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Abstract

Airport profit games are a generalization of airport cost games as well
as of bankruptcy games. In this paper we present a simple algorithm to
compute the nucleolus of airport profit games. In addition we prove that
there exists an unique consistent allocation rule in airport profit problems,
and it coincides with the nucleolus of the associated TU game.
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1 Introduction

Littlechild and Thompson (1977) introduced airport problems when they inves-
tigated the cost sharing question arising at the construction of a landing strip
for the Birmingham’s airport (see also Thompson, 1971).

They proposed a game-theoretic approach to solve these problems. In the
corresponding characteristic function only the airport runway cost function was
taken into account. Taking advantage of the special structure of these “airport
cost games”, Littlechild and Owen (1973) gave a remarkably simplified formula
for the Shapley value of these games (see also Dubey, 1982); later an extremely
simple algorithm for the nucleolus was derived by Littlechild (1974). More re-
cently, Potters and Sudhölter (1999) have studied several consistency properties
for these problems.

In other work Littlechild and Owen (1977) noticed: “airport cost games are
only a partial representation of the actual situation, for it takes no account
of the revenues or other benefits generated by the aircraft movements”. For
instance, revenues are important to determine the optimal size of the airport
runway. In addition, revenues affect the payoff vectors of the players, since none
of the agents will accept a fee schedule higher than his revenue. Thus these
authors thought more appropriate to work with what they named after “airport
profit problems”. Accordingly they defined the characteristic function value of a
given coalition as the maximum revenue minus construction cost attainable for
this coalition. In the same work they proved that Littlechild’s (1974) algorithm
for the nucleolus remains valid for these “airport profit games”.

However, in the characteristic function proposed by Littlechild and Owen
(1977) some coalitions may obtain a negative worth. And it is reasonable to
think that agents in such coalitions would prefer not to build any airport runway
at all, obtaining a surplus of zero. Consequently we have adopted in this work a
different definition of the surplus of coalition for a public facility provision prob-
lem (namely, the zero-monotonic cover of Littlechild and Owen’s (1977) game;
see also Brânzei et al., 2002). That is, the characteristic function considered
in this paper coincides with the one of these authors only for coalitions having
a nonnegative worth, and it is zero on the rest. It turns out that bankruptcy
games (Aumann and Maschler’s, 1985) are a special subclass of these new “air-
port profit games”.

In this work we propose a simple algorithm to calculate the nucleolus of these
“airport profit games”. This algorithm coincides with Littlechild’s (1974) one on
the special class of “airport cost games” (and, needless to say, with the Aumann
and Maschler’s (1985) one for the consistent solution on the class of bankruptcy
problems). To obtain the algorithm we will make use of a different approach
to the one used by Littlechild (1974). Instead of it, we use a result of Arin
and Iñarra (1998) about the structure of the family of proper coalitions with
maximal excess at the nucleolus. According to Littlechild’s (1974) algorithm,
only coalitions formed by agents demanding a runway shorter than a given
length are taking into account. However, the algorithm presented here also
considers coalitions of agents demanding a runway larger than a given size.
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This algorithm consists of a sequence of airport profit problems, starting with
the original one. Each problem is a “reduced” problem of the preceding one.
That is, in each step we calculate the nucleolus for a subset of agents, and then
we consider a reduced problem. This reducing airport profit problems lead us
to the necessity of proving a result related to a property of consistency for these
problems. Actually this result is an extension of another one due to Potters and
Sudhölter (1999) for airport cost problems (these authors call it ν-consistency).
Moreover, our result can be also considered as an extension of Aumann and
Maschler’s (1985) one about the consistent solution of a bankruptcy problem.

The outline of the paper is as follows. In Section 2 we introduce the model
and the preliminaries. In Section 3 we obtain the main results referred to
the coalitions with maximal excess (some of the proofs are postponed to an
appendix). Sections 4 is devoted to consistency, and finally Section 5 contains
the full description of the algorithm offered here.

2 Airport profit problems

We say that the tuple (N,�, C, b) is an airport profit problem if:

a) N is a finite nonempty set.

b) � is a total order relation on N .

c) C : N → R+ is non-decreasing (i.e., i � j implies C(i) ≤ C(j)).

d) b ∈ RN
++.

The interpretation is as follows. N represents a set of agents. Every non-
empty subset of N is called coalition. Agent i wants to carry out a project
that generates a cost C(i) ≥ 0. Then i � j means that project of agent j is
an extension of project of agent i, in the sense that if agent i is served then
j is automatically served too. Consequently we assume C(i) ≤ C(j) whenever
i � j. In addition, if the project of agent i is complemented, then he receives a
revenue bi > 0.

If there is no confusion we shall simply write (N,C, b).

Remark 1. The ordering � has been included in the description of the model
for clarity in the exposition. Of course this ordering could have been anyone
induced by the mapping C.

Given (N,�, C, b), and a coalition S ⊆ N , denote

`S :=max{i : i ∈ S},
C(S) := max {C(i) : i ∈ S} = C (`S) .

Player `S is the last player in S according to�. The real number C(S) represents
the cost of serving all the members in S. By convention define C(∅) = 0.
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If x ∈ RN , we write xS for the restriction of x to RS , and x(S) =
∑

i∈S xi;
hence the total benefit of members in S when all of them are attended is b(S)
(b(∅) = 0).

A TU game (or simply a game) is a pair (N, v), where N is a coalition of
players, and v : 2N → R is a mapping that associates with every S ⊆ N a real
number v(S), s. t. v(∅) = 0.

A player i ∈ N is said to be a null player in the game (N, v) if v
(
S ∪ {i}

)
=

v(S) for every S ⊆ N\{i}.
A game (N, v) is said to be convex if for every S, T ⊆ N it holds: v(S) +

v(T ) ≤ v
(
S ∪ T ) + v(S ∩ T ).

Given a game (N, v), the set of imputations is defined to be

I(N, v) :=
{
x ∈ RN : x(N) = v(N), and xi ≥ v

(
{i}

)
for every i ∈ N

}
,

and the core of this game is the set

C(N, v) :=
{
x ∈ RN : x(N) = v(N), and v(S) ≤ x(S) for every S ⊆ N

}
.

The excess of S ⊆ N with respect to x ∈ RN is

ev(S, x) := v(S)− x(S).

We often write e(S, x) instead of ev(S, x).
For any payoff vector x ∈ RN , let θ(x) be the 2N -tuple whose components

are the excesses ev(S, x), S ⊆ N , arranged in non-increasing order. Denote
by �L the lexicographic order. The nucleolus ν(v) of the game (N, v) is the
imputation ν(v) ∈ I(N, v) satisfying

θ
(
ν(v)

)
�L θ(y), for all y ∈ I(N, v).

We shall simply write ν if there is no confusion.
Define the surplus of player i against player j (i 6= j) at payoff vector x ∈ RN :

sij(x) := max {v(S)− x(S) : S ⊆ N, i ∈ S, j /∈ S} .

The prekernel of game (N, v) is the set

PK(N, v) :=
{
x ∈ RN : x(N) = v(N), sij(x) = sji(x), for all i, j ∈ N

}
.

The standard solution of the 2-person TU game
(
{i, j}, v

)
is the payoff vector

given by

xk = v
(
{k}

)
+

v
(
{i, j}

)
− v

(
{i}

)
− v

(
{j}

)
2

k = i, j. (1)

The standard solution assigns to each player k the quantity that can be
assured by himself, v

(
{k}

)
, plus the amount obtained when the rest is divided

equally. As Aumann and Maschler (1985) point out, the nucleolus, the kernel,
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the prekernel, the Shapley value of a 2-person game all of them coincide with
the standard solution, and so do the better-known bargaining solutions (Nash,
1950; Kalai and Smorodinsky, 1975; Maschler and Perles, 1981). Furthermore,
the standard solution is the only symmetric and efficient single-valued solution
for 2-person games that is invariant under strategic equivalence (Peleg, 1986).

Let (N, v) be a TU game, S ⊂ N be a proper coalition, and x ∈ RN . Define
the reduced game of (N, v) with respect to S and x (Davis and Maschler, 1965),
as the game (S, vS,x), defined by

vS,x(T ) :=

 v(N)− x(N \ S) if T = S,
max

{
v(T ∪Q)− x(Q) : Q ⊂ N \ S

}
if T 6= ∅, S

0 if T = ∅,

Remark 2. a) If T ⊆ S ⊂ N are two coalitions, then
(
vS,x

)T,x = vT,x.
b) Notice that vS,x depends only on xN\S , so by abusing the notation we

will also write vS,x when x ∈ RN\S .

With every problem (N,C, b), we associate the TU game
(
N, v(N,C,b)

)
, where

v(N,C,b)(S) := max
{
b(R)− C(R) : R ⊆ S

}
for each S ⊆ N. (2)

The game
(
N, v(N,C,b)

)
is called an airport profit game. If there is no confu-

sion we shall simply write v instead of v(N,C,b).

It is assumed that members in a coalition S ⊆ N would carry out the most
profitable project that is feasible for this coalition, if there exists such a project.
Thus v(S) represents the total earnings of coalition S for building this project.
This most profitable project may or may not coincide with the largest project
demanded by agents in S (for instance, if the benefit of the last agent is smaller
than the increase in the cost for fulfilling his project, it is rational for this
coalition to realize a smaller project).

The game defined in expression (2) differs from the one considered by Lit-
tlechild and Owen (1977). These authors consider the following characteristic
function

ṽ(N,C,b)(S) := max
k∈N

{∑
i∈S:
i�k

bi − C(k)
}

If there is no confusion we shall write simply ṽ.
Thus ṽ(S) can be negative for some coalitions (for instance, if bi < C(i), then

ṽ
(
{i}

)
< 0), but if we assume that agents in N are rational, it is reasonable to

think that they will not make any project at all. Consequently we have adopted
in this work the definition given by expression (2). Of course, both games v and
ṽ coincide if and only if for every agent the benefit of carrying out his project
by himself is higher than the generated individual cost.

Notice that the game v is actually the 0-monotonic cover of the game ṽ.
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Remark 3. Littlechild and Thompson (1977) (see also Littlechild and Owen,
1973; and Thompson, 1971) introduced the so called “airport cost problems”, to
find the landing fees generated by Birmingham airport runway costs. An airport
cost problem is a tuple (N,�, C), where N is a finite and totally ordered set of
players, and C : N → R+ is a cost function satisfying C(i) ≤ C(j) whenever
i � j.

Given an airport cost problem (N,�, C) considere the game
(
N, c(N,C)

)
,

where c(N,C)(S) = C
(
`S

)
for each S ⊆ N . The game (N, c(N,C)) is called an

airport cost game.
Now define bi = C(i), and consider the airport profit problem (N,�, C, b)

and its associated game
(
N, v(N,C,b)

)
. Then it holds

v(N,C,b)(S) =
∑
i∈S

C(i)− C (`S) =
∑
i∈S

c(N,C)
(
{i}

)
− c(N,C)(S).

That is,
(
N, v(N,C,b)

)
is the savings TU game associated with the cost game(

N, c(N,C)
)
.

So we could associate with an airport cost problem a special class of airport
profit problems. Namely, the class in which for every player his benefit is not
lower than his cost, so he can carry out his project by himself.

Remark 4. The well known class of bankruptcy games is a subclass of airport
profit games.

A bankruptcy problem on N (Aumann and Maschler, 1985) is a pair (E, d),
where d = (di)i∈N , and E, di ∈ R+ for every i ∈ N . The real number E stands
for the estate left to a group of creditors, represented by the set N , and di is
the claim of creditor i. It is assumed the estate does not cover all the claims,
that is E ≤ d(N).

The bankruptcy game
(
N, v(E,d)

)
associated with the bankruptcy problem

(E, d) is defined by
v(E,d)(S) =

(
E − d(N\S)

)
+
.

(If a ∈ R, we write a+ = max {a, 0}.)
Let (E, d) be a bankruptcy problem on N , and define C(i) = d(N)−E, and

bi = di for every i ∈ N . Consider the airport profit problem (N,C, b). It is easy
to check that

v(N,C,b)(S) = v(E,d)(S), for every S ⊆ N.

Thus every bankruptcy game is actually a surplus airport game.

Proposition 5. Let (N,C, b) be an airport profit problem, then the associated
game (N, v) is convex.

Proof. Let S, T ⊆ N , and let S0 ⊆ S, and T0 ⊆ T such that v (S) = b (S0) −
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C (S0), and v (T ) = b (T0)− C (T0) respectively. Then

v(S) + v(T ) = b (S0)− C (S0) + b (T0)− C (T0)
= b (S0 ∪ T0) + b (S0 ∩ T0)− C (S0)− C (T0)

≤ b (S0 ∪ T0) + b (S0 ∩ T0)− C (S0 ∪ T0)− C (S0 ∩ T0)
≤ v(S ∪ T ) + v(S ∩ T ).

Consequently the proof is complete.

Remark 6. For an alternative proof of the proposition above see Theorem 3.3
in Brânzei et al. (2002).

3 The maximal excess of the nucleolus of an air-
port profit game

Littlechild (1974) proposed a simple algorithm to calculate the nucleolus on the
class of airport cost games. Later Littlechild and Owen (1977) showed that the
same algorithm can be applied to the case of airport profit games when v = ṽ.
The aim of this section is to obtain some coalitions with maximal excess at
the nucleolus of an airport profit game, and then determinate the nucleolus for
agents in these coalitions. Later in Section 5 this will be used for design an
algorithm to calculate the nucleolus for all the agents.

This algorithm is obtained with a different approach to the one used by
Littlechild (1974), who considered a procedure of Kopelowitz (1967) to calculate
the nucleolus based on a sequence of linear programs. Instead of it, we use a
result of Arin and Iñarra (1998) about the structure of the family of proper
coalitions with maximal excess at the nucleolus, based in Kohlberg’s (1971)
characterization of the nucleolus by means of balanced collections.

Let (N, v) be a TU game, and x ∈ RN . Denote

D1(x) := {S ⊆ N : e(S, x) ≥ e(T, x), for all T ⊆ N, S 6= N, ∅}.

That is, D1(x) stands for the set of proper coalitions of N with maximal excess
at x.

Let {S1, . . . , Sk} be a partition of N . The family {N\S1, . . . , N\Sk} formed
by the complements will be called an antipartition.

Remark 7. Let (N, v) be a TU game, and x ∈ RN , and let B be a family of
coalitions of N . Define e(B, x) :=

∑
S∈B e(S,x)

|B| (i.e., the average excess at x of
coalitions in B).

(a) For every B ⊆ D1(x), and every S ∈ D1(x), it holds:

e(B, x) = e(S, x) = e(D1(x), x).
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(b) If B is a partition or an antipartition, and x(N) = v(N) then e(B, x) does
not depend explicitly on x. Indeed, it is easy to check that

– if P is a partition: e(P, x) =
∑

S∈P v(S)− v(N)
|P|

– if A is an antipartition: e(A, x) =
∑

S∈A v(S)− (|A| − 1)v(N)
|A|

.

Theorem 8. [Arin and Iñarra (1998)] If (N, v) is convex then D1

(
ν(v)

)
con-

tains a partition or an antipartition of N .

The next proposition will be proved in Appendix A, and permit us to identify
some partitions or antipartitions contained in D1

(
ν(v)

)
for an airport profit

game.

Proposition 9. Let (N,C, b) be an airport profit problem and (N, v) its asso-
ciated game. Then at least one of the following statements is true.

(I) P =
{
{i} : i ∈ N

}
⊆ D1(ν), and v

(
{i}

)
= 0 for every i ∈ N .

(II) there exists i0 ∈ N\ {`N}, s. t. P =
{
{i0} , N\ {i0}

}
⊆ D1(ν), and

v
(
{i0}

)
= 0.

(III) there exists i0 ∈ N\ {`N}, such that

(i) P =
{
{k : k � i0}

}
∪

{
{k} : i0 ≺ k

}
⊆ D1(ν), and

(ii) v
(
{k : k � i0}

)
6= 0, and v

(
{k}

)
= 0 for every k � i0.

(IV) there exists i0 ∈ N\ {`N}, such that

P =
{
{k ∈ N : k � i0}

}
∪

{
N\{k} : k � i0

}
⊆ D1(ν), and |P| ≥ 3.

Let (N, v) be an airport profit game. A coalition S ⊆ N is said to be effective
if v(S) = b(S)− C(S), and has not null players.

The next lemmas will be proved in Appendix B. They permit us to calculate
very easily the nucleolus for some agents in an airport profit game.

Lemma 10. Let (N,C, b) be an airport profit problem and (N, v) its associated
game. Define αv := b(N)−C(N)

|N | . Let P =
{
{i} : i ∈ N

}
; if N is effective then:

(a) e(P, ν) = −αv if and only if v
(
{i}

)
= 0 for every i ∈ N .

(b) e(P, ν) ≥ −αv.

(c) If P ⊆ D1(ν), and e(P, ν) = −αv, then νi = αv for every i ∈ N .
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Lemma 11. Let (N,C, b) be an airport profit problem and (N, v) its asso-
ciated game. Let also {i0} ∈ N\ {`N}, and define βv

i0 := bi0
2 . Let P ={

{i0} , N\ {i0}
}
; if N is effective then:

(a) e(P, ν) = −βv
i0 if and only if v

(
{i0}

)
= 0.

(b) e(P, ν) ≥ −βv
i0 .

(c) If P ⊆ D1(ν), and e(P, ν) = −βv
i0 , then νi0 = βv

i0 .

Lemma 12. Let (N,C, b) be an airport profit problem and (N, v) its associated

game. Let also {i0} ∈ N\ {`N}, and define γv
i0

:=
C(i0)+b

({
k∈N :i0≺k

})
−C(N)∣∣∣{k∈N :i0≺k

}∣∣∣+1

.

Let P =
{
{i ∈ N : i � i0}

}
∪

{
{k} : k ∈ N, i0 ≺ k

}
; if N is effective then:

a) e(P, ν) = −γv
i0

if and only if v
(
{k}

)
= 0 for every k � i0.

b) e(P, ν) ≥ −γv
i0

.

(c) If P ⊆ D1(ν), and e(P, ν) = −γv
i0

, then νk = γv
i0

for every k � i0.

Lemma 13. Let (N,C, b) be an airport profit problem and (N, v) its associated
game. Let also {i0} ∈ N\ {`N}, and define δv

i0 := C(i0)∣∣∣{k∈N :k�i0

}∣∣∣+1

. Let P ={
{i ∈ N : i � i0}

}
∪

{
N\{i} : i � i0

}
; if N is effective then:

(a) e(P, ν) = −δv
i0 .

(b) If P ⊆ D1(ν), and e(P, ν) = −δv
i0 , then νi = bi − δv

i0 for every i � i0.

Lemma 14. Let (N,C, b) an airport profit problem and (N, v) the associated
game. Define

λv := min {αv} ∪ {βv
i , γv

i , δv
i : i 6= `N} .

(Since there will be no confusion we will simply write λ, α, βi0 , γi0 , and δi0 .)

(a) If λ = γi0 ≤ 0 for some i0 ∈ N , and i0 ≺ i, then i is a null player.

(b) If λ = α ≤ 0 then for every S ⊆ N it holds v(S) = 0.

(c) If λ > 0, then N is effective.

Proof. (a) Let i ∈ N such that i0 ≺ i. First notice that since λ = γi0 ≤ γi,
and γi0 < 0 it holds

C (i0) + b
(
{k ∈ N : i0 ≺ k}

)
≤ C(i) + b

(
{k ∈ N : i � k}

)
,
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and hence
b
(
{k ∈ N : i0 ≺ k � i}

)
≤ C(i)− C (i0) . (3)

Now let us see that i is a null player. Take any coalition S ⊆ N\{i}, and let
Q ⊆ S∪{i} such that v

(
S∪{i}

)
= b(Q)−C(Q). If Q = ∅, then v

(
S∪{i}

)
= v(S).

So assume Q 6= ∅, then

v
(
S ∪ {i}

)
= b(Q)− C(Q)

= b
(
{k ∈ Q : k � i0}

)
− C (i0) + b

(
{k ∈ Q : i0 ≺ k}

)
−

(
C(`Q)− C (i0)

)
≤ v(S) + b

(
{k ∈ Q : i0 ≺ k}

)
−

(
C(`Q)− C (i0)

)
≤ v(S) + b

(
{k ∈ N : i0 ≺ k � `Q}

)
−

(
C(`Q)− C (i0)

)
≤ v(S),

where the first inequality follows since {k ∈ Q : k � i0} ⊆ S because i0 ≺ i,
and the last one from expression (3) since i0 � `Q. By the monotonicity of v it
holds v

(
S ∪ {i}

)
= v(S), and we can conclude that i is a null player.

(b) First notice that since α ≤ γi for every i ∈ N , and α < 0 it holds for
every i ∈ N\{`N}

b(N) ≤ C(i) + b
(
{k ∈ N : i � k}

)
. (4)

Now take S ⊆ N , and let Q ⊆ S such that v(S) = b(Q) − C(Q). If Q 6= ∅
then

v(S) = b(Q)− C(Q) ≤ b
(
{k ∈ Q : k � `Q}

)
− C (`Q)

= b(N)− b
(
{k ∈ Q : `Q ≺ k}

)
− C (`Q) ≤ 0,

where the last inequality follows from expression (4). Since v(S) ≥ 0 we conclude
the result.

(c) Assume on the contrary that N is not effective and λ > 0. If v(S) = 0
for every S ⊆ N , then 0 = α ≥ λ, so let S be the maximal proper coalition that
is effective. Then v(N) = v(S), and since bi > 0 for each i � `S it holds i ∈ S.
Then

0 ≥
(
b(N)−C(N)

)
−

(
b(S)−C(S)

)
= b

(
{k ∈ N : k � `S}

)
−

(
C(N)−C (`S)

)
.

Consequently 0 ≥ γ`S
≥ λ, that is a contradiction.

Let S̄ be the set of the players k ∈ N that satisfy at least one of the following
conditions:

a) λ = α (notice that in this case S = N),

b) λ = βk,

c) there exists i ∈ N such that i ≺ k and λ = γi,

d) there exists i ∈ N such that k � i and λ = δi.
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Proposition 15. Let (N,C, b) be an airport profit problem and (N, v) the as-
sociated game.

(a) If S ∈ D1(ν) then e(S, ν) = (λ)+.

(b) For every k ∈ S̄ it holds

νk =


(λ)+ if λ = α,

λ if λ = βk,

(λ)+ if λ = γi for some i ≺ k,

bk − λ if λ = δi for some i � k.

Proof. (a) If λ ≤ 0, then either λ = α, or λ = γi for some i ≺ k. From
Lemma 14 parts (a) and (b) there are null players in v. Thus e(S, ν) = 0 = (λ)+
for every S ∈ D1(ν).

If λ > 0, then N is effective by Lemma 14 part (c). Applying Proposition 9,
and parts (a) of lemmas 10, 11, 12 and 13 we conclude the result.

(b) Let k ∈ S̄. If λ ≤ 0, then either λ = α, or λ = γi for some i ≺ k.
From Lemma 14, parts (a) and (b) it follows that k is a null player, hence
νk = 0 = (λ)+.

So assume that λ > 0. Then either λ = α, or λ = βi0 or γi0 or δi0 for some
i0 ≺ k.

Consider for instance the case λ = α. By Lemma 14 part (c), N is effective,
and by part (a) of the present lemma and part (b) of Lemma 10 it holds P ={
{i} : i ∈ N

}
⊆ D1(ν). From part (c) of Lemma 10, we conclude νi = α = (λ)+

for every i ∈ N .
The remaining cases are similar applying respectively lemmas 11, 12, and 13

instead of Lemma 10, so we conclude the result.

Remark 16. It can be easily checked that if (N, v) is an airport cost game
then there exists i ∈ N such that λ = δi; that is, according to Proposition 9
we are always in case (IV. On other hand, in case (N, v) is an airport game
corresponding to a bankruptcy problem, then λ = α or there exists i ∈ N such
that λ = βi; that is, at least one of the statements (I) or (II) in Proposition 9
is true.

4 Allocation rules and consistency

In an airport problem once the agents have decided to build an optimal project,
i.e., a project that maximizes the net present value of total benefits, the question
is how to share the common costs. Following Littlechild and Owen (1977) we
will consider allocation rules for which the associated fee schedules, satisfy

(a) no group of agents is charged more than the cost of building a project for
that group alone, and

11



(b) the total cost of the optimal project is exactly covered.

Accordingly, a payoff vector x ∈ RN
+ is said to be a solution of the airport

profit problem (N,C, b) if it satisfies

b
({

j ∈ N : j � i
})

− x
({

j ∈ N : j � i
})

≤ C(i) for each i ∈ N. (5)

b(M)− C(M) = max
{
b(R)− C(R) : R ⊆ N

}
implies

x(N) = x(M) = b(M)− C(M). (6)

Let us examine the particular case of a 2-person problem (N,C, b) with
N = {1, 2}. If agent, let us say i, decides to achieve his project without the help
of his partner, he would obtain bi−C(i), whenever this amount is non-negative;
otherwise it is rational for him to desist of making his project. Therefore the
benefits generated by the cooperation are given by

α = b
(
{1, 2}

)
− C

(
{1, 2}

)
−

(
b1 − C(1)

)
+
−

(
b2 − C(2)

)
+
.

This is the amount at issue, and if it is shared equally, agent i will receive

xi =
α

2
+

(
bi − C(i)

)
+

i = 1, 2. (7)

The payoff vector defined above will be called the standard solution of the 2-
person problem (N,C, b).

Now let us consider a general airport profit problem with more participants.
To find allocation rules for such a problem we shall use the property of con-
sistency as follows. Assume all the agents have reached an agreement, and
subsequently some of the agents are paid accordingly and leave out. Assume
also the remaining agents do renegotiate what is left to them. A consistent
payoff vector will prescribe for this new reduced situation the same payoffs as
in the former one. A formal definition of consistency will clearly depend upon
the way we describe the new situation.

Let (N,�, C, b) be an airport profit problem, S a proper coalition of N , and
x a solution of (N,�, C, b). The reduced airport profit problem of (N,C, b) with
respect to S and x, is the problem

(
S,�S , CS,x, bS

)
, where

CS,x(i) = min
{

C
(
Q∪{i}

)
−

(
b(Q)−x(Q)

)
: Q ⊆ N\S

}
, for every i ∈ S. (8)

Remark 17. Notice that CS,x depends only on xN\S , so by abusing the nota-
tion we will also write CS,x when x ∈ RN\S .

If there is no confusion, we will simply write Cx, and (S, Cx, bS).

To illustrate the meaning of the reduced problem let us suppose that agents
in N are constructing a landing runway, and they agree upon agent i ∈ N

12



receiving xi, so his payment to finance the runway is bi−xi. Before leaving the
others in the negotiation assume agent i has to specify the precise part of runway
that he will pay. It is reasonable to think he will choose a fragment between
the origin and the last point of the runway he will use. If this agent defrays
the piece of runway closest to this last point, the remaining agents will face a
‘reduced’ airport profit problem. The cost function of the new problem will be
precisely Cx, and their benefits will be the same as in the original situation.

We say that a solution x of the problem (N,C, b) is consistent with the
standard solution, or simply consistent , if for every 2-person coalition S, the
standard solution of

(
S, CS,x, bS

)
is xS .

Potters and Sudhölter (1999) showed that there is only one allocation rule
consistent with the standard solution in “airport cost problems” (they called it
ν-consistent, to distinguish between other alternative definitions for consistency
suggested by them), and it turns out to be the nucleolus of the corresponding
games. An extension of this result to “airport profit games” is the following
theorem.

Theorem 18. For every airport profit problem there exists a unique consistent
solution.

Remark 19. As it was mentioned in Remark 4 every bankruptcy problem
can be considered as an airport profit problem. It can be easily proved that
the definition of consistency established above is equivalent to the definition of
consistency given by Aumann and Maschler (1985) for solutions on bankruptcy
games. Thus Theorem 18 can be viewed as an extension of the corresponding
theorem given by these authors.

To prove Theorem 18 we will show that the consistent solution of an airport
profit problem is the only payoff in the prekernel of the corresponding game,
i.e., the nucleolus of this game.

Lemma 20. Let T ⊆ S ⊆ N be two proper coalitions of N . If x is a solution
of (N,C, b) then (

T,
(
CS,x

)T,x
,
(
bS

)
T

)
=

(
T,CT,x, bT

)
.

Proof. It is straightforward.

Lemma 21. Let x be a solution of (N,C, b), and let S be a proper coalition of
N . Then (

v(N,C,b)
)S,x

= v(S,Cx,bS).

(In words, the reduced surplus airport game is the game corresponding to the
reduced airport profit problem.)

13



Proof. By Remark 2 part (a), and Lemma 20, it is enough to consider the
case in which S = N \ {i} for some i ∈ N . To simplify the notation, write
v = v(N,C,b), and w = v(N\{i},Cx,bN\{i}).

First notice that Cx(R) = min
{

C(R), C
(
R ∪ {i}

)
−

(
bi − xi

)}
for every

R ⊆ N \ {i}.
Thus we have to show that w(T ) = vx(T ), for every T ⊆ N\{i}. First we

prove this identity for T 6= N\{i}. Indeed,

vx(T ) = max

{
v(T ), v

(
T ∪ {i}

)
− xi

}
= max

R⊆T

{
max

{
b(R)− C(R), b

(
R ∪ {i}

)
− C

(
R ∪ {i}

)
− xi

}}

= max
R⊆T

{
b(R)−min

{
C(R), C

(
R ∪ {i}

)
−

(
bi − xi

)}}
= max

{
b(R)− Cx(R) : R ⊆ T

}
= w(T ).

Now consider the case T = N\{i}. Let M ⊆ N be the maximal coalition
such that v(N) = b(M)− C(M). We consider two cases

1) i /∈ M . Then C(M) < C(i)− bi = C
(
M ∪ {i}

)
− bi, and by condition (6)

it is also xi = 0. Hence, Cx(M) = C(M), and it holds

w
(
N\{i}

)
≥ b(M)− Cx(M) = b(M)− C(M) = v(N) = v(N)− xi.

On other hand, for every R ⊆ N\{i} it holds Cx (R) ≤ C (R), and since
xi = 0 it follows

w
(
N\{i}

)
= max

{
b(R)− Cx (R) : R ⊆ N\{i}

}
≤ max

{
b(R)− C (R) : R ⊆ N\{i}

}
≤ v(N) = v(N)− xi.

2) i ∈ M . Then Cx
(
M\{i}

)
= C(M)− bi + xi implying that

w
(
N\{i}

)
≥ b

(
M\{i}

)
− Cx

(
M\{i}

)
= b

(
M\{i}

)
− C(M) + bi − xi

= b (M)− C (M)− xi = v(N)− xi.

Again it will be enough to show that for every R ⊆ N\{i} it holds b(R)−
Cx (R) ≤ v(N)− xi. We have two cases

2a) Cx (R) = C
(
R ∪ {i}

)
− (bi − xi). In this case

b(R)− Cx (R) = b(R)− C
(
R ∪ {i}

)
+ (bi − xi)

= b
(
R ∪ {i}

)
− C

(
R ∪ {i}

)
− xi ≤ v(N)− xi.
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2b) Cx (R) = C (R). Let M ′ ⊆ N\{i} be the maximal coalition such
that v

(
N\{i}

)
= b (M ′)− C (M ′). From expressions (5) and (6):

C(M)−C (M ′) ≤
(
b(M)−x(M)

)
−

(
b (M ′)−x (M ′)

)
≤ b (M\M ′)−xi,

Hence

b(R)− Cx (R) = b(R)− C (R) ≤ b (M ′)− C (M ′)
= b(M)− xi − C(M)− b (M\M ′) + xi + C(M)− C (M ′)

≤ b(M)− xi − C(M) = v(N)− xi.

Thus the proof is complete.

Proposition 22. The payoff vector x is in the prekernel of the TU game (N, v)
if and only if for every S ⊂ N such that |S| = 2, the payoff vector xS is the
standard solution of

(
S, vS,x

)
.

Proof. See Aumann and Maschler (1985) or Peleg (1986).

Proposition 23. The standard solution of a 2-person airport profit problem
(N,C, b) is the standard solution of the associated game.

Proof. It follows from (7), (2) and (1).

Proposition 24. A solution of (N,C, b) is consistent if and only if it is the
nucleolus of the corresponding game.

Proof. Let v be the TU game associated to (N,C, b), and ν the nucleolus of
this game.

First let us see that ν is a solution. Indeed, since ν is in the core of v it holds

ν
({

j ∈ N : C(j) ≤ C(i)
})

≥ v
({

j ∈ N : C(j) ≤ C(i)
})

≥ b
({

j ∈ N : C(j) ≤ C(i)
})

− C(i).

Hence, ν satisfies (5).
Furthermore, if b(M)− C(M) = max

{
b(R)− C(R) : R ⊆ N

}
, then

ν(N) = v(N) = max
{
b(R)− C(R) : R ⊆ N

}
= v(M) = ν(M).

So ν also satisfies (6).
Now let us show that ν is consistent. Let S ⊆ N such that |S| = 2. Since

ν ∈ PK(v), by Proposition 22, νS is the standard solution of vS,ν , and hence
by Lemma 21, it is also the standard solution of the TU game corresponding
to the problem (S, Cν , bS). By Proposition 23, ν is the standard solution of
(S, Cν , bS). That is ν is consistent.
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Now assume that x is a consistent solution of (N,C, b). Then for every
two-person coalition S ⊆ N , the payoff vector xS is the standard solution of
(S, Cν , bS). By Proposition 23 and Lemma 21, xS is the standard solution of
the 2-person TU game corresponding to this problem. And by Proposition 22,
x ∈ PK(v). But, by Proposition 5, v is convex and hence PK(v) consists of
only an unique payoff vector, namely its nucleolus. So x = ν, and the proof is
complete.

Proof of Theorem 18. It is direct consequence of Proposition 24.

5 The algorithm

Taking into account propositions 15 and 24, and Lemma 21, we can construct
a simple algorithm to determinate the nucleolus of an airport profit game.

Let (N,C, b) be an airport profit problem, with |N | ≥ 3.
The algorithm can be described as follows: We construct a finite sequence of

airport profit problems (Nm, Cm, bNm
), with m = 1, . . . ,M , where (N1, C1, bN1)) =

(N,C, b). In each step we calculate the consistent solution x for a subgroup of
agents Sm ⊆ Nm. If Sm = Nm the algorithm stops. Otherwise we reduce the
problem with respect to the complement of Sm at x, and consider a new prob-
lem

(
Nm+1, Cm+1, bNm+1

)
. Thus the i-th problem is a reduced problem of the

(i− 1)-th one for i = 2, . . . ,M .
In each step m calculate the following numbers

αm =
b (Nm)− Cm (Nm)

|Nm|
,

and for every i ∈ Nm\ {`Nm
},

βm
i =

bi

2
,

γm
i =

Cm(i) + b
({

k ∈ Nm : Cm(k) > Cm(i)
})

− Cm (Nm)∣∣∣{k ∈ Nm : Cm(k) > Cm(i)
}∣∣∣ + 1

, and

δm
i =

Cm(i)∣∣∣{k ∈ Nm : Cm(k) ≤ Cm(i)
}∣∣∣ + 1

.

Next consider the minimum of all these numbers, that is

λm = min {αm} ∪
{
βm

i , γm
i , δm

i , : i ∈ Nm\ {`Nm
}

}
.

Now define the set Sm of the players k ∈ Nm that satisfy at least one of the
following conditions:

a) λm = αm (notice that in this case Sm = Nm).
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b) λm = βm
k , or

c) There exists i ∈ Nm\ {`Nm
} such that Cm(k) > Cm(i) and λm = γm

i , or

d) There exists i ∈ Nm\ {`Nm
} such that Cm(k) ≤ Cm(i) and λm = δm

i .

and for every k ∈ Sm define

xm
k =


(λ)+ if λ = α,

λ if λ = βk,

(λ)+ if λ = γi for some i ≺ k,

bk − λ if λ = δi for some i � k.

Finally, let

Nm+1 = Nm\Sm, Cm+1 = (Cm)x
, and M = max {m : Sm = Nm} .

Theorem 25. If (N,C, b) is an airport profit problem, its consistent solution
is the payoff vector x ∈ RN such that

xi = xm
i , for every i ∈ Sm.

Proof. Follows from propositions 15 and 24, and Lemma 21.

Example 26. To illustrate the algorithm consider the following example with
N = {1, 2, 3, 4, 5, 6} and the following data

Agents
1 2 3 4 5 6

C(i) 6 15 20 30 36 38
bi 12 12 4 23 6 5

For this problem we have: N1 = N , C1 = C. In this case notice that

α1 =
b(N)− C(N)

n
,

β1
i =

bi

2
,

γ1
i =

C(i) + b
(
{i + 1, . . . , n}

)
− C(N)

n− i + 1
, and

δ1
i =

C(i)
i + 1

.

Consequently we have the following table summarizing the data:
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Stage 1 Agents
1 2 3 4 5

α1 – – – – – 4

β1
i 6 6 2 11.5 3 –

γ1
i 3 3 4 1 1.5 –

δ1
i 3 5 5 6 6 –

Thus the minimum in this table is attained in λ1 = γ1
4 = 1. Hence S1 =

{5, 6}, and agents 5 and 6 get 1 (and accordingly they pay 5 and 4 respectively).
The rest of the agents face the reduced problem

Agents
N2 1 2 3 4
C2(i) 6 15 20 29
bi 12 12 4 23

For this reduced problem similar calculations give the following table

Stage 2 Agents
1 2 3

α2 – – – 11/2

β2
i 6 6 2 –

γ2
i 4 13/3 7 –

δ2
i 3 5 5 –

Now the minimum is attained in β2
3 = 2. This means that S2 = {3}, and

agent 3 gets 2 (consequently he pays 2). The rest of the agents face the reduced
problem

Agents
N3 1 2 4
C3(i) 6 15 27
bi 12 12 23

For the new reduced problem the calculations give the following table

18



Stage 3 Agents
1 2

α3 – – 20/3

β3
i 6 6 –

γ3
i 14/3 11/2 –

δ3
i 3 5 –

The minimum is attained in δ3
1 = 3. So S3 = {1}, and agent 1 pays 3 (so he

gets 9). The remaining agents 2 and 3 face the reduced two person problem:

Agents
N4 2 4
C4(i) 12 24
bi 12 23

This is a 2-person problem, whose standard solution is x2 = x4 = 5.5.
Finally the consistent solution of this problem is: (9, 5.5, 2, 5.5, 1, 1).

Appendix A

Before proving Proposition 9, we need several results.
The next lemma refers to general convex games.

Lemma 27. Let (N, v) be a convex game.

(a) If S, T ∈ D1(ν), and S ∪ T 6= N , then S ∪ T ∈ D1(ν).

(b) If S1, . . . , Sk ∈ D1(ν), and
⋃k

i=1 Sk 6= N , then
⋃k

i=1 Sk ∈ D1(ν).

(c) i ∈ N is a null player in (N, v) if and only if νi = 0.

Proof. (a) See Maschler et al. (1972).
(b) By induction.
(c) It is straightforward to show that if i is a null player then νi = 0.
For the converse assume that νi = 0. Since i is a null player of (N, v) it

follows v
(
{i}

)
= 0, and hence e

(
{i}, ν

)
= 0. Since the core of (N, v) is not

empty, e(S, ν) ≤ 0 for every S ⊆ N , and consequently {i} ∈ D1(ν). Hence
sij(ν) = 0 for all j ∈ N\{i}.

Since ν ∈ PK(v), for every j ∈ N\{i} it holds sji(ν) = 0, and hence there
exists a coalition S(j) ⊆ N\{i} such that j ∈ S(j), and e

(
S(j), ν

)
= 0.

From part (b) of this lemma it follows
⋃

j 6=i S(j) = N\{i} ∈ D1(ν). But
then we have:

0 = e
(
N\{i}, ν

)
= v

(
N\{i}

)
− ν

(
N\{i}

)
= v

(
N\{i}

)
− ν(N),
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where the last equality follows since νi = 0. Since ν is efficient we can conclude
v(N)−v

(
N\{i}

)
= 0. By the convexity of (N, v) it follows v(S)−v

(
S\{i}

)
= 0

for every S ⊆ N such that i ∈ S; and this means that i is a null player.

Throughout the rest of this appendix (N,C, b) will be an airport profit prob-
lem. By (N, v) we denote the corresponding TU game, and ν its nucleolus.

Lemma 28. If i is a null player, and j � i, then j is also a null player in
(N, v).

Proof. By contradiction, assume that j is not a null player, then there exists
a coalition S ⊆ N\{j} such that v

(
S ∪ {j}

)
> v(S) ≥ 0. Let Q ⊆ S ∪ {j} be

the maximal coalition such that v
(
S ∪ {j}

)
= b(Q)− C (Q). Consider also the

coalition P = {k ∈ N : k � `Q}. Since j ∈ Q (otherwise Q ⊆ S and v
(
S∪{j}

)
=

v(S)), it follows j ∈ P , and hence i ∈ P . Moreover, since C(P ) = C(Q) it holds

v(P ) = max
{
b(R)− C(R) : R ⊆ P

}
≤ max

{
b(R ∩Q) + b(R\Q)− C(Q) : R ⊆ P

}
≤ b(Q)− C(Q) + max

{
b(R\Q) : R ⊆ P

}
≤ b(P )− C(Q) = b(P )− C(Q).

Thus v(P ) = b(P )− C(P ).
In addition v(P )− v

(
P\{i}

)
≥ bi > 0. Thus i would not be a null player.

Lemma 29. Let S ∈ D1(ν). If v(S) = 0, then {i} ∈ D1(ν), for every i ∈ S.

Proof. Let S ∈ D1(ν) such that v(S) = 0, and i ∈ S. Since v is monotonic it
follows v

(
{i}

)
= 0, and hence

e
(
{i}, ν

)
= −νi ≥ −ν(S) = v(S)− ν(S) = e(S, ν).

This is only possible if {i} ∈ D1(ν).

Lemma 30. Let (N,C, b) be an airport profit problem and (N, v) its associated
game. If there are not null players in (N, v), and S ∈ D1(ν) is not effective,
then |S| = 1.

Proof. By contradiction. Assume that S is not effective and |S| > 1. Take
R ⊆ S, R 6= ∅, S, such that v(S) = v(R). By Lemma 27 part (c), it follows
ν(S\R) > 0, and hence

e(S, ν) = v(S)− ν(S) = v(R)− ν(R)− ν(S\R) = e(R, ν)− ν(S\R) < e(R, ν).

But this contradicts S ∈ D1(ν).

Lemma 31. Let R ∈ D1(ν) be effective. If C(S) ≤ C(R), and S 6= N\R, then
R ∪ S ∈ D1(ν).
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Proof. If R is effective and C(S) ≤ C(R), then R ∪ S is also effective and
moreover C(R ∪ S) = C(R). Then we have

e(R ∪ S, ν)− e(R, ν) = v(R ∪ S)− v(R)− ν(S)
= b(R ∪ S)− C(R ∪ S)− b(R) + C (R)− ν(S)
= b(S)− ν(S) ≥ 0.

Since R ∈ D1(ν), this is only possible if R ∪ S ∈ D1(ν).

Lemma 32. Let R,S ∈ D1(ν) be effective, and T ⊆ S, T 6= ∅, S such that
T ∩R = ∅. If C(S\T ) ≤ C(R), then T ∈ D1(ν).

Proof. Since C(S\T ) ≤ C(R), and R is effective, then R∪(S\T ) is also effective
by Lemma 31. Let us compare the excesses of coalitions R ∪ (S\T ), R, T , and
S. Since C

(
R ∪ (S\T )

)
= C(R) it holds

e
(
R ∪ (S\T ),ν

)
− e(R, ν) + e(T, ν)− e(S, ν)

= v
(
R ∪ (S\T )

)
− v(R) + v(T )− v(S)

= v(T )− v(S) + b(S\T )

= v(T )−
(
b(S)− c(S)

)
+ b(S\T )

= v(T )−
(
b(T )− c(T )

)
+ c(S)− c(T )

≥ c(S)− c(T ) ≥ 0.

Since S, R ∈ D1(ν), this can only be possible if T,R ∪ (S\T ) ∈ D1(ν).

The next lemma identifies some partitions in D1(ν).

Lemma 33. If D1(ν) contains a partition of N , then at least one of the following
statements is true.

(I) {i} ∈ D1(ν), and v
(
{i}

)
= 0 for every i ∈ N .

(II) there exists i0 ∈ N such that i0 6= `N , and it holds

i) {i ∈ N : i � i0} ∈ D1(ν), and v
(
{i ∈ N : i � i0}

)
6= 0.

ii) {k} ∈ D1(ν), and v
(
{k}

)
= 0 for every k ∈ N s. t. i0 ≺ k.

(III) there exists i0 ∈ N such that i0 6= `N , and {i0} , N\ {i0} ∈ D1(ν).

(Notice that (I) is actually a special case of (II).)

Proof. Firstly assume that there are no null players in (N, v), and let P be a
partition included in D1(ν). If v(S) = 0 for every S ∈ P, by the monotonicity
of v it holds v

(
{i}

)
= 0, and also from Lemma 29 it follows {i} ∈ D1(ν) for

every i ∈ N , so we are in case (I).
So assume that there exists S ∈ P, such that v(S) 6= 0. Let R ∈ P such

that `R = max�
⋃

S∈P:
v(S) 6=0

S. Then v(R) 6= 0, and by Lemma 30, R is effective,
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Let us consider first the case in which `N 6= `R. From Lemma 31 it follows
{i ∈ N : i � `R} = R∪{i ∈ N : i � `R} ∈ D1(ν). Moreover, if `R ≺ i, then there
exists S ∈ P such that i ∈ S and v(S) = 0, and by Lemma 29, {i} ∈ D1(ν).
Then we are in case (II) by choosing i0 = `R.

Assume now that `N = `R. Let S ∈ P, S 6= R and take k ∈ S. By
Lemma 31, since R is effective it holds N\ {k} = R ∪

(
N\ {k}

)
∈ D1(ν). If

S = {k} then {k} ∈ D1(ν), and we are in case (III) by taking i0 = k. If S
is not a singleton, then S is effective and v(S) 6= 0. Thus C(S) ≤ C(R), and
applying Lemma 32 we obtain {k} ∈ D1(ν). So we are again in case (III) by
taking i0 = k.

Now assume there are null players in (N, v). If all the players are null then
for every i ∈ N it holds νi = 0, and consequently we are in case (I). Otherwise
let k = max�{i ∈ N : i is not a null player}. By Lemma 28, if k ≺ i then i is a
null player, hence νi = 0 = v

(
{i}

)
and {i} ∈ D1(ν). Moreover, by the efficiency

of ν, it holds v
(
{i ∈ N : i � k}

)
= ν

({
i ∈ N : i � k

})
, and consequently

{i ∈ N : i � k} ∈ D1(ν). So it will be enough to take i0 = k, and we will be in
case (II).

In the next lemma we identify some antipartitions in D1(ν).

Lemma 34. If D1(ν) contains an antipartition A, with |A| ≥ 3, then there
exists i0 ∈ N , i0 6= `N , such that {i0} , N\ {i0} ∈ D1(ν).

Proof. Assume that A = {N\Q1, . . . , N\Qr} (r ≥ 3, and w. l. o. g. also
assume that `N ∈ Q1. Let us consider k ∈ Q2. Since |A| ≥ 3 necessarily
|N\Q1| , |N\Q2| ≥ 2, and hence N\Q1 and N\Q2 are effective.

On one hand, by Lemma 31 it holds N\{k} =
(
N\Q2

)
∪

(
N\{k}

)
∈ D1(ν).

On the other hand by Lemma 32 it holds {k} ∈ D1(ν) (with N\Q2 and N\Q1

in the role of R and S respectively). Taking i0 = k we conclude the result.

Proof of Proposition 9:

Proof. By Theorem 8, and Lemmas 33, and 34 we are in case (I) or (III) or
there exist i0 ∈ N\ {`N} such that {i0} , N\ {i0} ⊆ D1(ν). So assume we are in
this case.

If v
(
{i0}

)
= 0 we are in case (II). So we can assume that v

(
{i0}

)
6= 0. Then

{i0} is effective and from Lemma 31 it follows {i ∈ N : i � i0} ∈ D1(ν).
If for every i ∈ N it holds i � i0, then we are in case (III)
So we can assume that there exists i � i0. From Lemma 32 it holds

N\ {i, i0} ∈ D1(ν) (with {1, . . . , i0}, N\ {i0}, and N\ {i, i0}, in the role of
R, S and T respectively). And by Lemma 31 (with N\ {i, i0} in the role of R)
it holds N\ {i} ∈ D1(ν). Consequently we are in case (IV).
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Appendix B

Proof of Lemma 10.

Proof. (a) and (b): By Remark 7 part b) it holds:

e(P, x) =
∑

i∈N v
(
{i}

)
− v(N)

|P|

=
∑

i∈N v
(
{i}

)
−

(
b(N)− C(N)

)
|P|

= −αv +
∑

i∈N v
(
{i}

)
|P|

.

And the result follows.
(c) Since v

(
{i}

)
= 0, and {i} ∈ D1(ν), it follows νi = −e(P, ν).

Proof of Lemma 11.

Proof. (a) and (b): By Remark 7 part b), and taking into account that N\{i0}
is effective it holds:

e(P, ν) =
v
(
N\{i0}

)
+ v

(
{i0}

)
− v(N)

2

=
b
(
N\{i0}

)
− C(N) + v

(
{i0}

)
− b(N) + C(N)

2
= −βv

i0 +
v
(
{i0}

)
2

.

And we conclude easily the result.
(c) Since v

(
{i0}

)
= 0, and {i0} ∈ D1(ν), it follows νi0 = −e(P, ν).

Proof of Lemma 12.

Proof. (a) and (b): By Remark 7 part b), and taking into account that coalition
{i ∈ N : i � i0} is effective it holds:

e(P, ν) =
v
(
{i ∈ N : i � i0}

)
+

∑
k�i0

v
(
{k}

)
− v(N)

n− i0 + 1

=
b
(
{i ∈ N : i � i0}

)
− C (i0) +

∑
k�i0

v
(
{k}

)
− b(N) + C(N)

n− i0 + 1

=

∑
k�i0

v
(
{k}

)
− C(i0)− b

(
{k ∈ N : k � i0}

)
+ C (N)

n− i0 + 1

= −γv
i0 +

∑
k�i0

v
(
{k}

)
n− i0 + 1

.

And the result follows.
(c): Since for every k � i0, it holds {k} ∈ D1(ν), and v

(
{k}

)
= 0, it follows

νk = −e(P, ν).

Proof of Lemma 13.
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Proof. (a) By Remark 7 part b), and taking into account that all the coalitions
in P are effective it holds:

e(P, ν) =
v
(
{k ∈ N : i0 ≺ k}

)
+

∑
k�i0

v
(
N\{k}

)
− |P − 1| · v(N)

|P|

=
b
(
{k ∈ N : i0 ≺ k}

)
− C

(
{k ∈ N : i0 ≺ k}

)
− |P − 1| ·

(
b(N)− C(N)

)
|P|

+

∑
k�i0

(
b
(
N\{i}

)
− C(N)

)
|P|

=
C(i0)
|P|

= −δv
i0 .

(b) Now let i � i0. Then

e
(
N\{i}, ν

)
= v

(
N\{i}

)
− ν

(
N\{i}

)
= v

(
N\{i}

)
− ν(N) + νi

b
(
N\{i}

)
− C(N)− v(N) + C(N) + νi = −bi + νi,

Hence νi = bi − δv
i0 .
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