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Abstract

The classical theory of rank-based inference is entirely based either on ordinary ranks,
which do not allow for considering location nor intercept parameters, or on signed ranks,
which require an assumption of symmetry. If the median, in the absence of a symmetry as-
sumption, is considered as a location parameter, the maximal invariance property of ordinary
ranks is lost to the ranks and the signs. As shown in Hallin and Werker (2003), conditioning
on a maximal invariant in such situations is essential if semiparametric efficiency is to be
reached. This new maximal invariant thus suggests a new class of statistics, based on ordi-
nary ranks and signs. An asymptotic representation theory à la Hájek is developed here for
such statistics, both in the nonserial and in the serial case. The corresponding asymptotic
normality results clearly show how the signs are adding a separate contribution to the asymp-
totic variance, hence, potentially, to asymptotic efficiency. Applications to semiparametric
inference in regression and time series models with median restrictions are treated in detail
in a companion paper (Hallin, Werker, and Vermandele 2003).

AMS 1980 subject classification : 62G10, 62M10
Key words and phrases : Ranks, signs, Hájek representation, median regression, median

restrictions, maximal invariant.

1 Introduction

The classical theory of rank-based inference is entirely based either on ordinary ranks, or on
signed ranks. Ranks indeed are maximal invariant with respect to the group of continuous order-
preserving transformations, a group that generates the null hypothesis of absolutely continuous
independent white noise (no location restriction), whereas signed ranks (that is, the signs along
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with the ranks of absolute values) are maximal invariant under the subgroup generating the
subhypothesis of symmetric (with respect to the origin) independent white noise.

Now, a location parameter is usually specified to be zero for the error term in most statistical
models : regression and analysis of variance models, autoregressive-moving average models, etc.
Symmetric white noise allows for such an identification, at the expense, however, of a symmetry
assumption which in practice is often quite unrealistic. And, the trouble with independent white
noise without further restrictions is that it does not allow for identifying any location parameter.

This location parameter in general is the mean—an heritage of Gaussian models—but could
be the median as well. Zero-median noise is certainly as natural as zero-mean noise. In a
semiparametric context, it is even more satisfactory, as it does not require any moment as-
sumption on the densities under consideration. Median-regression and autoregression models
therefore recently have attracted much attention : see, for instance, Jung (1996), Koenker (2000),
Zhao (2001), McKeague, Subramian, and Sun (2001), Horowitz and Spokoiny (2002), to quote
only a few.

Moreover, from the point of view of statistical inference, the assumption of zero-median
noise is also more convenient, since it induces more structure. The hypothesis of zero-mean
white noise indeed is not invariant under any nontrivial group of transformations, so that group
invariance arguments cannot be invoked in models involving zero-mean noise. The situation is
quite different for the hypothesis of zero-median noise, which is generated by the group of all
continuous order-preserving transformations g such that g(0) = 0. A maximal invariant for that
group is the vector of ordinary ranks, along with the vector of signs. Hallin and Werker (2003)
have shown that, in such a situation, semiparametric efficiency is achieved by conditioning with
respect to a maximal invariant. Maximality of the invariant here is essential : conditioning, e.g.,
on the ranks when the signs-and-ranks, not the ranks alone, are maximal invariant, induces an
avoidable loss of efficiency.

Invariance and semiparametric efficiency arguments in such models thus lead to a new con-
cept of rank-based statistics, involving both the signs and the ranks. This new concept is more
natural than the traditional ranks in all models involving a location parameter, or an intercept,
but also in models such as ARMA models, where the noise is inherently centered. The objective
of this paper is to present a detailed study of the class of linear sign-and-rank statistics, for which
we provide Hájek-type asymptotic representation and asymptotic normality results. These re-
sults readily allow for building new rank-based tests for a variety of problems in one-, two-,
and k-sample location, regression, ARMA, and related models, without making any symmetry
assumptions on the underlying error densities. They also form a basis for the construction of
semiparametrically efficient procedures in median constrained models (see Hallin, Vermandele,
and Werker 2003).

The paper is organized as follow. Section 2 briefly introduces several concepts of white
noise: independent, independent with zero mean, independent with zero median, and independent
symmetric white noises, showing how the invariance principle in each case yields a different
concept of ranks. Sections 3 and 4 propose a systematic investigation of the linear nonserial and
serial sign-and-rank statistics. These new statistics, measurable with respect to the vectors of
ranks and signs or, equivalently, with respect to the vector of ranks and the number of negative
or positive residuals, are studied along the same lines as the classical linear rank statistics
(see, for example, Hájek and Šidák (1967) for the nonserial context, Hallin, Ingenbleek, and
Puri (1985), Hallin and Puri (1991) for the serial context) and the linear signed-rank statistics
(see Hájek and Šidák (1967), Hušková (1970) for the nonserial context, Hallin and Puri (1991)
for the serial context). However, the non-independence between the ranks and the signs requires
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a more delicate treatment.

2 White noise and group invariance.

2.1 White noise and semiparametric statistical models

Whatever the concept of ranks, rank-based inference applies in the context of semiparametric

models under which the distribution of some observed n-tuple Y(n) := (Y
(n)
1 , . . . , Y

(n)
n )′ belongs

to a family of distributions of the form

{

P
(n)
f ;θθθ , θθθ ∈ΘΘΘ ⊆ R

K , f ∈ F
}

,

where θθθ denotes some finite-dimensional parameter of interest, and f some unspecified density
(densities throughout are tacitly taken with respect to the Lebesgue measure over the real line),

playing the role of a nonparametric nuisance. This distribution P
(n)
f ;θθθ in general is described by

means of

(i) a residual function, namely, a family of invertible functions Z
(n)
θθθ indexed by n and θθθ,

mapping the observation Y(n) onto a n-tuple of residuals

Z
(n)
θθθ

(

Y(n)
)

= Z(n)(θθθ) := (Z
(n)
1 (θθθ), . . . , Z(n)

n (θθθ))′,

and

(ii) a concept of white noise with marginal density f

such that Y(n) has distribution P
(n)
f ;θθθ iff Z(n)(θθθ) is white noise with density f (in the sense of (ii)).

The concept of white noise thus plays a fundamental role in most semiparametric models.
As an example, consider the first-order autoregressive model with unspecified innovation

density under which Y(n) is a realization of length n of some solution of

Yt = θYt−1 + εt, t = 1, . . . n,

with θ ∈ Θ := (−1, 1). Assuming, for simplicity, that Y0 = 0, the residual function here is

Z
(n)
θ

(

Y(n)
)

:= (Z
(n)
1 (θ), . . . , Z

(n)
n (θ))′, with Z

(n)
t (θ) := Yt − θYt−1.

2.2 White noise, group invariance, ranks, signed-ranks, and signs-and-ranks

For simplicity, let us concentrate on four particular forms of white noise. Defining F :=
{f : f(x) > 0, x ∈ R} as the set of all nonvanishing probability densities over the real line,

let F∗ :=
{

f ∈ F : µf :=
∫∞
−∞ zf(z)dz = 0

}

be the subset of all densities in F having mean

zero, F0 :=
{

f ∈ F :
∫ 0
−∞ f(z)dz =

∫∞
0 f(z)dz = 1/2

}

the set of densities in F having zero me-

dian, and F+ := {f ∈ F : f(−z) = f(z), z ∈ R} the set of densities in F that are symmetric
with respect to the origin. Denote by

(a) (independent white noise) H(n)
f the hypothesis under which the random vector Z(n) =

(Z
(n)
1 , . . . , Z

(n)
n )′ is a realization of length n of an independent white noise, i.e., Z

(n)
i ,

i = 1, . . . , n, are independent and identically distributed (i.i.d.) with density f ∈ F ,
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(b) (zero mean independent white noise) H(n)
∗;f the hypothesis under which Z(n) is a realization

of length n of an independent with zero mean white noise, i.e., Z
(n)
i , i = 1, . . . , n, are i.i.d.

with density f ∈ F∗,

(c) (zero median independent white noise)H(n)
0;f the hypothesis under which Z(n) is a realization

of length n of an independent with zero median white noise, i.e., Z
(n)
i , i = 1, . . . , n, are

i.i.d. with density f ∈ F0, and by

(d) (symmetric independent white noise) H(n)
+;f the hypothesis under which Z(n) is a realization

of length n of an independent symmetrical white noise, i.e., Z
(n)
i , i = 1, . . . , n, are i.i.d.

with density f ∈ F+.

The notation H(n), H(n)
∗ , H(n)

0 , and H(n)
+ is used whenever the underlying density function

f remains unspecified within F , F∗, F0, and F+, respectively. In practice, of course, the role of

the random variables Z
(n)
i is actually played by the residuals Z

(n)
i (θθθ) (i = 1, . . . , n) associated

with a specific value θθθ of the parameter in the statistical model under consideration.
The independent white noise hypothesis H(n) is of course most general, but does not allow for

identifying location parameters. A classical attitude, when location is to be identified, consists

in assuming that the underlying white noise density has zero mean, i.e., adopting H(n)
∗ as a

concept of white noise. As already explained, an equally natural solution requires the median

(instead of the mean) of the white noise density to be zero, leading to H(n)
0 . The additional

assumption of symmetry yields H(n)
+ .

Let E (n) :=
(

R
n,Bn,P(n) := {P(n)

θθθ;f , θθθ ∈ΘΘΘ, f ∈ F}
)

be characterized (in the sense of Sec-

tion 2.1) by the residual function Z
(n)
θθθ and the white noise concept H(n)

f . Denoting by G the set of
all continuous, strictly monotone increasing functions g : R → R such that limx→±∞g(x) = ±∞,
define

G
(n)
g : z = (z1, . . . , zn)′ ∈ R

n 7→ G
(n)
g (z) := (g(z1), . . . , g(zn))′ ∈ R

n,

and consider the group (acting on R
n)

G(n)
θθθ , ◦ :=

{

(

Z
(n)
θθθ

)−1
◦G

(n)
g ◦Z

(n)
θθθ , g ∈ G

}

, ◦.

This group (called the group of order-preserving transformations of residuals) clearly is a gener-

ating group for the fixed-θθθ submodel E (n)(θθθ) :=
(

R
n,Bn,P(n)(θθθ) := {P(n)

θθθ;f , f ∈ F}
)

of E (n), with

maximal invariant the vector R(n)(θθθ) := (R
(n)
1 (θθθ), . . . , R

(n)
n (θθθ))′, where R

(n)
i (θθθ) denotes the rank

of the residual Z
(n)
i (θθθ) among Z

(n)
1 (θθθ), . . . , Z

(n)
n (θθθ).

Similarly, let G+ := {g ∈ G : g(−z) = −g(z)}, and denote by G(n)
θθθ;+ the corresponding

subgroup of G(n)
θθθ . This group (the group of symmetric order-preserving transformations of

residuals) is a generating group for E (n)
+ (θθθ) :=

(

R
n,Bn,P(n)

+ (θθθ) := {P(n)
θθθ;f , f ∈ F+}

)

, the submodel

of E (n)(θθθ) resulting from restricting to symmetric densities f ∈ F+. A maximal invariant here is

the vector R
(n)
+ (θθθ) := (s1(θθθ)R

(n)
+;1(θθθ), . . . , sn(θθθ)R

(n)
+;n(θθθ))′, where R

(n)
+;i(θθθ) denotes the rank of the

absolute value |Z (n)
i (θθθ)| among |Z(n)

1 (θθθ)|, . . . , |Z(n)
n (θθθ)|, and si(θθθ) is the sign of Z

(n)
i (θθθ).

Turning to the model E (n)
0 :=

(

R
n,Bn,P(n)

0 := {P(n)
θθθ;f , θθθ ∈ΘΘΘ, f ∈ F0}

)

characterized by the

residual function Z
(n)
θθθ and the zero median white noise concept H(n)

0;f , it is easy to see that a
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generating group for (with obvious notation) E (n)
0 (θθθ) is obtained by considering the subgroup

of G(n)
θθθ corresponding to G0 := {g ∈ G : g(0) = 0}, with maximal invariant the vectors

s(n)(θθθ) := (s1(θθθ), . . . , sn(θθθ))′ of residual signs and R(n)(θθθ) of residual ranks.
Except for the condition that residuals should have finite first-order moments, the model

E (n)
∗ :=

(

R
n,Bn,P(n)

∗ := {P(n)
θθθ;f , θθθ ∈ΘΘΘ, f ∈ F∗}

)

characterized by the same residual function Z
(n)
θθθ

as E (n)
0 , but zero mean rather than zero median white noise, globally coincides (as a nonpara-

metric statistical model) with E (n)
0 , in the sense that both models involve the same family of

distributions P (n) over (Rn,Bn). Actually, they only differ by the way the parameter of interest
and the nuisance are separated from each other. However, the invariance structure underlying

E (n)
0 allows for a rank-based approach of testing problems, an approach that cannot be consid-

ered for E (n)
∗ . The median, in this respect, seems more appropriate than the mean as a location

parameter.
The theory of tests and estimation based on ranks or signed ranks offers a pretty complete

toolkit of methods in the analysis of linear models with independent observations (see Hájek,
Šidák and Sen (1999), or Puri and Sen (1985) for a systematic account and state-of-the-art in
this context), as well as in the analysis of linear time series models (see Dufour et al. (1982),
Hallin et al. (1985) and Hallin and Puri (1988, 1991, 1994)).

The importance of considering maximal invariants—signs and ranks, thus, in models with
median zero white noise—has been substantiated in Hallin and Werker (2003), who show that, in
a very broad class of models, semiparametrically efficient inference procedures can be obtained
by conditioning with respect to the maximal invariant σ-algebra. It is somewhat surprising,
therefore, that sign-and-rank statistics never have been considered so far in the vast literature
devoted to rank-based inference. The purpose of this paper is to fill this gap.

2.3 Sign-and-rank statistics : definitions and notation

A sign-and-rank statistic is a
(

s(n),R(n)
)

-measurable statistic, where s(n) = (s1, . . . , sn)′ and

R(n) =
(

R
(n)
1 , . . . , R

(n)
n

)′
are the vector of signs and the vector of ranks, respectively, associated

with some n-dimensional random vector Z(n).

Denote by N
(n)
− :=

n
∑

i=1

I[Z
(n)
i < 0]=

n
∑

i=1

I[si= −1] and by N
(n)
+ :=

n
∑

i=1

I[Z
(n)
i > 0]=

n
∑

i=1

I[si= 1] the

numbers of negative and positive components in Z(n) (in s(n)), respectively. Under H(n)
0 , N

(n)
+ is

binomial Bin(n, 1/2). Letting N(n) := (N
(n)
− , N

(n)
+ ), note that σ

(

N(n)
)

= σ
(

N
(n)
−

)

= σ
(

N
(n)
+

)

,

as N
(n)
+ = n − N

(n)
− with probability one. Since si = I[Z

(n)
i > 0] − I[Z

(n)
i < 0] = I[R

(n)
i >

n−N
(n)
+ ]− I[R

(n)
i ≤ N

(n)
− ], for all i = 1, . . . , n, the couple

(

N(n),R(n)
)

is thus another maximal

invariant for H(n)
0 .

Defining the sets N (n)
− := {i ∈ {1, . . . , n} : si = −1} = {i−1 < · · · < i−

N
(n)
−

} and

N (n)
+ := {i ∈ {1, . . . , n} : si = 1}= {i+1 < · · · < i+

N
(n)
+

}, the distribution of (s(n),R(n)) under

H(n)
0 is conveniently characterized as follows: the marginal distribution of s(n) is uniform over

the 2n elements of {−1, 1}n, and the conditional distribution of R(n) given s(n) is such that

(R
(n)

i−1
, R

(n)

i−2
, . . . , R

(n)

i−

N
(n)
−

;R
(n)

i+1
, R

(n)

i+2
, . . . , R

(n)

i+

N
(n)
+

) is (conditionally) uniformly distributed over the

(N
(n)
− !)(N

(n)
+ !) possible combinations of a permutation of {1, . . . , N (n)

− } with a permutation of
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{(n−N
(n)
+ ) + 1, . . . , n}.

Let us finally denote by Z
(N

(n)
−

)

(·)− and Z
(N

(n)
+ )

(·)+ the vectors of order statistics associated with the

negative and positive elements of Z(n), respectively. These two vectors—the first one of length

N
(n)
− and the second one of length N

(n)
+ —constitute a natural (random) decomposition of the

vector of order statistics Z
(n)
(·) associated with Z(n).

3 Nonserial linear sign-and-rank statistics

3.1 Definition and conditional asymptotic representation

A linear nonserial sign-and-rank statistic is a statistic of the form

S(n)
c :=

1

n

n
∑

i=1

c
(n)
i a(n)

(

N(n);R
(n)
i

)

, (3.1)

where a(n) (·; ·) is a real-valued score function defined over {((ν, η); i) : ν, η ∈ {0, 1, . . . , n},
η ≤ n − ν, i ∈ {1, . . . , n}}; note that each summand in (3.1) is allowed to depend on the

sign si of Z
(n)
i , but also, via N(n), on the other signs. As usual, the c

(n)
i ’s (i = 1, . . . , n) denote

nonrandom regression constants.

The exact mean E
[

S
(n)
c

]

and the exact variance Var
[

S
(n)
c

]

of S
(n)
c under H(n)

0 are easily

obtained from elementary combinatorial arguments : letting c̄(n) := n−1∑n
i=1 c

(n)
i , we obtain

E
[

S(n)
c

]

= (n2n)−1c̄(n)
n
∑

j=1

n
∑

ν=0

(

n
ν

)

a(n)((ν, n− ν); j)

and

Var
[

S(n)
c

]

=
1

n(n− 1)2n

n
∑

i=1

(c
(n)
i − c̄(n))2

×
n
∑

ν=0

(

n
ν

)







n
∑

i=1

[

a(n)((ν, n− ν); i)
]2
− 1

n

[

n
∑

i=1

a(n)((ν, n− ν); i)

]2






,

respectively.
If asymptotic results are to be obtained, some stability of the scores a(n) is required as n

increases. We therefore will assume the existence of a score-generating function : a function
ϕ : (0, 1) → R is called a score-generating function for the score function a(n) if

E

[

{

a(n)
(

N(n);R
(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

Z
(n)
(·)

]

= oP(1), (3.2)

under H(n)
0;f , as n →∞. Note that (3.2) is automatically satisfied if, under H(n)

0;f ,

E

[

{

a(n)
(

N(n);R
(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N(n)
]

= oP(1), (3.3)
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as n →∞. Indeed, we almost surely have

E

[

{

a(n)
(

N(n);R
(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N(n)
]

= E

[

E

[

{

a(n)
(

N(n);R
(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N(n),Z
(n)
(·)

]∣

∣

∣

∣

N(n)
]

= E

[

E

[

{

a(n)
(

N(n);R
(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

Z
(n)
(·)

]∣

∣

∣

∣

N(n)
]

, (3.4)

where the latter (almost sure) equality follows from the fact that N(n) =
(

N
(n)
− , N

(n)
+

)

is mea-

surable with respect to Z
(n)
(·) . Hence, (3.3) implies the convergence in probability to zero of the

conditional expectation (3.4) and, consequently, the convergence (3.2).

No asymptotic results for S
(n)
c can be obtained without some assumptions on the asymptotic

behavior of regression constants c
(n)
i , i = 1, . . . , n. We will assume that the classical Noether

condition holds :

(N) The constants c
(n)
i , i = 1, . . . , n are not all equal, and

limn→∞

max1≤i≤n

(

c
(n)
i − c̄(n)

)2

∑n
j=1

(

c
(n)
j − c̄(n)

)2 = 0.

Finally, the following central limit theorem for independent random variables will be useful.

Theorem 3.1 Let W
(n)
i , i = 1, . . . , n, be i.i.d., with mean E(W

(n)
i ) := µW and variance

0 < Var(W
(n)
i ) := σ2

W < ∞. Define T (n) :=
∑n

i=1 d
(n)
i W

(n)
i , where the constants d

(n)
i satisfy

the Noether condition (N). Then,

(

T (n) − µ
(n)
T

)

/σ
(n)
T

L−→ N (0, 1),

as n →∞, with µ
(n)
T := E(T (n)) = µW

n
∑

i=1

d
(n)
i and 0 <

(

σ
(n)
T

)2
:=Var(T (n)) = σ2

W

n
∑

i=1

(

d
(n)
i

)2
<∞.

Proof. The proof simply consists in checking for Lindeberg’s classical condition. �

We may now state a first asymptotic representation and asymptotic normality result. This
result however is a conditional one, in the sense that the centering in (3.5) and (3.6) below, is a
conditional centering, and will serve as an intermediate step in the derivation of the main result
(of an unconditional nature) in Section 3.3. Contrary to the unconditional one, which requires
exact or approximate scores, the conditional result however holds for any scores satisfying (3.2).

Lemma 3.1 Let ϕ : (0, 1) → R be a non-constant square-integrable score-generating function

for a(n), and let the regression constants c
(n)
i (i = 1, . . . , n) satisfy the Noether condition (N).

Assume moreover that
∑n

i=1(c
(n)
i − c̄(n))2 = O(n), as n →∞. Then,

(i) (asymptotic representation) under H(n)
0;f , as n →∞,

S(n)
c − E

[

S(n)
c

∣

∣

∣N(n)
]

= T
(n)
ϕ;f − E

[

T
(n)
ϕ;f

∣

∣

∣Z
(n)
(·)

]

+ oP(1/
√

n), (3.5)

7



where T
(n)
ϕ;f := 1

n

∑n
i=1 c

(n)
i ϕ

(

F (Z
(n)
i )

)

(F stands for the distribution function associated with f);

(ii) (asymptotic normality) under H(n)
0 , as n →∞,

√
n





S
(n)
c − E

[

S
(n)
c

∣

∣

∣N(n)
]

√

1
n

∑n
i=1(c

(n)
i − c̄(n))2





L−→ N (0, σ2
ϕ), (3.6)

where 0 < σ2
ϕ :=

∫ 1
0 ϕ2(u)du−

(

∫ 1
0 ϕ(u)du

)2
< ∞.

Before turning to the proof of this proposition, observe that, almost surely under H(n)
0 ,

E
[

S(n)
c

∣

∣

∣N(n)
]

=
1

n

n
∑

i=1

c
(n)
i E

[

E
[

a(n)
(

N(n);R
(n)
i

)∣

∣

∣ s(n)
]∣

∣

∣N(n)
]

=
1

n

n
∑

i=1

c
(n)
i E

[

I [si = −1] 1

N
(n)
−

∑N
(n)
−

j=1 a(n)
(

N(n); j
)

+I [si = 1] 1

N
(n)
+

∑n

j=(n−N
(n)
+ )+1

a(n)
(

N(n); j
)

∣

∣

∣

∣

N(n)

]

=
1

n

n
∑

i=1

c
(n)
i

{

P
[

si = −1|N(n)
]

1

N
(n)
−

∑N
(n)
−

j=1 a(n)
(

N(n); j
)

+P
[

si = 1|N(n)
]

1

N
(n)
+

∑n

j=(n−N
(n)
+ )+1

a(n)
(

N(n); j
)

}

= c̄(n)





1

n

n
∑

j=1

a(n)
(

N(n); j
)



 = c̄(n)

(

1

n

n
∑

i=1

a(n)
(

N(n);R
(n)
i

)

)

,

and

E
[

T
(n)
ϕ;f

∣

∣

∣Z
(n)
(·)

]

=
1

n

n
∑

i=1

c
(n)
i E

[

ϕ
(

F (Z
(n)
i )

)∣

∣

∣Z
(n)
(·)

]

= c̄(n)

(

1

n

n
∑

i=1

ϕ
(

F (Z
(n)
i )

)

)

. (3.7)

Hence, part (i) of Lemma 3.1 actually states that

S(n)
c − E

[

S(n)
c

∣

∣

∣N(n)
]

=
1

n

n
∑

i=1

(

c
(n)
i − c̄(n)

)

a(n)
(

N(n);R
(n)
i

)

=
1

n

n
∑

i=1

(

c
(n)
i − c̄(n)

)

ϕ
(

F (Z
(n)
i )

)

+ oP(1/
√

n), (3.8)

under H(n)
0;f , as n → ∞. Note that the expression in the right-hand side of (3.8) coincides with

the asymptotic representation of the purely rank-based statistic 1
n

∑n
i=1

(

c
(n)
i − c̄(n)

)

a
(n)
ϕ

(

R
(n)
i

)

,

where a
(n)
ϕ (R

(n)
i ) are, for instance, the traditional exact scores E

[

ϕ(F (Z
(n)
i ))|R(n)

i

]

associated

with the score-generating function ϕ. The sign-and-rank statistic S
(n)
c thus asymptotically de-

composes into two parts; one of them (namely, S
(n)
c −E

[

S
(n)
c

∣

∣

∣N(n)
]

) asymptotically does not de-

pend on N(n), and represents the contribution of the ranks, while the second one (E
[

S
(n)
c

∣

∣

∣N(n)
]

−
E
[

S
(n)
c

]

) constitutes the contribution of the signs. Moreover, the ranks and N(n) being mutually

independent, these two quantities are orthogonal to each other, and contribute additively to the
unconditional asymptotic variance (see the proof of Proposition 3.2 below).
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Proof of Lemma 3.1. Part (i) of the lemma follows if we show that, under H(n)
0;f ,

E

[

{

D(n)
c

}2
∣

∣

∣

∣

Z
(n)
(·)

]

= oP(1), (3.9)

as n →∞, where D
(n)
c :=

√
n
(

S
(n)
c − E

[

S
(n)
c

∣

∣

∣N(n)
])

−√n
(

T
(n)
ϕ;f − E

[

T
(n)
ϕ;f

∣

∣

∣Z
(n)
(·)

])

. Obviously,

S(n)
c − T

(n)
ϕ;f =

1

n

n
∑

i=1

c
(n)
i

[

a(n)
(

N(n);R
(n)
i

)

− ϕ
(

F (Z
(n)
i )

)]

=
1

n

n
∑

i=1

c
(n)
i



a(n)
(

N(n);R
(n)
i

)

− ϕ



F (Z
(n)
(

R
(n)
i

))









is, conditionally on Z
(n)
(·) (hence also on N(n)), a linear nonserial rank statistic that may be

written as
S(n)

c − T
(n)
ϕ;f =

1

n

n
∑

i=1

c
(n)
i α

(n)

Z
(n)

(·)

(

R
(n)
i

)

,

with α
(n)

Z
(n)

(·)

(i) := a(n)
(

N(n); i
)

− ϕ
(

F (Z
(n)
(i) )

)

, i ∈ {1, . . . , n}. Define α
(n)

Z
(n)

(·)

:= 1
n

∑n
i=1 α

(n)

Z
(n)

(·)

(i).

Now, the maximal invariant
(

N(n),R(n)
)

depends on Z
(n)
(·) only through N(n), and hence,

E
[

S
(n)
c

∣

∣

∣N(n)
]

= E
[

S
(n)
c

∣

∣

∣Z
(n)
(·)

]

. So, we actually have

E

[

{

D(n)
c

}2
∣

∣

∣

∣

Z
(n)
(·)

]

= nE

[

{(

S(n)
c − T

(n)
ϕ;f

)

− E
[

S(n)
c − T

(n)
ϕ;f

∣

∣

∣Z
(n)
(·)

]}2
∣

∣

∣

∣

Z
(n)
(·)

]

= nVar
[

S(n)
c − T

(n)
ϕ;f

∣

∣

∣Z
(n)
(·)

]

= Var

[

1√
n

n
∑

i=1

c
(n)
i α

(n)

Z
(n)

(·)

(

R
(n)
i

)

∣

∣

∣

∣

∣

Z
(n)
(·)

]

.

Consequently, by Theorem II.3.1.c of Hájek and Šidák (1967, p.61),

E

[

{

D(n)
c

}2
∣

∣

∣

∣

Z
(n)
(·)

]

=
1

n

n
∑

i=1

(

c
(n)
i − c(n)

)2
· 1

n− 1

n
∑

j=1

(

α
(n)

Z
(n)

(·)

(j)− α
(n)

Z
(n)

(·)

)2

≤ 1

n

n
∑

i=1

(

c
(n)
i − c(n)

)2
· n

n− 1
· 1

n

n
∑

j=1

(

α
(n)

Z
(n)

(·)

(j)

)2

=
1

n

n
∑

i=1

(

c
(n)
i − c(n)

)2
· n

n− 1
· E




{

α
(n)

Z
(n)

(·)

(

R
(n)
1

)

}2
∣

∣

∣

∣

∣

∣

Z
(n)
(·)





=
1

n

n
∑

i=1

(

c
(n)
i − c(n)

)2
· n

n− 1
· E
[

{

a(n)
(

N(n);R
(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

Z
(n)
(·)

]

.

The assumptions made on the constants c
(n)
i (i = 1, . . . , n) and the function ϕ ensure that the

latter expression is oP(1), under H(n)
0;f , as n →∞. This completes the proof of (3.9).

Part (ii) of the lemma is a direct corollary of (3.5) and Theorem 3.1. �

3.2 Exact and approximate scores.

Let U
(n)
1 , . . . , U

(n)
n be a n-tuple of i.i.d. random variables uniformly distributed over (0, 1).

Define s
U

(n)
i

= I
[

U
(n)
i > 1/2

]

− I
[

U
(n)
i < 1/2

]

, N
(n)
U;− =

∑n
i=1 I

[

U
(n)
i < 1/2

]

, and N
(n)
U;+ =

9



∑n
i=1 I

[

U
(n)
i > 1/2

]

. Denote by R
(n)
Ui

the rank of U
(n)
i among U

(n)
1 , . . . , U

(n)
n , by U

(ν)
(i)−

(i = 1, . . . , ν) the ith order statistic associated with a sample of ν i.i.d. random variables

uniformly distributed over (0, 1/2), and by U
(ν)
(i)+ (i = 1, . . . , ν) the ith order statistic associated

with a sample of ν i.i.d. random variables uniformly distributed over (1/2, 1). Note that the

conditional distribution of U
(n)
i given the event s

U
(n)
i

= −1 (resp. s
U

(n)
i

= 1) is uniform over

(0, 1/2) (resp. (1/2, 1)). The linear nonserial sign-and-rank statistics constructed from the exact
and approximate scores associated with ϕ are defined by

S
(n)
c;ϕ;ex/appr =

1

n

n
∑

i=1

c
(n)
i a

(n)
ϕ;ex/appr

(

N(n);R
(n)
i

)

=
1

n

n
∑

i=1

c
(n)
i

{

I [si = −1] a
(n)
ϕ;−;ex/appr

(

N
(n)
− ;R

(n)
i

)

+I [si = 1] a
(n)
ϕ;+;ex/appr

(

N
(n)
+ ;R

(n)
i − (n−N

(n)
+ )

)}

,

(3.10)

where the score functions a
(n)
ϕ;−;ex, a

(n)
ϕ;−;appr, a

(n)
ϕ;+;ex, and a

(n)
ϕ;+;appr, all defined on the set

{(ν; i); ν, i ∈ {1, . . . , n} with i ≤ ν}, are given by

a
(n)
ϕ;−;ex (ν; i) = E

[

ϕ
(

U
(n)
1

) ∣

∣

∣N
(n)
U;− = ν,R

(n)
U1

= i
]

= E
[

ϕ
(

U
(ν)
(i)−

)]

, (3.11)

a
(n)
ϕ;−;appr (ν; i) = ϕ

(

E
[

U
(ν)
(i)−

])

= ϕ

(

i

2(ν + 1)

)

, (3.12)

a
(n)
ϕ;+;ex (ν; i) = E

[

ϕ
(

U
(n)
1

) ∣

∣

∣N
(n)
U;+ = ν,R

(n)
U1

= (n− ν) + i
]

= E
[

ϕ
(

U
(ν)
(i)+

)]

, (3.13)

and
a

(n)
ϕ;+;appr (ν; i) = ϕ

(

E
[

U
(ν)
(i)+

])

= ϕ

(

1

2
+

i

2(ν + 1)

)

. (3.14)

Observe that, under H(n)
0;f , S

(n)
c;ϕ;ex = E

[

T
(n)
ϕ;f

∣

∣

∣N(n),R(n)
]

= E
[

T
(n)
ϕ;f

∣

∣

∣ s(n),R(n)
]

.

We then have the following proposition.

Proposition 3.1 Let ϕ : (0, 1) → R be a non-constant square-integrable function. Then, ϕ

is a score-generating function for a
(n)
ϕ;ex. If moreover ϕ is the difference of two nondecreasing

square-integrable functions, then ϕ is also a score-generating function for a
(n)
ϕ;appr.

Proof. (a) Let us first consider the exact scores defined by relations (3.10), (3.11), and (3.13),

and let us show that, under H(n)
0;f ,

E

[

{

a(n)
ϕ;ex

(

N(n);R
(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N(n)
]

= oP(1), (3.15)

as n →∞. By the definition of a
(n)
ϕ;ex, we have

E

[

{

a(n)
ϕ;ex

(

N(n);R
(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N(n)
]

= E
[{

I [s1 = −1]
(

a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

))

+I [s1 = 1]
(

a
(n)
ϕ;+;ex

(

N
(n)
+ ;R

(n)
1 − (n−N

(n)
+ )

)

− ϕ
(

F (Z
(n)
1 )

))}2
∣

∣

∣

∣

N(n)
]

= E

[

I [s1 = −1]
{

a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
−

]

+E

[

I [s1 = 1]
{

a
(n)
ϕ;+;ex

(

N
(n)
+ ;R

(n)
1 − (n−N

(n)
+ )

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
+

]

.

10



Hence, condition (3.15) holds if, under H(n)
0;f ,

E

[

I [s1 = −1]
{

a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
−

]

and
E

[

I [s1 = 1]
{

a
(n)
ϕ;+;ex

(

N
(n)
+ ;R

(n)
1 − (n−N

(n)
+ )

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
+

]

are oP(1), as n →∞. Since both terms may be treated similarly, we only consider the first one.
Observe that

E

[

I [s1 = −1]
{

a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
−

]

= E

[

E

[

I [s1 = −1]
{

a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
− , s1

]∣

∣

∣

∣

N
(n)
−

]

= E

[

I [s1 = −1]
n
∑

ν=1

I
[

N
(n)
− = ν

]

×E

[

{

a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
− = ν, s1 = −1

]∣

∣

∣

∣

N
(n)
−

]

=
n
∑

ν=1

I
[

N
(n)
− = ν

]

E

[

{

a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
− = ν, s1 = −1

]

×E
[

I [s1 = −1]|N (n)
−

]

.

Recall that E
[

I [s1 = −1]|N (n)
−

]

=
N

(n)
−

n which, by the strong law of large numbers, converges

almost surely to 1
2 under H(n)

0;f , as n →∞. Hence, the required convergence condition holds if

E

[

{

a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
− , s1 = −1

]

= oP(1), (3.16)

under H(n)
0;f , as n →∞. By the definition of a

(n)
ϕ;−;ex, we actually need to show that

E

[

{

E
[

ϕ
(

F (Z
(n)
1 )

) ∣

∣

∣s1 = −1, N
(n)
− , R

(n)
1

]

− ϕ
(

F (Z
(n)
1 )

)}2 ∣
∣

∣N
(n)
− , s1 = −1

]

= oP(1), (3.17)

underH(n)
0;f , as n →∞. Now, since F (Z

(n)
1 ) is, underH(n)

0;f and conditionally on s1 = −1, uniform
over the interval (0, 1/2), (3.17) follows directly from a slight generalization of Theorem V.1.4.a
of Hájek and Šidák (1967, p.157). More precisely, let U(a,b)1, U(a,b)2, . . . be independent and

uniformly distributed over (a, b) (0 < a < b < 1). Let R
(N)
(a,b)i denote the rank of U(a,b)i (1 ≤ i ≤

N) in N -tuple U(a,b)1, . . . , U(a,b)N . Then, if ϕ : (0, 1) → R is square-integrable,

limN→∞E

[

{

E
[

ϕ
(

U(a,b)1

) ∣

∣

∣R
(N)
(a,b)1

]

− ϕ
(

U(a,b)1

)}2
]

= 0.

(b) Let us now consider the approximate scores defined by (3.10), (3.12), and (3.14). Using

the same arguments as in part (a) of this proof, we see that (3.3) holds for a
(n)
ϕ;appr if, under H(n)

0;f ,

E

[

{

a
(n)
ϕ;−;appr

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
− , s1 = −1

]
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and

E

[

{

a
(n)
ϕ;+;appr

(

N
(n)
+ ;R

(n)
1 − (n−N

(n)
+ )

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
+ , s1 = 1

]

are oP(1), as n →∞. Again, we only consider the first term. We have

E

[

{

a
(n)
ϕ;−;appr

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
− , s1 = −1

]

= E
[{(

a
(n)
ϕ;−;appr

(

N
(n)
− ;R

(n)
1

)

− a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

))

+
(

a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

))}2
∣

∣

∣

∣

N
(n)
− , s1 = −1

]

≤ 2E

[

{

a
(n)
ϕ;−;appr

(

N
(n)
− ;R

(n)
1

)

− a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)}2
∣

∣

∣

∣

N
(n)
− , s1 = −1

]

+2E

[

{

a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)

− ϕ
(

F (Z
(n)
1 )

)}2
∣

∣

∣

∣

N
(n)
− , s1 = −1

]

.

The second term in this sum has been treated before. Hence, it just remains to show that

E

[

{

a
(n)
ϕ;−;appr

(

N
(n)
− ;R

(n)
1

)

− a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)}2
∣

∣

∣

∣

∣

N
(n)
− , s1 = −1

]

= oP(1), (3.18)

under H(n)
0;f , as n →∞. Denoting by bxc the integer part of x (x ∈ R

+), we may write

E

[

{

a
(n)
ϕ;−;appr

(

N
(n)
− ;R

(n)
1

)

− a
(n)
ϕ;−;ex

(

N
(n)
− ;R

(n)
1

)}2
∣

∣

∣

∣

N
(n)
− , s1 = −1

]

=
1

N
(n)
−

N
(n)
−
∑

i=1

{

a
(n)
ϕ;−;appr

(

N
(n)
− ; i

)

− a
(n)
ϕ;−;ex

(

N
(n)
− ; i

)}2

=

∫ 1

0

{

a
(n)
ϕ;−;appr

(

N
(n)
− ; 1 +

⌊

N
(n)
− u

⌋)

− a
(n)
ϕ;−;ex

(

N
(n)
− ; 1 +

⌊

N
(n)
− u

⌋)}2
du

=

∫ 1

0

{(

a
(n)
ϕ;−;appr

(

N
(n)
− ; 1 +

⌊

N
(n)
− u

⌋)

− ϕ (u/2)
)

+
(

ϕ (u/2) − a
(n)
ϕ;−;ex

(

N
(n)
− ; 1 +

⌊

N
(n)
− u

⌋))}2
du

≤ 2

∫ 1

0

{

a
(n)
ϕ;−;appr

(

N
(n)
− ; 1 +

⌊

N
(n)
− u

⌋)

− ϕ (u/2)
}2

du

+2

∫ 1

0

{

a
(n)
ϕ;−;ex

(

N
(n)
− ; 1 +

⌊

N
(n)
− u

⌋)

− ϕ (u/2)
}2

du.

The required convergence (3.18) then follows from an obvious adaptation of Lemma V.1.6.a
(p.164) and Theorem V.1.4.b (p.158) in Hájek and Šidák (1967). �

3.3 Asymptotic representation and asymptotic normality

We now can state, for the nonserial case, the main result of this paper.

Proposition 3.2 Let ϕ : (0, 1) → R be a non-constant square-integrable score-generating func-

tion for S
(n)
c;ϕ;ex/appr, and let the regression constants c

(n)
i (i = 1, . . . , n) satisfy the Noether
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condition (N). Whenever approximate scores are considered, assume that ϕ is the difference
of two non-decreasing square-integrable functions. Assume moreover that c̄(n) = O(1) and
∑n

i=1(c
(n)
i − c̄(n))2 = O(n), as n → ∞. Let µ−ϕ :=

∫ 1/2
0 ϕ(u)du, µ+

ϕ :=
∫ 1
1/2 ϕ(u)du, and

µϕ :=
∫ 1
0 ϕ(u)du. Then, writing S

(n)
c for either S

(n)
c;ϕ;ex or S

(n)
c;ϕ;appr,

(i) (asymptotic representation) under H(n)
0;f , as n →∞,

S(n)
c −E

[

S(n)
c

]

=
1

n

n
∑

i=1

(c
(n)
i − c̄(n))ϕ(F (Z

(n)
i ))+ c̄(n)







2
N

(n)
−

n
µ−ϕ + 2

N
(n)
+

n
µ+

ϕ − µϕ







+ oP(1/
√

n),

(3.19)
and
(ii) (asymptotic normality) under H(n)

0 , as n →∞,

√
n









S
(n)
c − E

[

S
(n)
c

]

√

σ2
ϕ

n

∑n
i=1(c

(n)
i − c̄(n))2 +

[

c̄(n)
(

µ−ϕ − µ+
ϕ

)]2









L−→ N (0, 1). (3.20)

Proof. (i) We first establish (3.19) for exact scores. From (3.5) and (3.7), we have

S(n)
c;ϕ;ex −E

[

S(n)
c;ϕ;ex

]

=
1

n

n
∑

i=1

(c
(n)
i − c̄(n))ϕ(F (Z

(n)
i )) + E

[

S(n)
c;ϕ;ex

∣

∣

∣N(n)
]

−E
[

S(n)
c;ϕ;ex

]

+ oP(1/
√

n).

(3.21)
Since

E
[

S(n)
c;ϕ;ex

∣

∣

∣N(n)
]

= E
[

E
[

T
(n)
ϕ;f

∣

∣

∣N(n),R(n)
]∣

∣

∣N(n)
]

= E
[

T
(n)
ϕ;f

∣

∣

∣N(n)
]

= E
[

E
[

T
(n)
ϕ;f

∣

∣

∣ s(n)
]∣

∣

∣N(n)
]

= E

[

1

n

n
∑

i=1

c
(n)
i E

[

ϕ(F (Z
(n)
i ))

∣

∣

∣ si

]

∣

∣

∣

∣

∣

N(n)

]

,

where

E
[

ϕ(F (Z
(n)
i ))

∣

∣

∣ si

]

= I[si = −1]E
[

ϕ(F (Z
(n)
i ))

∣

∣

∣ si = −1
]

+I[si = 1]E
[

ϕ(F (Z
(n)
i ))

∣

∣

∣ si = 1
]

= I[si = −1]

∫ 1/2

0
ϕ(u)2du

+I[si = 1]

∫ 1

1/2
ϕ(u)2du

= 2I[si = −1]µ−ϕ + 2I[si = 1]µ+
ϕ ,

it follows that

E
[

S(n)
c;ϕ;ex

∣

∣

∣N(n)
]

=
2

n

n
∑

i=1

c
(n)
i E

[

I[si = −1]µ−ϕ + I[si = 1]µ+
ϕ

∣

∣

∣N(n)
]

= 2c̄(n)





N
(n)
−

n
µ−ϕ +

N
(n)
+

n
µ+

ϕ





and

E
[

S(n)
c;ϕ;ex

∣

∣

∣N(n)
]

− E
[

S(n)
c;ϕ;ex

]

= 2c̄(n)





N
(n)
−

n
µ−ϕ +

N
(n)
+

n
µ+

ϕ



− 2c̄(n)E





N
(n)
−

n
µ−ϕ +

N
(n)
+

n
µ+

ϕ





= c̄(n)



2
N

(n)
−

n
µ−ϕ + 2

N
(n)
+

n
µ+

ϕ − µϕ



 (3.22)
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which, along with (3.21), establishes (3.19) for exact scores.
Turning to approximate scores, we can assume without loss of generality that ϕ is non-

decreasing. Since (3.21) also holds if approximate scores are substituted for the exact ones, it is
sufficient, in order for (3.19) to hold for approximate scores, to show that the difference

E(n) :=
{

E
[

S(n)
c;ϕ;appr

∣

∣

∣N(n)
]

− E
[

S(n)
c;ϕ;appr

]}

−
{

E
[

S(n)
c;ϕ;ex

∣

∣

∣N(n)
]

− E
[

S(n)
c;ϕ;ex

]}

(3.23)

is oP(1/
√

n). Note that

E
[

S(n)
c;ϕ;appr

∣

∣

∣N(n)
]

= c̄(n) 1

n











N
(n)
−
∑

j=1

ϕ





j

2(N
(n)
− + 1)



+

N
(n)
+
∑

j=1

ϕ





1

2
+

j

2(N
(n)
+ + 1)















= c̄(n)







2
N

(n)
−

n
D−

N
(n)
−

+ 2
N

(n)
+

n
D+

N
(n)
+







, (3.24)

where D−
m := 1

2m

∑m
j=1 ϕ

(

j
2(m+1)

)

and D+
m := 1

2m

∑m
j=1 ϕ

(

1
2 + j

2(m+1)

)

are Riemann sums for the

integrals µ−ϕ :=
∫ 1/2
0 ϕ(u)du and µ+

ϕ :=
∫ 1
1/2 ϕ(u)du, respectively. Since ϕ is square-integrable,

any term in the Riemann sum 1
2m

∑m
j=1 ϕ2

(

1
2 + j

2(m+1)

)

associated with
∫ 1
1/2 ϕ2(u)du is o(1)

as m → ∞. This implies that 1
2mϕ

(

1
2 + m

2(m+1)

)

is o(1/
√

m), hence, in view of the fact that

N
(n)
+ = OP(n), that 1

2N
(n)
+

ϕ

(

1
2 +

N
(n)
+

2(N
(n)
+ +1)

)

= oP(1/
√

n) as n →∞. The same reasoning shows

that any finite sum of Riemann terms in D−

N
(n)
−

or D+

N
(n)
+

actually is oP(1/
√

n) as n →∞.

Now, any Riemann sum D+
m for µ+

ϕ satisfies, since ϕ is non-decreasing, the double inequality

D+
m ≤ D+

m ≤ D̄+
m, where D+

m := 1
2m

∑m−1
j=0 ϕ(1

2 + j
2(m+1) ) and D̄+

m := 1
2m

∑m
j=1 ϕ(1

2 + j
2(m+1) )

are the upper and lower Darboux sums associated with
∫ 1
1/2 ϕ(u)du. The difference D̄+

m −D+
m

clearly is 1
2m(ϕ(1

2 + m
2(m+1) ) − ϕ(1

2 )), which is o(1/
√

m) as m → ∞. Hence, for any Riemann

sum, D+
m − µ+

ϕ is also o(1/
√

m), so that D+

N
(n)
+

− µ+
ϕ = oP(1/

√
n) as n →∞.

Further, since the sequence D+
m −µ+

ϕ converges to zero, it is bounded, so that D+

N
(n)
+

−µ+
ϕ is

uniformly integrable , and

E





N
(n)
+

n
D+

N
(n)
+

− 1

2
µ+

ϕ



 = o(1/
√

n) as n →∞.

A similar reasoning of course holds for D−

N
(n)
−

and µ−ϕ . Going back to (3.24) and recalling

that c̄(n) = O(1), we thus obtain the desired result that E (n) is oP(1/
√

n). This completes the
proof of part (i) of the proposition.

(ii) As for asymptotic normality, elementary calculations yield

√
n c̄(n)



2
N

(n)
−

n
µ−ϕ + 2

N
(n)
+

n
µ+

ϕ − µϕ



 = c̄(n)



2
(

µ−ϕ − µ+
ϕ

)





N
(n)
−

n
− 1

2



 /
√

1/4n





√

1/4,

which, since

(

N
(n)
−

n − 1
2

)

/
√

1/4n is asymptotically standard normal, is also asymptotically

normal, with mean zero and asymptotic variance
[

c̄(n)(µ−ϕ − µ+
ϕ )
]2

. The remark (right after
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Lemma 3.1) on the orthogonality between the two parts of the asymptotic representation of

S
(n)
c completes the proof. �

Test statistics related to “regression coefficients” naturally involve “regression constants” c
(n)
i

that are not all equal. Quite on the contrary, test statistics related to location and intercepts

do not involve any constants—more precisely, they are still of the form S
(n)
c , but with constants

c
(n)
i all equal to 1. Proposition 3.2 thus does not apply. For the sake of completeness, this case

is treated now.

Proposition 3.3 Let ϕ be a non-constant square-integrable score-generating function for

S
(n)
ϕ;ex/appr := 1

n

∑n
i=1 a

(n)
ϕ;ex/appr(N

(n);R
(n)
i ). Whenever approximate scores are considered, as-

sume that ϕ is the difference of two non-decreasing square-integrable functions. Let µ−ϕ , µ+
ϕ , and

µϕ be defined as in Proposition 3.2. Then,

(i) (asymptotic representation) under H(n)
0;f , as n →∞,

S(n)
ϕ;ex − E

[

S(n)
ϕ;ex

]

= 2
N

(n)
−

n
µ−ϕ + 2

N
(n)
+

n
µ+

ϕ − µϕ

= S(n)
ϕ;appr − E

[

S(n)
ϕ;appr

]

+ oP(1/
√

n) (3.25)

and

(ii) (asymptotic normality) under H(n)
0 , as n →∞,

√
n
(

S
(n)
ϕ;ex/appr − E

[

S
(n)
ϕ;ex/appr

])

L−→ N
(

0,
(

µ−ϕ − µ+
ϕ

)2
)

.

Proof. Clearly,

S(n)
ϕ;ex =

1

n
E

[

n
∑

i=1

ϕ(F (Z
(n)
i ))

∣

∣

∣

∣

∣

N(n),R(n)

]

=
1

n
E

[

n
∑

i=1

ϕ(F (Z
(n)
i ))

∣

∣

∣

∣

∣

N(n)

]

.

Thus, since N(n) is s(n)-measurable,

S(n)
ϕ;ex =

1

n

n
∑

i=1

E
[

E
[

ϕ(F (Z
(n)
i ))

∣

∣

∣ s(n)
]∣

∣

∣N(n)
]

=
1

n

n
∑

i=1

E

[

I[si = −1]

∫ 1/2

0
ϕ(u)2du + I[si = 1]

∫ 1

1/2
ϕ(u)2du

∣

∣

∣

∣

∣

N(n)

]

= 2
N

(n)
−

n
µ−ϕ + 2

N
(n)
+

n
µ+

ϕ (3.26)

and E
[

S
(n)
ϕ;ex

]

= µϕ. This takes care of the exact-score part of (i)—which provides an exact

representation of
√

nS
(n)
ϕ;ex, not just an asymptotic one. Let us now consider the approximate

scores. We have

S(n)
ϕ;appr =

1

n

n
∑

i=1







I[si = −1]ϕ





R
(n)
i

2(N
(n)
− + 1)



+ I[si = 1]ϕ





1

2
+

R
(n)
i − (n−N

(n)
+ )

2(N
(n)
+ + 1)











=
1

n

N
(n)
−
∑

j=1

ϕ





j

2(N
(n)
− + 1)



+
1

n

N
(n)
+
∑

j=1

ϕ





1

2
+

j

2(N
(n)
+ + 1)



 .
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Hence, recalling (3.26) and the definitions of D−

N
(n)
−

and D+

N
(n)
+

given in the proof of Proposi-

tion 3.2,

S(n)
ϕ;appr − S(n)

ϕ;ex =











1

n

N
(n)
−
∑

j=1

ϕ





j

2(N
(n)
− + 1)



+
1

n

N
(n)
+
∑

j=1

ϕ





1

2
+

j

2(N
(n)
+ + 1)















−






2
N

(n)
−

n
µ−ϕ + 2

N
(n)
+

n
µ+

ϕ







= 2
N

(n)
−

n

(

D−

N
(n)
−

− µ−ϕ

)

+ 2
N

(n)
+

n

(

D+

N
(n)
+

− µ+
ϕ

)

.

The arguments developed in the proof of Proposition 3.2 establish that S
(n)
ϕ;appr − S

(n)
ϕ;ex =

oP(1/
√

n) and E
[

S
(n)
ϕ;appr

]

− E
[

S
(n)
ϕ;ex

]

= o(1/
√

n), as n → ∞. This completes the proof of

part (i) of Proposition 3.3.
As for part (ii), asymptotic normality readily follows from the de Moivre-Laplace version of

the Central Limit Theorem, with an obvious computation of the mean and variance of S (n). �

4 Serial linear sign-and-rank statistics

4.1 Definition and conditional asymptotic representation

Nonserial sign-and-rank statistics, just as their traditional rank-based counterparts, are ineffi-
cient in the context of dependent observations : only serial statistics can capture the effects of
serial dependence. Define a linear serial sign-and-rank statistic of order k (k ∈ {1, . . . , n − 1})
as a statistic of the form

S
(n)
k :=

1

n− k

n
∑

t=k+1

a
(n)
k

(

N(n);R
(n)
t , . . . , R

(n)
t−k

)

,

where a
(n)
k (·; ·, . . . , ·) is defined over the product of the set {(ν, η); ν, η ∈ {0, 1, . . . , n}, η ≤ n− ν}

with the set of all (k + 1)-tuples of distinct integers in {1, . . . , n}. The asymptotic mean and

variance of S
(n)
k are given in the subsequent Proposition 4.1.

Here also, an asymptotic representation result is proved, establishing the asymptotic equiv-

alence between S
(n)
k and a “parametric” serial statistic T

(n)
k . The asymptotic normality of T

(n)
k

then entails that of S
(n)
k . A function ϕk : (0, 1)k+1 → R is a score-generating function for the

serial score function a
(n)
k if

E

[{

a
(n)
k

(

N(n);R
(n)
k+1, . . . , R

(n)
1

)

−ϕk

(

F (Z
(n)
k+1), . . . , F (Z

(n)
1 )

)}2
∣

∣

∣

∣

Z
(n)
(·)

]

= oP(1), (4.1)

under H(n)
0;f , as n →∞. Obviously, (4.1) automatically holds if, under H(n)

0;f ,

E

[{

a
(n)
k

(

N(n);R
(n)
k+1, . . . , R

(n)
1

)

−ϕk

(

F (Z
(n)
k+1), . . . , F (Z

(n)
1 )

)}2
∣

∣

∣

∣

N(n)
]

= oP(1), (4.2)

as n → ∞. We then have the following conditional asymptotic representation and asymptotic
normality results, which is the serial counterpart of Lemma 3.1.
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Lemma 4.1 Let ϕk : (0, 1)k+1 → R be a score-generating function for a
(n)
k . Then,

(i) (asymptotic representation) under H(n)
0;f , as n →∞,

S
(n)
k − E

[

S
(n)
k

∣

∣

∣N(n)
]

= T
(n)
ϕk ;f ;k − E

[

T
(n)
ϕk;f ;k

∣

∣

∣Z
(n)
(·)

]

+ oP(1/
√

n), (4.3)

where

T
(n)
ϕk;f ;k :=

1

n− k

n
∑

t=k+1

ϕk

(

F (Z
(n)
t ), . . . , F (Z

(n)
t−k)

)

and

E
[

T
(n)
ϕk;f ;k

∣

∣

∣Z
(n)
(·)

]

= [n(n− 1) . . . (n− k)]−1
∑

1≤t1 6=...6=tk+1≤n

. . .
∑

ϕk

(

F (Z
(n)
t1 ), . . . , F (Z

(n)
tk+1

)
)

;

(ii) (asymptotic normality) if moreover 0 <
∫

(0,1)k+1 |ϕk (uk+1, . . . , u1)|2+δ du1 . . . duk+1 < ∞ for

some δ > 0, then, under H(n)
0 , as n →∞,

√
n− k

(

S
(n)
k − E

[

S
(n)
k

∣

∣

∣N(n)
])

L−→ N
(

0, V 2
)

,

where, denoting by U1, U2, . . . an i.i.d. sequence uniformly distributed over (0, 1),

V 2 := E
[

{ϕ∗k (Uk+1, . . . , U1)}2
]

+ 2
k
∑

j=1

E [ϕ∗k (Uk+1, . . . , U1)ϕ∗k (Uk+1+j, . . . , U1+j)] (4.4)

with, for u1, . . . , uk+1 ∈ (0, 1),

ϕ∗k (uk+1, . . . , u1) := ϕk (uk+1, . . . , u1)−
k+1
∑

l=1

E [ϕk (Uk+1, . . . , U1)|Ul = u1] + kE [ϕk (Uk+1, . . . , U1)] .

Proof. In order to prove part (i) of the proposition, we first show that, under H(n)
0;f , as n →∞,

E

[

{

D
(n)
k

}2
∣

∣

∣

∣

Z
(n)
(·)

]

= oP(1), where

D
(n)
k :=

√
n− k

{(

S
(n)
k − E

[

S
(n)
k

∣

∣

∣N(n)
])

−
(

T
(n)
ϕk ;f ;k − E

[

T
(n)
ϕk;f ;k

∣

∣

∣Z
(n)
(·)

])}

.

Since the maximal invariant
(

N(n),R(n)
)

depends on Z
(n)
(·) only through N(n), and hence,

E
[

S
(n)
k

∣

∣

∣N(n)
]

= E
[

S
(n)
k

∣

∣

∣Z
(n)
(·)

]

, we actually have

E

[

{

D
(n)
k

}2
∣

∣

∣

∣

Z
(n)
(·)

]

= (n− k)E

[

{(

S
(n)
k − T

(n)
ϕk;f ;k

)

− E
[

S
(n)
k − T

(n)
ϕk;f ;k

∣

∣

∣Z
(n)
(·)

]}2
∣

∣

∣

∣

Z
(n)
(·)

]

= (n− k)Var
[

S
(n)
k − T

(n)
ϕk;f ;k

∣

∣

∣Z
(n)
(·)

]

.

Obviously,

S
(n)
k − T

(n)
ϕk;f ;k =

1

n− k

n
∑

t=k+1

[

a
(n)
k

(

N(n);R
(n)
t , . . . , R

(n)
t−k

)

− ϕk

(

F (Z
(n)
t ), . . . , F (Z

(n)
t−k)

)]

=
1

n− k

n
∑

t=k+1



a
(n)
k

(

N(n);R
(n)
t , . . . , R

(n)
t−k

)

− ϕk



F (Z
(n)
(

R
(n)
t

)), . . . , F (Z
(n)
(

R
(n)
t−k

))








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is, conditionally on Z
(n)
(·) (and hence on N(n)), a linear serial rank statistic in the sense of Hallin

et al. (1985). Defining, for distinct integers i1, . . . , ik+1 ∈ {1, . . . , n},

α
(n)

Z
(n)

(·)
;k

(i1, . . . , ik+1) := a
(n)
k

(

N(n); i1, . . . , ik+1

)

− ϕk

(

F (Z
(n)
(i1)), . . . , F (Z

(n)
(ik+1)

)
)

,

we obtain S
(n)
k − T

(n)
ϕk ;f ;k = 1

n−k

∑n
t=k+1 α

(n)

Z
(n)

(·)
;k

(

R
(n)
t , . . . , R

(n)
t−k

)

.

We may now complete the proof using arguments similar to those developed in Section 4.1
of Hallin et al. (1985). Corollary 2 of Lemma 2, and Lemma 4 (Appendix 3) of that paper imply
that there exists a constant K (not depending on n) such that

E

[

{

D
(n)
k

}2
∣

∣

∣

∣

Z
(n)
(·)

]

= Var





1√
n− k

n
∑

t=k+1

α
(n)

Z
(n)

(·)
;k

(

R
(n)
t , . . . , R

(n)
t−k

)

∣

∣

∣

∣

∣

∣

Z
(n)
(·)





=
1

n− k
Var





n
∑

t=k+1

α
(n)

Z
(n)

(·)
;k

(

R
(n)
t , . . . , R

(n)
t−k

)

∣

∣

∣

∣

∣

∣

Z
(n)
(·)





≤ (2k + 1)Var

[

α
(n)

Z
(n)

(·)
;k

(

R
(n)
k+1, . . . , R

(n)
1

)

∣

∣

∣

∣

∣

Z
(n)
(·)

]

+
n

n− k

∣

∣

∣

∣

∣

Cov

[

α
(n)

Z
(n)

(·)
;k

(

R
(n)
2k+2, . . . , R

(n)
k+2

)

, α
(n)

Z
(n)

(·)
;k

(

R
(n)
k+1, . . . , R

(n)
1

)

∣

∣

∣

∣

∣

Z
(n)
(·)

]∣

∣

∣

∣

∣

≤ (2k + 1)Var

[

α
(n)

Z
(n)

(·)
;k

(

R
(n)
k+1, . . . , R

(n)
1

)

∣

∣

∣

∣

∣

Z
(n)
(·)

]

+
K

n− k
E





{

α
(n)

Z
(n)

(·)
;k

(

R
(n)
k+1, . . . , R

(n)
1

)

}2
∣

∣

∣

∣

∣

∣

Z
(n)
(·)





≤
(

2k + 1 +
K

n− k

)

E





{

α
(n)

Z
(n)

(·)
;k

(

R
(n)
k+1, . . . , R

(n)
1

)

}2
∣

∣

∣

∣

∣

∣

Z
(n)
(·)





=

(

2k + 1 +
K

n− k

)

E

[

{

a
(n)
k

(

N(n);R
(n)
k+1, . . . , R

(n)
1

)

− ϕk

(

F (Z
(n)
k+1), . . . , F (Z

(n)
1 )

)}2
∣

∣

∣

∣

Z
(n)
(·)

]

.

By (4.1), the last term converges to zero in probability, under H(n)
0;f , as n →∞. This completes

the proof of (4.3).

The asymptotic normality of
√

n− k
(

T
(n)
ϕk ;f ;k − E

[

T
(n)
ϕk;f ;k

∣

∣

∣Z
(n)
(·)

])

(part (ii) of Lemma 4.1),

hence also that of
√

n− k
(

S
(n)
k − E

[

S
(n)
k

∣

∣

∣N(n)
])

, is established in Hallin et al. (1985), and

follows from Yoshihara (1976)’s central limit theorem for U -statistics constructed from absolutely
regular processes. This central limit theorem requires the (2 + δ)-integrability of the score-
generating function ϕk. �

Note that the right hand side in (4.3) is exactly the same as in the asymptotic representation
of the purely rank-based serial statistic

(n− k)−1
n
∑

t=k+1

ϕk





R
(n)
t

n + 1
, . . . ,

R
(n)
t−k

n + 1



− E



(n− k)−1
n
∑

t=k+1

ϕk





R
(n)
t

n + 1
, . . . ,

R
(n)
t−k

n + 1







 .
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This remark, which is analogous to the remark made, in the nonserial case, just before the
proof of Lemma 3.1, will play a crucial role in the proof of the asymptotic normality part of
Proposition 4.1 (ii).

4.2 Exact and approximate scores.

As in the nonserial case, two types of scores, the exact and the approximate ones, are naturally
associated with a given score-generating function. Define (referring to Section 3.2 for notation)

S
(n)
ϕk;ex/appr :=

1

n− k

n
∑

t=k+1

a
(n)
ϕk ;ex/appr(N

(n);R
(n)
t , R

(n)
t−1, . . . , R

(n)
t−k)

where, for (η, ν) ∈ {0, 1, . . . , n}2, ν ≤ n− η, and 1 ≤ i1 6= i2 6= . . . 6= ik+1 ≤ n,

a(n)
ϕk;ex((η, ν); i1, . . . , ik+1)

:= E
[

ϕk(U
(n)
1 , . . . , U

(n)
k+1)

∣

∣

∣N
(n)
U;− = η,N

(n)
U;+ = ν,R

(n)
U1

= i1, . . . , R
(n)
Uk+1

= ik+1

]

and

a(n)
ϕk;appr((η, ν); i1, . . . , ik+1)

:= ϕk

(

E
[

U
(n)
1

∣

∣

∣N
(n)
U;− = η,N

(n)
U;+ = ν,R

(n)
U1

= i1
]

,

. . . , E
[

U
(n)
k+1

∣

∣

∣N
(n)
U;−= η,N

(n)
U;+ = ν,R

(n)
Uk+1

= ik+1

])

= ϕk

(

I[i1 ≤ η]

(

i1
2(η + 1)

)

+ I[i1 > n− ν]

(

1

2
+

i1 − (n− ν)

2(ν + 1)

)

,

. . . , I[ik+1 ≤ η]

(

ik+1

2(η + 1)

)

+ I[ik+1 > n− ν]

(

1

2
+

ik+1 − (n− ν)

2(ν + 1)

))

.

The following lemma provides sufficient conditions for ϕk being a score-generating function for

a
(n)
ϕk;ex and a

(n)
ϕk ;appr, respectively.

Lemma 4.2 Let ϕk : (0, 1)k+1 −→ R be non-constant and square-integrable. Then ϕk is a

score-generating function for a
(n)
ϕk;ex. If moreover ϕk is a linear combination of a finite number

of square-integrable functions which are monotone in all their arguments, then ϕk is also a

score-generating function for a
(n)
ϕk;appr.

Proof. The proof easily follows along the same lines as in the nonserial case, and is left to the
reader. �

4.3 Unconditional asymptotic representation

Lemma 4.1 was only an intermediate, conditional result; the following proposition provides the
corresponding unconditional asymptotic representation and asymptotic normality.

Proposition 4.1 Let ϕk be a non-constant square-integrable score-generating function for

S
(n)
ϕk;ex/appr. Whenever approximate scores are considered, assume that ϕk is a linear combi-

nation of square-integrable functions which are monotone in all their arguments. Then, writing

S
(n)
k for either S

(n)
ϕk;ex or S

(n)
ϕk;appr,
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(i) (asymptotic representation) under H(n)
0;f , as n →∞,

S
(n)
k − E

[

S
(n)
k

]

= T
(n)
ϕk ;f ;k − E

[

T
(n)
ϕk;f ;k

∣

∣

∣Z
(n)
(·)

]

+2k+1[n(n− 1) . . . (n− k)]−1
{

I[N
(n)
− ≥ k + 1]N

(n)
− (N

(n)
− − 1) . . . (N

(n)
− − k)µ(0)

ϕk

+
k
∑

ν=1

I[k + 1− ν ≤ N
(n)
− ≤ n− ν]N

(n)
− (N

(n)
− − 1) . . . (N

(n)
− − k + ν)

×N
(n)
+ (N

(n)
+ − 1) . . . (N

(n)
+ − ν + 1)µ(ν)

ϕk

+I[N
(n)
+ ≥ k + 1]N

(n)
+ (N

(n)
+ − 1) . . . (N

(n)
+ − k)µ(k+1)

ϕk

}

− µϕk
+ oP(1/

√
n), (4.5)

where

µϕk
:=

∫

[0,1]k+1
ϕk(u0, . . . , uk)du0 . . . duk

and, for ν = 0, 1, . . . , k + 1,

µ(ν)
ϕk

:=
∑

0≤i1<...<iν≤k

. . .
∑

∫

(ui1
,...,uiν )∈[1/2,1]ν

∫

(uj ,0≤j≤k, j 6=i1,..., iν)∈[0,1/2]k+1−ν
ϕk(u0, . . . , uk)du0 . . . duk.

(ii) (asymptotic normality) if moreover ϕk is (2 + δ)−integrable for some δ > 0, then, under

H(n)
0 , as n →∞,

√
n− k









S
(n)
k − E

[

S
(n)
k

]

√

V 2 + (k + 1)2
[

µϕk
− 2

∑k+1
ν=1 νµ

(ν)
ϕk /(k + 1)

]2









L−→ N (0, 1), (4.6)

with V 2 given in (4.4).

Proof. As in the nonserial case, we first prove the asymptotic representation result for exact

scores. From the definition of exact scores, we obtain, for S
(n)
k = S

(n)
ϕk;ex, writing T

(n)
k for

T
(n)
ϕk;f ;k := 1

n−k

∑n
t=k+1 ϕk

(

F (Z
(n)
t ), . . . , F (Z

(n)
t−k)

)

,

E
[

S
(n)
k

∣

∣

∣N(n)
]

= E
[

E
[

T
(n)
k

∣

∣

∣R(n),N(n)
]∣

∣

∣N(n)
]

= E
[

T
(n)
k

∣

∣

∣N(n)
]

= E





1

n− k

n
∑

t=k+1

E
[

ϕk

(

F (Z
(n)
t ), . . . , F (Z

(n)
t−k)

)∣

∣

∣N(n), st, . . . , st−k

]

∣

∣

∣

∣

∣

∣

N(n)





where

E
[

ϕk

(

F (Z
(n)
t ), . . . , F (Z

(n)
t−k)

)∣

∣

∣N(n), st, . . . , st−k

]

(4.7)

= 2k+1
∫

[0,1]k+1
ϕk(u0, . . . , uk)I

[

sign(u0 −
1

2
) = st, . . . , sign(uk −

1

2
) = st−k

]

du0 . . . duk.

The asymptotic representation (4.5) (for exact scores) follows from combining (4.7) and part (i)
of Lemma 4.1. Turning to approximate scores, it is sufficient, for (4.5) to hold, that

E(n) :=
{

E
[

S(n)
ϕk;appr

∣

∣

∣N(n)
]

− E
[

S(n)
ϕk;appr

]}

−
{

E
[

S(n)
ϕk;ex

∣

∣

∣N(n)
]

− E
[

S(n)
ϕk;ex

]}

(4.8)
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be oP(1/
√

n). Note that

E
[

S(n)
ϕk;appr

∣

∣

∣N(n)
]

= [n(n− 1) . . . (n− k)]−1

×
∑

1≤i1 6=...6=ik+1≤n

. . .
∑

ϕk



I[i1 ≤ N
(n)
− ]

( i1

2(N
(n)
− + 1)

)

+ I[i1 > N
(n)
− ]

(1

2
+

i1 −N
(n)
−

2(N
(n)
+ + 1)

)

,

. . . , I[ik+1 ≤ N
(n)
− ]

( ik+1

2(N
(n)
− + 1)

)

+ I[ik+1 > N
(n)
− ]

(1

2
+

ik+1 −N
(n)
−

2(N
(n)
+ + 1)

)



 .

For notational simplicity, let us consider the case k = 1; the general case follows along the same
ideas. For k = 1, we have

E
[

S(n)
ϕ1;appr

∣

∣

∣N(n)
]

− E
[

S(n)
ϕ1;ex

∣

∣

∣N(n)
]

=
1

n(n− 1)

×











∑

1≤i6=

∑

j≤N
(n)
−

ϕ1

( i

2(N
(n)
− + 1)

,
j

2(N
(n)
− + 1)

)

+

N
(n)
−
∑

i=1

n
∑

j=N
(n)
−

+1

ϕ1

( i

2(N
(n)
− + 1)

,
1

2
+

j −N
(n)
−

2(N
(n)
+ + 1)

)

+
n
∑

i=N
(n)
−

+1

N
(n)
−
∑

j=1

ϕ1

(1

2
+

i−N
(n)
−

2(N
(n)
+ + 1)

,
j

2(N
(n)
− + 1)

)

+
∑

N
(n)
−

+1≤i6=

∑

j≤n

ϕ1

(1

2
+

i−N
(n)
−

2(N
(n)
+ + 1)

,
1

2
+

j −N
(n)
−

2(N
(n)
+ + 1)

)











− 4

n(n− 1)

{

I[N
(n)
− ≥ 2]N

(n)
− (N

(n)
− − 1)µ(0)

ϕ1
+ I[1 ≤ N

(n)
− ≤ n− 1]N

(n)
− N

(n)
+ µ(1)

ϕ1

+I[N
(n)
+ ≥ 2]N

(n)
+ (N

(n)
+ − 1)µ(2)

ϕ1

}

=
4N

(n)
− (N

(n)
− − 1)+

n(n− 1)











(

N
(n)
−

)2

N
(n)
− (N

(n)
− − 1)

D−−

N
(n)
−

,N
(n)
−

− µ−−ϕ1

−

(

N
(n)
−

)2

N
(n)
− (N

(n)
− − 1)

1

4
(

N
(n)
−

)2

N
(n)
−
∑

i=1

ϕ1

( i

2(N
(n)
− + 1)

,
i

2(N
(n)
− + 1)

)











+
4N

(n)
− N

(n)
+

n(n− 1)

{

D−+

N
(n)
−

,N
(n)
+

− µ−+
ϕ1

}

+
4N

(n)
+ N

(n)
−

n(n− 1)

{

D+−

N
(n)
+ ,N

(n)
−

− µ+−
ϕ1

}

+
4N

(n)
+ (N

(n)
+ − 1)+

n(n− 1)











(

N
(n)
+

)2

N
(n)
+ (N

(n)
+ − 1)

D+ +

N
(n)
+ ,N

(n)
+

− µ++
ϕ1

(4.9)

−

(

N
(n)
+

)2

N
(n)
+ (N

(n)
+ − 1)

1

4
(

N
(n)
+

)2

N
(n)
+
∑

i=1

ϕ1

(1

2
+

i

2(N
(n)
+ + 1)

,
1

2
+

i

2(N
(n)
+ + 1)

)










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where x+ := max(0, x),

D−−
`,m :=

1

4`m

∑̀

i=1

m
∑

j=1

ϕ1

(

i

2(` + 1)
,

j

2(m + 1)

)

, D−+
`,m :=

1

4`m

∑̀

i=1

m
∑

j=1

ϕ1

(

i

2(` + 1)
,
1

2
+

j

2(m + 1)

)

,

D+−
`,m :=

1

4`m

∑̀

i=1

m
∑

j=1

ϕ1

(

1

2
+

i

2(` + 1)
,

j

2(m + 1)

)

,and D+ +
`,m :=

1

4`m

∑̀

i=1

m
∑

j=1

ϕ1

(

1

2
+

i

2(` + 1)
,
1

2
+

j

2(m + 1)

)

are Riemann sums for the integrals

µ−−ϕ1
:=

∫ 1/2

0

∫ 1/2

0
ϕ1(u0, u1) du0du1, µ−+

ϕ1
:=

∫ 1/2

0

∫ 1

1/2
ϕ1(u0, u1) du0du1,

µ+−
ϕ1

:=

∫ 1

1/2

∫ 1/2

0
ϕ1(u0, u1) du0du1, and µ+ +

ϕ1
:=

∫ 1

1/2

∫ 1

1/2
ϕ1(u0, u1) du0du1,

respectively. Here again, due to the fact that ϕ1 is square-integrable, the function (u, v) 7→
ϕ∗1(u, v) := ϕ1(u, v)I[u = v], (u, v) ∈ [1/2, 1]2 which vanishes except over the diagonal of the

unit square is integrable, and has integral zero. Hence, (1/4m2)
∑m

i=1 ϕ2
1

(

1
2 + i

2(m+1) ,
1
2 + i

2(m+1)

)

,

as a Riemann sum for the integral of ϕ∗1 over [1/2, 1]2, is o(1). Since

[

m
∑

i=1

ϕ1

(1

2
+

i

2(m + 1)
,
1

2
+

i

2(m + 1)

)

]2

≤ m
m
∑

i=1

ϕ2
1

(1

2
+

i

2(m + 1)
,
1

2
+

i

2(m + 1)

)

,

it follows that (1/4m2)
∑m

i=1 ϕ1

(

1
2 + i

2(m+1) ,
1
2 + i

2(m+1)

)

is o(1/
√

m), as m →∞. A similar result

holds for (1/4m2)
∑m

i=1 ϕ1

(

i
2(m+1) ,

i
2(m+1)

)

, as well of course for any individual terms, such as

(1/4m2)ϕ1

(

1
2 + m

2(m+1) ,
1
2 + m

2(m+1)

)

. Thus, (4.9) as n →∞ takes the form

E
[

S(n)
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∣

∣

∣N(n)
]

− E
[

S(n)
ϕ1;ex

∣

∣

∣N(n)
]

=
4N

(n)
− (N

(n)
− − 1)+

n(n− 1)

[

D−−

N
(n)
−

,N
(n)
−

− µ−−ϕ1

]

+
4N

(n)
− N

(n)
+

n(n− 1)

[

D−+

N
(n)
−

,N
(n)
+

− µ−+
ϕ1

]

+
4N

(n)
+ N

(n)
−

n(n− 1)

[

D+−

N
(n)
+ ,N

(n)
−

− µ+−
ϕ1

]

+
4N

(n)
+ (N

(n)
+ − 1)+

n(n− 1)

[

D+ +

N
(n)
+ ,N

(n)
+

− µ+ +
ϕ1

]

+ oP(1/
√

n).

Considering the difference D++
m,m − µ++

ϕ1
, we have
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ϕ1

=
1

4m2
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m
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,
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2
+

j
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)

−
∫ ∫

[ 1
2
,1]2

ϕ1(u0, u1)du0du1

=
1

4m2
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2
+
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,
1

2
+

m
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)

+
1

4m2

m−1
∑

j=1

ϕ1

(1

2
+

m
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1
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+
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1
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(1

2
+

i
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,
1
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)

−
∫ ∫

[ 1
2
,1]2

ϕ1(u0, u1)du0du1 (4.10)

=
1

4m2
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∑

i=1

m−1
∑

j=1

ϕ1

(1

2
+
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,
1

2
+

j
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)

−
∫ ∫

[ 1
2
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ϕ1(u0, u1)du0du1 + o(1/
√
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since, in view of the same argument as above, the two first sums in (4.10) are o(1/
√

m). As
in the proof of Proposition 3.1, due to the fact that ϕ1 can be assumed to be non-decreasing
in its two arguments, the sum appearing in this latter expression is comprised between the two
Darboux sums

D++
m,m:=

1

4m2

m−1
∑

i=1

m−1
∑

j=1

ϕ1

(1

2
+

i− 1

2m
,
1

2
+

j − 1

2m

)

and D̄+ +
m,m:=

1

4m2

m−1
∑

i=1

m−1
∑

j=1

ϕ1

(1

2
+

i

2m
,
1

2
+

j

2m

)

.

These Darboux sums also converge to the integral
∫ ∫

[ 1
2
,1]2 ϕ1(u0, u1)du0du1, and their dif-

ference is

D̄+ +
m,m −D+ +

m,m =
1

4m2

[

ϕ1

(1

2
+

m− 1

2m
,
1

2
+

m− 1

2m

)

− ϕ1

(1

2
,
1

2

)

]

;

the same argument still implies that this difference, hence also D+ +
m,m − µ++

ϕ1
, is o(1/

√
m). The

other three quantities of the same type can be treated similarly. Uniform integrability and the

fact that N
(n)
± are OP(n), as in the proof of Proposition 3.1, complete the proof that (4.8) is

indeed oP(1/
√

n).
To conclude, we now prove the asymptotic normality result. Denote by Πk+1 the set of

permutations π of {1, . . . , k + 1}. Then,

E
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S(n)
ϕk;ex

∣

∣

∣N(n)
]

=

(

n
k + 1

)−1
∑
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. . .
∑

{

k+1
∑

ν=0

1
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I
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= −1
]







;

hence, E
[

S
(n)
ϕk;ex

∣

∣

∣N(n)
]

is a U-statistic computed from the n-tuple Z
(n)
1 , . . . , Z

(n)
n , with kernel

hk(z1, . . . , zk+1) =
k+1
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2k+1µ
(ν)
ϕk

(k + 1)!
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π∈Πk+1

I
[

zπ(1) > 0, . . . , zπ(ν) > 0, zπ(ν+1) ≤ 0, . . . , zπ(k+1) ≤ 0
]

.

Routine calculation yields, under H(n)
0;f ,

E
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hk(Z
(n)
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(n)
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∣
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and
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(

E
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∣

∣
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(n)
1
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=

{

µϕk
− 2

k+1
∑

ν=1

ν

k + 1
µ(ν)

ϕk

}2

,

which is strictly positive. Classical results on U-statistics (see, e.g., Serfling 1980) then imply

that, under H(n)
0;f , as n →∞,

(n− k)1/2
(

E
[

S(n)
ϕk;ex

∣

∣

∣N(n)
]

− E
[

S(n)
ϕk;ex

])

L−→ N


0, (k + 1)2
{

µϕk
− 2

k+1
∑

ν=1

ν

k + 1
µ(ν)

ϕk

}2


 .

The same argument as in the nonserial case can be invoked in order to establish the asymptotic
independence of the right hand side in the conditional asymptotic representation (4.3) and

(n− k)1/2
(

E
[

S
(n)
ϕk;ex

∣

∣

∣N(n)
]

− E
[

S
(n)
ϕk;ex

])

. The result follows. �
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5 Conclusion.

Semiparametric efficiency can be reached, in models involving white noise with unspecified
density, by conditioning upon maximal invariants. In median regression and median time series
models, a maximal invariant is the vector of residual ranks along with the vector of residual signs.
Conditioning with respect to this maximal invariant yields sign-and-rank statistics, which so far
have not been considered in the literature. Asymptotic representation and asymptotic normality
results are obtained for this new class of statistics, both in the nonserial and in the serial case.
Optimal tests based on these statistics (for median regression and median time series models)
are the subject of a companion paper (Hallin, Vermandele, and Werker 2003). The variance
in the asymptotic normal distributions obtained here breaks into two distinct parts, associated
with the ranks and the signs, respectively; this decomposition of asymptotic variances provides
a quantitative evaluation of the advantage of sign-and-rank statistics over the more classical
rank or signed-rank ones.
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