
  

 

 

Tilburg University

International Fisheries Agreements

Pham Do, K.H.; Folmer, H.

Publication date:
2003

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Pham Do, K. H., & Folmer, H. (2003). International Fisheries Agreements: The Feasibility and Impacts of Partial
Cooperation. (CentER Discussion Paper; Vol. 2003-52). Microeconomics.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 31. Jul. 2022

https://research.tilburguniversity.edu/en/publications/1b8f7ba5-c854-48f4-8ec0-9ebc4fea8b28


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2003–52 

 
 
 

INTERNATIONAL FISHERIES AGREEMENTS: 
THE FEASIBILITY AND IMPACTS OF 

PARTIAL COOPERATION 
 

By Kim Hang Pham Do and Henk Folmer 
 

May 2003 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 



International Fisheries Agreements:
The feasibility and impacts of partial cooperation1

Kim Hang Pham Do1,2 and Henk Folmer2,3

1CentER and Dept. of Econometrics and OR (kimhang@uvt.nl).
2CentER and Dept. of Economics, Tilburg University.
3Dept. of Social Sciences. Wageningen University (henk.folmer@wur.nl).

Abstract: This paper deals with partial cooperation among countries
involved in the exploitation of straddling and highly migratory fish stocks.
We analyse the feasibility of coalition structures and their impacts on fish-
ing efforts by means of games in partition function form. Furthermore, we
demonstrate that the modified Shapley value is an appropriate device for the
division of the gains from cooperation.

Keywords: international fisheries, overexploitation, partial coopera-
tion, games in partition function form, competitive equilibrium, modified
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1 Introduction

The oceans’ fish stocks have been exploited as never before. Most of the
world’s marine fishing areas have already reached their maximum potential
for fish captures (UN, 2002). FAO (2000) shows that about 47 to 50 percent
of marine fish stocks are fully exploited and are, therefore, producing catches
that have either reached or are very close to their maximum limits, with no
room for further expansion. Another 15 to 18 percent are overexploited and
there is an increasing likelihood that catches from these stocks will decrease,
if remedial action is not taken to reduce or revert overfishing conditions.

The world catch of marine fish has continued to rise in spite of exten-
sions of fisheries jurisdictions (Exclusive Economic Zone or EEZ) in the
mid-1970s to 200 miles, though at a slower rate. To regulate the exploita-
tion of the ocean’s fish stocks further, several international agreements have
been concluded. The relevant international law was codified, developed and
enhanced through, inter-alia, the entry into force of the UN Convention on
the Law of the Sea in 1994, the adoption of the Convention on Straddling
Fish Stocks and Highly Migratory Fish Stocks in 1995 (abbreviated as 1995

1We thank Henk Norde for valuable and helpful comments.
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UN Fish Stocks Agreement), and the adoption of the FAO Code of Conduct
for Responsible Fisheries in the same year. Moreover, an international ju-
risprudence on fisheries related issues is slowly emerging through the work
of the International Tribunal on the Law of the Sea (for details see Green
Paper, 2001).

The 1995 UN Fish Stocks Agreement calls for those nations who wish
to participate in the harvesting of the fish resources in the high seas, but
are not currently members of the relevant Regional Fisheries Management
Organization (RFMO), to declare a willingness to join and to enter into
negotiations over mutually acceptable terms of entry. Under the terms of the
UNConvention on the Law of the Sea, which is of direct relevance to the 1995
UN Fish Stocks Agreement, coastal states (CSs) and distant water fishing
nations (DWFNs) shall apply the precautionary approach to conservation,
management and exploitation of straddling and highly migratory fish stocks
in order to protect the living resources and preserve the marine environment.
In addition, all states are obliged to take conservation and management
measures necessary for the conservation of the living resources of the high
seas (Article 117). Moreover, international cooperation and negotiations are
required for all states involved in the exploitation of such resources (Article
118).

Although the 1995 UN Fish Stocks Agreement entered into force on 11
December 2001 (UN, 2002), the precise meaning of the provisions describing
these obligations is not clear nor the manner in which they will be applied.
For example, Article 63 expresses that the states concerned should seek to
agree on conservation measures applicable beyond the EEZs, either directly
or through appropriate RFMOs. Article 64 requires that coastal and other
states whose nationals fish in the region “shall cooperate” directly or through
appropriate international organizations with a view to ensuring conservation
and optimum utilization. Furthermore, Article 118 on high seas stocks,
referring to the need to establish RFMOs, provides that states exploiting
such stocks or different ones in the same area “shall enter into negotiations”
with a view to taking the measures necessary for the conservation of the
living resources concerned.

Due to inter alia its ambiguities, the 1995 UN Fish Stocks Agreement
provides little or no guidance as to how cooperation, through a RFMO,
is to be effected (Munro, 2000). The lack of cooperation has resulted in
conflicts between coastal states and distant water fishing states (Bjφrndal
and Munro, 2003)2. Moreover, overexploitation has continued and the need

2According to these authors, the inadequacies of Part VII, section 2 (Articles 116-120),
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for a cooperative management regime is evident.3

The literature on the economic analysis of the 1995 UN Fish Stocks
Agreement notes that the new member or participant problem is one of
the most important problems in the high seas fishery management (Kaitala
and Munro, 1993 and 1995; Bjφrndal and Munro, 2003), since the interests
of current members of the RFMO and of the applicants are often strongly
opposed: the current members face the likelihood of having to give up a
portion of their present quotas to the newcomer, and the applicant believes
that it may be better off by staying outside of the coalition and continuing
harvesting while facing fewer constraints. According to Kaitala and Munro
(1997), the likelihood of achieving stable cooperation will be very low if the
new member problem is mishandled. In addition, Datta andMiraman (1999)
show that with an increasing number of countries, the inefficiency of the
noncooperative equilibrium generated by the common access feature of high
seas dominates and overharvesting increases. Although the nations involved
in a regional fishery resource often recognize an advantage in cooperative
management of the resource, on-going negotiations over harvest allotments
often have proven to be arduous and frustrating, and interrupted by brief
but astonishingly violent ’fish wars’.

This paper examines how a RFMO might successfully achieve effective
control of a high seas fishery in the context of partial cooperation. We
consider the high seas fishery stock as common property and assume that
all nations are allowed to exploit it. We view concluding a Regional Fishery
Agreement (RFA) as a game, where countries freely decide whether or not
to join a coalition (i.e. a RFMO)4. That is, we consider a management
situation where a coalition of countries, say S, cooperate and where one or
several groups of countries stay outside S. The coalition member of S will
coordinate their inputs so as to maximize their incomes. However, coalition
S’s income will be affected by a negative externality due to the input of
those who do not belong to S.

The question that we deal with in this paper is the feasibility of partial
cooperation and its impacts on fishing efforts. Moreover, we analyze how
to allocate property rights among fishing nations that have expressed an

of the UN Convention pertaining to the management of high seas fisheries are the source
of the lack of cooperation and conflicts.

3For a review of the history of the 1995 UN Fish Stocks Agreement as well as its
implementation, see Bjφrndal and Munro (2003).

4For related applications of cooperative game theoretic approaches to high seas fishery
management, see, for example, Li (1998), Lindroos (2000), Bjφrndal et al. (2000) and
Pintassilgo (2002).
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interest in sustainable exploitation of a fish stock in a partial cooperative
setting. Particulary, we examine the feasible allocations of property rights
among members of a given RFMO and coalitions of potential entrants.

In this paper, the feasibility and impacts of partial cooperation are an-
alyzed by means of games in partition function form. This class of games
was introduced in Thral and Lucas (1963) and is a generalization of charac-
teristic function form games. The partition function form game allows the
complements to split into coalitions in an arbitrary manner, while the clas-
sical characteristic function form game is defined in terms of coalitions and
their complements only. We apply the modified Shapley value as a device
for the division of the gains from partial cooperation. We observe that the
emphasis in this paper is on the cost function rather than on the production
function.

The paper is organized as follows. The next section presents the ba-
sic model and introduces notations and definitions. Section 3 analyses the
effects of partial cooperation in terms of fishing efforts. Section 4 demon-
strates that the modified Shapley value is a feasible solution concept for
RFMOs. Concluding remarks follow in the last section.

2 The model and definitions

We begin by specifying a static model5 of a common fishery resource as a
n-person game (c.f. Funaki and Yamato, 1999; and Cornes and Hartley,
2000). Let N = {1, 2, ..., n} be the set of n fishing nations, with generic
element j ∈ N . Let e = (e1, e2, ..., en) be a vector of fishing efforts, where
ej ≥ 0 is country j’s fishing effort, and let eN =

Pn
j=1 ej be the aggregate

fishing effort of all countries.
We introduce the production function f(eN) that specifies the amount

of fish caught for each value of the total effort eN . We assume that effort as
input is homogenous and that all countries are equally likely to catch a fish
per unit of effort. This implies that the share of the total harvest obtained
by country j is directly proportional to the share of country j’s effort in
total effort eN . In other words, the harvest of country j is given by

ej
eN
f(eN)

for a given fish stock6.
Different levels of technology efficiency among countries are represented
5That is, we assume a situation where the fishing nations choose across different possible

steady states, ignoring the transitional dynamics.
6Note that the distribution of fish is not a result of negotiations among fishing countries;

it is simply a reflection of the dependence of harvesting on its effort level ej and eN .
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by the cost functions cj(ej). Normalizing the price of the resource to unity,
the net rent or benefit of country j is given by

πj(e1, e2, ..., en) =
ej
eN
f(eN)− cj(ej), (1)

where πj(0, 0, ..., 0) = 0.

We make the following assumptions:
Assumption A1: f(.) is twice continuously differentiable, f 00(.) < 0 (i.e.

strictly concave for eN > 0)
7, and f(0) = 0.

Assumption A2: cj(.) is continuously differentiable, increasing and con-
vex for every j.

To simplify the analysis, we assume that cj(ej) = cjej, where cj > 0 for
every j ∈ N.

Assumption A3: 0 < cj < f
0(0), for every j ∈ N

This assumption guarantees the existence of an interior solution.

For every e = (e1, e2, ..., en), and i ∈ N we define e−i = (e1, ..., ei−1, ei+1, ..., en).
In a similar vein, a vector e = (e1, e2, ..., en) is written as e = (ei, e−i).

The above assumptions imply that the benefit function (1) is continu-
ously differentiable and strictly concave on ej. Particularly, the biological
constraints that the benefit function is decreasing for eN large enough is met

• A vector of effort e∗ = (e∗1, e∗2, ..., e∗n) is said to be a competitive equi-
librium or Nash equilibrium (NE) if ∀i ∈ N, and ∀ ei ≥ 0

πi(e
∗
i , e

∗
−i) ≥ πi(ei, e

∗
−i), (2)

where e∗i ≥ 0, ∀i ∈ N.

The assumptions A1-A3 guarantee the existence of a competitive equi-
librium. Moreover, this equilibrium is unique (Theorem 1 and Corollary 1
in Watt, 1996).

7This assumption implies that the additional catch from an extra unit of effort will
clearly decrease as the total effort expended increseases, i.e. there are decreasing returns
to fishing effort.
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In addition to the above mathematical assumptions (A1-A3), we make
the following behavioural assumptions A4-A5.

Assumption A4: a country is free to enter or leave a coalition. When a
country defects from a coalition defectors either play as singletons or form
a new coalition.

Assumption A5: when countries coordinate to form a coalition, their
objective is to maximize the aggregate benefit, given the strategies of the
others.

We introduce the following notions and definitions that will be used to
analyze partial cooperation.

• A coalition structure, κ, is a partition of the set N of countries. Let
P(N) be the set of all partitions of N. So, a coalition structure κ ∈
P(N) means that κ = {S1, ..., Sm}, N ⊇ Sj 6= ∅, Sj ∩ Sk = ∅, for all
j, k = 1, ...,m, j 6= k and ∪mj=1Sj = N.

For a given κ ∈ P(N), let |κ| denote the cardinality of κ (i.e. if κ =
{S1, ..., Sm} then |κ| = m). The partition which consists of singleton coali-
tions only, κ = {{1}, {2}, ..., {n}}, is denoted by [N ] whereas the partition
which consists of the grand coalition only is denoted by {N}.

• A pair (S,κ) which consists of a coalition S and a partition κ of N to
which S belongs is called an embedded coalition.

Let E(N) denote the set of embedded coalitions, i.e.

E(N) = {(S,κ) ∈ 2N × P(N)| S ∈ κ}.

Definition 2.1 A mapping

w : E(N) −→ R

that assigns a real value, w(S,κ), to each embedded coalition (S,κ) is called
a partition function. The ordered pair (N,w) is called a partition function
form game.

The value w(S,κ) represents the payoff of coalition S, given that coalition
structure κ forms. For a given partition κ = {S1, S2, ..., Sm} and a partition
function w, let w(S1, S2, ..., Sm) denote the m-vector (w(Si,κ))

m
i=1.
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It will be convenient to economize on brackets and suppress the commas
between elements of the same coalition. Thus, we will write, for exam-
ple, w({i, j, k}, {{i, j, k}, {l, h}}) as w(ijk, {ijk, lh}), and w({ikj}, {lh}) as
w(ijk, lh). The set of partition function form games with player set N is
denoted by PFFGN .

Definition 2.2 Let (N,w) be a partition function form game and κ ∈
P(N).

(i) coalition S ∈ κ is feasible under coalition structure κ if

w(S,κ) ≥
X
i∈S

w(i, [N ])

(ii) a coalition structure κ ∈ P(N) is a feasible structure if all coalitions
are feasible under coalition structure κ, i.e.

w(S,κ) ≥
X
i∈S

w(i, [N ]), for all S ∈ κ

A feasible coalition implies that the worth of its members is at least as
much as their worth under the stand-alone structure. In a similar vein, a
coalition structure is feasible if the worth of each coalition in the coalition
structure is at least as much as its stand-alone worth. A feasible coalition
structure for a given game (N,w) is called a partial cooperation.

Example 2.1 Consider the game (N,w), where N = {1, 2, 3, 4}, the
players are identical and w is given as follows.

w(i, [N ]) = 3, w(i, {i, j,N\{ij}} = 2, w(i, {i, jkl}) = 3,
w(ij, {ij, k, l}) = 4, w(ij, {ij, kl}) = 5, w(ijk, {ijk, l}) = 10,
w({N}) = 11.
In this example, every coalition formed by 3 players such as {i, j, k}, has
w(ijk, {ijk, l}) ≥ w(i, [N ]) +w(j, [N ]) +w(k, [N ]), while the value for a
singleton in this coalition structure is
w(l, {ijk, l}) = 3 = w(l, [N ]).
For every coalition consisting of 2 players, we have two cases:
(i) if κ = {ij, kl} then w({ij},κ) < w({i}, [N ]) +w({j}, [N ]),
(ii) if κ = {ij, k, l}} then w({ij},κ) < w({i}, [N ]) +w({j}, [N ]) and

w(i, {i, j,N\{ij}} = 2 < w(i, [N ]).
In addition, w({N}) <P4

i=1w(i, [N ]).
Hence, feasible coalition structures are: {i, jkl}.
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Definition 2.3 A solution of PFFGN is a function Ψ which associates
with each game (N,w) in PFFGN a vector Ψ(N,w) of individual payoffs in
RN , i.e. Ψ(N,w) = (Ψi(N,w))i∈N ∈ RN .

We now turn to the case that some countries agree to form a coalition
S, S ⊆ N . Since countries have different technologies, and each country is
free to enter or leave a coalition, we consider the case in which cooperation
among countries is possible in term of transferable technologies8 (c.f. Norde
et al. 2002). This implies that the cost function of coalition S, cS(.), is the
cheapest cost function which is available among members in their coalition,
i.e.

cS(eS) = min{
j∈S

cj(eS)}, (3)

where eS =
P
j∈S ej is the total effort of S.

Suppose that a coalition structure κ = {S1, S2, ..., Sm} is formed (m ≤
n). Total effort for an admissible coalition structure Si in κ is denoted by
eSi . The benefit function of coalition Si is defined by

πSi(eSi , e−Si) =
eSi
eN
f(eN)− cSi(eSi), (4)

where e−Si = (eS1, ..., eSi−1 , eSi+1, ..., eSm)

• A non-negative vector e∗ = (e∗S1, e∗S2 , ..., e∗Sm) associated with coalition
structure κ = {S1, S2, ..., Sm}, is called a competitive equilibrium under
coalition structure κ (or equilibrium under κ) if for all i ∈ {1, 2, ...,m},
and eSi ≥ 0

πSi(e
∗
Si , e

∗
−Si) ≥ πSi(eSi , e

∗
−Si). (5)

Note that if m = n, then (5) is the definition of Nash equilibrium, and
if m = 1 then it presents Pareto efficiency.

The existence of a unique competitive equilibrium under a given coali-
tion structure is obvious since the strategy sets are 1-dimensional and the
m−person game with payoff functions (4) is obtained9 from the n−person
game with payoff functions (1).

We are now in a position to define the fishery game in partition function
form.

8For example, cooperation may lead to an exchange of vessels or labor among coalition
partners.

9The assumptions A1-A3 still hold for this game.
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Definition 2.4 A fishery game in partition function form (FGPFF) is
an ordered pair (N,π), where N is the set of players and π is the partition
(benefit) function derived from competitive equilibrium e∗ under κ such that

π(Si,κ) = πSi(e
∗
Si , e

∗
−Si) for all (S,κ) ∈ E(N), (6)

with πSi(e) defined by (4).

The set of fishery games in partition function form with player set N is
denoted by FGPFFN .

Let κ(Si) denote a coalition structure κ, where Si belongs to. Note that
π(Si,κ) may differ from π(Si,κ

0) since there exist many coalition structures
which a coalition Si may belong to, while the equilibria under coalition
structures κ and κ0 are different (c.f. there is a presence of externalities).

In the remainder of this paper, we use the notations π(i, [N ]) and π(Si,κ)
to denote the payoff of a single coalition {i} in the Nash equilibrium and
the payoff of a coalition Si under coalition structure κ, respectively.

3 Implications of partial cooperation

In this section we analyze various impacts of coalitions and coalition struc-
tures. For each coalition structure κ = {S1, S2, ..., Sk}, let e∗(κ) be total
effort associated with κ, i.e. e∗(κ) =

Pk
j=1 e

∗
Sj
, where {e∗S1, e∗S2 , ..., e∗Sk} is

the unique competitive equilibrium under κ. Let π(e∗(κ)) =
Pk
j=1 π(Sj ,κ)

be total net rents or benefits associated with κ at equilibrium e∗(κ), where
π(Sj ,κ), defined by (6), is the net rent of coalition Sj under κ.
Without loss of generality, we assume that c1 ≤ c2 ≤ ... ≤ cn. Thus, condi-
tion A.2 implies: 0 ≤ cn < f 0(0).

For each coalition structure κ, a straightforward result is that in the
competitive equilibrium a coalition with lower cSi has a higher fishing effort
level eSi .

Proposition 3.1 For every coalition structure κ, the lower the marginal
cost cSi, the higher the effort level in the coalition structure equilibrium.
That is, for every Si, Sj ∈ κ, if cSi ≥ cSj then e∗Sj ≥ e∗Si in the equilibrium.

Proof. Observe that in a coalition structure equilibrium e∗ = (e∗S1, e
∗
S2
, ...,

9



e∗Sm), the first-order condition leads to

cSi =
e∗Si

[e∗(κ)]2
[f 0(e∗(κ))e∗(κ)− f(e∗(κ))] + f(e

∗(κ))
e∗(κ)

, (7)

for all i ∈ {1, 2, ...,m}, and e∗(κ) =Pi∈I(κ) e
∗
Si
.

From (7), it follows that

cSi − cSj =
e∗Si − e∗Sj
[e∗(κ)]2

[f 0(e∗(κ))e∗(κ)− f(e∗(κ))].

Moreover, assumption A1 implies that

f 0(e∗(κ))e∗(κ)− f(e∗(κ)) < 0

in the equilibrium under κ.10

Therefore, if cSi − cSj ≥ 0 we have e∗Si ≤ e∗Sj .

Summing up (7), it follows that total effort e∗(κ) can be determined by the
following equation:

f 0(e∗(κ)) + (k − 1)f(e
∗(κ))

e∗(κ)
=

kX
j=1

cSj . (8)

Furthermore, from (7) and (8),

e∗Sj =
e∗(κ)[cSj − f(e∗(κ))

e∗(κ) ]

f 0(e∗(κ))e∗(κ)− f(e∗(κ))
and

f 0(e∗(κ))e∗(κ)− f(e∗(κ)) =
kX

m=1

cSm − k
f(e∗(κ))
e∗(κ)

.

Then, for every coalition structure κ = {S1, S2, ..., Sk},

e∗Sj = e
∗(κ)

 f(e∗(κ))
e∗(κ) − cSj

k f(e
∗(κ))

e∗(κ) −
Pk
m=1 cSm

 , (9)

where e∗(κ) =
Pk
j=1 e

∗
Sj
, and e∗ = (e∗S1 , e

∗
S2
, ..., e∗Sk).

10Since f(0) = 0, and f
0
(x)x− f(x) is decreasing and non-positive.
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If the share of efforts of coalition Sj in the competitive equilibrium under

structure κ is defined by sh(Sj) =
e∗Sj
e∗(κ) . Then from (9) it follows that

sh(Sj) =

f(e∗(κ))
e∗(κ) − cSj

k f(e
∗(κ))

e∗(κ) −
Pk
m=1 cSm

. (10)

The above equations (8) and (9) form an alternative to the proof of
Proposition 3.1 and show how to calculate total effort and each coalition
effort in coalition structures. Therefore, total effort can be predicted by
the aggregate marginal cost and the number of coalitions k. In the following
example we will illuminate how to calculate total effort and the effort of each
coalition, under a given coalition structure in the competitive equilibrium.

Example 3.1 Consider four countries, indexed by i = 1, 2, 3, 4, with
the production function f(eN) = (60 − eN)eN and marginal costs c1 = 2,
c2 = 3, c3 = 6, c4 = 9. Aggregate marginal costs, total effort and total
benefits as calculated by means of (8) and (9) are presented in Table 3.1.

coalitions κ
Pk
m=1 cSm e∗(κ) π(e∗(κ))

k = 4 1− 2− 3− 4 20 44 514

k = 3 12− 3− 4 17 40.75 548.18

k = 3 13− 2− 4 14 41.50 602.75

k = 3 1− 23− 4 14 41.50 602.75

k = 3 14− 2− 3 11 42.25 603.68

k = 3 1− 24− 3 11 42.25 603.68

k = 3 1− 2− 34 11 42.25 603.68

k = 2 123− 4 11 36.33 684.51

k = 2 12− 34 8 37.33 704.81

k = 2 124− 3 8 37.33 704.81

k = 2 14− 23 5 38.33 735.71

k = 2 13− 24 5 38.33 735.71

k = 2 134− 2 5 38.33 735.71

k = 2 1− 234 5 38.33 735.71

k = 1 1234 2 29 841

Table 3.1. The possible coalition structures for the four countries.

Consider, for example, the case k = 3 with κ = {12, 3, 4}. Aggregate
marginal cost of this coalition structure is 2+6+9 = 17.11 Since f 0(e∗(κ)) =
11Observe that transferable technology within a coalition is assumed.
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60− 2e∗(κ) and f(e∗(κ))
e∗(κ) = 60− e∗(κ), equation (8) implies that
60− 2e∗(κ) + 2[60− e∗(κ)] = 17.

Solving the above equation, the total effort in the competitive equilib-
rium is obtained by e∗(κ) = 180−17

4 = 40.75.
Substituting e∗(κ) into (9) we have

e∗{12} = 40.75
³

60−40.75−2
3(60−40.75)−17

´
= 17.25,

e∗{3} = 40.75
³

60−40.75−6
3(60−40.75)−17

´
= 13.25, and

e∗{4} = 40.75
³

60−40.75−9
3(60−40.75)−17

´
= 10.25.

Similarly for all other coalition structures.

Corollary 1 For every coalition structure κ, the lower the marginal cost
cSi, the higher the net benefits in the coalition structure equilibrium.

Proof. Let e∗ = (e∗S1 , e
∗
S2
, ..., e∗Sm) be a coalition structure equilibrium.

By Proposition 3.1 above, if cSi ≥ cSj , then e∗Si ≤ e∗Sj . Moreover, at this
equilibrium, the difference in payoffs between coalitions Si and Sj is:

π(Si,κ)− π(Sj ,κ) =
f(e∗(κ))
e∗(κ) (e

∗
Si
− e∗Sj )− cSi · e∗Si + cSj · e∗Sj =

f(e∗(κ))
e∗(κ)

(e∗Si − e∗Sj )− cSi(e∗Si − e∗Sj) + e∗Sj (cSj − cSi) =

(
f(e∗(κ))
e∗(κ)

− cSi)| {z }
(+)

(e∗Si − e∗Sj| {z }
(−)

) + e∗Sj (cSj − cSi| {z })
(−)

.

Since in the competitive equilibrium f(e∗(κ))
e∗(κ) ≥ cSi (i.e. by (7)), it follows

that π(Si,κ)− π(Sj ,κ) ≤ 0.

Proposition 3.2 Let κ and κ0 be two coalition structures of a game (N,w) ∈
FGPFFN , where κ is formed by values cSj , Sj ∈ κ and κ0 is formed by c

S
0
j
,

S
0
j ∈ κ0, and |κ| ≥ |κ0|. Then e∗(κ) ≥ e∗(κ0) if Pk

j=1 cSj ≤
Pm
j=1 cS0j

.

Proof. Let |κ| = k, |κ0| = m, and k ≥ m > 1. Since
Pk
j=1 cSj ≤Pm

j=1 cS0j
and (8), it follows that

f 0(e∗(κ)) + (k − 1)f(e
∗(κ))
e∗(κ)

≤ f 0(e∗(κ0)) + (m− 1)f(e
∗(κ0))

e∗(κ0)
. Hence

12



f 0(e∗(κ))−f 0(e∗(κ0))+(m−1)[ f(e∗(κ))e∗(κ) − f(e
∗(κ0))

e∗(κ0) ]+(k−m)f(e
∗(κ))

e∗(κ) ≤ 0. (?)

Assume to the contrary that e∗(κ) < e∗(κ0). Since f(x)
x and f 0(x) are de-

creasing functions, it follows that

f 0(e∗(κ)) > f 0(e∗(κ0)) and f(e∗(κ))
e∗(κ) > f(e∗(κ0))

e∗(κ0) .

oreover, k − m ≥ 0. Therefore the left hand side of inequation (?) is
positive which is a contradiction.

This Proposition shows that total fishing effort for a coalition structure
depends on the number of coalitions and aggregate marginal cost in the com-
petitive equilibrium. However, for a given coalition structure, the forming of
coalitions with lower total cost need not reduce the total effort, while for a
given total cost, the total effort increases if the number of coalitions increases
(i.e. if

P
S∈κ cS = c(κ) = c(κ

0), and |κ| > |κ0|, then e∗(κ) > e∗(κ0)).12 These
results are illuminated in Table 3.1:

(i) coalition structures {14, 2, 3} and {123, 4} have the same aggregate
marginal cost, i.e. 11, but e(3, {14, 2, 3}) > e(2, {123, 4}).

(ii) coalition structures {123, 4} and {124, 3} have the same number of
coalitions, i.e. k = 2, but aggregate marginal cost is 11 for {123, 4} which
is larger than aggregate marginal cost 8 for {124, 3}. Then the total effort
e(2, {123, 4}) < e(2, {124, 3}).

Applying (6), the partition function form game (N,w) is obtained as
follows

π(1, 2, 3, 4) = (196, 169, 100, 49);

π(12, 3, 4) = (297.56, 175.56, 105.06);
π(13, 2, 4) = π(1, 23, 4) = (272.25, 240.25, 90.25);
π(14, 2, 3) = π(1, 24, 3) = π(1, 2, 34) = (248.06, 217.56, 138.06); (G3.1)

π(123, 4) = (469.59, 214.92);
12These results imply that the forming of coalitions will determine the situation of a

fish stock. Moreover, aggregate effort under a given coalition structure depends strongly
upon how coalitions are formed by the marginal costs. For a given number of coalitions,
the coalition structure with lower aggregate marginal cost has higher total effort.
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π(124, 3) = π(12, 34) = (427.25, 277.56);

π(1, 234) = π(13, 24) = π(14, 23) = π(134, 2) = (386.91, 348.20);

π(1234) = 841.

From this partition function, it follows that for the case of k = 3 coali-
tion structure {14, 2, 3} is the only feasible13, while every coalition structure
consisting of two coalitions is feasible.

Observe that if countries are identical, i.e. ci = cj for all i 6= j, the
equations (8) and (9) in the unique equilibrium e∗ = (e∗Si , e

∗
S2
, ...e∗Sm) under

κ satisfy:

f 0(e∗(κ)) + (k − 1)f(e∗(κ))e∗(κ) = k · c,

e∗Sj =
e∗(κ)
k > 0, for all j = 1, 2, ..., k, where e∗(κ) =

Pk
j=1 e

∗
Sj
.

Therefore, the effort of each coalition only depends on the number k of
coalitions. Furthermore, for any coalition structure κ = {S1, S2, ..., Sk},
total fishing effort is an increasing function of the number of coalitions k,
whereas total net rents and the net rent of each coalition are decreasing
functions of k (Theorem 2 in Funaki and Yamato, 1999).14

Corollary 2 For the case of identical countries, it follows that
(i) the minimum and maximum value of a coalition S ⊆ N are determined
by

min
κ:S∈κ

π(S,κ) = π(S,S ∪ [N\S]),
max
κ:S∈κ

π(S,κ) = π(S,S ∪ {N\S}).

(ii) a coalition structure κ is feasible if the size of the largest coalition is
feasible under the equal sharing rule.

Proof. (i) We have min π(S,κ) ≤ π(S,κ
0
) ≤ max

κ:S∈κ
π(S,κ) for all coali-

tion structures κ
0 6= κ. Moreover, from Proposition 3.2, i.e. that fishing

13This is because π(14, {14, 2, 3}) = 248.06 > π(1, [N ]) + π(4, [N ]) = 245,
π(2, {14, 2, 3}) > π(2, [N ]) and π(3, {14, 2, 3}) > π(3, [N ]).
14This result can be easily extended to the asymmetric case such as a refinement of the

coalition structure: for a given coalition structure, the broken coalition will increase both
total cost and total effort (related to the original coalition structure).
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effort is an increasing function of the number of coalitions, it follows that
for any two coalition structures κ = {S1, S2, ...Sk} and κ0 = {S01, S02, ...S0m}
such that k < m, e∗(κ) < e∗(κ0); π(e∗(κ)) > π(e∗(κ0));and if S ∈ κ and
S ∈ κ0

π(S,κ) > π(S,κ0)

where e∗(κ) =
Pk
j=1 e

∗
Sj
, e∗(κ0) =

Pm
i=1 e

∗
Si
. Thus, result (i) is obtained.

(ii) In a Nash equilibrium, e∗, the net benefits are:
π(i, [N ]) =

[f(e∗N )−c·e∗N ]
n for all i ∈ N, andPi∈S π(i, [N ]) =

|S|[f(e∗N )−c·e∗N ]
n .

Then, if countries have prudent perceptions (pessimistic expectations),
a vector z = (z1, z2, ..., zn) can be considered as a feasible payoff ifP

j∈S zj ≥ |S|[f(e∗N )−c·e∗N ]
n .

We observe that for a given coalition structure κ with k coalitions, a

vector z is a feasible payoff vector if zj =
c·e∗(κ)−f(e∗(κ))

|S|k ≥ [f(e∗N )−c·e∗N ]
n for

all j ∈ S, where e∗(κ) is the total effort in an equilibrium under κ, and e∗N
is the Nash equilibrium. Since π(S,κ) = f(e∗(κ))−c·e∗(κ)

k for all S ∈ κ, then,

if f(e
∗(κ))−c·e∗(κ)
k|Sm| ≥ f(e∗N )−c·e∗N

n for the coalition Sm, where |Sm| = max
j∈I(κ)

|Sj |,
it follows that

f(e∗(κ))−c·e∗(κ)
k|Sj | ≥ f(e∗(κ))−c·e∗(κ)

k|Sm| ≥ f(e∗N )−c·e∗N
n for all Sj ∈ κ.

Example 3.2 Consider four identical countries, i = 1, 2, 3, 4, with
marginal cost c = 9 and production function f(e) = (60 − e)e. Since all
countries are identical, there are only five types of coalition structures:
κ1 = {|1|, |1|, |1|, |1|}, κ2 = {|1|, |1|, |2|}, κ3 = {|2|, |2|}, κ4 = {|1|, |3|},
and κ5 = {|4|}, where |i| denotes the number of countries. The game
(N,π) ∈ FGPFFN is given by

π(|1|, |1|, |1|, |1|) = (100.40, 100.40, 100.40, 100.40);
π(|1|, |1|, |2|) = (162.56, 162.56, 162.56);
π(|2|, |2|) = π(|1|, |3|) = (289, 289); π(|4|) = 650.25.

The coalition structures κ3 is feasible, since

π(|2|,κ3) = 289 > 2 · π(|1|,κ1) = 200.80,
under the equal sharing rule. However, a coalition with 2 players for a
coalition structure consisting of 3 coalitions is not feasible since π(|2|,κ2) =
162.56 < 2 · π(|1|,κ1) = 200.80.
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4 Distribution of payoffs

This section considers the distribution of payoffs of partial cooperation that
countries can agree upon. To simplify the analyses, suppose the production
function takes the quadratic form f(e) = (b− e)e. The parameter b can be
considered a critical (maximum) effort level where production cannot recover
the total cost, i.e. f(eN) ≤ c · eN if eN ≥ b, and c ∈ [mini∈N ci,maxi∈N ci].

Recall that c1 ≤ c2 ≤ ... ≤ cn. To ensure that all countries have the

possibility to catch, i.e. e∗j ≥ 0 for all j ∈ N, we assume that
b+
Pn
j=1 cj

n+1 >

cn.
15 The net benefit function of coalition Si under coalition structure κ is:

πSi(eSi , e−Si) = (b− eN)eSi − cSi · eSi . (11)

For each coalition structure κ, the value πSi(e
∗
Si
, e∗−Si) of the coalition Si

(under κ) is defined by (11) at competitive equilibrium e∗. Denote the share
of efforts of coalition S in the competitive equilibrium e∗ under structure κ
as sh(S) =

e∗S
e∗(κ) , where e

∗(κ) =
P
S∈κ e

∗
S and e

∗
S =

P
l∈S e

∗
l . Moreover, let

π(e∗(κ)) =
P
S∈κ πS(e

∗) be the total net benefit.

Proposition 4.1 For every coalition structure κ, the following results hold
for every competitive equilibrium

(i) for any i < j, cSj − cSi = e∗Si − e∗Sj ≥ 0
(ii)

∂e∗
Si

∂cSj
=

½ − k
k+1 < 0 if i = j
1
k+1 > 0 if i 6= j

(iii)
∂πSj (.)

∂cSi
=

(
− 2k
k+1e

∗
Sj
< 0 if i = j

2
k+1e

∗
Sj
> 0 if i 6= j

(iv) ∂π(e∗(κ))
∂cSj

> 0⇐⇒ sh(Sj) < 1/(k + 1)

Proof. (i) From (7) and f(e∗) = (b− e∗)e∗ which implies (i).
(ii) Since e∗N = (kb−

Pk
i=1 cSi)/(k+1) and e

∗
Si
= (b−e∗N)−cSj it follows

that

e∗Si =
b− kcSi +

P
j 6=i cSj

k + 1

leading to (ii).
(iii) As π

Sj
(e∗) = (b− e∗N − cSj )e

∗
Sj
= (e∗Sj )

2, it follows that

15This assumption is considered as the requirement of positive shares at the equilibrium
for all players (for details, see Zhao, 2001).
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∂πSj (e
∗)

∂cSi
= 2e∗Sj

∂e∗
Sj

∂cSi
=

(
− 2k
k+1e

∗
Sj
< 0 if i = j

2
k+1e

∗
Sj
> 0 if i 6= j .

leading to (iii).
(iv) Since π(e∗(κ)) =

Pk
j=1 πSj(e

∗) and (iii), it follows that
∂π(e∗(κ))

∂cSi
=
Pk
j=1

∂πSj (e
∗)

∂cSi
=

∂πSi(e
∗)

∂cSi
+
P
j 6=i

∂πSj (e
∗)

∂cSi

= 2[ −kk+1e
∗
Si
+ 1

k+1

P
j 6=i e

∗
Sj
] = 2

k+1{−ke∗Si + [
Pk
m=1 e

∗
Sm
− e∗Si ]}

=
2
Pk
m=1 e

∗
Sm

k+1 [1− (k+1)e∗SiPk
m=1 e

∗
Sm

] > 0⇔ 1− (k+1)e∗SiPk
m=1 e

∗
Sm

> 0

⇔ sh(Si) <
1
k+1 , which implies (iv).

Proposition 4.1 shows the relationship between marginal costs, fishing
efforts and net benefits for coalitions in the competitive equilibrium16. To
illuminate Proposition 4.1 consider a coalition structure κ consisting of k
coalitions (|κ| = k) and the case where one member i leaves its coalition Sκ(i)
(∈ κ) and joins another coalition, say Sκ(j) ∈ κ. If the marginal cost ci of this
member is larger than the marginal cost cSκ(i) of its former coalition Sκ(i)
but smaller than the cost cSκ(j) of its new coalition Sκ(j), then the joining of
this member will lead to a cost reduction of coalition Sκ(j). Moreover, the
marginal cost of the coalition to which i used to belong does not change.
Therefore, although the number of a new coalition structure κ0 does not
change (i.e. |κ0| = k, since only i changes coalitions), the cost structure does
change. In similar vein, (ii) and (iii) describe the impacts on coalition efforts
and coalition net benefits. If own marginal costs of a coalition increase, own
efforts and net benefits decrease, whereas if the marginal costs of another
coalition increase own efforts and net benefits increase. According to (iv),
the forming of a new coalition structure may cause a reduction of total net
benefit if at least one of the effort shares is larger than 1

k+1 .

The above Propositions 3.1, 3.2 and 4.1 imply that although an outcome
depends on both the marginal cost cSj and cardinality of κ, countries with
high costs have an incentive to cooperate since they will take advantage
by reducing costs when joining a coalition with lower costs. The following
example illuminates this.

Example 4.1 Consider Example 3.1. The benefits of free-riding for
each coalition structure are presented in Table 4.1. The number of coalitions
16Coalitions mean both individuals and groups of individuals in a given coalition struc-

ture.
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is presented in the first column and the benefit of each free-rider follows in
the next columns.

In Table 4.1 the second row represents noncooperative net benefits. The
third and fourth rows represent free riding benefits for countries i, j, i 6= j
when countries k and l form a coalition {kl}, k, l ∈ N\{i, j}. For example,
for k = 3, 272.25 and 248.06 are the payoffs of country 1 in the coalition
structures κ = {1, 4, 23} with aggregate marginal cost 14 and κ = {1, 3, 24}
with aggregate marginal cost 11, respectively (see Table 3.1). The last row
represents free riding benefits for country i when N\{i} forms a coalition.

|κ| π({1},κ) π({2},κ) π({3},κ) π({4},κ)
k = 4 196 169 100 49

k = 3 (free-riders with high costs ) 272.25 240.25 175.56 105.06

k = 3 (free-riders with low costs) 248.06 217.56 138.06 90.25

k = 2 386.91 348.20 277.56 214.92

Table 4.1 The benefits of free-riding.

If only two countries form a coalition (i.e. k = 3) then, relative to the
noncooperative situation a free-rider country, for example, country 4, gains
90.25 − 49 = 41.25 (84%) in the low cost cases (i.e. coalition structures
{13, 2, 4} or {1, 23, 4}), and 105.06 − 49 = 56.06 (114%) in the high cost
case (i.e. coalition structure {12, 3, 4}). In a similar vein, country 1 gains
248.06 − 196 = 52.06 (27%) in coalition structure {1, 24, 3} and 272.25 −
196 = 76.25 (39%) in coalition structure {1, 23, 4}.

In Example 4.1, although country 4 with the highest marginal cost has
the smallest net benefit in the noncooperative situation (Corollary 3.1), it
will gain relatively more from free-riding than the other countries. For
example, consider the case of only one free-rider (i.e. k = 2). In this
situation, if countries 1,2 and 3 form a coalition {123}, then in the coalition
structure {123, 4} country 4 gains 214.92− 49 = 165.92 (337%). The gains
are 177.56 (177%) in {124, 3} for country 3, 179.20 (106%) in {134, 2} for
country 2 and 190.91 (97%) for country 1 in {234, 1}. Moreover, in coalition
structure {123, 4} country 4 gains more than in coalitions with two free-
riders (c.f. {1, 4, 23} or {13, 2, 4} with gains 56.06 (114%) and {12, 3, 4}
with gains 41.25 (84%) for country 4).

Observe that although all coalition structures with two coalitions in Ex-
ample 4.1 are feasible under the equal sharing rule (see section 3), the total
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benefits of coalition structures with two coalitions will increase if country 4
forms a coalition such that the lowest cost coalition materializes (because
it reduces the total cost of the coalition structure). For example, consider
κ1 = {12, 34}, κ2 = {14, 23}, κ3 = {13, 24}, κ4 = {123, 4}, κ5 = {124, 3},
κ6 = {134, 2} and κ7 = {234, 1}. From the last column in Table 3.1, it
follows that17:
π(e∗(2,κ2)) = 735.71 > 704.81 = π(e∗(2,κ1)), and
π(e∗(2,κ7)) = 735.71 > 704.81 = π(e∗(2,κ5)) > 648.51 = π(e∗(2,κ4)).

In coalition structures κ4, κ5, κ6 and κ7 there is free-riding by countries
4, 3, 2 and 1, respectively18. The total effort and total net benefit are affected
by the marginal cost of the free-rider. For example, Table 3.1 shows that if
country 1 or 2 free-rides, then total effort is 38.33 and the total net benefit
is 735.71. If country 3 free-rides, then the total effort is 37.33 and the total
net benefit is 704.81, whereas the total effort reduces to 36.33 and total net
benefit is 684.51 if country 4 free-rides.

The smallest effort (29) and highest net benefit (841) materialize for the
grand coalition only. Therefore, although there exist some feasible partial
coalition structures, the grand coalition is optimal efficiency.

The question arises what sharing rule of the net benefits should be
adopted to stimulate the fishing nations to join the grand coalition. We
propose the modified Shapley value, developed by Pham Do and Norde
(2002).19 The reason to consider the modified Shapley value rather than
the original value developed by Shapley20 (1953) is that, the latter cannot
be applied to games in partition function form such as the present game
(N,w) ∈ PFFGN , since in this class of games the contributions of each
player to the grand coalition differ among coalition structures, due to the
presence of externalities among coalitions.

Pham Do and Norde (2002) show that the modified Shapley value (see
Appendix) is a unique and efficient solution for a PFFGN . Moreover, they
point out that for a class of oligopoly games in partition function form such
as a (N,w) ∈ FGPFFN , where the net benefit function (11) is determined
in a competitive equilibrium under coalition structures, the modified Shap-
17Note that π(e∗(2,κ2)) = π(e∗(2,κ3)) and π(e∗(2, κ7)) = π(e∗(2,κ6)) since the total

cost of κ2 and κ3 as well as κ7 and κ6 are equal.
18It is a reason why the full cooperation may not stable if a distribution of benefits can

not be accepted by several countries.
19An alternative is the equal sharing rule. However, this rule does not take into account

the contributions of each player to the grand cooperation, whereas the Shapley value does.
20For the introduction to the Shapley value, its extensions and applications, see, for

example, chapters 53-58 in Aumann and Hart (2002).
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ley value keeps the same ordering for every player in the Nash situation.
Applying this result to a fishery game in partition function form, the follow-
ing proposition is obtained.

Proposition 4.2 Let ψ be the modified Shapley value for a (N,π) ∈ FGPFFN ,
where the net benefit function (11) is determined in a competitive equilibrium
under coalition structures. It follows that if c1 ≤ c2 ≤ ... ≤ cn then
(i) π(1, [N ]) ≥ π(2, [N ]) ≥ ... ≥ π(n, [N ]),

(ii) ψ1(π) ≥ ψ2(π) ≥ ... ≥ ψn(π), and

(iii) π(N, {N}) =Pn
i=1 ψi(π).

Proof. See section 6 in Phamdo and Norde (2002).

It is obvious that stable cooperation result if ψi(π) ≥ π(i, [N ]) for every
i ∈ N.

Example 4.2 Consider the fishery game in partition function form
(N,π) in Example 3.1, where w is given by (G3.1). In this game, we have

π(1, [N ]) = 196 > π(2, [N ]) = 169 > π(3, [N ]) = 100 > π(4, [N ]) = 49.

Using the Appendix the modified Shapley value is obtained as

ψ(π) = (271.18, 238.86, 184.94, 146.02).

Additionally, π(4, {4}) =P4
i=1 ψi(π) = 841.

The modified Shapley value allocates the payoffs such that the contribu-
tions of each country in the grand coalition as determined by its marginal
cost are rewarded. The surplus gained from full cooperation is (75.18, 69.86,
84.94, 97.02). Each country has thus a different gain in the grand coopera-
tion, due to its contribution. We observe that this distribution differs from
the values that are obtained by applying other division rules such as the
equal sharing rule. For example, the transition from the noncooperative to
the cooperative situation yields the surplus 327 (= 841 − 514). The equal
sharing rule gives the outcomes (277.75, 250.75, 181.75, 130.75), where each
player gains 81.75.

This example indicates that although the equal sharing rule can be ap-
plied for any feasible coalition structure, the modified Shapley value has
more potential to induce full cooperation.
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Finally, we observe that although each country is better off in the grand
coalition than in the competitive outcome, individual countries can do even
better by free riding under certain circumstances, as illustrated in the last
row of Table 4.1. This implies that application of the modified Shapley value
is not sufficient to discourage free riding. Therefor, additional measures are
needed to deter free riding; e.g. linking a fishery problem to another problem
in which the players are involved (see Folmer et al., 1993 and Kroeze-Gil,
2003 and the references therein).

5 Concluding remarks

The objective of regional fishery agreements is to develop rules for joint de-
cision making to use common fishery resources efficiently to avoid inefficient
outcomes, and the collapse of fish stocks resulting from noncooperative be-
haviour. Furthermore, a better balance must be reached between fishing
effort and the quantities of fish that can be removed from the sea without
endangering the future of the fish stocks or ecosystems.

This paper has addressed the formation of coalitions smaller than the
grand coalition. Particularly, attention has been paid to the feasibility of
coalition structures and their impacts on reducing harvest levels. We have
shown that for every coalition structure in a competitive equilibrium a coali-
tion with lower marginal cost has a higher effort level, and total fishing effort
is an increasing function of the number of coalitions. Moreover, the lower
the marginal costs, the higher the net benefits in the coalition structures.

In order to induce countries to cooperate the modified Shapley value
adopted to games in partition function form has been considered. This is
a unique and efficient division rule of gains from cooperation that preserves
the ordering of players in the Nash outcome. This device can be applied to
develop a profit allocation scheme such as a reasonable compromise and com-
pensation for both the potential entrants and the charter members. How-
ever, allocation of the gains from cooperation on the basic of the modified
Shapley value is not sufficient to discourage free-riding since under certain
coalition structures the latter option may result in a higher payoff than is
attainable on the basic of the modified Shapley value.
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Appendix

In order to introduce the modified Shapley value for games in partition
function form, we need some additional notations. Let Π(N) be the set
of all bijections σ : {1, 2, ..., n} → N of N . For a given σ ∈ Π(N) and
i ∈ I([N ]) we define Sσi = {σ(1),σ(2), ...,σ(i)}, and Sσ0 = ∅. For a given
σ ∈ Π(N) and i ∈ I([N ]), we define the partition κσi associated with σ and
i, by κσi = {Sσi } ∪ [N\Sσi ]. So, in κσi the coalition S

σ
i has already formed,

whereas all other players still form singleton coalitions. Furthermore, we
define κσ0 = [N ].

Let (N,w) be a partition function form game, and σ ∈ Π(N).We define
the marginal contribution of the ith player σ(i) to coalition Sσi such as

mσ
σ(i)(w) := w(S

σ
i ,κ

σ
i )−w(Sσi−1,κσi−1).

Based on these marginal vectors {mσ(w)}σ∈π(N), we define the modified
Shapley value ψ of the partition function form game (N ,w) as the average
of the n! marginal vectors21,

ψ(w) =
1

n!

X
σ∈Π(N)

mσ(w).22

Example Consider the partition function form game (N,w) defined by
w(1, 2, 3) = (0, 0, 0), w(12, 3) = (2, 0), w(23, 1) = (3, 2), w(13, 2) = (2, 1),

w(123) = 10.
The marginal vectors associate23 with σ are:

if σ1 = (1, 2, 3) then m
σ1(w) = (0, 2, 8)

if σ2 = (2, 1, 3) then m
σ2(w) = (2, 0, 8)

if σ3 = (1, 3, 2) then m
σ3(w) = (0, 8, 2)

21Further details, see Pham Do and Norde (2002).
22Observe the similarity to TU-games (c.f. Shapley, 1953).
23For example, the marginal vector of σ2 is computed as follows. As σ2 = (2, 1, 3) then

mσ2
σ2 (1)(w) = w(21, {21, 3}) − w(2, [N ]) = 2, mσ2

σ2 (2)(w) = w(2, [N ]) = 0, mσ2
σ2 (3)(w) =

w(213, {N})− w(21, {21, 3}) = 10− 2 = 8. Hence, mσ2(w) = (2, 0, 8).
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if σ4 = (2, 3, 1) then m
σ4(w) = (7, 0, 3)

if σ5 = (3, 1, 2) then m
σ5(w) = (2, 8, 0)

if σ6 = (3, 2, 1) then m
σ6(w) = (7, 3, 0).

So, the modified Shapley value ψ(w) = (3, 3.5, 3.5).
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