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Abstract

The classical theory of rank-based inference is entirely based either on ordinary ranks,
which do not allow for considering location nor intercept parameters, or on signed ranks,
which require an assumption of symmetry. If the median, in the absence of a symmetry as-
sumption, is considered as a location parameter, the maximal invariance property of ordinary
ranks is lost to the ranks and the signs. As shown in Hallin and Werker (2003), conditioning
on a maximal invariant in such situations is essential if semiparametric efficiency is to be
reached. This new maximal invariant thus suggests a new class of statistics, based on ordi-
nary ranks and signs. An asymptotic representation theory d la Hajek is developed here for
such statistics, both in the nonserial and in the serial case. The corresponding asymptotic
normality results clearly show how the signs are adding a separate contribution to the asymp-
totic variance, hence, potentially, to asymptotic efficiency. Applications to semiparametric
inference in regression and time series models with median restrictions are treated in detail
in a companion paper (Hallin, Werker, and Vermandele 2003).

AMS 1980 subject classification : 62G10, 62M10
Key words and phrases : Ranks, signs, Hijek representation, median regression, median
restrictions, maximal invariant.

1 Introduction

The classical theory of rank-based inference is entirely based either on ordinary ranks, or on
signed ranks. Ranks indeed are maximal invariant with respect to the group of continuous order-
preserving transformations, a group that generates the null hypothesis of absolutely continuous
independent white noise (no location restriction), whereas signed ranks (that is, the signs along
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with the ranks of absolute values) are maximal invariant under the subgroup generating the
subhypothesis of symmetric (with respect to the origin) independent white noise.

Now, a location parameter is usually specified to be zero for the error term in most statistical
models : regression and analysis of variance models, autoregressive-moving average models, etc.
Symmetric white noise allows for such an identification, at the expense, however, of a symmetry
assumption which in practice is often quite unrealistic. And, the trouble with independent white
noise without further restrictions is that it does not allow for identifying any location parameter.

This location parameter in general is the mean—an heritage of Gaussian models—but could
be the median as well. Zero-median noise is certainly as natural as zero-mean noise. In a
semiparametric context, it is even more satisfactory, as it does not require any moment as-
sumption on the densities under consideration. Median-regression and autoregression models
therefore recently have attracted much attention : see, for instance, Jung (1996), Koenker (2000),
Zhao (2001), McKeague, Subramian, and Sun (2001), Horowitz and Spokoiny (2002), to quote
only a few.

Moreover, from the point of view of statistical inference, the assumption of zero-median
noise is also more convenient, since it induces more structure. The hypothesis of zero-mean
white noise indeed is not invariant under any nontrivial group of transformations, so that group
invariance arguments cannot be invoked in models involving zero-mean noise. The situation is
quite different for the hypothesis of zero-median noise, which is generated by the group of all
continuous order-preserving transformations g such that g(0) = 0. A maximal invariant for that
group is the vector of ordinary ranks, along with the vector of signs. Hallin and Werker (2003)
have shown that, in such a situation, semiparametric efficiency is achieved by conditioning with
respect to a maximal invariant. Maximality of the invariant here is essential : conditioning, e.g.,
on the ranks when the signs-and-ranks, not the ranks alone, are maximal invariant, induces an
avoidable loss of efficiency.

Invariance and semiparametric efficiency arguments in such models thus lead to a new con-
cept of rank-based statistics, involving both the signs and the ranks. This new concept is more
natural than the traditional ranks in all models involving a location parameter, or an intercept,
but also in models such as ARMA models, where the noise is inherently centered. The objective
of this paper is to present a detailed study of the class of linear sign-and-rank statistics, for which
we provide Hajek-type asymptotic representation and asymptotic normality results. These re-
sults readily allow for building new rank-based tests for a variety of problems in one-, two-,
and k-sample location, regression, ARM A, and related models, without making any symmetry
assumptions on the underlying error densities. They also form a basis for the construction of
semiparametrically efficient procedures in median constrained models (see Hallin, Vermandele,
and Werker 2003).

The paper is organized as follow. Section 2 briefly introduces several concepts of white
noise: independent, independent with zero mean, independent with zero median, and independent
symmetric white noises, showing how the invariance principle in each case yields a different
concept of ranks. Sections 3 and 4 propose a systematic investigation of the linear nonserial and
serial sign-and-rank statistics. These new statistics, measurable with respect to the vectors of
ranks and signs or, equivalently, with respect to the vector of ranks and the number of negative
or positive residuals, are studied along the same lines as the classical linear rank statistics
(see, for example, Hajek and Siddk (1967) for the nonserial context, Hallin, Ingenbleek, and
Puri (1985), Hallin and Puri (1991) for the serial context) and the linear signed-rank statistics
(see Hajek and Sidak (1967), Huskova (1970) for the nonserial context, Hallin and Puri (1991)
for the serial context). However, the non-independence between the ranks and the signs requires



a more delicate treatment.

2 White noise and group invariance.

2.1 White noise and semiparametric statistical models

Whatever the concept of ranks, rank-based inference applies in the context of semiparametric
models under which the distribution of some observed n-tuple Y (™ := (Yl(n)7 .. ,Yn(n))’ belongs
to a family of distributions of the form

(vl

fo,OEGCRK fe}“}

where 6 denotes some finite-dimensional parameter of interest, and f some unspecified density
(densities throughout are tacitly taken with respect to the Lebesgue measure over the real line),

(n)

playing the role of a nonparametric nuisance. This distribution P 76 in general is described by
means of

(i) a residual function, namely, a family of invertible functions 3‘(971) indexed by n and 8,
mapping the observation Y™ onto a n-tuple of residuals

and

(ii) a concept of white noise with marginal density f

such that Y has distribution ng,lg iff Z(™ (@) is white noise with density f (in the sense of (ii)).
The concept of white noise thus piays a fundamental role in most semiparametric models.

As an example, consider the first-order autoregressive model with unspecified innovation
density under which Y™ is a realization of length n of some solution of

Y, =0Y, 1 +¢e, t=1,...n,

with 6 € © ( 3 1). Assuming, for simplicity, that Yo = 0, the residual function here is

2.2 White noise, group invariance, ranks, signed-ranks, and signs-and-ranks

For simplicity, let us concentrate on four particular forms of white noise. Defining F :=
{f : f(x) >0, x € R} as the set of all nonvanishing probability densities over the real line,

let F, := {f eF :pp= [ z2f(2)dz = O} be the subset of all densities in F having mean
zero, Fo = {f eF: fi)oo f(z)dz = [5° f(2)dz = 1/2} the set of densities in F having zero me-

dian, and Fy := {f € F : f(—z) = f(2),z € R} the set of densities in F that are symmetric
with respect to the origin. Denote by

(a) (independent white noise) 'H; ") the hypothesis under which the random vector Z( =

(Z(n T(Ln)) is a realization of length n of an independent white noise, i.e., Zi(n)7
i =1,...,n, are independent and identically distributed (i.i.d.) with density f € F,



(n)

(b) (zero mean independent white noise) H,. 7 the hypothesis under which Z™ is a realization

of length n of an independent with zero mean white noise, i.e., Zi(n)7 1=1,...,n,areii.d.
with density f € Fi,
¢) (zero median independent white noise ’H(@ the hypothesis under which Z( is a realization
0;f Y

)

of length n of an independent with zero median white noise, i.e., Zi(n
i.i.d. with density f € Fy, and by

,1=1,...,n, are

(n)
+f
of length n of an independent symmetrical white noise, i.e., Zi(n
with density f € F,.

the hypothesis under which Z™ is a realization

)

(d) (symmetric independent white noise) H

,i=1,...,n, are i.i.d.

The notation H™, ,(gn), 'H((]n), and ng) is used whenever the underlying density function
f remains unspecified within F, F,, Fy, and Fy, respectively. In practice, of course, the role of
the random variables Zi(n) is actually played by the residuals ZZ-(n)(H) (i =1,...,n) associated
with a specific value 8 of the parameter in the statistical model under consideration.

The independent white noise hypothesis H (™ is of course most general, but does not allow for
identifying location parameters. A classical attitude, when location is to be identified, consists
in assuming that the underlying white noise density has zero mean, i.e., adopting ’H,(gn) as a
concept of white noise. As already explained, an equally natural solution requires the median
(instead of the mean) of the white noise density to be zero, leading to H(()n). The additional

(n)

assumption of symmetry yields HY".

Let €M) .= (R",B”,P(”) = {Pg,l;,e €0, f¢€ .7-"}) be characterized (in the sense of Sec-
tion 2.1) by the residual function 3 ‘(9n) and the white noise concept chn). Denoting by & the set of
all continuous, strictly monotone increasing functions g : R — R such that lim,_, 1 g(x) = £oo,

define
gg”) cz=(21,...,2n) €ER" > gé")(z) = (g(z1),.-.,9(z)) € R™,

and consider the group (acting on R™)
n n -1 n n
6 = { (35") a3 g€ )

This group (called the group of order-preserving transformations of residuals) clearly is a gener-
ating group for the fixed-@ submodel £ (9) := (R", B, P (6) := {ng}, fe .7:}) of £ with
maximal invariant the vector R(™ (@) := (Rgn) @),... RV (0))’, where Rgn) (@) denotes the rank
of the residual Zi(n) (6) among an)(e), . ,Z,(L")(o).

Similarly, let &4 = {g € & : g(—2z) = —g(2)}, and denote by g,f,fj the corresponding
subgroup of g(f,"). This group (the group of symmetric order-preserving transformations of
residuals) is a generating group for SEL") 0) = (]R", B", PJ(rn) 0) = {Pg?}, fe f+}), the submodel
of £ (#) resulting from restricting to symmetric densities f € F,. A maximal invariant here is
the vector RS:L) 0) = (51(0)RS7_1;)1 @),... ,sn(H)RS:)n(O))’, where RSLn,)Z(O) denotes the rank of the
absolute value \Zi(n)(O)\ among \an) @),..., \ZT(Ln) (0)|, and s;(@) is the sign of Zi(n) 9).

Turning to the model Sén) = (R”,B",Pén) = {ng‘},e €0, fe .7:0}) characterized by the

(

residual function 3;71) and the zero median white noise concept Hor,l}, it is easy to see that a

4



generating group for (with obvious notation) Eén) (@) is obtained by considering the subgroup

of g( corresponding to &g = {g € & : ¢g(0) = 0}, with maximal invariant the vectors
s(?) (0) (51(8),...,5,(0)) of residual signs and R (@) of residual ranks.
Except for the condition that residuals should have finite first-order moments, the niodel

e . (]Rn B", P = {Po f,0 €O, feF }) characterized by the same residual function 30

as 50( ), but zero mean rather than zero median white noise, globally coincides (as a nonpara-

metric statistical model) with Sén), in the sense that both models involve the same family of
distributions P over (R™, B™). Actually, they only differ by the way the parameter of interest
and the nuisance are separated from each other. However, the invariance structure underlying
Eén) allows for a rank-based approach of testing problems, an approach that cannot be consid-

ered for S,En). The median, in this respect, seems more appropriate than the mean as a location
parameter.

The theory of tests and estimation based on ranks or signed ranks offers a pretty complete
toolkit of methods in the analysis of linear models with independent observations (see Héjek,
Sidak and Sen (1999), or Puri and Sen (1985) for a systematic account and state-of-the-art in
this context), as well as in the analysis of linear time series models (see Dufour et al. (1982),
Hallin et al. (1985) and Hallin and Puri (1988, 1991, 1994)).

The importance of considering maximal invariants—signs and ranks, thus, in models with
median zero white noise—has been substantiated in Hallin and Werker (2003), who show that, in
a very broad class of models, semiparametrically efficient inference procedures can be obtained
by conditioning with respect to the maximal invariant o-algebra. It is somewhat surprising,
therefore, that sign-and-rank statistics never have been considered so far in the vast literature
devoted to rank-based inference. The purpose of this paper is to fill this gap.

2.3 Sign-and-rank statistics : definitions and notation

/

A sign-and-rank statistic is a (s(”),R(”))—measurable statistic, where s(®) = ($1,...,8n) and

RM™ = (Rgn), ceey Sl"))' are the vector of signs and the vector of ranks, respectively, associated
with some n—dimensmnal random vector yARS
Denote by N ZI Z(n < 0] ZISZ— —1] and by NJr .—ZI Z(n > 0] ZISZ— 1] the

numbers of negative and positive components in Z(”) (in s(n )) respectiveiy Under H(n), J(r " s

binomial Bin(n,1/2). Letting N := (Ngn), NJ(rn)), note that o ( (")) =0 (NE”)) =0 (NJ(rn)),
as NJ(:L) = n— N™ with probability one. Since s;= I[ZZ-(n) > 0] — I[ZZ-(n) < 0] = I[R(n) >

1

n— N(n)] — I[R(n) < Nﬁn)], foralli =1,...,n, the couple (N("), R(”)) is thus another maximal
)

invariant for 'H(n .
Defining the sets N = ={i € {1 np s = -1 ={if < -+ < i;[(")} and
={i € {1,...,n} : sl—l} if < < z+(n)} the distribution of (s, R(™) under

'H((] is conveniently characterized as follows: the marginai distribution of s(™ is uniform over
the 2™ elements of {—1,1}", and the conditional distribution of R(™ given s is such that

(RZ@),RZ@), . ,RZ@) ;RET,RET, e ,Riﬁ) ) is (conditionally) uniformly distributed over the
1 2 1 2

NG ¢
(Nﬁn)!)(NJ(rn)!) possible combinations of a permutation of {1,... ,Nﬁn)} with a permutation of



{(n=N")+1,... n}.

Let us finally denote by ZE_];[: and Z (.)I ) the vectors of order statistics associated with the

negative and positive elements of Z(™, respectively. These two vectors—the first one of length
N and the second one of length Nin)—constitute a natural (random) decomposition of the

vector of order statistics ZE?)) associated with Z™.

3 Nonserial linear sign-and-rank statistics

3.1 Definition and conditional asymptotic representation

A linear nonserial sign-and-rank statistic is a statistic of the form
(n) IS ) (N™. ™)
n) ._ — n n n
St = - E: ( i R, ) (3.1)

where a(™ (-;-) is a real-valued score function defined over {((v,n);i):v,n€ {0,1,...,n},
n < n-—uwv, i€{l,...,n}}; note that each summand in (3.1) is allowed to depend on the
sign s; of Zi(n)7 but also, via N on the other signs. As usual, the cgn)’s (¢ =1,...,n) denote
nonrandom regression constants.

The exact mean E {Sén)} and the exact variance Var {Sén)} of Sén) under H(()n) are easily

obtained from elementary combinatorial arguments : letting ¢ := n~! A cz(n), we obtain
B [S0] = (m2m)tem 3> ( ; ) ol ((v,n —v); j)
7j=1v=0
and
1 n
| - - () _ a(n)y2
Var {SC } = n(n— D)2 ;(Ci )
n n . n .
<Y ( ’ ) {; " (wn =) -~ [;< ((v,n— u>;z>] } ,
respectively.

If asymptotic results are to be obtained, some stability of the scores a(™ is required as n
increases. We therefore will assume the existence of a score-generating function : a function
¢ :(0,1) — R is called a score-generating function for the score function a™ if

n n 2 n
B|{a® (N: ) - ¢ (P(2() '] 25| = o0 1) (32
under ’H((]T;LJZ, as n — oco. Note that (3.2) is automatically satisfied if, under Hg?},
n n 2 n
E [{a(") (NS R{V) - ¢ (F(2i™)) } ‘N( >] = op(1), (3.3)



as n — o0o. Indeed, we almost surely have

E [{a(m (N B — (F(an)))}z‘ N<n>]

=[5 [{u) (V) - (FiE)
—E [E {{a(”) (N™;R(M) — o (F(2{™)) }2‘ zgﬂ ‘ N<")} : (3.4)

where the latter (almost sure) equality follows from the fact that N = (NE”), NJ(:L)) is mea-
(n)

surable with respect to Z ) Hence, (3.3) implies the convergence in probability to zero of the

N, Zm ‘ N(n)}

conditional expectation (3.4) and, consequently, the convergence (3.2).

No asymptotic results for Sén) can be obtained without some assumptions on the asymptotic

behavior of regression constants cgn),i =1,...,n. We will assume that the classical Noether
condition holds :

(N) The constants cl(n), 1 =1,...,n are not all equal, and

maxi<i<n (an) — E(n))z 0

(e - 5<n>)2

J=1\"j

lim,,— oo

Finally, the following central limit theorem for independent random variables will be useful.

Theorem 3.1 Let Wi(n), 1 = 1,....n, be i.i.d., with mean E(Wi(n)) = uw and variance
0 < Var(Wi(n)) = 0%, < oo. Define T = S0, dz(n)Wi(n), where the constants dgn) satisfy
the Noether condition (N). Then,

(10 = 1§ Jol 55 N(0,1),

o ) ) = 3 < () 1) = 3 ()<
i=1 i1
Proof. The proof simply consists in checking for Lindeberg’s classical condition. ([

We may now state a first asymptotic representation and asymptotic normality result. This
result however is a conditional one, in the sense that the centering in (3.5) and (3.6) below, is a
conditional centering, and will serve as an intermediate step in the derivation of the main result
(of an unconditional nature) in Section 3.3. Contrary to the unconditional one, which requires
exact or approzimate scores, the conditional result however holds for any scores satisfying (3.2).

Lemma 3.1 Let ¢ : (0,1) — R be a non-constant square-integrable score-generating function
for a\™, and let the regression constants cz(n) (i =1,...,n) satisfy the Noether condition (N).
Assume moreover that Zznzl(cgn) —&™)2 =0(n), as n — co. Then,

(n)

(i) (asymptotic representation) under Hp. 7 as n— 00,

S¢ —E[SWIN®] = 11) ~ B [11)| 2] + 0p(1/v/), (3.5)



where T .= 1 o cgn)gp (F(Zz(n))) (F stands for the distribution function associated with f);

eif
(ii) (asymptotzc normality) under 'H((]n), asn — oo,
= N(0,02), (3.6)
J Y (e — )

2
where 0 < 03 = fol ©*(u)du — (fol Lp(u)du) < 00.
(n)

Before turning to the proof of this proposition, observe that, almost surely under H ",
E[sOIN®] = 1SR [Ba® (N®; )| 5] | N0
1 n () _
= EZCZ( "B {I [si = —1] %ij:] ol (N 5)
S5 s (60 )

_ Iy [P o= -1ne] szﬁ’a (N )

+1[s; = 1] N(”)

- +P [ s = 1| N(] L N SN 1 al™ (N(”);j)}
_ G;a(n) (Nm);j)) _ &) ( Za(” (N R n>)>
and
LR M T BT £ D) N
Hence, part (i) of Lemma 3.1 actually states that
s —B[seNem] - L (cgn — ) ol (N B

~ n Z (7 =) o (F(Z™)) + op(1/ V), (3.8)
i=1

under H(()n}, as n — 0o. Note that the expression in the right—hand side of (3.8) coincides with
n

the asymptotic representation of the purely rank-based statlstlc o ( () é(”)) a&") (ngn))7
where afo )(RZ(”)) are, for instance, the traditional exact scores E [gp(F (Zl(n ))]Rgn)} associated

with the score-generating function . The sign-and-rank statistic Sén) thus asymptotically de-

composes into two parts; one of them (namely, S((;n) —-E [Sén)‘ N(")}) asymptotically does not de-
pend on N and represents the contribution of the ranks, while the second one (E {Sén) ‘ N(")} —

E Sén) ) constitutes the contribution of the signs. Moreover, the ranks and N () being mutually
independent, these two quantities are orthogonal to each other, and contribute additively to the
unconditional asymptotic variance (see the proof of Proposition 3.2 below).



Proof of Lemma 3.1. Part (i) of the lemma follows if we show that, under Hg?},

E [{D( '} ‘zg))] = op(1), (3.9)
as n — oo, where D& .= vn (Sé”) —E [Sé”)‘ N(n)D —n (Tén; _E {ng)

!
ST = 3 [ (N R ()

_ _zcgn{ ) (N R go(w%n))))]
(n)

is, conditionally on Z(_) (hence also on N(™
written as

‘ ZET;)} ) . Obviously,

a linear nonserial rank statistic that may be

),
>l (R7),

1

n
with a(n()) (i) := a(™ (N(");i) - (F(Z((i)))) ,i€{1,...,n}. Define at E)’;) — l " (an)’;) (i).
Now, the maximal invariant (N("),R(")) depends on Zgg) only through N and hence,

E [Sﬁ”)’ N(")} =E [S(n)’ ZE_T;)}. So, we actually have

B |{pe}al] = we[{(se-78) - m st - 1|20

— Ve [ S0 - 76| 78] = var[ el ()

(n) _ ) _
e xof

(n)
2, ]

¢)

z(”)]

Consequently, by Theorem II.3.1.c of Hajek and Sidék (1967, p.61),

(
2
" I/ () —n & n
w[oeyle] - S5 b (o)

=1 j=1 “)
LS (o) _ 4m)? LS~ (o™
< Sx (A -e") o a X (egn O)
=1 _]:1 )
1 & 2 n ?
- = (n) _ &(n) (n) (n) (n)
- et e o ()} |y
I S N OB ) (N g™ M\ 12[ 7
- Eizl(Ci =) o B [{a® (N RY) - (F(2M) )| 2
The assumptions made on the constants cgn) (¢ =1,...,n) and the function ¢ ensure that the
latter expression is op(1), under H(()Tf}, as n — oo. This completes the proof of (3.9).
Part (ii) of the lemma is a direct corollary of (3.5) and Theorem 3.1. O

3.2 Exact and approximate scores.

Let Ul(n),...,U,sn) be a n-tuple of ii.d. random variables uniformly distributed over (0,1).

Define Spym) = I[Ui(n) > 1/2} [U(n < 1/2} o= [ < 1/2} and NI(?)-F =

9



i Lo =12
(G =1,...,

uniformly distributed over (0,1/2), and by U @)

Woi=1

with a sample of v i.i.d. random variables uniformly distributed over (1/2,1).

n)

conditional distribution of U; ( given the event s = —1 (resp.

Denote by Rgz) the rank of Ui(n) among Uln),...

v) the ith order statistic associated with a sample of v i.i.d.

U, by U

random variables

v) the ith order statistic associated

Note that the

s = 1) is uniform over

(0,1/2) (resp. (1/2,1)). The linear nonserial sign- and-rank statistics constructed from the ezact

and approrimate scores associated with ¢ are defined by

(n) _ (n) (n) (n). pn)
c;piex/appr Z Lp,ex/appr (N ’Ri )
= (n) (n) (n). pn)
T on Z { = —1Ja (Lg,f,ex/appr (]\([) ’?i) . (3.10)
= +][sz_1] 0 e appr (NI R = (n = N{))
where the score functions agf)_;ex, ag?)_;appr, fg’i ox, and a;;i;appr, all defined on the set

{(v;i);v,i €{1,...,n} with i <wv}, are given by

0 o (i) = Bl (U) ]NI(}?_ =R =i| =B lp(U}))], (3.11)
2 ) = (B ]) = (555). 312
af;ji;ex (v;i) = E [gp (Ul(n)) ‘NI(}L =v R[(Jnl) (n—v) —i—i} = [ (U((ZV))JF)} (3.13)
and (n) . v) 1 i

Qp;+;appr (r;i) = ¢ (E |:U(z')+:|) - (5 + 2(v + 1)) : (3.14)

Observe that, under Hgf}, Sé g ox = B {T(n ‘ N(® R( )} =E {Ti’n}‘ s("), R(")}

We then have the following proposition.

Proposition 3.1 Let ¢ : (0,1) — R be a non-constant square-integrable function. Then, ¢

(n)

is a score-generating function for ap.ex.

If moreover ¢ is the difference of two nondecreasing

(n)

square-integrable functions, then ¢ is also a score-generating function for agyappr-

Proof. (a) Let us first consider the ezact scores defined by relations (3.10), (3.11), and (3.13),

and let us show that, under 'Hg.l},

B [{ (), (NO); B — (F(Z{”)))}Q} N<n>] — op(1), (3.15)
as n — oo. By the definition of aly, we have
B {all (N R) o (FZ) | N0
= B[{Ils1 =1 (af e (N R) = 0 (F(2™))
+1 [s1 = 1] (amx (Ni”% R — (0~ N™)) — ¢ (F(z())} NW}

n

s
[

(00

)

a

Sl
= 1{ag

— ¢ (F(z")

)}2] N@]

o (rz) Y]]



Hence, condition (3.15) holds if, under Hg?},

E {I 1= =1 {al o (N5 RI) — 0 (F(Z}”)))}2

and

E [I 51 = 1] {alk e (N5 BRIV = (n = N{)) = o (F(2(")) }2 N

are op(1), as n — oo. Since both terms may be treated similarly, we only consider the first one.
Observe that

B| 1] {%,f,ex( ) () Y N
_E [E 1 {al) o (N RP) — o (P2 VN, 51] Nﬂ
= (n) —
E l[ )] 11 [N, 1/}

(n)
Recall that E [I [s1 = —1]| NS")} = Nf which, by the strong law of large numbers, converges
(n)

almost surely to % under M, 188 M — 00, Hence, the required convergence condition holds if

B [ (V) o (A7)

(n )

—iex?

™) 6 = —1] = op(1), (3.16)

under ’H((] JZ, as n — 0o. By the definition of a, we actually need to show that

E [{E o (F(z™)) ‘51 = -1, N RV ] ¢ (F(Z{”)))}2 ‘Nﬁ”),sl = —1} —op(1), (3.17)

n)

under ’H((]T_L}, asn — oo. Now, since F (an)) is, under H((), 7 and conditionally on s; = —1, uniform
over the interval (0,1/2), (3.17) follows directly from a slight generalization of Theorem V.1.4.a
of Héjek and Siddk (1967, p.157). More precisely, let Uaw1sUp)2s - - - be independent and

uniformly distributed over (a,b) (0 < a < b < 1). Let Réivg)i denote the rank of Ugy); (1 < <
N) in N-tuple Uy p)1;- - Ugpyn- Then, if ¢ : (0,1) — R is square-integrable,

Impy_ oo E {{E {gp (U(a,b)1) ‘REZZ)J - ¥ (U(a,b)l) }2] =0.

(b) Let us now consider the approzimate scores defined by (3.10), (3.12), and (3.14). Using
(n)

the same arguments as in part (a) of this proof, we see that (3.3) holds for ag&ppr if, under Hy ;,

B {2 e (VO ) — g (P2 Y

11
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and
n n n n n 2 n
E [{as((?;zr;appr (N‘(f’ );Rg ) (n— NJ(r ))) - (F(Zf )))} ‘N‘(F )"91 = 1]
are op(1), as n — oo. Again, we only consider the first term. We have
n n n n 2 n
E[{afo;);appr (NS);Rg )) _@(F(Zf )) ‘N(),Slz_l}

= E[{ (ol apmr (V217 - a2 (Vi 107))

<2 [{ag?);appr (N R{Y —afgl;ex (N: Rgn))f N = _1}
v [ {al2) o (N0 B — o (AP Y N = 1]

The second term in this sum has been treated before. Hence, it just remains to show that

B {2 e (V5 = 2 (05 )

N g = —1] = op(1), (3.18)

under Hg,l}, as n — oo. Denoting by |z] the integer part of z (x € RT), we may write

£ [{agfxappr (N R = ol (N Rgm)}?\ N s = _1}

N™
N ﬁ ; {as(;;l)—;appr (NS"); Z) B as(:;l)—;ex (NS"); 2) }2

_ /0 (a8 e (N1 4 [ NPu]) = a2 (N1 4 [N ]) )
= (e (0514 [N]) 012
+ (o 0/2) — ) o (N1 4 [NO]))
<2 [ {2 e (V1 [N} 012
#2 [ (ol o (N1 [NOu]) = /)

The required convergence (3.18) then follows from an obvious adaptation of Lemma V.1.6.a
(p.164) and Theorem V.1.4.b (p.158) in Hajek and Sidak (1967). O

3.3 Asymptotic representation and asymptotic normality

We now can state, for the nonserial case, the main result of this paper.

Proposition 3.2 Let ¢ : (0,1) — R be a non-constant square-integrable score-generating func-

tion for Sé;ex/appr, and let the regression constants cz(n) (i = 1,...,n) satisfy the Noether

12



condition (N). Whenever approzimate scores are considered, assume that ¢ is the difference
of two mon-decreasing square-integrable functions. Assume moreover that ¢ = O(1) and

o l(cgn) —&™)? = O(n), as n — oco. Let o, = 01/ p(u)du, pf = f11/2 o(u)du, and

1=

o = fol o(u)du. Then, writing S for either Ség),ex or Ség),appr,
(n)

(i) (asymptotic representation) under Ho;ﬁ as n — oo,

1> ) ) N® N(n)
S < [S40] = 3l e o R N+ 2Tt s +on /),
(3.19)
and
(ii) (asymptotic normality) under H((]n), as n — oo,
S0 g [50] .
— N(0,1). (3.20)

\/55’i (e — )2 4 e (i — )]

Proof. (i) We first establish (3.19) for exact scores. From (3.5) and (3.7), we have

1 - n n n n
Shex = B[SUikex] = = D2 (e = &) (F(Z)) + B[S

N(n)} —-E {S((: HeR ex} + OP(l/\/—)

c;p;ex
=1
(3.21)
Since
B [s/N¢] = B[5[ w Hw B [N
= E[E [T;f s< —E [%ic” F(z™)) si] N<”>],
=1
where
Ep(F(Z")|s:] = 1ls: = 1B [e(F(Z"))] s = —1]
+H[si = 1B [@(F(2{"))|5i = 1]
— I[s; = —1] /01/2 (u)2du
+I[s; = 1] /1; o(u)2du
= 2I[s; = —Upg +2I[s; = U,

it follows that

n (n) (n)
n n 2 n — n —~(n Nf — N
B S8 N | = 23" B[ I[s; = ~ 1]y + I[si = 1| NO] = 26 ( pg + =+ ui)
n = n n
and
(n) (n) (n) (n)
7 N (n N N
B [St(f?eg;ex N(n)} 2 [Sgnsg;ex} = 2¢" ( He - ,u:g) —20VE (—Mw + —/‘;)




which, along with (3.21), establishes (3.19) for exact scores.

Turning to approximate scores, we can assume without loss of generality that ¢ is non-
decreasing. Since (3.21) also holds if approximate scores are substituted for the exact ones, it is
sufficient, in order for (3.19) to hold for approximate scores, to show that the difference

B {5 [ [N B [$]} - {B[S N B [sEL]} 02

C;p;appr

is op(1/4/n). Note that

B[S0 e NO] = e ST P R
iapp n| = e ) H T2 o™ g

J= J=1
= ¢dmW{o—Dp~ +2—EDF 4, (3.24)
n N n N
where D_, i ( (m+1)) and D := ﬁ e (% + m) are Riemann sums for the

integrals p, = 01 /2 o(u)du and ,u,jg = f11/2 ¢(u)du, respectively. Since ¢ is square-integrable,

any term in the Riemann sum - T o? (% + m) associated with f11/2 0% (u)du is o(1)

as m — oo. This implies that ¢ (% + W) is 0o(1/4/m), hence, in view of the fact that

(n)
Nj(Ln) = Op(n), that (n) @ ( + %) = op(1/4/n) as n — oo. The same reasoning shows
+

that any finite sum of Rlemann terms in D_(") or D+(n) actually is op(1/y/n) as n — oo.

Now, any Riemann sum D!, for “so satisfies, since 4,0 is non-decreasing, the double inequality
1
Dy, < Df, < Df,, where Df, = 557 (3 +2(m+1)) and D)f, == 5= 37 0(3 +2(m+1))

2m

are the upper and lower Darboux sums associated with fl /2 ¢(u)du. The difference D, — D,
clearly is 5 (p(3 + D)) — ¢(3)), which is o(1//m) as m — oo. Hence, for any Riemann

sum, Dt — p} is also o(1/y/m), so that D;(n) — 5 = op(1/y/n) as n — oco.
+

.Furthel.r, since the sequence D, — ,u;f converges to zero, it is bounded, so that D;(n) — ,u;f is
uniformly integrable , and +

NJ(rn) D+

E n N(") 5 ®

=o(1/\/n) as n— oc.

A similar reasoning of course holds for DJ:/(,") and p,. Going back to (3.24) and recalling

that &™) = O(1), we thus obtain the desired result that E™ is op(1/y/n). This completes the
proof of part (i) of the proposition.
(ii) As for asymptotic normality, elementary calculations yield

N N N
) | o= e — &) - _ )= =
Vne (2 M¢+2 [ — ,ug,) =c (2 (;% ,uso) ( - 2) /\/1/471) \/1/4,

(n)
which, since (N% — %) /v/1/4n is asymptotically standard normal, is also asymptotically

2
normal, with mean zero and asymptotic variance [E(") (,u; — ,u;j)} . The remark (right after

14



Lemma 3.1) on the orthogonality between the two parts of the asymptotic representation of
Sé”) completes the proof. O

Test statistics related to “regression coefficients” naturally involve “regression constants” cl(-n)
that are not all equal. Quite on the contrary, test statistics related to location and intercepts

do not involve any constants—more precisely, they are still of the form SE”), but with constants

an) all equal to 1. Proposition 3.2 thus does not apply. For the sake of completeness, this case

is treated now.

Proposition 3.3 Let ¢ be a non-constant square-integrable score-generating function for
Sfo?(ix/appr = 711 ria ;nix/appr(N(”);Rgn)). Whenever approzimate scores are considered, as-

sume that ¢ is the difference of two non-decreasing square-integrable functions. Let ji,, ,u:;, and
e be defined as in Proposition 3.2. Then,

(n)

(i) (asymptotic representation) under Hy' s A8 T — 00,

N (n)
s —E{S(ﬁ)} = 2—,%,—1—2—/% Lo

= S — B [SToe] +0p(1/v/7) (3.25)

and

n)

(ii) (asymptotic normality) under 'H(() , as n — 00,
Vn (Sg:e)X/appr —B {Sg:e)X/apprD - N (O’ (M; - ”9—5)2) )
Proof. Clearly,
St = ~F [Z w<F<Z§")>>| N<">,R<">] - g
[ 1 n
Thus, since N(™ is s(™_measurable,

S = % ilE E {@(F(ZZ(")))’ 5] ’ N

n 1/2 1
S ZE [I[si = —1]/ o(u)2du + I[s; = 1]/ o(u)2du N(")l
ni= 0 1/2
(n) (n)
N _NY

and E [nge)x} = 1. This takes care of the exact-score part of (i)—which provides an exact

representation of \/ES&QX, not just an asymptotic one. Let us now consider the approximate
scores. We have

1 R 1 R7—-(n—N
Sé??appr = - Z Is; = —1]p # +si=1lp | 5+— EZL) —
iz 2(N-7 +1) 2 2N+ 1)

1N£"> : N(”) :

j
= - L2 vy ® — |-
njzl (2(N£ +1) Z ( (Ni)+1))
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Hence, recalling (3.26) and the definitions of D;[(n) and D;(n) given in the proof of Proposi-
- +
tion 3.2,

N N
1 « j j
FOIN-( NN O Y (R . o |5+ ooy

7j=1

(n) (n)
N7 N7
— {2 - py +2 - uw}

N® N™
_ - - - + + +

n)

The arguments developed in the proof of Proposition 3.2 establish that S&?E)Lppr - S&;ex =
op(1l/y/n) and E {S&?Qppr} — [S&nex} = o(1/y/n), as n — oo. This completes the proof of
part (i) of Proposition 3.3.

As for part (ii), asymptotic normality readily follows from the de Moivre-Laplace version of
the Central Limit Theorem, with an obvious computation of the mean and variance of ™. O

4 Serial linear sign-and-rank statistics

4.1 Definition and conditional asymptotic representation

Nonserial sign-and-rank statistics, just as their traditional rank-based counterparts, are ineffi-
cient in the context of dependent observations : only serial statistics can capture the effects of
serial dependence. Define a linear serial sign-and-rank statistic of order k (k € {1,...,n — 1})
as a statistic of the form

n 1 - n n n n
S0 LS o (N R, RE)

t=k+1
where a,g ") (:;+,...,-) is defined over the product of the set {(v,n);v,n € {0,1,...,n},n <n—v}
with the set of all (k + 1)-tuples of distinct integers in {1,...,n}. The asymptotic mean and

n)

variance of S li are given in the subsequent Proposition 4.1.

Here also, an asymptotic representation result is proved, establishing the asymptotic equiv-
(n) n) (n)

alence between S; "’ and a “parametric” serial statistic Tkg . The asymptotic normality of T}

then entails that of S,(Cn). A function ¢y : (0,1)**! — R is a score-generating function for the

serial score function a,(cn) if

n n n n n n 2 n
B[{af? (N R RO o (FE). o FE) ) 20| =), @)

under Hg,l}, as n — oo. Obviously, (4.1) automatically holds if, under H(()Tf},

B [{ul? (8 R R) o (PR F )Y

N(”)] “op(1),  (42)

as n — oo. We then have the following conditional asymptotic representation and asymptotic
normality results, which is the serial counterpart of Lemma 3.1.

16



Lemma 4.1 Let ¢, : (0,1)*T! — R be a score-generating function for a,(gn). Then,
(n)

(i) (asymptotic representation) under Hp. 7 as n— 00,

SB[ 1 B[ 0B
where
n 1 L n n
t=k+1
and

E[ %fk\z““] nin—1)...(n -k Y ¢ (F(Z,ﬁjl)),...,p(z,f:jl));

1<t #..#tgr1<n

(ii) (asymptotic normality) if moreover 0 < f(o’l)kﬂ ok (Wists - u1)] 0 duy ... dugyy < oo for
(n)

some d > 0, then, under Hy ', as n — oo,

V& (S~ E[sNO]) £ (0,12),

where, denoting by U1,Us, ... an i.i.d. sequence uniformly distributed over (0,1),
) k
V2 =E [{‘PZ (Uk+17 ) Ul)} i| +2 Z E [()0;; (Uk+17 ) Ul) 90;:: (Uk+1+j7 oo 7U1+j)] (44)
j=1
with, for uy,...,ugs1 € (0,1),

k1
oh (Upgts - 1) = g (Ugts - u1) =Y Bl Ukg, .-, U1)| U = wa] 4 KB [k (Upga, - ., U1)].-
=1

(n)

Proof. In order to prove part (i) of the proposition, we first show that, under HO f> 88 N — 00,
(n)\?
E [{Dk }

N (A FUNG G EERET Y

Zgg)] = op(1), where

Since the maximal invariant (N(”),R(")) depends on Z%) only through N and hence,

E [S,(Cn)‘ N(")} =E [S,(cn)‘ ZET;)}, we actually have

B [{o} 2] = - we [{(s1 - i) - B[l - 700 2]} 207
— (o kyvar [s0 -1, | 2]
Obviously,
ST =~ 7 [l (N R — o (PO F(Z)]

Ly [agp (NOL RO, R~ g (F(Z((’Z("))),...,F(Z(@ET’C)))]

t

17



is, conditionally on Zgg) (and hence on N(™), a linear serial rank statistic in the sense of Hallin
et al. (1985). Defining, for distinct integers i1, ...,ik+1 € {1,...,n},
a(n)" (i1, vy igs1) == a,(gn) (N(");il, .. 7ik+1) — Qg (F(Z((inl))), .., F(Z (") )) ,

ZE.));/’C (ik+1)

we obtain S,gn) - T;:Z?f;k = ﬁ Dotk a(zn)

) (B R,

We may now complete the proof using arguments similar to those developed in Section 4.1
of Hallin et al. (1985). Corollary 2 of Lemma 2, and Lemma 4 (Appendix 3) of that paper imply
that there exists a constant K (not depending on n) such that

E[{D(")} ‘zg’;)] - \/_ Z (n)k(Rt”,...,Rf_l)k) v/

t=k+1 20y
_ (n)
= Var Z(_) ]

Z a (")k< "),...,R,S’_‘)k)

t=k+1
< (2k+1)Var la(zng),;);k (R,(;jr)l, .. ,Rgn))| ZES)]
n (n) (n) (n) (n) (n) M)\ |z (n)
+——|Cov la o (RS ar- o B S o (R, RS )‘z(,) H
< (2k+1)Var la(zng),;);k (R,(;jr)l, . ,Rgn))| ZES)]
2
K (n) (n) (n) (n)
+n—k:E [{ zE"%(R’fH’”"Rl ) Z(,)
K 2
(n) (n) (n) (n)
< <2k+1+ n_k>E [{O‘zg,’;%k (RYY,,. . R )} z(,)]
- (2k +1+ %)
B[ {of” (N3 R B = (P2, FE™) Y 2]

By (4.1), the last term converges to zero in probability, under Hg,l}, as n — o0o. This completes

the proof of (4.3).

The asymptotic normality of vn — k (T;Z?f'k —E {Ti’z ” k‘ Z D (part (ii) of Lemma 4.1),

hence also that of v/n —k (S,(Cn) -E [S,gn)‘ N(")D, is estabhshed in Hallin et al. (1985), and

follows from Yoshihara (1976)’s central limit theorem for U-statistics constructed from absolutely
regular processes. This central limit theorem requires the (2 + §)-integrability of the score-
generating function @g. O

Note that the right hand side in (4.3) is exactly the same as in the asymptotic representation
of the purely rank-based serial statistic

n n) (n) n) (n)
R R R R
1 Z t t—k Z i t—k
SDk(n—kl"”’n—{—l) [ Pk ( “’n+1)

t=k+1 t=k+1
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This remark, which is analogous to the remark made, in the nonserial case, just before the
proof of Lemma 3.1, will play a crucial role in the proof of the asymptotic normality part of
Proposition 4.1 (ii).

4.2 Exact and approximate scores.

As in the nonserial case, two types of scores, the exact and the approximate ones, are naturally
associated with a given score-generating function. Define (referring to Section 3.2 for notation)

(n) N m (n). p(n) p(n) (n)
Sapk;ex/appr T n—k t—zk;rl aapk;ex/appr(N 7Rt aRt—la v 7Rt—k)

where, for (n,v) € {0,1,...,n}2, v<n—n,and 1 < iy # iy # ... # iy <,

alD o ((,v)3i1, .- ikg)
= [gpk(Ul(n),..., ,g’fl)\ NG =0, NG = v, R = z’l,...,jojH = i1
and
a8 e (1, )310, - k1)

= r (B[U| NG =0, NG = v, R =],
L B[UTY NG = 0 NG = v R = i)

Upsr =

The following lemma provides sufficient conditions for ¢ being a score-generating function for

acgonk);ex and agz);appr, respectively.

Lemma 4.2 Let ¢ : (0,1)! — R be non-constant and square-integrable. Then oy, is a
score-generating function for acpr,?;ex. If moreover py, is a linear combination of a finite number
of square-integrable functions which are monotone in all their arguments, then @i is also a

. . n
score-generating function for afpk);appr.

Proof. The proof easily follows along the same lines as in the nonserial case, and is left to the
reader. O

4.3 Unconditional asymptotic representation

Lemma 4.1 was only an intermediate, conditional result; the following proposition provides the
corresponding unconditional asymptotic representation and asymptotic normality.

Proposition 4.1 Let o be a non-constant square-integrable score-generating function for
Sg;),ex Jappr Whenever approximate scores are considered, assume that oy is a linear combi-

nation of square-integrable functions which are monotone in all their arguments. Then, writing
Slg,n) for either Sg;);ex or ng);appr,
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(n)

(i) (asymptotic representation) under Hp. 7 as n— 00,

S-S =1l - BT,

+25 n(n = 1) ... (n = B)] "IN > b+ NI (VO - 1) (N = )

2]

k
+ 3 Ik +1-v < N <n— NN — 1) (N — k)

v=1

xNEHNEY 1) (NS = w4 1))
HIIN> e+ NG (V= 1) (N = kDY — g, 4o (1/3/m), (4.5)

where
Py 2= /[071]“1 or(ug, ..., ur)dug ... dug

and, forv=0,1,...,k+1,

=3 %

0<41<...<iy <k uzly Wiy )e[1/2,1]v

/ - ‘ or(ug, ..., uk)dug . . . dug.
(Uj,OS]Sk,];éZI,..., ZV)€[0>1/2]]€+1_U

(ii) (asymptotic normality) if moreover @y, is (2 + 0)—integrable for some § > 0, then, under

n
Hy’, as n — oo,

s 8 [s(]

Vn—k 5 N(0,1), (4.6)

V2 G4 12 [, — 255 v+ 1)

with V2 given in (4.4).

Proof. As in the nonserial case, we first prove the asymptotic representation result for exact

scores. From the definition of exact scores, we obtain, for S ) Sg;);ex, writing T,gn) for
ngz)f = T ekt 1 Pk (F(Zt(n))7 . 7F(Zt(7_13€)),
B[] = B[ [P RN - 1)
- E nik an E [k (F(Zt(")),...,F(Zt(f}g))\N<”>,st,...,st_k} N(”)]
t=k+1
where
Een (F(Z™),.... F(Z") \ N i, 1] (4.7)

1 1
= 2k+1/ or(ug, ..., uk)l {sign(uo — =) =St,...,sign(up — =) = St—k] dug . .. duy,.
[0,1]K+1 2 2
The asymptotic representation (4.5) (for exact scores) follows from combining (4.7) and part (i)
of Lemma 4.1. Turning to approximate scores, it is sufficient, for (4.5) to hold, that

B0 = 0] - 8] - (B[ 52

Pk>appr

N(Tﬂ ~E [S("). }} (4.8)

Pr;ex
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be op(1/y/n). Note that

Pk;>appr

[ E[gm

N(")} =nn—1)...(n— k)"

. n i ; n) (L

i — N™ )
1<ir .. A1 <n N® 4 1)

2N 1)/
s SO b > N} BN
N +

For notational simplicity, let us consider the case k = 1; the general case follows along the same
ideas. For k = 1, we have

n n n 1
= ] B 5] -
. N(n) ' ) . N(n)
2 j— N
X Z Z ( n ) + Z Z ©1 ( — + T)
1<iA <N (N( +1) AN+ N 2 +1) 2 g
ig it N ) I D (- RS PR i
* 1 " . 1 I
=N 2N+ 1) 2N 1) LT ( NP1 2 v 41
_ A fa® (1) pr () ©) (n) () o) ()
S (1IN > 2NN — 1)) + 1110 < N <= NI NEY G
+71 [N(”) > Q]N(n)(N(n) )HSOl)}
n 2
B 4N£n)(N£n) _ 1)+ (N_ )) B o

n(n—1) =,
N 2
4N( (N -1y (NJ(f)) + ++
(n) / ~r(n) (n) r(n) — My (49)
n(n —1) NN 1) NN
(N 1 Ni:@ (1 i 1 i)
n n )\ 2 1 n n
NOWE - g (v E T2 a4 2 a4
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where 27 := max(0, z),

i 1 { m . j 1 { m . 1 j

“”':M;;%( 2(0+1)"2 (m+1))’ “”':TZZ‘“( 2((+1)’ §+2(m+1))’

' m i j m i1 j
D = 4£m;;¢1( 20+1) 2 (m+1))’and D™= Tom gz:: ( 200+ 1) 2 +2(m+1))

are Riemann sums for the integrals
1/2 ,1/2 1/2
Hoy 1= / p1(uo, ur) dupdus, fig, = / ¢1(uo, ur) dupdus,
0 0 0 1/2

1/2 1
o= ug, u1 ) dugduq, and +Jr::/ ug, u1) dugduq,
[, /1/2/0 ¢1(uo, u1) dupduy Py o S o1 (uo, ur) dugduy

respectively. Here again, due to the fact that ¢ is square-integrable, the function (u,v) —
05 (u,v) == 1(u,v)I[u = v], (u,v) € [1/2,1]? which vanishes except over the diagonal of the
unit square is integrable, and has integral zero. Hence, (1/4m?) > 3 (% + 2(77;—&-1) . 2(mi+1) ),

as a Riemann sum for the integral of ¢ over [1/2,1]?, is o(1). Since

) 1 )
S gy s mm)

it follows that (1/4m?) 7 @1 (%—i— 2(mi+1) 3+ 2(mi+1)) is o(1/4/m), as m — oco. A similar result
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holds for (1/4m?) 3™, o1 (2(m—l+1), m), as well of course for any individual terms, such as

(1/4m2)g01<% + s 1+ 2(17?11))' Thus, (4.9) as n — oo takes the form
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since, in view of the same argument as above, the two first sums in (4.10) are o(1/y/m). As
in the proof of Proposition 3.1, due to the fact that ¢, can be assumed to be non-decreasing
in its two arguments, the sum appearing in this latter expression is comprised between the two
Darboux sums

m—1m—1 1

Dt 4m22 2901( +

i=1 j=1

Lidoby s b L”Z St ity )

m’2 " 2m g2 £ 2 PN T 22 T am )

These Darboux sums also converge to the integral [ f[; 1]2 ©1(ug, u1)dugduy, and their dif-
27
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ference is

2 2m 2 272
the same argument still implies that this difference, hence also D} F, — ud ™, is o(1/y/m). The
other three quantities of the same type can be treated similarly. Uniform integrability and the
fact that Nf) are Op(n), as in the proof of Proposition 3.1, complete the proof that (4.8) is

indeed op(1/4/n).
To conclude, we now prove the asymptotic normality result. Denote by Il;.; the set of
permutations 7 of {1,...,k + 1}. Then,

] = () a8 e
k+1 iz

1<t1 <.. <tk+1<n v 0

E [SW.

Priex

X Z I |:St7\—(1) = 1, Ce 73tﬂ.(,,) = 17St7‘.(l,+1) = —1, . 78t7\—(k+1) = —1i| } )
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hence, E [Sg,?;ex

N(”)} is a U-statistic computed from the n-tuple Z fn), .. ,Z,Q”), with kernel

k+1 v
+ 2k+1u&k)

. m Z I |:Z7r(1) > 0, e 7Z7r(u) > 0, Z7r(V+1) S 0, e 7Z7r(k‘+1) S 0:| .
= S P

(n)

Routine calculation yields, under H,, Iz

hk(zl, e 7Zk+1) =

(n) (n) (n) (n) ktl 14 (v) (n) k+1 kE+1—v (v)
B (2", 20| 217 =212} > 030 ) 2112 <o)y

©x Er1 Hex

v=0 v=0

and
2

var (B (24", . 2830|27) = {2 5 i}

which is strictly positive. Classical results on U-statistics (see, e.g., Serfling 1980) then imply
(n)

that, under Ho-fa as n — 00,

k+1 2
N - B [S{u]) 5N (0, (k41 {u% 23 kﬂugg} ) |

The same argument as in the nonserial case can be invoked in order to establish the asymptotic
independence of the right hand side in the conditional asymptotic representation (4.3) and

(n— k)2 (E {Sg,i);ex N(")} —E [Sg,i);ex}). The result follows. O

(n— k)" (B[St

Priex
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5 Conclusion.

Semiparametric efficiency can be reached, in models involving white noise with unspecified
density, by conditioning upon maximal invariants. In median regression and median time series
models, a maximal invariant is the vector of residual ranks along with the vector of residual signs.
Conditioning with respect to this maximal invariant yields sign-and-rank statistics, which so far
have not been considered in the literature. Asymptotic representation and asymptotic normality
results are obtained for this new class of statistics, both in the nonserial and in the serial case.
Optimal tests based on these statistics (for median regression and median time series models)
are the subject of a companion paper (Hallin, Vermandele, and Werker 2003). The variance
in the asymptotic normal distributions obtained here breaks into two distinct parts, associated
with the ranks and the signs, respectively; this decomposition of asymptotic variances provides
a quantitative evaluation of the advantage of sign-and-rank statistics over the more classical
rank or signed-rank ones.
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