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Abstract 

 

This paper proposes a novel method to select an experimental design for interpolation 

in simulation. Though the paper focuses on Kriging in deterministic simulation, the 

method also applies to other types of metamodels (besides Kriging), and to stochastic 

simulation. The paper focuses on simulations that require much computer time, so it is 

important to select a design with a small number of observations. The proposed 

method is therefore sequential. The novelty of the method is that it accounts for the 

specific input/output function of the particular simulation model at hand; i.e., the 

method is application-driven or customized. This customization is achieved through 

cross-validation and jackknifing. The new method is tested through two academic 

applications, which demonstrate that the method indeed gives better results than a 

design with a prefixed sample size. 
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1. Introduction 

 

We are interested in expensive simulations; that is, we assume that a single simulation 

run takes ‘much’ computer time (say, its time is measured in days, not minutes). 

Therefore we devise a method meant to minimize the number of simulation runs – 

that number is called the ‘sample size’ in statistics or the ‘design size’ or ’scheme 

size’ in design of experiments (DOE). 

We tailor our design to the actual simulation; that is, we do not derive a 

generic design such as a classic 2k – p design or a Latin Hypercube Sampling (LHS) 

design. We explain the differences between our designs on one hand and classic and 

LHS designs on the other hand, as follows. 

Classic designs assume a simple ‘metamodel’ (also called approximate model, 

emulator, response surface, surrogate, etc.). A metamodel is a model of an 

input/output (I/O) function. We denote the metamodel by )(xY  where x  denotes the k 
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-dimensional vector of the k inputs – called ‘factors’ in classic DOE. In simulation, 

the true I/O function is implicitly defined by the simulation model itself (in real-life 

experiments, ‘nature’ defines this function).  Classic 2k – p designs of resolution III 

assume a first-order polynomial function (optimal resolution-III designs are 

orthogonal matrices, under various criteria). Central composite designs (CCD) assume 

a second-order polynomial function. See, for example, the well-known textbook Box, 

Hunter, and Hunter  (1978) or the recent textbook, Myers and Montgomery (2002). 

LHS  - much applied in Kriging – assumes I/O functions more complicated 

than classic designs do - but LHS does not specify a specific function for )(xY . 

Instead, LHS focuses on the design space formed by the k–dimensional unit cube, 

defined by 10 ≤≤ jx  (j = 1, …, k) after standardizing (scaling) the inputs. LHS tries 

to sample that space according to some prior distribution for the inputs, such as 

independent uniform distributions on [0, 1]  (or some non-uniform distribution in risk 

or uncertainty analysis); see McKay, Beckman, and Conover (1979, 2000), and also 

Koehler and Owen (1996) and Kleijnen et al. (2002). 

Unlike LHS, we explicitly account for the I/O function; unlike, classic DOE 

we use a more realistic I/O function than a low-order polynomial. Therefore we 

estimate the true I/O function through cross-validation; i.e., we successively delete 

one of the I/O observations already simulated (for cross-validation see Stone 1974; for 

an update see Meckesheimer et al. 2002, Mertens 2001). In this way we estimate the 

uncertainty of output at input combinations not yet observed. To measure this 

uncertainty, we use the jackknifed variance. For jackknifing see the classic article by 

Miller (1974); for an update see again Meckesheimer et al. and Mertens. 

It turns out that our procedure concentrates on input combinations (design 

points, simulation scenarios) in sub-areas that have more interesting I/O behavior. In 

our Example I, we spend most of our simulation time on the challenging ‘explosive’ 

part of a hyperbolic function (which may represent mean steady-state waiting time of 

single-server waiting systems). In Example II, we avoid spending much time on the 

relatively flat part of the fourth-degree polynomial I/O function with multiple local 

hills. (The reader may take a peek at Figures 3 and 6 discussed later.) 

We make our procedure sequential for the following two reasons 
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1. Sequential procedures are known to be more ‘efficient’; that is, they require fewer 

observations than fixed-sample procedures; see the statistics literature, for example, 

Ghosh and Sen (1991) and Park et al. (2002). 

2. Simulation experiments proceed sequentially (unless parallel computers are used). 

 Our Application-Driven Sequential Design (ADSD) does not provide 

tabulated designs; instead, we present a procedure for generating a sequential design 

for the actual (simulation) experiment. 

 Note that (after we finished this research, we found that) a different ADSD is 

developed by Sasena, Papalambros, and Govaerts (2002). They, however, focus on 

optimization instead of sensitivity analysis (we think that optimization is more applied 

in engineering sciences than in management sciences, because the latter sciences 

involve softer performance criteria). Moreover, they use the ‘generalized expected 

improvement function’ assuming a Gaussian distribution, as proposed by Jones, 

Schonlau, and Welch (1998). We, however, use distribution-free jackknifing and 

cross-validation for a set of candidate input combinations. Sasena et al. examine 

several criteria for selecting the next input combination to be simulated, including the 

‘maximum variance’ criterion; the latter criterion is the one we use. (An alternative to 

their single, globally fitted Kriging metamodel for constrained optimization is a 

sequence of locally fitted first-order polynomials; see Angün et al. 2002.) Related to 

Sasena et al. (2002) is Watson and Barnes (1995). More research is needed to 

compare our method with Sasena et al.’s method (also see our final section, called 

‘Conclusions and further research’). 

 The remainder of this paper is organized as follows. Section 2 summarizes the 

basics of Kriging. Section 3 summarizes DOE and Kriging. Section 4 explains our 

method, which uses cross-validation and jackknifing to select the next input 

combination to be simulated; this section also discusses sequentialization and 

stopping.  Section 5 demonstrates the procedure through two academic applications, 

which shows that our method gives better results than a design with a prefixed sample 

size; moreover, estimated Gaussian and linear correlation functions (variograms) – 

used in Kriging - give approximately the same results. Section 6 present conclusions 

and topics for further research. 

 



 5

2. Kriging basics 

 

Kriging is named after a South-African mining engineer, D.G. Krige. It is an 

interpolation method that predicts unknown values of a random function or random 

process; see Cressie (1993)’s classic Kriging textbook and equation (1) below. More 

precisely, a Kriging prediction is a weighted linear combination of all output values 

already observed. These weights depend on the distances between the location to be 

predicted and the locations already observed. Kriging assumes that the closer the 

input data are, the more positively correlated the prediction errors are. This 

assumption is modeled through the correlogram or the related variogram, discussed 

below. 

Nowadays, Kriging is also popular in deterministic simulation (to model the 

performance of computer chips, television screens, etc.); see Sacks et al. (1989)’s 

pioneering article, and - for an update - see Simpson et al. (2001a). Compared with 

linear regression analysis, Kriging has an important advantage in deterministic 

simulation: Kriging is an exact interpolator; that is, predicted values at observed input 

values are exactly equal to the observed (simulated) output values.  

Kriging assumes the following metamodel: 

 

)()()( xxx δµ +=Y  with ))(,0(~)( 2 xx σδ NID    (1) 
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where µ  is the mean of the stochastic process )(⋅Y , and )(xδ  is the additive noise, 

which is assumed normally independently distributed (NID) with mean zero and 

variance )(2 xσ . Ordinary Kriging further assumes a stationary covariance process 

for )(xY in (1): the expected values )(xµ are constant and the covariances of 

)( hx +Y and )(xY depend only on the distance (or lag) |)()(||| xhxh −+= .  

As we mentioned above, the Kriging predictor for the unobserved input 0x  - 

denoted by )(ˆ
0xY  - is a weighted linear combination of all the (say) n observed 

output data:  

Yλxx ⋅=⋅=∑
=

/

1
0 )()(ˆ

i

n

i
i YY λ     (2) 

with ∑ =

n

i i1
λ  = 1,  ),,( 1 ′= mλλ �λ  and ),,( 1 ′= myy �Y . To choose these 

weights, the ‘best’ linear unbiased estimator (BLUE) is derived: this estimator 

minimizes the mean-squared prediction error ( ) ( )( )2
000 )(ˆ)()(ˆMSE xxx YYEY −= , 

with respect to λ . Obviously, this solution depends on the covariances, which may be 

characterized by the variogram, defined as ))()(()(2 xhxh YYvar −+=γ . (We follow 

Cressie, who  uses variograms, whereas Sacks et al. use correlation functions; also see 

our discussion on the estimation of variograms in Section 5.) An example variogram 

is given in Figure 1.  

 

Insert Figure 1 

 

It can be proven that the optimal weights in (2) are 

1
/

1/

1/
/ 1 −

−

−








 −+= Γ
1Γ1
γΓ11γλ     (3) 

where γ  is the vector of (co)variances /
010 ))(,),(( nxxxx −− γγ � ; Γ  is the nn ×  

matrix whose (i, j)th element is )( ji xx −γ ; /)1,,1( �=1 is the vector of ones. We 

point out that the weights in (3) vary with the prediction point, whereas regression 

analysis uses the same estimated metamodel for all prediction points. Further details 

on Kriging are provided by Cressie (1993, p. 122); an update is Van Beers and 

Kleijnen (2003).  
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3. DOE and Kriging 

 

A design is a set of (say) n combinations of the k factor values. These combinations 

are usually bounded by ‘box’ constraints: jjj bxa ≤≤ , where Rba jj ∈, with j = 1, 

…, k. The set of all feasible combinations is called the experimental region (say) H. 

We suppose that H is a k-dimensional unit cube, after rescaling the original 

rectangular area (also see the Introduction). 

 Our goal is to find a design - for Kriging predictions within H - with the 

smallest size that satisfies a certain criterion. The literature proposed several criteria: 

see Sacks et al. (1989, p. 414). Most of these criteria are based on the Mean Squared 

prediction Error, ( ) ( ) 2)()(ˆ)(ˆMSE xxx YYEY −=  where the predictor )(ˆ xY  follows 

from (2) and the true output )(xY was defined in (1). (An alternative considers 

)%1(100 α−  prediction regions for )(xy  and inter-quantile ranges for )(ˆ xy ; see 

Cressie 1993, p. 108.) However, most progress has been made through the Integrated 

Mean Squared Error (IMSE); see Bates et al. (1996): choose the design that 

minimizes 

 ( ) xxx dYIMSE
H

)()(ˆMSE φ∫=     (4) 

for a given weight function )(xφ . 

To validate the design, Sacks et al. (1989, p. 416) compare the predictions 

with the known true values in a test set of size (say) m. They assume )(xφ  to be 

uniform, so IMSE in (4) can be estimated by the Empirical Integrated Mean Squared 

Error (EIMSE): 

( ) .)()(ˆ
1 2

1
∑

=
−=

m

i
ii yy

m
EIMSE xx     (5) 

Note that criteria such as (4) are more appropriate in sensitivity analysis than 

in simulation optimization; see Sasena et al. (2002) and also Kleijnen and Sargent 

(2000) and Kleijnen (1998).  

 

4. Application-driven sequential design 

 

4.1 Pilot input combinations 
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We start with a pilot design of size (say) n0.  To select n0 specific points, we notice 

that Kriging gives very bad predictions in case of extrapolation (i.e., predictions 

outside the convex hull of the observations obtained so far). Indeed, in our examples 

we find very bad results (not displayed). Therefore, we select the 2k vertices of H as a 

subset of the pilot design. In our tow examples with a single input (k = 1), this choice 

implies that one input value is the minimum and one is the maximum of the input’s 

range; see Figure 2 (other parts of this figure will be explained below, in Sections 4.2 

and 4.3). 

 

Insert Figure 2 

 

Besides these 2k vertices, we must select some more input combinations to 

estimate the variogram. Like Cressie (1993) we assume either a Gaussian variogram 

))exp(1()( 10 ahcch −−+=γ      (6) 

or a linear variogram 

hcch ⋅+= 0)(γ .     (7) 

Obviously, estimation of these variograms requires at least three different values of h; 

thus at least three different I/O combinations. Moreover - as we shall see  - our 

approach uses cross-validation, which implies that we drop one of the n0 observations 

and re-estimate the variogram; i.e., cross-validation necessitates one extra I/O 

combination.  

In practice, we may select a ‘small’ set of additional observations – besides the 

2k corner points – using a standard space-filling design, which ensures that no two 

design points are too close to each other. More specifically, we propose a maximin 

design, which packs all design points in hyper spheres with maximum radius; see 

Koehler and Owen (1996, p. 288). In our examples, we take  - besides the two 

endpoints of the factor’s range – two additional points. The latter points we place such 

that all four observed points are equidistant; see again Figure 2. (Future research may 

investigate alternative sizes n0 and components x.) 

 

4.2 Candidate input combinations 
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After selecting and actually simulating a pilot design (Section 4.1), we choose 

additional input combinations - accounting for the particular simulation model at 

hand. Because we do not know the I/O function of this simulation model, we choose 

(say) c candidate points - without actually running any expensive simulations for 

these candidates (as we shall see in Section 4.3. 

First we must select a value for c. In Figure 2 we select three candidate input 

values (had we taken more candidates, then we would have to perform more Kriging 

calculations; in general, the latter calculations are small compared with the 

‘expensive’ simulation computations).  

Next we must select c specific candidates. Again, we use a space-filling design 

(as we did for the pilot sample). In Figure 2 we select the three candidates halfway 

between the four input values already observed. (Future research may investigate how 

to use a space filling design to select candidates, ignoring candidates that are too close 

to the points already observed. In practice, LHS designs are attractive since they are 

so simple: LHS is part of spreadsheet add-ons such as @Risk.) 

 

4.3 Cross-validation 

 

To select a ‘winning’ candidate for actual (expensive) simulation, we estimate the 

variance of the predicted output at each candidate input – without any actual 

simulation. Therefore we use cross-validation and jackknifing, as follows. 

Given a set of observed I/O data ),( ii yx with ni ,,1 l=  (initially, 0nn = ), 

we eliminate observation i and obtain the cross-validation sample (with only n – 1 

observations): 

 

)},(,),,(),,(,),,(),,{( 11112211
)(

nniiii
i yxyxyxyxyxS ll −+−−

− = .  (8) 

 

From the sample in (8), we could compute the Kriging prediction for the output for 

each candidate. However, to avoid extrapolation (see Section 4.1), we do not 

eliminate the observations at the vertices: of the cross-validation sample in (8) we use 

only (say) nc observations. The predictions are analogous to (2) replacing n by nc; in 

case of k = 1 we take nc = n0 – 1. Obviously, we must re-estimate the optimal weights 

in (2), using (3) (also see the ‘binning’ discussion at the end of Section 4.4). Figure 2 
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shows the nc = n0 – 1 = 3  Kriging predictions (say) )(ˆ iY − after deleting observation i 

as in (8), for each of the c = 3 candidates. 

 Figure 2 suggests that it is most difficult to predict the output at the candidate 

point x = 8.33. To quantify this prediction uncertainty, we use jackknifing.  

 

4.4 Jackknifing 

 

First, we calculate the jackknife’s pseudo-value for candidate j, which is defined as 

the following weighted average of the original and the cross-validation predictors: 

 
)()0(

;
ˆ)1(ˆ~ i

jcjcij YnYny −− ×−−×=   with  j = 1, …, c and i = 1, …, nc  (9) 

 

where )0(ˆ −
jY is the original Kriging prediction for candidate input j based on the 

complete set of observations (zero observations eliminated: see the superscript -0).  

From the pseudo-values in (9), we estimate the jackknife variance for 

candidate j: 

 

2

1
;

2 )~~(
)1(

1~
j

n

i
ij

cc
j yy

nn
s

c

−
−

= ∑
=

  with  ∑
=

=
cn

i
ij

c
j y

n
y

1
;

~1~ .  (10) 

Note that we also experimented with other measures of variability, for example, the 

90% interquantile; all these  measures gave the same type of design. 

Finally, to select the winning candidate (say) m for actual simulation, we find 

the maximum of the jackknife variances in (10): 

 

})~{arg( 2
j

j
smaxm = .         (11) 

Note that a candidate location close to a deleted observation lies relative far 

away from the remaining observations. Hence, such a candidate is less correlated to 

its neighboring points. Consequently, its Kriging prediction becomes rather uncertain. 

However, this phenomenon holds for each deleted observation.  

Note further that to reduce the computer time needed by our procedure (not by 

the simulation itself), we estimate the variogram from binned distances: for n inputs, 

we classify the n(n – 1)/2 possible distances h in (say) nb <  n equally sized intervals 
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or ‘bins’. These intervals should be as small as possible to retain spatial resolution, yet 

large enough to stabilize the variogram estimator. Journel and Huijbregts (1978) 

recommend at least thirty distinct pairs in each interval. For the nb midpoints of these 

intervals, we calculate the average squared difference to estimate the variogram; see 

Cressie (1993, p.69). In our examples we use nb = 15. 

 

4.5 Sequentialization 

 

Once we have simulated the ‘winning’ candidate selected through (11), we add the 

new observation to the set of observations; see S in (8) – now with superscript (-0) 

and with n + 1 members. 

Next, we choose a new set of candidates with respect to this augmented set. 

For example, in Figure 2 we add as new candidates x = 1.67, x = 5, x = 7.5 and x = 

9.17; these candidates are not shown in Figure 2, but the winning candidate is shown 

as part of Figure 3. 

The ‘dynamics’ of our procedure is demonstrated by Figure 4, which shows 

the order in which input values are selected - in a total sample size n = 50. 

 

 

Insert Figures 3a & b 

 

Insert Figure 4 

 

4.6 Stopping rule 

 

To stop our sequential procedure, we measure the Successive Relative Improvement 

(SRI) after n observations: 

 

SRIn = 1
2

1
22 }~{|}~{}~{| −−− njjnjjnjj

smaxsmaxsmax    (12) 

 

where njj
smax }~{ 2  denotes the maximum jackknife variance (see (11)) after n 

observations. Figure 5 shows SRI for up to n = 50 in Example I (detailed in Section 

5.1). There are no essential changes in (12) beyond n = 15. In the literature (including 
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Sasena et al. 2002 and Jones et al. 1998), we did not find an appealing stopping 

criterion for our sequential design; future research may be needed. 

  

Insert Figure 5 

 

We stop our sequential procedure as soon as we find no ‘substantial’ reduction 

for SRI.  However, SRI may fluctuate greatly in the first stages, so we might stop 

prematurely. To avoid such stopping, we select a minimum value (say) nmin so that the 

complete design contains min0 nnn +=  observations. Figure 3(a) used nmin =15, 

whereas Figure 3(b) used nmin = 50 (Figure 2 is the part of Figure 3 that corresponds 

with n = 4.)  

In practice – as Kleijnen et al. (2002) point out –simulation experiments may 

stop prematurely (e.g., the computer may break down). Our procedure then still gives 

useful information. 

 

5. Two examples 

 

5.1 Example I: a hyperbolic I/O function 

 

Consider the following hyperbole: 

 

x
xy
−

=
1

 with 0 < x < 1.     (13) 

 

We are interested in this example, because y in (13) equals the expected waiting time 

in the steady state of a single-server system with Markovian (Poisson) arrival and 

service times (denoted by M/M/1). This system has a single input parameter, namely 

the traffic load x, which is the ratio of the arrival rate and the service rate. This system 

is a building block in many realistic discrete-event simulation models; see Law and 

Kelton (2000, p. 12) and also Van Beers and Kleijnen (2001). 

When applying our approach to (13), we decided to select a pilot sample size 

n0 = 4 and a minimum sample size value nmin = 10. We stop the sequential procedure 

as soon as the SRI in (12) drops below 5%; this results in a total sample size n = 19. 

Also see Figure 6(a). Replacing 5% by 1% gives n = 36; see Figure 6(b). 
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Figure 6 demonstrates that our final design selects relative few input values in 

the area that generates an approximately linear I/O function, whereas it selects many 

input values in the exploding part (where x approaches one). 

 

Insert Figures 6a & b 

 
We think that our design is intuitively appealing - but we also use a test set to 

quantify its performance. In this test, we compare our design with a single-stage LHS 

design of the same size (n = 19 or n = 36). LHS divides the total range of the input 

variable into n mutually exclusive and exhaustive intervals of equal length; within 

each interval, LHS samples a uniformly distributed value. To estimate the resulting 

variability, we obtain (say) ten LHS samples, from which we estimate the mean and 

the standard deviation (standard error). 

From the n observations per design we compute the Kriging predictors for the 

32 true test values, and calculate the squared error per test value. From the 32 values 

we compute the average – see EIMSE in (5), which corresponds with the L2 norm – 

and the maximum or ∞L  norm. We find substantially better results for our designs; 

see Table 1. 

 

insert table 1 

 

5.2. Example II: a fourth-order polynomial I/O function 

 

As Van Beers and Kleijnen (2001) did, we consider  

 

2+14.1071+x6.845-x1.11+x-0.0579y 234 x= ,     (14) 

 

which is a multi-modal function; see again Figure 2 .  

For our design, we select n0 = 4, nmin =10, and a SRI smaller than 5%. This 

gives a sequential design with 18 observations. A SRI smaller than 1% gives a final 

(sequential) design with 24 observations (Example I resulted in 36 observations). 

Figure 7 demonstrates that our final design selects relative few input values in 

the area that generates an approximately linear I/O function, whereas it selects many 

input values near the edges, where the function changes much.  
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We again compare our design with a single-stage LHS design of the same size 

(n = 18 or n = 24), and obtain ten LHS samples to estimate the mean and standard 

deviation. We find substantially better results for our designs; see Table 2. 

 Note that we focus on sensitivity analysis, not optimization. For example, our 

method selects input values - not only near the ‘top’ - but also near the ‘bottom’ of 

(14). If we were searching for a maximum, we would adapt our procedure such that it 

would not collect data near an obvious minimum. 

 

Insert Figure 7 

 

5.3 Estimated  variograms: Gaussian versus linear  

 

We also investigate the influence of the assumed variogram, namely a Gaussian 

variogram and a linear variogram; see (6) and (7). We use a single-stage design with 

21 observations. We use ordinary least squares for these estimators (whereas Sack et 

al. assume a Gaussian correlation function and use maximum likelihood estimation, 

which takes much more computer time and may involve numerical problems). 

The Gaussian and the linear variograms result in two designs that look very 

similar, for both Example I and Example II. More precisely, when using a test set of 

nine equidistant input values, Kriging predictions based on a Gaussian variogram give 

an EIMSE of 0.3702, whereas a linear variogram gives 0.3680 for Example I. 

Analogously, Example II gives 0.0497 and 0.0482. So the Gaussian and linear 

variograms give similar values for EIMSE. The linear variogram, however, is simpler: 

no data transformation is needed. 

 

6. Conclusions and further research 

 

To avoid expensive simulation runs, we propose cross-validation and jackknifing to 

estimate the variances of the outputs for candidate input combinations. We actually 

simulate only the candidate with the highest estimated variance. This procedure we 

apply sequentially. 

Our two examples show that our procedure simulates relatively many input 

combinations in those sub-areas that have interesting I/O behavior. Our design gives 

smaller prediction errors than single-stage designs do. 
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In future research, we may extend our approach to  

1. alternative pilot-sample sizes n0 with alternative space-filling input 

combinations x (Jones et al. 1998, p. 21 propose n0 = 10k and an adjusted 

LHS design) 

2. alternative space-filling designs for the selection of candidate input 

combinations, ignoring candidates that are too close to the points already 

observed in any preceding stages (such an alternative design may be a 

nearly-orthogonal LHS design; see Kleijnen et al. 2002) 

3. a stopping criterion for our sequential design 

4. multiple inputs (k > 1) 

5. realistic simulation models (instead of our Examples I and II) 

6. comparison of our approach with Sasena et al. (2002)’s approach 

7. stochastic simulation models 

8. other metamodels, such as linear regression models (see Kleijnen and 

Sargent 2000) and neural nets (see Simpson et al. 2001b). 
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Figure 1. An example variogram  
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Figure 2. Fourth-order polynomial example, including four pilot observations and 

three candidate inputs with predictions based on cross-validation, where (-i) denotes 

which observation i is dropped in the cross validation. 

---  model,   O  I/O data,    ×  candidate locations,    •  predictions )(ˆ iY −  

 (0) 

(-2) 

(-3)

(-2)

(-2) 

(-3) 

(-3) 

 (0) 

 (0)



 

 

-15

-10

-5

0

5

10

15

0 2 4 6 8 10

x

y

sequential design       initial data      model

 
Figure 3(a). Figure 2 continued with 19=n  observations 
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Figure 3(b). Figure 2 continued with 54=n  observations 
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Figure 4. Dynamics of sequential sampling for Example 1 
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Figure 5. Successive relative improvements for 50 observations in hyperbole example 
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Figure 6(a). Hyperbole example, including four pilot observations and with 19=n  

observations  

 

 

 

0
1
2
3
4
5
6
7
8
9

10

0.0 0.2 0.4 0.6 0.8 1.0

x

y(x)

 
 

Figure 6(b). Figure 6a continued with 36=n  observations  
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Figure 7. Final design for fourth-order polynomial example with RSI < 1% and n = 24 



 

 ADSD  LHS    

 EIMSE ∞L  EIMSE (stand. error) ∞L  (stand. error) 

n = 19 8.90 * 10-4 0.0759 6.14 * 10-3 (4.81 * 10-3) 0.3559 (0.1740) 

n = 36 1.19 * 10-4 0.0303 2.76 * 10-4 (9.79 * 10-5) 0.0791 (0.0185) 

 

 

Table 1.  IMSE of two design types for hyperbole (Example I) 

 

 

 

 

 

 ADSD  LHS    

 EIMSE ∞L  EIMSE (stand. error)  ∞L  (stand. error) 

n = 18 0.1741 1.0470 0.5855 (0.5574) 3.3011 (1.9706) 

n = 24 0.0121 0.2503 0.2473 (0.2112) 2.1212 (1.3837) 

 

 

Table 2.  IMSE for two types of designs for fourth degree polynomial 

 


