lσσ(i)(v)
)

= v
({σ(1), · · · , σ(k)})−

k∑

i=1

lσσ(i)(v)

≤ 0.

The inequality follows from inequalities (10) and (11). Furthermore it holds
that:

n∑

i=1

dσ(i) = v(N)− v(N) = 0.

Applying Lemma 5.1 gives:
n∑

i=1

dσ(i)yσ(i) =
n∑

i=1

(
mσ

σ(i)(v)− lσσ(i)(v)
)
yσ(i)

≤ 0.

Hence mσ(v) · y ≤ lσ(v) · y. This contradicts (9). ¤
Theorem 5.1 can be used to show that for semi-convex games the intersection
of the core cover and the Weber set is nonempty. A game v ∈ TUN is semi-
convex if v is superadditive and mi(v) = v({i}) for all i ∈ N .
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Corollary 5.1 Let v ∈ CAN be semi-convex. Then CC(v) ∩W (v) 6= ∅.

Proof: Let v ∈ CAN be semi-convex. Superadditivity of (N, v) implies that
for all S ∈ 2N :

v(S) +
∑

j∈N\S
v({j}) ≤ v(N).

This is equivalent with (8), because mi(v) = v({i}) for all i ∈ N . Hence
CC(v) ∩W (v) 6= ∅.
The following example shows that it is possible that the core cover and the
Weber set do not have any points in common.

Example 5.1 Let (N, v) be a game such that N = {1, . . . , 5} and such that
the players 1, 2 and 3 are symmetric and the players 4 and 5. To simplify
notations we state that the players 1, 2 and 3 are of type a and 4 and 5 of
type b. For example the coalition {abb} can be the coalitions {145}, {245}
or {345}. Define the game (N, v) by:

S a b aa ab bb aaa aab abb aaab aabb N

v(S) 0 0 −1 0 2 −1 −1 2 −1 1 1

Then it is easily verified that M(v) = (0, 0, 0, 2, 2) and m(v) = (0, 0, 0, 0, 0).
Hence the core cover of (N, v) is given by:

CC(v) =
{
x ∈ R5 | x ≥ 0, x4 + x5 = 1, xa = 0

}
.

Note that if x ∈ CC(v), then x1 = x2 = x3 = 0.
Because of symmetry, one does not need to calculate all marginal vectors

to compute the Weber set. There are only six marginal vectors which each
correspond to twenty different orders. The Weber set is given by:

W (v) = conv
{
(−1, 0, 0, 2, 0), (−1, 0, 0, 0, 2), (0,−1, 0, 2, 0),
(0,−1, 0, 0, 2), (0, 0,−1, 2, 0), (0, 0,−1, 0, 2)

}
.

We can conclude that for all σ ∈ Π(N) it holds that mσ
1 + mσ

2 + mσ
3 = −1.

Hence for all m ∈ W (v) it holds that m1 + m2 + m3 = −1, this yields that
CC(v) ∩W (v) = ∅.
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