
  

 

 

Tilburg University

Derivation of Monotone Decision Models from Non-Monotone Data

Daniëls, H.A.M.; Velikova, M.V.

Publication date:
2003

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Daniëls, H. A. M., & Velikova, M. V. (2003). Derivation of Monotone Decision Models from Non-Monotone Data.
(CentER Discussion Paper; Vol. 2003-30). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 31. Jul. 2022

https://research.tilburguniversity.edu/en/publications/d52d436a-1736-409a-b1fc-01de8c30b0b5


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2003–30 

 
 
 

DERIVATION OF MONOTONE DECISION 
MODELS FROM NON-MONOTONE DATA 

 
By Hennie Daniels, Marina Velikova 

 
March 2003 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 



 1 

Derivation of monotone decision models from non-monotone data 
 
 
 
Hennie Daniels1, 2 and Marina Velikova1 
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2Erasmus University Rotterdam, ERIM Institute of Advanced Management Studies, 
Rotterdam. 
 
 
Abstract 
The objective of data mining is the extraction of knowledge from databases. In practice, one 
often encounters difficulties with models that are constructed purely by search, without 
incorporation of knowledge about the domain of application. In economic decision making 
such as credit loan approval or risk analysis, one often requires models that are monotone 
with respect to the decision variables involved. If the model is obtained by a blind search 
through the data, it does mostly not have this property even if the underlying database is 
monotone. In this paper, we present methods to enforce monotonicity of decision models. We 
propose measures to express the degree of monotonicity of the data and an algorithm to make 
data sets monotone. In addition, it is shown that monotone decision trees derived from 
cleaned data perform better compared to trees derived from raw data. 
 
 
 
Keywords: data mining, domain knowledge, monotonicity, monotone data sets, decision 
trees 
 
 
 
JEL-code: Statistical Decision Theory, Operations Research [C440]; Computational 
Techniques [C630] 
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1. Introduction 
Data mining has attracted a lot of interest in recent years due to the growing amount of data 
collected in business and the need to turn this data into useful knowledge. The objective of a 
data mining system is to derive valuable knowledge implicitly present in large databases. 
Although, in data mining literature, the main emphasis is put on the analysis and 
interpretation phase, there are more aspects such as data selection and data pre-processing, 
which determine the successful implementation of any data mining system. The right 
description of the domain as well as data cleaning, data integration and data transformation 
can significantly improve the efficiency of the data mining process. 
Apart from limitations regarding data quality, there can also be problems in the application of 
the model if knowledge discovery is conducted by blind research. Frequently the models 
derived are incompatible with business regulations. These incompatibilities can often be 
resolved by integrating expert knowledge in the data-mining process. 
Another problem that may occur is the lack of interpretability of the model. In general, human 
decision makers require that the model is easy to understand and do not accept black box 
models, for example neural networks or very complex decision tree’s.  
Therefore, there is a need for integration of the knowledge discovered by standard data 
mining algorithms with the knowledge based on intuition and experience of the domain 
experts.  
In this paper, we explicitly describe the implementation of a special form of a prior 
knowledge that is typical in economic decision problems, namely the monotonicity of 
classification rules. 
In recent years, several researchers became interested in the incorporation of monotonicity 
constraints in different data mining methods. In ([Dan, 99]) and ([Wang, 94]) classes of 
monotone neural networks are introduced. In the first paper the authors implement an 
algorithm for training neural networks that are monotone by construction.  In ([Wang, 94]) 
the monotonicity of the neural network is guaranteed by enforcing constraints during the 
training process.  
Also, in the application of decision trees, several methods have been developed to solve 
classification problems with monotonicity constraints. In ([Ben-David, 95]), a new splitting 
measure for constructing a decision tree was proposed including a non-monotonicity index 
and standard impurity measure such as entropy. In this way, monotonicity properties of the 
tree and classification error can be balanced. Potharst ([Pot, 99]) provides a study for building 
monotone decision trees using only monotone data sets. The author presents algorithms to 
generate monotone trees by adding so-called corner elements to nodes. Instead of enforcing 
monotonicity during tree construction, Potharst and Feelders ([Pot, 02]) describe an 
alternative in less satisfactory models. Most of the methods mentioned above require that the 
data set is monotone. This constraint limits the applicability of the methods because, often, 
real databases are non-monotone due to the noise in the data. Frequent occurring causes are 
errors at data entry, inconsistencies after merging data sets, discrepancies due to the change of 
data over time, etc.  
The rest of this paper is organised as follows. 
Firstly, in section 2 we formulate the monotonicity constraints for regression and 
classification problems. Then, we construct measures to check if the data set is monotone by 
defining indicators to measure the degree of monotonicity. By comparing the value of the 
indicators with benchmark data sets, one can verify the monotonicity of the data under study. 
Furthermore, in section 4 we develop an algorithm for cleaning the data by removing noise, 
such that the resulting data set is monotone. This is done by relabeling the dependent variable. 
It is shown on artificially generated data sets that the algorithm is capable of almost 
completely restoring the original data up to noise levels of 15%. Finally, we show that 
decision trees generated from cleaned (monotone) data outperform trees generated from the 
original data set, in the sense that the out-of-sample classification error is smaller and also the 
number of leaves is less.  All this is illustrated in a case study on bond rating in section 6. 
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2. Monotonicity and measures for monotonicity 
In many economic classification and regression problems, it is known that the dependent 
variable has a distribution that is monotone with respect to the independent variables. 
Economic theory would state that people tend to buy less of a product if its price increases 
(ceteris paribus), so there would be a negative relationship between price and demand. The 
strength of this relationship and the precise functional form are, however, not always dictated 
by economic theory. Another well-known example is the dependence of labour wages as a 
function of age and education ([Muk, 94]). In loan acceptance, the decision rule should be 
monotone with respect to income for example, i.e., it would not be acceptable that a high-
income applicant is rejected, whereas a low-income applicant with otherwise equal 
characteristics is accepted. Monotonicity is also imposed in so-called hedonic price models 
where the price of a consumer good depends on a bundle of characteristics for which a 
valuation exists ([Har, 78]). 
The mathematical formulation of monotonicity is straightforward. We assume that y is the 
dependent variable and takes values in Y and the vector of independent variables is x and 
takes values in X. In the applications discussed here, Y is a one-dimensional space of prices or 
classes and X is a k-dimensional space of characteristics of products or customers. 
Furthermore, a data set D = (yn, xn) of n points in Y*X is defined, which can be considered as 
a random sample of the joint distribution of (y, x). In a regression problem, the goal is to 
estimate the average dependence of y given x, E(y | x). E(y | x) depends monotonically on x, if 
 

x1 ≥  x2 � E(y | x1) ≥ E(y | x2)       (1)
        

where x1 ≥  x2 is a partial ordering on X defined by 21
ii xx ≥  for i = 1, 2, …, k. 

In cases of a classification problem, a classification rule �(x) assigns a class (label) to each 
vector x in X and monotonicity of  is given by: 
 

x1 ≥  x2 � �(x1) ≥ �(x2)        (2) 
 

It can be shown in many cases that monotone models perform better than non-monotone 
models if monotonicity is present in the problem. This is mainly due to the fact that monotone 
models suppress over fitting. Some data mining algorithms can be applied to cases where the 
data set is partially monotone ([Dan, 99]), ([Pot, 02]) whereas other are restricted to the cases 
where the data set is totally monotone (see Definition 2) ([Mak, 99]), ([Pot, 02]). 
There are quite a number of contributions in the literature that discuss monotonicity and 
measures for monotonicity of models derived from data. In ([Dan, 99]), a monotonicity index 
to measure the degree of monotonicity of a neural network with respect to each input variable 
is defined. The value of this index is between zero, indicating a non-monotone relationship, 
and 1, indicating a monotone relationship. To test whether a given decision tree is monotone 
or not, Potharst ([Pot, 99]) describes a procedure using the maximal and minimal elements of 
the leaf nodes of the decision trees. The degree of the non-monotonicity of the tree is 
computed as percentage of non-monotone leaf nodes respective to the total number of leaves. 
In ([Ben, 95]) another measure for the degree of non-monotonicity of a decision tree is 
proposed, which gives equal weight to each pair of non-monotone leaf nodes. A modification 
of this measure is given in ([Pot, 02]). 
All these measures express the degree of monotonicity after a model has been derived from 
data. However, in practice, one would like to check whether or not a given data set is 
monotone before a decision model is constructed in order to verify the assumptions of theory. 
One obvious question, therefore, is how to measure the degree of monotonicity of a data set. 
A straightforward method is to compute the fraction of monotone pairs with respect to the 
total number of pairs in a data set. Another measures are the number of monotone points or 
the number of label changes in a data set. Apart from measures we also need benchmark data 
sets to compare with the indicators computed from the data. There are various ways to 
generate benchmark data sets. In the next section, we define three classes of benchmark data 
sets and derive measures to express the degree of monotonicity of these data sets.  
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3. Benchmark data sets 
Suppose NBπ  denote an ensemble of samples of N points drawn from a probability distribu-
tion π(x, �). Here π is defined in X*{1,2…L}, where X is a subset of the k-dimensional space 
ℜk and {1,2…L} is the set of labels. A sample D drawn from NBπ  is a data set of N points and 

we use the notation  ),(xD N
1nx

n
n == � throughout the paper. Given D∈ NBπ , we define three 

classes of benchmark data sets, which are subsets of N
0

Bπ , the set of samples of N points 

drawn from probability distribution π0(x, �). For any of these classes of benchmark data sets, 
we assume that the explanatory variables and the labels are independent i.e.  

).(.)x(),x( 210 �� πππ =  
 
Furthermore, we assume that π1 has a probability distribution with density ρ, defined on a 

subset X and π2 is represented by σ1,σ2…σL with 1
L

1i
i =�

=
σ . 

The benchmark data sets are defined as follows. Benchmark-1 denotes the collection of all 
data sets generated with the same structure of independent variables like that of D and labels 
drawn from the distribution of the labels in D. As a second class of benchmark data sets we 
define Benchmark-2, which represents all data sets with the same number of explanatory 
variables like D, points drawn from uniform distribution between 0 and 1 and labels drawn 
from the distribution of the labels in D. Finally, Benchmark-3 is the ensemble of all randomly 
generated data sets with the same number of explanatory variables and labels like D, but now 
the points and labels are drawn from uniform distribution. 
 
A data point is denoted by x = (x1,x2…xk,�x), where x1,x2…xk are the values of the 
independent variables and �x is the label . We define: 

 
Down(x)   = {y ∈ X | y < x},  
Up(x)   = {y ∈ X | y > x},    
Incomp(x) = complement of  Up(x) ∪ Down(x) 

 
and  

V1 = �
< xy

1 dy)y(π              

V2 = �
> xy

1 dy)y(π              

V3 = 1 - V1 - V2 
 
In other words, V1, V2 and V3 are the probabilities that a randomly chosen point belongs to 
the sets Down(x), Up(x) and Incomp(x), respectively. 
 
Firstly, we derive a measure for the expectation value of the fraction of monotone pairs in a 
given data set considering randomly generated data. Using this benchmark, we can compare it 
with the degree of monotonicity in the data set under study computed as the proportion of the 
number of monotone pairs from the total number of pairs. In the next step, we also derive a 
formula for computing the expected number of points that are monotone in a given data set.  
 
 
Lemma 1 
For a randomly generated data set with k- independent variables and L labels, the expectation 
value of the fraction of monotone pairs in the dataset, denoted by ƒM, is: 

{ } { } ��
�

�
��
�

	
+−=ƒ ��� �

=

−

== +=

L

1

1

1i
i2

L

1

L

1i
i1M VEVE

L
1

1
�

�

� �

σσ .     (3) 
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Proof: Since ƒM + ƒNm = 1, where ƒNm denotes the expectation value of the fraction of non-
monotone pairs in a dataset, we will show that  

{ } { } ��
�

�
��
�

	
+=ƒ ��� �

=

−

== +=

L

1

1

1i
i2

L

1

L

1i
i1Nm VEVE

L
1

�

�

� �

σσ . 

 
Let D0∈ N

0
Bπ and x∈D0. The points which are involved in non-monotone relationships with 

respect to x are all points y∈Down(x) with label(y) > �x and all points y∈Up(x) with label(y) 
< �x. 
 
The expected value of the fraction of non-monotone pairs with respect to x, Nmx, is: 

��
−

=+=
+=

1

1i
i2

L

1i
i1x

x

x

VVNm
�

�

σσ .       

    
Since ),(.)x(),x( 21 �� πππ = we may write Ex,� = ExE� and therefore: 

{ } { } { }


�
�


�
�

+
�


�
�
�

�

�
�
�

= ��
−

=+=

1

1i
i2x

L

1i
i1x,x

x

x

EVEEVENmE
�

�

�

��
σσ .    (4)

     
Furthermore,  

� ��
= +=+=

=
�


�
�
�

�

�
�
� L

1

L

1i
i

L

1i
i L

1
E

x � ��

σσ   and   ���
=

−

=

−

=
=



�
�


�
� L

1

1

1i
i

1

1i
i L

1
E

x

�

��

σσ . 

 
Hence, the expectation value of the fraction of non-monotone pairs with respect to one point 
is: 

{ } { } { } ��
�

�
��
�

	
+= � �� �

=

−

== +=

L

1

1

1i
i2

L

1

L

1i
i1 VEVE

L
1

NmE
�

�

� �

σσ .     (5) 

 
To compute the fraction of non-monotone pairs in the dataset, ƒNm, the result in (5) firstly is 
multiplied by the total number of points, N, and then by N-1 corresponding to the possible 
links for each point. Since, in this way, we will double the number of non-monotone pairs the 

expectation value of the number of non-monotone points is 
( ) { }NmE

2
1NN −

. Consequently, 

the fraction is: 
 

{ }NmENm =ƒ .       
 
In the simple case, where the independent variables are drawn from a uniform distribution 
on [0,1]k and the class labels have equal probability, i.e.: 

σi = 
L
1

  for i = 1,2…L, 

we get 

L
1L

2 k
Nm

−=ƒ − .         (6) 

 
We now derive a formula for computing the expected number of points that are monotone in a 
arbitrary data set from the ensemble N

0
Bπ . Let us firstly define the term “monotone point”. 
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Definition 1. 
We call z a monotone point if z participates only in monotone relationships in the sense 
defined in (2). 
 
Definition 2. 
A data set is monotone if all points are monotone. 
 
Let D0∈ N

0
Bπ and x∈D0. Then, x is monotone if and only if: 

Max{labels in Down(x)} ≤ �x ≤ Min{labels in Up(x)} 
 

We define three probabilities: 
p1 = Prob(all labels in Down(x) ≤ �x)  
p2 = Prob(all labels in Up(x) ≥ �x)  
p3 = Prob(x is monotone with respect to all points in Incomp(x)) 

 
Note that p3 = 1 because the relationship between incomparable points is always monotone. 
Suppose card(Down(x)) = n1, card(Up(x)) = n2. Then p1 and p2 can be computed as: 

p1 = 
1n

1i
i ��
�

�
��
�

	
�

=

�

σ   and p2 = 
2nL

i
i ��
�

�
��
�

	
�
=�

σ , 

 
because the labels are independent of one another. 
Now, q(x,�x) is defined as the probability that a point x is monotone given its coordinates and 
label, �x. It can be computed by using the formula of total probability ([Tri, 82], p.34): 

q(x,�x) = )n,n,n(sppp 32132

1N

0n

n1N

0n
1

1

1

2

� �
−

=

−−

=
      (7) 

 
where s(n1, n2, n3) is the probability that card(Down(x)) = n1, card(Up(x)) = n2 and 
card(Incomp(x)) = n3. This is a multinomial problem and s(n1, n2, n3) can be computed using 
the formula for generalized Bernoulli trials ([Tri, 82], p.46): 

( ) ( )
321 n

3
n
2

n
1

321
321 VVV

!n!n!n
!1N

n,n,ns
−

= . 

 
Substituting s(n1, n2, n3), p1, p2 and p3 in (7) with their equivalents, we get: 

q(x,�x) 
( )

� � ��
−

=

−−

= ==
�
�

�

�

�
�

�

	
�
�
�

�
�
�
�

	−=
1N

0n

n1N

0n

n
3

n
L

i
i

n
2

n

1i
i

n
1

3211

1

2

3

2

x

2

1
x

1 VVV
!n!n!n

!1N

�

�

σσ   

 
1N

3

L

i
i2

1i
i1 VVV

x

x
−

== �
�
�

�

�
�
�

�
+
�
�

�

�

�
�

�

	
+��
�

�
�
�
�

	
= ��

�

�

σσ .     (9) 

 
by the multinomial theorem ([Tri, 82]). 
 
The expected number of monotone points for a data set in N

0
Bπ is 

El Ex q(x,�x) = xd)x().,x(q
L
1

X
1

L

1
��

=
πσ �

�

�
.      (10) 

 
As the analytical computation of this expression is difficult, it can be approximated by 

�
′∈Dx

x ),x(q
N
1

� , where D′ is randomly generated data set. This method is used in the bond 
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rating case study, presented in Section 6, to compute the number of monotone points in 
Benchmark-2. 
 
Both measures the expectation value of monotone pairs and the expectation value of 
monotone points, derived in this section, express the expectation value of the degree of 
monotonicity in a data set and can be used as benchmarks to compare with the indicators of 
the data set under study. Apart from them, one can consider as an alternative benchmark the 
number of label changes necessary to convert a non-monotone into monotone data set. For 
this purpose, we develop an algorithm for relabeling, introduced in the next section. 
 
 
 
 
4. Algorithm for relabeling 
The objective of the algorithm is to transform a given non-monotone data set into monotone 
one by changing the value of the dependent variable. This process is called relabeling. The 
idea is to reduce the number of non-monotone pairs by relabeling one data point in each step. 
In order to do this, a data point is chosen for which the increase in correctly labelled points is 
maximal (this is not necessarily the point which is involved in the maximal number of non-
monotone pairs). The process is continued until the data set is monotone (see definition 2).   
The correctness of the algorithm follows from lemma 2 and lemma 3. In lemma 2, it can be 
seen that it is always possible to reduce the number of non-monotone pairs by changing the 
label of only one point as long as the data set is non-monotone. In lemma 3, it is shown that 
there is a canonical choice for the new label for which a maximal reduction can be obtained. 
There may be more than one label for which this can be achieved but these are all smaller or 
all larger than the current label of the point.  
Before describing the algorithm in details, let us first introduce some notations. The initial 
data set is denoted by ,),(xD N

1nx
n

n == � where xn is a vector of independent variables and 

nx
� is a label (dependent variable) with range 1,2…L. For each data set D, Q(D) denotes the 

set of all non-monotone points.  
For each data point x∈Q(D), we define Ai(x) ⊂ Down(x) and Bi(x) ⊂ Up(x) by: 

Ai(x) = {y < x | label (y) = i},  
Bi(x) = {y > x | label (y) = i} for i =1,2…L. 
ai  and bi denote the number of points in Ai(x) and Bi(x), respectively 

nx
N

�
denotes the total number of points correctly labelled with respect to x for the 

current label of x, nx
� , i.e. 

L1L21 bb...ba...aaN
nxnxnx

+++++++= −���
. 

 
We assume that all data points in the data set D are unique i.e. no points are represented 
twice. For each data point x∈Q(D) we compute the label �′ for which there is a maximal 
increase in the number of correctly labelled points with respect to x, if the label of x is 
changed into �′. The maximal increase is denoted by Imax. In case there is more than one label 
with one and the same maximal increase in correctly labelled points, we choose the closest 
label to the current label of x. In the next step, we select a point x∈Q(D) for which Imax is the 
largest and change its label. This process is repeated until the data set is monotone.  
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Algorithm 
Step 1 – Initialisation:   

Compute Q(D) on the basis of D 
Step 2 – Main program  
Step 2.1 As long as Q(D) ≠ ∅  
  For each data point x∈Q(D) compute 

  2.1.1 Imax = max { N�′ - x
N

�
| 1≤ �′<L} 

2.1.2 � - set of indices �′ for which N� ′ - x
N

�
is maximal 

2.1.3 Form a triple (x,Imax,�) where �∈� is the closest label to �x, (in Lemma 
3 it is shown that � is unique). 

Step 2.2 From all triples, choose the one where Imax is maximal and change the label into �′. 
Step 2.3 Update Q(D) on the basis of the modified data set D. 
 
In general, the points correctly labelled with respect to x are all points incomparable to x as 
well as the points in A1 ∪ A2 ∪…∪

x
A

�
and 

x
B

�
∪ 1x

B +�
∪…∪ BL. Since the number of the 

points incomparable to x is constant and it they do not contribute to Imax, we may completely 
ignore them. 
 
 
Lemma 2 
Let Dk denote the data set D after k-iterations. If Q(Dk)≠∅ there is at least one point x∈Q(Dk) 
that can be relabelled such that the number of non-monotone pairs is reduced. 
 
Proof: Since Q(Dk) is a non-empty partially ordered set there is a maximal point x with label 
�x. Because x participates in at least one non-monotone pair there is another point y∈Q(Dk) 
with label �y so that x > y and �x<�y. We define:  
s – the number of points that are smaller than x and have label � < �x 
s1– the number of points that are smaller than x and have label �, �x < � ≤ �y,  
t –the number of points larger than x. All these points have label � ≥ �y, because x is maximal.  
If we relabel x with �y the increase in the number of correctly labelled points with respect to 
x, Ix

max, will be: 
Ix

max = N�y – N�x = s+s1+t – s – t = s1 
 

But s1 ≥ 1 as there is at least one point that is smaller than x and has label �y, that is y. 
Therefore, by relabeling x with �y, the number of correctly labelled points is increased by at 
least 1. 
 
 
Lemma 3 
Suppose that the maximal increase Ix

max in correctly labelled points with respect tox can be 
obtained by at least two labels r and s, r < s. Then  

r < s < �x or �x < r < s 
where �x is the label of x. 
 
Proof: In order to prove this we assume that r < �x < s and we will show that this leads to a 
contradiction. 
First, we choose labels p and q closest to lx such that r �  p < �x < q �  s and the maximal 
increase for p and q is Ix

max. Then, 
x
i

x
q

x
p NNN >=  for all i ∈ (p+1,q-1)      (10) 
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For the current label of x, �x, the number of correctly labelled points is: 

��
==

+=
L

j

x
j

1j

x
j

x

x

x

x
baN

�

�

�
             

 
and if x is labelled with q it is:  

��
==

+=
L

qj

x
j

q

1j

x
j

x
q baN  

 
Therefore, the maximal increase for x is  

��
−

=+=
−=−=

1q

j

x
j

q

1j

x
j

xx
q

x
max

xx

x
baNNI

��

�
 

 

We now define the set S = ∪ Bi (x) and show that S is non-empty. 
 
According to (10) x

1p
x
p NN +>  i.e. 

����
+=

+
=+==

++>++
L

1pj

x
j

x
1p

p

1j

x
j

L

1pj

x
j

x
p

p

1j

x
j baabba  => x

1p
x
p ab +>           (11)+ 

 
From (11) it follows that bp ≥ 1 and therefore, Bp and respectively S are non-empty sets. 
Moreover, as we consider the case where p<�x<q it is impossible to have p+1=q. Otherwise �x 
should be equal either to p or to q and then Ix

max = 0 contradicting the fact that Ix
max is 

maximal. 
W now choose a maximal point y ∈ S. For its current label �y (p � �y � �x-1), the number of 
correctly labelled points with respect to y is: 

���
=

−

==
++=

L

j

y
j

1

j

y
j

  

1j

y
j

y

x

x

y

y

y
bbaN

�

�

�

�

�
 

+  
and if y is labelled with q, it is:  

��
==

+=
L

qj

y
j

q

1j

y
j

y
q baN  

 
Therefore, the increase in correctly labelled points with respect toy is  
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We will now show that x

max
y II > . 

Since �y �  �x-1, the first term in (12) can be rewritten as  
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Considering both terms in (13), we have  
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, because x ∈ A�x(y)                (13.1) 
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, because A�x+1(x)∪…∪Aq(x) ⊂ A�x+1(y)∪…∪Aq(y) (since x<y)      (13.2) 



 10 

Moreover, since B�x(y)∪…∪Bq-1(y) ⊂ B�x(x)∪…∪Bq-1(x) for the second term in (12) we 
have 
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         (14) 

 
Finally, y is a maximal point in S i.e. there is no data point that is larger than y and has label j, 
p � j � �x-1, which implies that 
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and therefore, 
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According to (13.1), (13.2), (14) and (15)  
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Hence, Iy

 > Ix
max, contradicting the fact that Ix

max is maximal.  
 
The correctness of the algorithm follows easily from lemma 2 and lemma 3. In each step, the 
number of points participating in non-monotone pairs is reduced by at least one as shown in 
lemma 2. Since the algorithm can only terminate when Q(D)=0, the resulting data set is 
monotone. By lemma 3, it follows that there is only one canonical choice for the new labels. 
 
 
 
5. Simulation results 
In order to examine the performance of the algorithm and the models based on the original 
and cleaned data sets, an experimental study is conducted using artificially generated data 
sets.  
 
Firstly, to check to what extent the algorithm can remove noise added to a monotone data set, 
we conducted the following experiment. We firstly generated a data set with random points 
uniformly distributed between 0 and 1 and computed the label of each point by applying a 
monotone function on the independent variables. Subsequently, the continuous dependent 
variable (label) was discretized into finite number of classes. In the next step, we converted 
the monotone data set into a non-monotone data set by adding random noise to the discrete 
labels. At this point, the algorithm was applied and the percentage of correctly restored labels 
was computed by comparing the labels. This experiment was repeated 10 times with different 
numbers of points, independent variables, and labels as well as different percentages of noise.  
Depending on the number of the explanatory variables, several monotone functions were used 

to construct the initial label such as 21 x
2
�

sinx ∗ based on two variables x1 and x2. The final 

results are summarized in Table 1 below: 
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# points in a 
data set 

# independent 
variables # labels Noise Restoration (%) 

100 2 3 15 % 99 % 
100 2 3 15 % 98 % 
100 2 4 11 % 96 % 
100 3 4 15 % 94 % 
100 5 3 15 % 88 % 
200 2 3 15 % 97 % 
200 3 4 16 % 92 % 
200 3 5 16 % 92 % 
200 5 4 15 % 89 % 
200 7 5 15 % 88 % 

 
Table 1: The results received after implementation of the algorithm 

 
 

The results show that the algorithm restores the original data set (7 of 10 times the restoration 
is above 90%) to a large extent. In the rest of the cases, the restoration is to a lesser degree 
due to the increase of the number of independent variables and labels.  
In the next step, to determine the model performance of the original non-monotone data set 
and the transformed monotone data set, both were applied in a tree-based algorithm presented 
in ([Pot, 02]) that is in many respects similar to the CART program described in ([Bre, 84]). 
The program only makes binary splits and uses the Gini-index as the splitting criterion. 
Furthermore, cost-complexity pruning is applied to generate a nested sequence of trees from 
which the best one is selected on the basis of test set performance. During tree construction, 
the algorithm records the minimum and maximum element for each node. These are used to 
check whether a tree is monotone.  
 
On the basis of this algorithm, we repeated the following experiment 50 times with the first 
data set given in Table 1, using both the original and transformed data sets. Each data set was 
randomly partitioned (within classes) into a training set of 50 observations and test set of 50 
observations. The training set was used to construct a sequence of trees using cost-complexity 
pruning. From this sequence, the best tree was selected on the basis of error rate on the test set 
computed as a proportion of misclassified observations (in case of a tie, the smallest tree was 
chosen). Finally, it was checked whether the tree was monotone and if not, the upper bound 
for the degree of non-monotonicity was computed by giving a pair t1, t2 of non-monotone leaf 
nodes weight 2* )()( 21 tptp ∗ , where p(ti) denotes the proportion of cases in leaf i.  
 
The results show that the model yielded by the monotone data set performs better than the one 
yielded by the non-monotone data set, considering the average error on the trees – the average 
error rate for the monotone data set on both monotone and non-monotone trees is less than 
half that for non-monotone data set, likewise on both trees. Moreover, the average degree of 
non-monotonicity for monotone data set is very low in comparison with the result for the non-
monotone data set. The results are summarized in Table 2: 
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 Monotone data set Non-monotone data set 
# monotone trees 45 41 
# non-monotone trees 5 9 
Average error rate on monotone trees 0.147 0.283 
Average number of leaf nodes on 
monotone trees 5.6 3.6 

Average error rate on non-monotone trees 0.156 0.293 
Average number of leaf nodes on  
non-monotone trees 8.4 12.1 

Average degree of non-monotonicity 0.003 0.062 
 

Table 2: Comparison of the results received from monotone and  
non-monotone data sets 

 
 
 
 

6. Case study on Bond rating 
As explained in ([Dan, 99]), bond ratings are subjective opinions on the ability to service 
interest and debt by economic entities such as industrial and financial companies, or 
municipals and public utilities. Bond ratings are published by two major bond rating agencies, 
Moody’s and Standard & Poor’s, in the form of a letter code, ranging from AAA–for 
excellent financial strength–to D for entities in default. Bond ratings are based on extensive 
financial analysis by the bond rating agencies. The exact determinants of a bond rating, 
however, are unknown, since the interpretation of financial information relies heavily on 
professional judgement. 
Publications of bond rating agencies offer some insight into the relevant factors that 
determine bond ratings. Bond rating analysis recognises the following areas of attention: 

• Profitability 
• Liquidity 
• Asset protection 
• Indenture provisions 
• Quality of management 

 
Bond rating models use independent variables, often calculated as ratios, which are 
predominantly derived from public financial statements. However, not all of the above-
mentioned areas can be covered by financial statement figures. Aspects like quality of 
management, market positions and asset protection can only be captured to a limited extent.  
From the Standard & Poor’s Bond Guide (April 1994), 256 companies were selected. The 
bond ratings of these companies range from AAA to D. The ratings are not homogeneously 
distributed. The largest classes are A, BBB and B. Only a few companies have ratings lower 
than CCC. Therefore, we decided to remove all ratings below CCC. As in other studies, the 
+ and − signs were omitted (for example, AΑ+, AA and AΑ− are all considered as AA). The 
bond ratings were quantified by assigning numbers from 1 for AAA to 7 for CCC. From the 
S&P Bond Guide, several financial figures were obtained. From Datastream additional 
financial figures and ratios relating to leverage, coverage, liquidity, profitability and size were 
downloaded. These figures have been restated to five-year averages and trend indicators, 
resulting in 45 explanatory variables. For each variable, the linear correlation with the 
quantified bond rating was calculated. For the purposes of the current case study, only five 
variables with the highest correlation were chosen. They are presented in Table 3. 
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Symbol Definition 
D/C Debt to capital ratio 
CF/D 5 years average cash flow to debt ratio 
CF 5 years average cash flows (in 100 millions) 
Cov 3 years average interest coverage ratio 
Vol/Cov  3 years volatility of interest coverage 

 
Table 3. Definition of the model variables 

 
 

In the dataset thus constructed, there are 32640 pairs of observations of which 111 are non-
monotone. To verify the monotonicity of the data set, we compare the measures for the degree 
of monotonicity derived from the given data with those derived from three benchmark data 
sets (Table 4). Benchmark-1 is constructed by using the same structure of the explanatory 
variables of the bond rating data set and by drawing labels from the distribution of the given 
labels. In Benchmark-2, the points are drawn from uniform distribution between 0 and 1 
whereas the labels are again drawn from the distribution of the labels in the bond rating data 
set. As Benchmark-3 we use data sets with uniformly distributed points between 0 and 1 and 
7 labels drawn from uniform distribution. To compute the number of monotone points in 
Benchmark-2 and the fraction of monotone pairs in Benchmark-3, we use the formulae 
derived in Section 3. 
 

Indicators Bond rating Benchmark-1 Benchmark-2 Benchmark-3 
Number of points 256 256 256 256 
Comparable pairs 9 685 9 685 2 192 2 192 
Fraction of 
monotone pairs 99.7 % 88.0 % 97.6 % 97.3 % 

Monotone points 168 5 42 39 
 

Table 4. Comparison of the measures for the degree of monotonicity between  
the bond rating data set and benchmarks 

 
 
The results strongly imply the existence of monotone relationships in the bond rating data set 
and the algorithm for relabeling could be a useful tool for making the data set monotone.  
 
The implementation of the algorithm on the bond rating dataset led to the labels of 28 points 
being changed. In order to determine the classification performance of trees generated on the 
basis of raw and cleaned data, we applied the tree construction algorithm described in the 
previous section. The results are presented in Table 5. 
 
 Monotone dataset Non-monotone dataset 
# monotone trees 9 9 
# non-monotone trees 6 6 
Average error rate of monotone trees 0,474 0,510 
Average number of leaf nodes of 
monotone trees 5,78 7,44 

Average degree of non-monotonicity of 
non-monotone trees 

0,024 0,020 

 
Table 5: Comparison of the results received from monotone and  

non-monotone bond rating datasets 
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In the next step, we held a two-sample t-test of the null hypothesis that average error rate on 
monotone trees is one and the same for the monotone and non-monotone data set against one-
sided alternative that the former is less than the latter. The test yielded a p-value 0.0145, 
which leads to rejection of the null hypothesis and respectively to the conclusion that the 
average error on monotone trees for the monotone data set is significantly less than that for 
non-monotone data set. This result, along with the result that the monotone data set yielded on 
average smaller monotone trees than non-monotone data set, shows that the model derived 
from cleaned data performs better than the model derived from the original data. 
 
 
 
 
7. Conclusion 
In the present paper, we have shown that the incorporation of prior knowledge can 
significantly improve the effectiveness of a data mining process. We explicitly consider a 
very common form of domain knowledge, which is present in many economic problems, that 
is the monotone relationship between dependent variable (label) and explanatory variables. 
Usually, the data sets used for solving monotone classification problems are non-monotone 
due to the noise in the data, which can result in unreliable output and incompatibility of the 
model with policy rules and business regulations. Therefore, in this paper, we introduce an 
algorithm for relabeling the dependent variable in a non-monotone data set and thus transform 
it into monotone one. Using the algorithm in a practical case study of predicting house prices, 
we show that the transformed (monotone) data set yields a model that has better performance 
and yields more reliable outcomes than that of the non-monotone data set.  
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