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Abstract

We take a fresh look at Theil’s BLUS residuals and ask why they have gone
out of fashion. All our simulation experiments indicate that tests based on
BLUS residuals have higher power than those based on the more popular
recursive residuals, even in those cases (structural breaks) where intuition
would favour the recursive residuals.
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1 Introduction

This paper is not about Theil’s errors. Even in the unlikely event that we
had found errors in Theil’s work, more courage than we possess would have
been required to expose them. The paper does, however, concern Theil’s
treatment of errors (disturbances) in regression. In particular, it concerns
Theil’s treatment of the predicted errors, the so-called residuals.

Theil worried about the fact that, even if the disturbances are i.i.d., the
residuals are neither independent nor identically distributed, thus making
direct use of the residuals in testing homoskedasticity or serial independence
impossible. Thus motivated, he introduced the BLUS residuals in a path-
breaking paper in 1965. These residuals are linear unbiased, have a scalar
variance matrix, and are also ‘best’ in a mean squared error sense. Thus
they appear to be ideally suited for the task for which they were invented. In
the five to ten years following Theil’s publication, a number of refinements
and improvements were published, by Theil himself, by former colleagues in
Rotterdam (former, because Theil had by then moved to Chicago), and by
others, but after that BLUS residuals went out of fashion.

Why did this happen? The main reason is the emergence of a competing
set of residuals, namely the recursive residuals, originating with the paper
by Brown, Durbin and Evans in 1975. These recursive residuals have a more
intuitive appeal than the BLUS residuals, and are widely believed to be
well-suited when dealing with the possibility of a structural break.1 Modern
econometric software contains recursive residuals routinely, but seldom BLUS
residuals.

The BLUS and recursive residuals contain exactly the same information,
because both are in one-to-one correspondence with the full set of OLS resid-
uals. Thus the only way to compare them is through their power properties.
The main purpose of the current paper is to demonstrate that BLUS residu-
als are not less powerful than recursive residuals; in fact, we claim they are
more powerful. Thus we make a case for reinstating BLUS residuals into the
mainstream of econometrics.

We employ two historical data sets (both of which we extend) to demon-
strate our point: the original data used by Theil (1965) and the data used

1Schweder’s (1976) paper on structural shifts does not even reference Theil’s work.
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by Quandt (1958).
In section 2 we introduce Theil’s BLUS predictor and present its opti-

mality and uniqueness properties (Theorem 1). In section 3, we pose the
opposite question (Theorem 2), implying that the recursive residuals (and
many other sets of residuals) have a BLUS optimality property: they are
‘best’ in the sense that they are as close as possible to a given linear combi-
nation of the disturbances. Durbin’s recursive residuals are formally defined
in section 4. In section 5 we use extensions of Theil’s original data in order
to compare the power of BLUS and recursive residuals against heteroskedas-
ticity. BLUS appears to be superior, be it slightly. Then, in section 6, we use
Quandt’s data and the cusum and cusum-of-squares techniques to try and
detect a structural break. Neither the BLUS nor the recursive residuals are
successful, mostly because the number of observations is small. In section
7 we therefore extend our data and our analysis, leading to a proper com-
parison of the power properties of the BLUS and recursive residuals against
structural breaks. We conclude that BLUS, again, is superior, in spite of
the intuitive appeal of the recursive residuals. We offer some conclusions in
section 8. An appendix contains the proofs of the two theorems.

2 Theil’s BLUS predictor

In 1965 Theil’s paper ‘The analysis of disturbances in regression analysis’
appeared. In this seminal contribution Theil considered the standard linear
regression model

y =Xβ + ε, E(ε) = 0, E(εε′) = σ2In,

where X is a nonrandom n× k matrix of full rank k.2 Normality is assumed
only when desired to compute confidence intervals. Theil’s principal concern
was to test the assumptions on the disturbance vector ε, in particular ho-
moskedasticity and serial independence. Since ε is unobservable, Theil first
tried to find an observable random vector, say e, which approximates ε as
closely as possible in the sense that it minimizes

E(e− ε)′(e− ε)

2We adopt the notation proposed in Abadir and Magnus (2002).
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subject to the constraints

(i) e = Ay for some square matrix A (linearity),

(ii) E(e− ε) = 0 for all β (unbiasedness).

This leads to the best linear unbiased predictor of ε,

e =My, M = In −X(X ′X)−1X ′, (1)

which we recognize as the ordinary least-squares (OLS) residual vector.
Thus, the OLS residuals are best linear unbiased, but their variance ma-

trix is nonscalar. In fact, var(e) = σ2M , whereas the variance matrix of ε,
which e hopes to resemble, is σ2In.

For this reason Theil wished to find a predictor of ε (more precisely, of
S′ε) which, in addition to being linear and unbiased, has a scalar variance
matrix. There is a whole class of such predictors. The ‘best’ in this class is
Theil’s BLUS predictor: best linear unbiased with scalar variance matrix.

Definition 1: Consider the linear regression model y = Xβ + ε. Let S
be a given n × (n − k) matrix. A random (n − k) × 1 vector w is called a
BLUS predictor of S ′ε if

E(w − S′ε)′(w − S′ε)

is minimized subject to the constraints

(i) w = A′y for some n× (n− k) matrix A (linearity),

(ii) E(w − S ′ε) = 0 for all β (unbiasedness),

(iii) var(w) = σ2In−k (scalar variance matrix).

The next theorem provides the unique solution to this problem.

Theorem 1: Consider the linear regression model y = Xβ + ε. Let S
be a given n× (n−k) matrix such that rk(S ′MS) = n−k. Then the BLUS
predictor of S ′ε is

w∗ = A′y, A =MS(S ′MS)−1/2,

where (S′MS)−1/2 is the positive definite square root of (S ′MS)−1.
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Theil’s original proof is a little cumbersome. A much shorter proof, following
Magnus and Neudecker (1988), is presented in the appendix.

In a follow-up paper, Theil (1968) showed that the BLUS predictor w∗

satisfies a stronger optimality property, namely that

E(w∗ − S′ε)(w∗ − S′ε)′ ≤ E(w − S′ε)(w − S′ε)′

for any linear unbiased predictor w with scalar variance matrix. A whole
chapter of the Principles of Econometrics (Theil, 1971), 43 pages in total, is
devoted to BLUS residuals. Theil only considered the possibility that S is a
selection matrix, so that a subset of n − k of the disturbances is predicted,
but Theorem 1 does not require this property of S.

In using BLUS residuals in practice, one must choose a ‘base’ (in Theil’s
terminology), that is one must choose which k observations to disregard. Ide-
ally, “which disturbances should be disregarded is largely a matter of power
with respect to a specific alternative hypothesis” (Theil, 1965, p. 1070). Since
maximizing power leads to considerable complications, Theil (1971, p. 217)
adopted a more practical approach. When testing against heteroskedasticity,
choose the middle k observations; when testing against first-order autocor-
relation, choose the first k observations or the last k or a mixture of the
two.

Improvements and extensions of Theil’s work on BLUS residuals can be
found in Koerts (1967), Putter (1967), Koerts and Abrahamse (1968), Abra-
hamse and Koerts (1971), and others.

3 The opposite question

In the previous sections we asked whether, given S, we could find an optimal
A. We now raise the opposite question, that is, we ask if, given A, we can
find S such that A′y is a BLUS predictor of S ′ε. Such an S will not be
unique.

Thus, suppose we are given an n×(n−k) matrix A satisfying var(A′e) =
σ2In−k, that is

A′MA = In−k.

Without loss of generality we may assume that col(A) ⊆ col(M ), that is
A = MB for some n × (n − k) matrix B. Then, A′A = In−k, MA = A

and rk(M ) = rk(A), and hence M = AA′; see Magnus and Neudecker
(1988, Theorem 2.8).
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There always exists a matrix S such that A = MS(S ′MS)−1/2, for
example, S = A. Theorem 2 provides the full class of matrices with this
property.

Theorem 2: Let A be a given n× (n−k) matrix such that A′MA = In−k,
and assume that col(A) ⊆ col(M ). Then the class of matrices S satisfying
A =MS(S′MS)−1/2 is given by

S = AQ+XR,

where Q is positive definite (and symmetric) and R is arbitrary.

The consequence of Theorem 2 is that any predictor w = A′y = A′e with
var(w) = σ2In−k has an optimality property, namely that w is the BLUS
predictor of S ′ε, where S is given in Theorem 2. More specifically this im-
plies that the recursive residuals have a BLUS interpretation and thus possess
an optimality property.

4 Durbin’s recursive residuals

The history of recursive residuals is more ambiguous. The idea of recursive
residuals in econometrics was first presented by Durbin at the European
Meeting on statistics, econometrics, and management science in Amsterdam,
September 1968 (Brown and Durbin, 1968). After Brown’s death in 1972,
Durbin invited Evans to complete the calculations started by Brown. This
lead to Brown, Durbin and Evans (1975), read before the Royal Statistical
Society in December 1974. Apparently unaware of Durbin’s work, Hedayat
and Robson (1970) discussed recursive residuals (which they call stepwise
residuals), as did Phillips and Harvey (1974). Durbin obtained the recursive
residuals as a generalization of the well-known Helmert transformation, and
he lectured on this material at the London School of Economics in the mid-
1950s. It thus seems fair to attribute the application of recursive residuals
in econometrics to Durbin.

Farebrother (1978) discovered that recursive residuals (including the link
with Helmert’s transformation) were already discussed by Pizzetti (1891). In
fact, one may even trace the original idea back to Gauss (1821); see Plackett
(1950) and Young (1984, Appendix 2).
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The recursive residuals are defined as follows. Let x′
1, . . . ,x

′
n denote

the rows of X, and y1, . . . , yn the components of y. Now define X ′
(r) =

(x1, . . . ,xr) and y
′
(r) = (y1, . . . , yr), and let b(r) denote the OLS estimator of

β based on the first r observations, that is, b(r) = (X ′
(r)X(r))

−1X ′
(r)y(r). The

recursive residuals are then defined as

wr =
yr − x

′
rb(r−1)

√

1 + x′
r(X

′
(r−1)X(r−1))−1xr

, r = k + 1, . . . , n.

The unbiasedness and linearity of wr is obvious. The fact that yr and b(r−1)

are uncorrelated implies that var(wr) = σ2. The fact that wr and ws are
uncorrelated for r < s follows from cov(yr−x

′
rb(r−1), ys−x

′
sb(s−1)) = 0, which

is easily seen by writing yr and b(r−1) as linear functions of the disturbances.
We thus obtain an (n−k)×1 vector w = (wk+1, . . . , wn)

′ satisfying w = A′y

such that w ∼ (0, σ2In−k).
We now have two sets of constructed residuals: the BLUS residuals, say

w1 = A′
1y, and the recursive residuals, say w2 = A′

2y. Let e =My denote
the full set of residuals. Since A1A

′
1 =M and A′

1A1 = In−k, we see that

A1w1 = e, w1 = A′
1e,

so that the BLUS residuals and the full set of OLS residuals are in one-to-
one correspondence. In exactly the same way, the recursive residuals and the
OLS residuals are in one-to-one correspondence. Hence, BLUS and recursive
residuals are in one-to-one correspondence, in fact

w1 = A′
1A2w2, w2 = A′

2A1w1.

Since both sets of residuals contain exactly the same information, this imme-
diately raises the question which residuals are ‘better’, that is, have higher
power. To this question we now turn.

5 Power comparisons: Theil’s data

In order to illustrate the use of BLUS residuals in practice, Theil (1965) (and
also Theil (1971, pp. 215–216)) considered the simple example,

yt = β1t+ β2 sin(t/2) + εt, t = 1, . . . , n,
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where β1 = 1, β2 = 10, and the εt are i.i.d. N(0, 1). Taking n = 20 inde-
pendent draws from the N(0, 1) distribution, and choosing the middle k = 2
observations (10 and 11) as the base, Theil calculated the n− k = 18 BLUS
residuals wj and computed

F =

∑9
j=1w

2
j/9

∑18
j=10 w

2
j/9

,

which follows an F(9, 9)-distribution under the null hypothesis, and takes
the value F = 0.4042 in this example. The associated two-sided p-value is
0.1934, so that the null hypothesis is not rejected at the 5% level.

The example is a little curious, because it does not tell us anything about
the usefulness of the test. Since the data are generated under the null hypoth-
esis of homoskedasticity, we know in advance that the probability of rejection
is 5%. Surely it is more interesting to generate the data under the alternative
hypothesis of heteroskedasticity. Thus, we assume that the disturbances εt

are independently distributed as N(0, t/2), so that their variance increases
over time. Choosing the same model and parameter values as before, and
letting the sample size n grow from 20 to 100, we repeat Theil’s heteroskedas-
ticity test. With 10, 000 replications for each of n = 20, 25, 30, . . . , 100, we
obtain good estimates of the power of the test, ranging from 31% when n = 20
to 95% when n = 100.

FIGURE 1

We can also use the recursive residuals instead of the BLUS residuals in
order to perform the heteroskedasticity test. Using the same set-up, we see
in Figure 1 that the power of the test based on recursive residuals is very
similar but slightly lower than the test based on BLUS residuals.3 These
results confirm the power comparisons in Harvey and Phillips (1974).

Thus, so far there is no reason to believe that recursive residuals are
better than BLUS residuals. In fact, if anything, the opposite is true. Of
course, one could object that we have favoured BLUS by choosing an example
(heteroskedasticity) for which BLUS was developed. Hence, we now consider
an example (structural break) for which the recursive residuals seem a priori

preferable.

3One may argue that a two-sided F -test is inappropriate here, and that one should
perform a one-sided test. The resulting power curves are very similar to Figure 1 and lead
to the same conclusions.
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6 Cusum and cusum-of-squares: Quandt’s data

To put the recursive residuals in the best possible light, we consider testing for
a structural break. Since the data underlying the examples in Brown, Durbin
and Evans (1975) are not available, we use the data studied by Quandt
(1958). These data are generated by the process

yt =

{

2.5 + 0.7xt + εt, t = 1, . . . , 12,

5 + 0.5xt + εt, t = 13, . . . , 20,

where the εt are i.i.d. N(0, 1) distributed. The {xt} are the numbers 1 to
20, but randomized.4 The technique described in Quandt (1958, 1960) is
appropriate if we know that there is one break, but we do not know where
the break occurred. For each r from r = k+1 to r = n− k− 1 (that is from
3 to 17) Quandt calculates

λr = log

(

max likelihood given H0

max likelihood given H1

)

,

where H0 is the hypothesis of no structural break, and H1 the hypothesis
that the observations in the period t ≤ r come from a different regression
than those in the period t ≥ r + 1. It is easy to show that

λr =
r

2
log σ̂2

1 +
n− r

2
log σ̂2

2 −
n

2
log σ̂2,

where σ̂2
1, σ̂

2
2, and σ̂

2 represent the usual estimates of σ2 based on the first r
observations, the last n− r observations, and all observations, respectively.5

The value of r where λr attains a minimum is then an estimate of the switch-
point.

FIGURE 2

Figure 2 shows that r is correctly estimated at r = 12 in this case. There
exists, however, no formal test, because the distribution of min(λr) under H0

is unknown.

4The purpose of the randomization is not entirely clear. The resulting xt’s are ‘inde-
pendent’, but there is nothing that requires them to be.

5In this case, BLUS, recursive, and OLS residuals all produce an identical value of λr.
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A formal test along different lines was developed in Brown, Durbin and
Evans (1975) in the form of cusum and cusum-of-squares plots. Suppose that
wk+1, . . . , wn is a set of recursive residuals, distributed i.i.d. N(0, σ2) under
the null hypothesis. Let σ̂2 be the usual estimate of σ2. Then we define the
cusum Wr and the cusum-of-squares sr as

Wr =
1

σ̂

r
∑

j=1

wk+j, sr =
1

(n− k)σ̂2

r
∑

j=1

w2
k+j, r = 1, . . . , n− k.

Under the null hypothesis of no structural break, Wr and sr should not cross
certain bounds, which are provided in Durbin (1969) and Brown, Durbin and
Evans (1975).

FIGURES 3 AND 4

We see from Figures 3 and 4 that Wr and sr (the dash-dotted lines) do
not cross the bounds, indicating that neither cusum nor cusum-of-squares
indicate that a structural break has occurred. Hence, even though there is a
structural break and the null hypothesis is false, the tests do not reject the
null hypothesis.

Instead of using the recursive residuals we can also use the BLUS residuals
for this purpose.6 The resulting plots for the Quandt data are also provided
in Figures 3 and 4 (solid lines). The conclusions are the same, although the
cusum-of-squares plot almost crosses the bound at r = 10.

The failure to identify a structural break is possibly due to the particular
data set or to the small sample size. A more complete treatment of the power
properties of these tests is therefore required. This discussion is provided in
the next section.

7 Power comparisons: Quandt’s simulated data

To gain further insight in the possible power differences between BLUS and
recursive residuals, we extend Quandt’s set-up as follows:

yt =

{

2.5 + 0.7t+ εt, t = an, . . . , 12,

5 + 0.5t+ εt, t = 13, . . . , bn,

6When using BLUS to test against structural breaks we always select the first and last
observations as our base. Other choices of base have been considered too, but do not alter
the conclusions.
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where, as before, the εt are i.i.d. N(0, 1) distributed, and

an = 1− 3

(

n− 20

5

)

, bn = 20 + 2

(

n− 20

5

)

, n = 20, 25, . . . , 100.

In the new set-up the break continues to be at t = 12, and the ratio of
observations before the break and after the break continues to be 3 : 2.
There are only two differences between Quandt’s data and the current data.
First, we have more data: 20 ≤ n ≤ 100. Secondly, we do not randomize the
xt, so that xt = t. For each draw, the test either (correctly) rejects the null
hypothesis or not. With 10, 000 draws the average number of rejections is an
accurate estimate of the power of the test.

FIGURES 5 and 6

We first consider the BLUS residuals. We see from Figure 5 that the cusum
test has uniformly much better power than the cusum-of-squares test, which
has rather poor power. The same is true for the recursive residuals (Figure
6), although the power of the cusum-of-squares test is not quite so poor as
for the BLUS residuals. We conclude that — if we are testing against a shift
in the mean (the β’s) — then cusum should be used.7

FIGURE 7

The most relevant comparison are the cusum plots of the BLUS and recur-
sive residuals. These are plotted in Figure 7. The difference in power is
small, but the BLUS residuals (again) have slightly higher power. This is
remarkable, because we are now comparing the BLUS and recursive residuals
in a situation (structural breaks) where the recursive residuals should have
an advantage. Apparently, they do not.

So far we have only considered structural breaks in the mean. It is rather
intuitive that the cusum test (which is linear) should have higher power in
this situation than the cusum-of-squares test (which is quadratic), and this

7We sometimes find (with cusum, not with cusum-of-squares) boundary crossings at
the very beginning or end of our data. This is somewhat unsatisfactory, so we also plotted
the power curves when boundary crossings at the 5% tails of the data were ignored (one
observation at each end for n ≤ 60, two for n > 60). This made very little difference when
working with BLUS residuals, but much more difference with the recursive residuals. This
means that boundary crossings at the extremes occur regularly with the recursive residuals,
another property where BLUS has the advantage.
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is confirmed by our simulations. It is quite possible, however, that if we
consider a structural break in the variance, the cusum-of-squares test will
have higher power than the cusum test.8 To investigate this possibility we
extend the Quandt data in a different direction, and consider

yt = 2.5 + 0.7t+ εt, t = an, . . . , bn,

where εt ∼ N(0, 1) when t ≤ 12 and εt ∼ N(0, 2) when t > 12. In this case
the power of the cusum test is always lower than 20%, also for large n. But
the power of the cusum-of-squares test increases more or less linearly over
the interval 20 ≤ n ≤ 100. The power of the BLUS procedure is (again)
somewhat higher than that of the recursive residuals procedure.

In a practical situation where one is uncertain whether to test against
a structural break in the mean or in the variance, one typically performs
both the cusum and the cusum-of-squares tests. If there is a structural break
in the variance, then cusum will in all probability not be significant, but
cusum-of-squares might be, and BLUS gives you a (slightly) better chance of
detecting the break than the recursive residuals. If there is a structural break
in the mean, then cusum will in all probability be significant (especially when
using BLUS residuals). Another look at Figures 5 and 6 now shows that the
cusum-of-squares test will probably not be significant for BLUS, but may be
significant for the recursive residuals. The low power of cusum-of-squares in
Figure 5 can thus be used to advantage!

8 Conclusion

In this paper we have tried to show that the BLUS residuals, invented by
Theil in 1965, are still a mighty weapon and should be thought of as one
of Theil’s main contributions to econometrics. The fact that BLUS has
gone out of fashion and has been replaced by recursive residuals does not
appear to be justified. All our simulation results point to the superiority of
BLUS. We hope that our results will lead to a return of BLUS residuals into
the mainstream of econometrics and will become available in econometric
software packages.

8The same intuition was also formulated by Brown, Durbin and Evans (1975, p. 159).
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Appendix: Proofs

Proof of Theorem 1: We seek a linear predictor w of S ′ε, that is a
predictor of the form w = A′y, where A is a constant n × (n − k) matrix.
Unbiasedness of the prediction error requires

0 = E(A′y − S′ε) = A′Xβ for all β in R
k,

which yields
A′X = O. (2)

The variance matrix of w is E(ww′) = σ2A′A. In order to satisfy condition
(iii) of Definition 1, we thus require

A′A = In−k. (3)

Under the constraints (2) and (3), the prediction error variance is

var(A′y − S′ε) = σ2(I + S′S −A′S − S′A). (4)

Hence the BLUS predictor of S ′ε is obtained by minimizing the trace of (4)
with respect to A subject to the constraints (2) and (3). This amounts to
solving the problem

maximize tr(A′S)

subject to A′X = O and A′A = In−k.

We define the Lagrangian function

ψ(A) = trA′S − trL′
1A

′X −
1

2
trL2(A

′A− In−k),

where L1 and L2 are matrices of Lagrange multipliers and L2 is symmetric.
Differentiating ψ with respect to A yields

dψ = tr(dA)′S − trL′
1(dA)′X −

1

2
trL2(dA)′A−

1

2
trL2A

′ dA

= trS′ dA− trL1X
′ dA− trL2A

′ dA.
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The first-order conditions are

S =XL′
1 +AL2 (5)

A′X = O (6)

A′A = In−k. (7)

Pre-multiplying (5) with X ′ yields

L′
1 = (X ′X)−1X ′S, (8)

because X ′A = O in view of (6). Inserting (8) in (5) gives

MS = AL2. (9)

Also, pre-multiplying (5) with A′ gives

A′S = S′A = L2 (10)

in view of (6) and (7) and the symmetry of L2. Pre-multiplying (9) with S ′

and using (10) we find S ′MS = L2
2, and hence

L2 = (S′MS)1/2. (11)

Since we wish to maximize tr(A′S), it follows from (10) that we need to max-
imize the trace of L2. Therefore we must choose in (11) the positive definite
square root of S ′MS. Inserting (11) in (9) yields A =MS(S ′MS)−1/2.

Proof of Theorem 2: Since (A : X) is a nonsingular n × n matrix, we
can always write S = AQ+XR for some Q and R. Using M = AA′ and
A′S = Q, we then obtain

A =MS(S′MS)−1/2 = AQ(Q′Q)−1/2.

Premultiplying by A′ gives In−k = Q(Q′Q)−1/2, so that

Q = (Q′Q)1/2.

It is now clear that Q must be symmetric and positive definite, thus com-
pleting the proof.
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Fig. 1. Power of two-sided F -test: Theil’s simulated data.
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Fig. 3. Cusum plots: Quandt’s data.
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Fig. 4. Cusum-of-squares plots: Quandt’s data.

18



20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sample size →

po
we

r →

cusum
cusum−of−squares

Fig. 5. Power of BLUS residuals: Quandt’s simulated data.
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Fig. 6. Power of recursive residuals: Quandt’s simulated data.
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Fig. 7. BLUS and recursive residuals compared: Quandt’s simulated data.
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