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Abstract

In this paper we study the relation between convexity of TU games and marginal vectors. We show that

if specific marginal vectors are core elements, then the game is convex. We characterize sets of marginal

vectors satisfying this property, and we derive the formula for the minimum number of marginal vectors

in such sets.
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1 Introduction

This paper studies the relation between convexity of TU games and marginal vectors. Shapley (1971) and
Ichiishi (1981) showed that a game is convex if and only if all marginal vectors are core elements. In Rafels,
Ybern (1995) it is shown that if all even marginal vectors are core elements, then all odd marginal vectors are
core elements as well, and vice versa. Hence, if all even or all odd marginal vectors are core elements, then
the game is convex. In Van Velzen, Hamers, Norde (2002) other sets of marginal vectors are constructed such
that the requirement that these marginal vectors are core elements is a sufficient condition for convexity of
a game. This construction is based on a neighbour argument, i.e. it is shown that if two specific neighbours
of a marginal vector are core elements, then this marginal vector is a core element as well. In this way they
characterize convexity using a fraction of the total number of marginal vectors. Moreover, they show that
this fraction converges to zero.

In this paper we use combinatorial arguments to obtain sets of marginal vectors that characterize con-
vexity. We characterize the sets of marginal vectors satisfying this property. Furthermore we present the
formula for the minimum cardinality of sets of marginal vectors that characterize convexity.

In cooperative game theory, convexity is studied because for convex games many solution concepts possess
nice properties. For instance, it is established that the core is nonempty, that the Shapley value is the
barycentre of the core and that the set of marginal vectors coincides with the set of extreme points of the
core (Shapley (1971)). Furthermore it is shown that the bargaining set and the core coincide as well as the
kernel and the nucleolus (Maschler, Peleg, Shapley (1972)) and that the τ -value can easily be calculated (Tijs
(1981)). There are several classes of cooperative games that are included in the class of convex games. For
instance, the class of convex games contains bankruptcy games (Aumann, Maschler (1985), Curiel, Maschler,
Tijs (1987)), sequencing games (Curiel, Pederzoli, Tijs (1989)), airport games (Littlechild, Owen (1973)) and
standard fixed tree games (Granot, Maschler, Owen, Zhu (1996)). Convexity is also characterized for chinese
postman games (Granot, Hamers (2000)) and travelling salesman games (Granot, Granot, Zhu (2000)).

2 Preliminaries

In this section we recall some notions from cooperative game theory and introduce some notation.

A cooperative TU game is a pair (N, v) where N = {1, . . . , n} is a finite (player-)set and the character-
istic function v : 2N → R assigns to each subset S ⊂ N , called a coalition, a real number v(S), called the
worth of coalition S, where v(∅) = 0. The core of a game (N, v) is the set of payoff vectors for which no
coalition has an incentive to leave the grand coalition N , i.e.
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C(v) = {x ∈ R
N |

∑

j∈S

xj ≥ v(S) for every S ⊂ N,
∑

j∈N

xj = v(N)}.

Note that the core of a game can be empty. A game (N, v) is called convex if the marginal contribution of
any player to any coalition is less than his marginal contribution to a larger coalition, i.e. if it holds that

v(S ∪ {i}) − v(S) ≤ v(S ∪ {i, j}) − v(S ∪ {j}) for all i, j ∈ N, i 6= j, and S ⊂ N\{i, j}. (1)

Before we introduce marginal vectors, we first introduce orders. An order σ of N is a bijection σ :
{1, . . . , n} → N . This order is denoted by σ(1) · · ·σ(n), where σ(i) = j means that with respect to σ,
player j is in the i-th position. An order is called even if it can be turned into the identity order e by an
even number of neighbourswitches, where e is such that e(i) = i for every i ∈ {1, . . . , n}. An order which is
not even is called odd. Note that the set of all orders Sn contains as many even orders as odd orders.

For notational convenience we introduce a special set of orders. Let i, j ∈ N with i 6= j, and let
S ⊂ N\{i, j}. Then M(S, {i, j}) contains those orders which begin with the players in S, followed by the
players in {i, j} and end with the players in N\(S ∪ {i, j}), i.e.

M(S, {i, j}) = {σ ∈ Sn : σ(k) ∈ S for 1 ≤ k ≤ |S|, σ(k) ∈ {i, j} for |S| + 1 ≤ k ≤ |S| + 2

and σ(k) ∈ N\(S ∪ {i, j}) for |S| + 3 ≤ k ≤ n}.

Note that we allow for S = ∅ and S = N\{i, j}.

Example 1 Let N = {1, 2, 3, 4, 5}, S = {3} and {i, j} = {1, 5}. Now M({3}, {1, 5}) = {31524,
31542, 35124, 35142}.

For each k ∈ {0, . . . , n − 2} let Gn(k) consist of those M(S, {i, j}) with S containing k players, i.e.

Gn(k) = {M(S, {i, j}) : i, j ∈ N with i 6= j, S ⊂ N\{i, j} and |S| = k}.

Let k ∈ {0, . . . , n − 2}. Obviously for each σ ∈ Sn it holds that there is precisely one M(S, {i, j}) ∈ Gn(k)
such that σ ∈ M(S, {i, j}), i.e. Gn(k) is a partitioning of Sn. Furthermore we have that |Gn(k)| =

(

n
k

)(

n−k
2

)

.

Let (N, v) be a game. For σ ∈ Sn, the marginal vector mσ(v) is defined by

mσ
i (v) = v([i, σ]) − v((i, σ)) for all i ∈ N,

where [i, σ] = {j ∈ N : σ−1(j) ≤ σ−1(i)} is the set of predecessors of i with respect to σ including i, and
(i, σ) = {j ∈ N : σ−1(j) < σ−1(i)} is the set of predecessors of i with respect to σ excluding i. A marginal
vector is called even (odd) if the corresponding order is even (odd).

3 Characterizing convexity of games with marginal vectors

In this section we present our main results. First we recall theorems which deal with the relation between
convexity and marginal vectors. Secondly, we characterize sets of orders for which the requirement that the
marginal vectors corresponding to the orders in such a set are core elements is a sufficient condition for all
marginal vectors to be core elements. Finally we derive the formula for the minimum cardinality of a set of
orders satisfying this property.

The following well-known theorem deals with the relation between marginal vectors and convex games.
It states that a game is convex if and only if all marginal vectors are core elements.

Theorem 1 (Shapley (1971), Ichiishi (1981)) Let (N, v) be a game. It holds that (N, v) is convex if

and only if mσ(v) ∈ C(v) for all σ ∈ Sn.
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The following theorem also deals with the relation between marginal vectors and convexity of games. It
states that the even marginal vectors, as well as the odd marginal vectors, characterize convexity. In other
words, if all even marginal vectors or all odd marginal vectors are core elements, then the game is convex.

Theorem 2 (Rafels, Ybern (1995)) For every game (N, v) the following statements are equivalent:

1. (N, v) is convex,

2. mσ(v) ∈ C(v) for all even σ ∈ Sn,

3. mσ(v) ∈ C(v) for all odd σ ∈ Sn.

Van Velzen et al.(2002) construct other sets of marginal vectors that characterize convexity. This construc-
tion is based on a neighbour argument. It is shown that if two specific neighbours of some marginal vector
are core elements, then this marginal vector is a core element as well.

Sets of marginal vectors that characterize convexity are baptized complete sets. In other words, a set
A ⊂ Sn is called complete if for every game (N, v) the following statements are equivalent:

1. (N, v) is convex,

2. mσ(v) ∈ C(v) for all σ ∈ A.

Theorem 2 states that the set of even orders and the set of odd orders are complete sets. Let Mn be the
minimum cardinality of a complete set, i.e.

Mn = min
A⊂Sn: A is complete

|A|,

and let the fraction of Mn with respect to all orders be denoted by gn = Mn

n! .

From Theorem 2 we obtain that Mn ≤ 1
2n!. Van Velzen et al.(2002) show that for n ≥ 5 it holds that

Mn ≤ 1
4n! and that gn → 0 if n → ∞. However, they only provide upper bounds for Mn and gn. Some of

these upper bounds are presented in Table 1.

n 3 4 5 6 7 8 9 10
n! 6 24 120 720 5040 40320 362880 3628800

Mn ≤ 3 ≤ 12 ≤ 30 ≤ 180 ≤ 1260 ≤ 5040 ≤ 45360 ≤ 226800
gn ≤ 1

2
≤ 1

2
≤ 1

4
≤ 1

4
≤ 1

4
≤ 1

8
≤ 1

8
≤ 1

16

Table 1: Upper bounds for Mn and gn.

To obtain the main result of this paper we need the following characterization of complete sets.

Lemma 1 Let A ⊂ Sn. Then A is complete if and only if

A ∩ M(S, {i, j}) 6= ∅ for all i, j ∈ N, i 6= j, and S ⊂ N\{i, j}. (2)

Proof: First we show the ”if” part. Let A be such that (2) holds, and let (N, v) be a game. Assume that
mσ(v) ∈ C(v) for each σ ∈ A. Let i, j ∈ N with i 6= j, and let S ⊂ N\{i, j}. Then there is a σ ∈ A such
that σ ∈ M(S, {i, j}). Without loss of generality assume that σ(|S| + 1) = i and σ(|S| + 2) = j. It follows
that

v(S ∪ {j}) ≤
∑

k∈S∪{j}

mσ
k(v) = v(S ∪ {i, j}) − v(S ∪ {i}) + v(S),

where the inequality holds because mσ(v) ∈ C(v). Therefore (1) holds and hence (N, v) is convex. Using
Theorem 1 we obtain that mσ(v) ∈ C(v) for all σ ∈ Sn. We conclude that A is complete.
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To show the ”only if” part, suppose that (2) does not hold. We will show that A is not complete by
constructing a nonconvex game for which all marginal vectors corresponding to orders in A are core ele-
ments.

Because (2) does not hold, there are i, j ∈ N with i 6= j, and S ⊂ N\{i, j} such that A∩M(S, {i, j}) = ∅.
Let

v(T ) =

{

1 if T = S ∪ {i}, S ∪ {j}
max(0, |T | − |S| − 1) otherwise.

(3)

We will show that (N, v) is such that mσ(v) ∈ C(v) if and only if σ 6∈ M(S, {i, j}).

Let σ ∈ M(S, {i, j}). Without loss of generality assume that σ is such that σ(|S|+1) = i and σ(|S|+2) = j.
It follows that

∑

k∈S∪{j} mσ
k(v) = v(S ∪ {i, j}) − v(S ∪ {i}) + v(S) = 1 − 1 + 0 < 1 = v(S ∪ {j}). Hence,

mσ(v) 6∈ C(v). We now show that the other marginal vectors are core elements.

Let σ 6∈ M(S, {i, j}). For all k ∈ N and T ⊂ N\{k} it holds that v(T ∪ {k}) − v(T ) ∈ {0, 1}. This
implies that

mσ
k(v) ∈ {0, 1} for each k ∈ N. (4)

It is sufficient to show that
∑

k∈T mσ
k(v) ≥ v(T ) for each T ⊂ N . We distinguish between two cases.

Case 1: T 6= S ∪ {i}, S ∪ {j}.
Suppose that |T | ≤ |S| + 1. Then v(T ) = 0 and therefore, using (4), we have that

∑

k∈T mσ
k(v) ≥ v(T ).

So suppose that |T | > |S| + 1. Then, because of (4), it holds that
∑

k∈N\T mσ
k(v) ≤ |N\T | and therefore

∑

k∈T

mσ
k(v) = v(N) −

∑

k∈N\T

mσ
k(v) ≥ |N | − |S| − 1 − |N\T | = |T | − |S| − 1 = v(T ).

Case 2: T = S ∪ {i} or T = S ∪ {j}.
Without loss of generality assume that T = S ∪ {i}. It holds that v(S ∪ {i}) = 1. To show that

∑

k∈S∪{i} mσ
k(v) ≥ 1 it is sufficient, according to (4), to prove that there is a k ∈ S ∪ {i} such that

mσ
k(v) = 1. Let ĥ ∈ S ∪ {i} be such that all players in S ∪ {i} precede ĥ with respect to σ, i.e. ĥ ∈ S ∪ {i}

is such that σ−1(k) ≤ σ−1(ĥ) for all k ∈ S ∪ {i}. We distinguish between three subcases.

Subcase 2a: σ−1(ĥ) = |S| + 1.

It holds that [ĥ, σ] = S ∪ {i}. Therefore mσ

ĥ
(v) = v(S ∪ {i}) − v((S ∪ {i})\{ĥ}) = 1 − 0 = 1.

Subcase 2b: σ−1(ĥ) = |S| + 2.

First suppose that ĥ = i. If σ−1(j) > σ−1(i), then it holds that (i, σ) 6= S ∪ {j}, and |[i, σ]| = |S| + 2.
Hence, mσ

i (v) = v([i, σ]) − v((i, σ)) = 1 − 0 = 1.
If σ−1(j) < σ−1(i) then, because σ 6∈ M(S, {i, j}), it follows that there is a k ∈ S ∪ {i} such that

σ(|S|+1) = k 6= j. Hence [k, σ] = S∪{j}. Therefore, mσ
k(v) = v([k, σ])−v((k, σ)) = v(S∪{j})−v((k, σ)) =

1 − 0 = 1.
So suppose that ĥ 6= i. From |[ĥ, σ]| = |S| + 2 it follows that v([ĥ, σ]) = 1. Because ĥ ∈ S we have that

(ĥ, σ) 6= S ∪ {i}, S ∪ {j}. Hence, v((ĥ, σ)) = 0. Therefore, mσ

ĥ
(v) = v([ĥ, σ]) − v((ĥ, σ)) = 1 − 0 = 1.

Subcase 2c: σ−1(ĥ) ≥ |S| + 3.

Then it holds that |[ĥ, σ]| = σ−1(ĥ) ≥ |S| + 3, and |(ĥ, σ)| = σ−1(ĥ) − 1. Therefore, mσ

ĥ
(v) =

v([ĥ, σ]) − v((ĥ, σ)) = σ−1(ĥ) − |S| − 1 − (σ−1(ĥ) − 1 − |S| − 1) = 1. 2

The following example shows that for n = 3 the even orders form a complete set.

Example 2 Let N = {1, 2, 3}. Let A ⊂ S3. From Lemma 1, it follows that A is complete if and only if
A∩B 6= ∅ for all B ∈ {M({1}, {2, 3}),M({2}, {1, 3}),M({3}, {1, 2}),M(∅, {1, 2}), M(∅, {1, 3}), M(∅, {2, 3})}.
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For example the set of even orders {123, 312, 231} satisfies this property. On the contrary, {123, 132, 213, 231}
does not satisfy this property because {123, 132, 213, 231} ∩ M({3}, {1, 2}) = ∅. Hence, {123, 132, 213, 231}
is not complete. This means that there is a nonconvex game for which the marginal vectors corresponding
to the orders in {123, 132, 213, 231} are core elements. Such a game is obtained by considering (3) with
S = {3}, i = 1 and j = 2. This game is depicted in Table 2. It holds that m123(v) = m132(v) = m213(v) =
m231(v) = (0, 0, 1) ∈ C(v). However, m312(v) = (1, 0, 0) 6∈ C(v) and m321(v) = (0, 1, 0) 6∈ C(v).

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 0 1 1 1

Table 2: A nonconvex game for which m123(v),m132(v),m213(v) and m231(v) are core elements.

From Lemma 1 it follows that to find a complete set, it is necessary and sufficient to find a set of orders
that covers all elements of Gn(k) for each k ∈ {0, . . . , n − 2}, i.e. a set A ⊂ Sn such that A ∩ B 6= ∅ for
all B ∈ ∪0≤p≤n−2Gn(p). Trivially, by choosing an order from each B ∈ Gn(k) for each k ∈ {0, . . . , n − 2}
a complete set is obtained. In this way we can find a complete set containing at most

∑

0≤p≤n−2 |Gn(p)|
orders. However, there are complete sets containing less than

∑

0≤p≤n−2 |Gn(p)| orders. The main result of
this paper is the formula for the minimum cardinality of a complete set. To prove this result we distinguish
between odd n ∈ N and even n ∈ N.

First we focus on odd n. For the proof of the formula for odd n we need the concepts of right-hand
side neighbours, left-hand side neighbours and perfect coverings. Let n ≥ 3 be odd and let k be such that
n = 2k + 1. Suppose the players are seated at a round table such that for all j ∈ N it holds that the person
on the right-hand side of player j is player (j − 1) mod n and the person on his left-hand side is player
(j + 1) mod n. For each j ∈ N let the right-hand side neighbours Rj of j be the first k players on the
right-hand side of player j at the round table, i.e.

Rj = {(j − 1) mod n, . . . , (j − k) mod n}.

Similarly, let the left-hand side neighbours Lj of player j be the first k players on the left-hand side of player
j, i.e.

Lj = {(j + 1) mod n, . . . , (j + k) mod n}.

The notion of left-hand side neighbours and right-hand side neighbours is illustrated by Example 3.

Example 3 If n = 9, k = 4 and j = 3, then it holds that R3 = {1, 2, 8, 9} and L3 = {4, 5, 6, 7}. The sets
R3 and L3 are illustrated in Figure 1.

Let i, j ∈ N with i 6= j. The following properties of Lj and Rj can easily be verified.

(P1) Lj ∩ Rj = ∅,

(P2) Lj ∪ Rj ∪ {j} = N ,

(P3) i ∈ Lj if and only if j ∈ Ri,

(P4) i ∈ Rj if and only if j 6∈ Ri.

Now we introduce the concept of perfect coverings. Let i, j ∈ N with i 6= j and T ⊂ N\{i, j}. Then
σ ∈ M(T, {i, j}) is said to perfectly cover M(T, {i, j}) if σ(|T | + 1) ∈ Rσ(|T |+2). Because of (P4) it holds
that M(T, {i, j}) contains orders which perfectly cover this set. A set A ⊂ Sn is called perfect complete if
for each M(S, {l,m}) there is a σ ∈ A that perfectly covers M(S, {l,m}). The concept of a perfect covering
is illustrated in the following example.

Example 4 If n = 9, T = {1, 4, 5}, i = 8 and j = 3, then it holds that 8 ∈ R3 and 3 6∈ R8. Hence,
σ ∈ M({1, 4, 5}, {3, 8}) is a perfect covering of this set if σ(4) = 8. In particular, 514832967 is a perfect
covering of M({1, 4, 5}, {3, 8}) and 514382967 is not a perfect covering of M({1, 4, 5}, {3, 8}).
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Figure 1: The left-hand side neighbours and right-hand side neighbours of player 3.

The following theorem gives the minimum cardinality of a complete set for odd n. The proof of this theorem
is constructive in the sense that it contains a procedure to obtain a complete set of minimum cardinality.

Theorem 3 Let n ≥ 3 be odd. It holds that

Mn =
n!

2(n−3
2 )!(n−1

2 )!
.

Proof: Let k be such that n = 2k+1. First we will show that Mn ≥ n!
2( n−3

2
)!( n−1

2
)!
. It holds that Gn(k) forms

a partition of Sn. This implies, using Lemma 1, that to cover all elements of Gn(k) at least |Gn(k)| orders
are needed. It holds that |Gn(k)| =

(

n
k

)(

n−k
2

)

= n!
k!(n−k−2)!2! = n!

2( n−3

2
)!( n−1

2
)!
. Therefore Mn ≥ n!

2( n−3

2
)!( n−1

2
)!
.

Now we will show that Mn ≤ n!
2( n−3

2
)!( n−1

2
)!
. We will do this by constructing a perfect complete set of

size |Gn(k)| = n!
2( n−3

2
)!( n−1

2
)!
. First we construct a set A ⊂ Sn containing |Gn(k)| orders that perfectly covers

each element of Gn(k). Using A we inductively show that we can construct a perfect complete set.
Each M(S, {l,m}) ∈ Gn(k) contains perfect coverings. Therefore it is trivial to obtain a set A containing

|Gn(k)| orders that perfectly covers each element of Gn(k). In particular, A can be obtained by choosing
precisely one perfect covering from each element of Gn(k).

Assume that A perfectly covers each element in ∪m≤p≤kGn(p) for some m ≤ k. Obviously m = k satisfies
this property. Suppose that M(T, {i, j}) ∈ Gn(m − 1) is not perfectly covered by A. We will replace one
order σ ∈ A by an order σ̄ ∈ Sn\A to obtain the set Ā = (A\{σ}) ∪ {σ̄}. Our selection of σ and σ̄ is such
that Ā perfectly covers one element of ∪m−1≤p≤kGn(p) more than A. In particular, Ā perfectly covers the
same elements of ∪m−1≤p≤kGn(p) as A, except for M(T, {i, j}) ∈ Gn(m− 1) which is only perfectly covered
by Ā.

Without loss of generality assume that i ∈ Rj . This yields that if τ ∈ Sn perfectly covers M(T, {i, j}),
then it holds that τ(|T |+ 1) = i and τ(|T |+ 2) = j. Let B be the set of orders in A that begin with T ∪ {i}
followed by j, i.e. B = {τ ∈ A : τ(p) ∈ T ∪ {i} for all p ≤ |T | + 1, τ(|T | + 2) = j}. We will replace an order
σ ∈ B with an order σ̄ ∈ Sn\A.

Now first suppose that there is an order in B that is not a perfect covering of an element in Gn(m − 1),
i.e. suppose there is a σ ∈ B with σ(|T | + 1) 6∈ Rj . Now interchange σ(|T | + 1) and i to obtain the
order σ̄. Note that σ̄ and σ only differ in two positions, namely in position σ−1(i) ≤ m and in position
|T | + 1 = m. This yields that σ̄ perfectly covers the same elements of ∪m≤p≤kGn(p) as σ. Furthermore, σ̄

perfectly covers M(T, {i, j}). Because σ was not a perfect covering of an element of Gn(m − 1) it follows
that Ā = (A\{σ}) ∪ {σ̄} perfectly covers one element of ∪m−1≤p≤kGn(p) more than A.

Now suppose that all orders in B are perfect coverings of elements in Gn(m− 1), i.e. suppose that for all
τ ∈ B it holds that τ(|T |+1) ∈ Rj . We will show that there are π, ρ ∈ B such that π(|T |+1) = ρ(|T |+1) = h

for some h ∈ T , i.e. that M((T ∪ {i})\{h}, {h, j}) ∈ Gn(m− 1) is perfectly covered twice by orders in B. If
we then take σ = π and obtain σ̄ by interchanging h and i, it follows that Ā = (A\{σ}) ∪ {σ̄} still contains
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a perfect covering of M((T ∪ {i})\{h}, {h, j}), namely ρ. Moreover, Ā perfectly covers M(T, {i, j}). Hence,
Ā perfectly covers one element of ∪m−1≤p≤kGn(p) more than A.

We will now show that there are orders π, ρ ∈ B with π(|T |+1) = ρ(|T |+1). Note that, by supposition,
it holds that τ(|T | + 1) ∈ Rj for all τ ∈ B. Because we have assumed that M(T, {i, j}) was not perfectly
covered by an order in A it also holds that τ(|T |+1) 6= i for all τ ∈ B. Therefore we have that τ(|T |+1) ∈ T

for all τ ∈ B. This implies that τ(|T | + 1) ∈ T ∩ Rj for all τ ∈ B. Hence, showing that there are orders
π, ρ ∈ B with π(|T | + 1) = ρ(|T | + 1) boils down to showing that |B| > |T ∩ Rj |.

First note that our assumption states that each element of ∪m≤p≤kGn(p) is perfectly covered by A. This
implies that M(T ∪ {i}, {j, l}) is perfectly covered for all l ∈ N\(T ∪ {i, j}). Therefore M(T ∪ {i}, {j, l}) is
perfectly covered for all l ∈ (N\(T ∪{i}))∩Lj . Let τ ∈ A be a perfect covering of M(T ∪{i}, {j, l}) for some
l ∈ (N\(T ∪ {i})) ∩ Lj . Because of (P3) it follows that j ∈ Rl. Therefore τ(p) ∈ T ∪ {i} for all p ≤ |T | + 1,
τ(|T | + 2) = j and τ(|T | + 3) = l. We conclude that τ ∈ B. This implies that

|B| ≥ |(N\(T ∪ {i})) ∩ Lj |. (5)

It holds that |(N\(T ∪ {i}))∩Lj |+ |(T ∪ {i})∩Lj | = |Lj | = k. Using (P2) it follows that |(T ∪ {i})∩Lj |+
|(T ∪ {i}) ∩ Rj | = |T ∪ {i}|. From these two expressions we derive that

|(N\(T ∪ {i})) ∩ Lj | = k − |(T ∪ {i}) ∩ Lj | = k − |T ∪ {i}| + |(T ∪ {i}) ∩ Rj | ≥ |(T ∪ {i}) ∩ Rj |, (6)

where the inequality holds because k ≥ m = |T | + 1. From (5) and (6) it follows that

|B| ≥ |(T ∪ {i}) ∩ Rj | > |T ∩ Rj |, (7)

where the strict inequality holds because i ∈ T ∪ {i} and i ∈ Rj .

So if we start with a set A containing |Gn(k)| elements that perfectly covers each element of ∪m≤p≤kGn(p),
then we can find a set Ā that perfectly covers one element of ∪m−1≤p≤kGn(p) more than A. This yields that
we can construct a set of orders that perfectly covers all elements of ∪0≤p≤kGn(p). Now let m ≥ k be such
that A perfectly covers all elements of ∪0≤p≤mGn(p). Obviously, m = k satisfies this property. Suppose
that some M(T, {i, j}) ∈ Gn(m + 1) is not perfectly covered by A. It is now straightforward to show that
there exists a set Ā that perfectly covers one element in ∪0≤p≤m+1Gn(p) more than A. It follows that there
exists a set containing |Gn(k)| orders that perfectly covers all elements of ∪0≤p≤n−2Gn(p). 2

The following example illustrates the possibility in the proof of Theorem 3 that there is a σ ∈ B with
σ(|T | + 1) 6∈ Rj .

Example 5 Let n = 5 and k = 2. According to the proof of Theorem 3, we first need to find a set
A ⊂ S5 that perfectly covers each element of G5(2). This can be done by taking one perfect cover from each
M(T, {i, j}) ∈ G5(2). For example, let

A = {12345, 14235, 23415, 52134, 35124
12354, 14523, 23514, 25413, 35412
12453, 14352, 23451, 25341, 35241
13245, 15234, 24135, 34125, 45123
13524, 15243, 24513, 34512, 45132
13452, 15342, 24351, 34521, 45231}.

It is straightforward to check that A indeed perfectly covers all elements of G5(2). However, not all elements
of G5(1) are perfectly covered. For instance, it holds that M({5}, {3, 4})∩A = ∅. Because A does not cover
M({5}, {3, 4}), it certainly does not perfectly cover this set. We will obtain a set Ā that perfectly covers
M({5}, {3, 4}).

Let T = {5}, i = 3 and j = 4. Note that i ∈ Rj . It holds that B = {τ ∈ A : τ(k) ∈ {3, 5} for k =
1, 2 and τ(3) = 4} = {35412}. It holds for σ = 35412 ∈ B that σ(|T | + 1) = 5 6∈ R4. According to the proof
we need to interchange σ(|T | + 1) = 5 and i = 3. This yields σ̄ = 53412. Note that 53412 perfectly covers
M({5}, {3, 4}). Now let Ā = (A\{35412}) ∪ {53412}. It holds that Ā perfectly covers M({5}, {3, 4}).
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The following example illustrates the possibility that for all σ ∈ B it holds that σ(|T | + 1) ∈ Rj .

Example 6 Let n = 5, k = 2 and let A be the same set of orders as in Example 5. Although 52134 ∈ A

covers M({5}, {1, 2}) ∈ G5(1), it holds that M({5}, {1, 2}) is not perfectly covered by A. Therefore let
T = {5}, i = 1 and j = 2. Note that i ∈ Rj . It holds that B = {τ ∈ A : τ(k) ∈ {1, 5} for k = 1, 2 and τ(3) =
2} = {15243, 15234}. For all σ ∈ B it holds that σ(|T |+1) = 5 ∈ R2. So, M({1}, {2, 5}) is perfectly covered
twice by orders in B. Take σ = 15243 ∈ B. Now interchange σ(|T | + 1) = 5 and i = 1 to obtain σ̄ = 51243
and let Ā = (A\{15243}) ∪ {51243}. It holds that Ā still perfectly covers M({1}, {2, 5}), and, moreover, Ā

perfectly covers M({5}, {1, 2}).

In the final part of this paper we deal with even n ∈ N. Although the proof of the formula for even n is very
similar to the proof for odd n, there is a subtle difference between these two proofs.

Let n ≥ 3 be even and let k be such that n = 2k + 2. For each j ∈ N we define the right-hand side
neighbours Rj by

Rj = {(j − 1) mod n, . . . , (j − k) mod n, (j − k − 1) mod n}

and the left-hand side neighbours Lj by

Lj = {(j + 1) mod n, . . . , (j + k) mod n, (j + k + 1) mod n}.

The intuition of Lj and Rj is similar as for odd n. For convenience, we define oj = (j + k + 1) mod n for
all j ∈ N . Intuitively, oj is the player seated exactly opposite to player j. It is straightforward to show that
o(j+k+1) mod n = j and that oj = (j − k − 1) mod n. The following properties can easily be verified.

(Q1) Lj ∩ Rj = {oj},

(Q2) Lj ∪ Rj ∪ {j} = N ,

(Q3) i ∈ Lj if and only if j ∈ Ri,

(Q4) i ∈ Rj or j ∈ Ri.

Player oj is a member of Lj and Rj . This observation implies that (P1) does not hold anymore and that (P4)
only holds in a weakened version. Let i, j ∈ N with i 6= j and T ⊂ N\{i, j}. Then σ ∈ M(T, {i, j}) is said
to perfectly cover M(T, {i, j}) if σ(|T | + 1) ∈ Rσ(|T |+2). Because of (Q4) it holds that M(T, {i, j}) contains
orders which perfectly cover this set. Moreover, if i = oj , then it holds that every order of M(T, {oj , j})
perfectly covers this set. A set A ⊂ Sn is called perfect complete if for each M(S, {l,m}) there is a σ ∈ A

that perfectly covers M(S, {l,m}). The following theorem gives the formula for the minimum cardinality of
a complete set for even n.

Theorem 4 Let n ≥ 3 be even. It holds that

Mn =
n!

2(n−2
2 )!(n−2

2 )!
.

Proof: Let k be such that n = 2k + 2. First we will show that Mn ≥ n!
2(( n−2

2
)!)2

. It holds that Gn(k)

forms a partition of Sn. This implies, using Lemma 1, that to cover all elements of Gn(k) at least
|Gn(k)| =

(

n
k

)(

n−k
2

)

= n!
k!k!2! = n!

2!(( n−2

2
)!)2

orders are needed. It follows that Mn ≥ n!
2(( n−2

2
)!)2

.

It remains to show that Mn ≤ n!
2(( n−2

2
)!)2

. We do this similar as for odd n. It is straightforward to construct a

set A ⊂ Sn containing |Gn(k)| orders which perfectly covers each element of Gn(k). Assume that A perfectly
covers each element of ∪m≤p≤kGn(p) for some m ≤ k. Suppose that M(T, {i, j}) is not perfectly covered
by A. Assume without loss of generality that i ∈ Rj and let B = {τ ∈ A : τ(p) ∈ T ∪ {i} for all p ≤
|T | + 1, τ(|T | + 2) = j}.

Suppose there is an order σ ∈ B with σ(|T | + 1) 6∈ Rj . Using the same technique as for odd n it is now
straightforward to obtain a set Ā that perfectly covers one element of ∪m−1≤p≤kGn(p) more than A.
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So suppose that for all τ ∈ B it holds that τ(|T | + 1) ∈ Rj , i.e. all orders in B are perfect coverings of
some element of Gn(m − 1). Again, we will show that there are π, ρ ∈ B with π(|T | + 1) = ρ(|T | + 1) = h

for some h ∈ T , i.e. that M((T ∪ {i})\{h}, {h, j}) ∈ Gn(m − 1) is perfectly covered twice by orders in B.
This boils down to showing that |B| > |T ∩ Rj |. We distinguish between two cases to show this inequality.

Case 1: oj ∈ N\(T ∪ {i}).
We assumed that each element of ∪m−1≤p≤kGn(p) is perfectly covered by A. This implies that

M(T ∪{i}, {j, l}) is perfectly covered for all l ∈ N\(T ∪{i, j}). Hence, M(T ∪{i}, {j, l}) is perfectly covered
for all l ∈ (N\(T ∪ {i, oj})) ∩ Lj . Let l ∈ (N\(T ∪ {i, oj})) ∩ Lj and let τ ∈ A be a perfect covering of
M(T ∪ {i}, {j, l}).

Because l 6= oj it holds because of (Q1) that l 6∈ Rj . Because τ is a perfect covering it follows that
τ(p) ∈ T ∪ {i} for all p ≤ |T | + 1, τ(|T | + 2) = j and τ(|T | + 3) = l. We conclude that τ ∈ B.

It follows that |B| ≥ |(N\(T ∪ {i, oj}))∩Lj | = |(N\(T ∪ {i}))∩Lj | − 1, where the equality follows from
oj ∈ (N\(T ∪ {i})) ∩ Lj . Trivially it holds that |(N\(T ∪ {i})) ∩ Lj | + |(T ∪ {i}) ∩ Lj | = k + 1. Because of
oj ∈ N\(T ∪{i}), (Q1) and (Q2) it holds that |(T ∪{i})∩Lj |+ |(T ∪{i})∩Rj | = |T ∪{i}|. Hence, we have
that

|B| ≥ |(N\(T ∪ {i})) ∩ Lj | − 1 = k + 1 − |(T ∪ {i}) ∩ Lj | − 1

= k + |(T ∪ {i}) ∩ Rj | − |T ∪ {i}| ≥ |(T ∪ {i}) ∩ Rj | > |T ∩ Rj |,

where the first inequality follows from k ≥ m = |(T ∪ {i})|. The strict inequality follows from i ∈ T ∪ {i}
and i ∈ Rj .

Case 2: oj ∈ T ∪ {i}.
We assumed that each element of ∪m−1≤p≤kGn(p) is perfectly covered by A. This implies that

M(T ∪ {i}, {j, l}) is perfectly covered for all l ∈ N\(T ∪ {i, j}). Hence, M(T ∪ {i}, {j, l}) is perfectly
covered for all l ∈ (N\(T ∪ {i})) ∩ Lj . Let l ∈ (N\(T ∪ {i})) ∩ Lj and let τ ∈ A be a perfect covering of
M(T ∪ {i}, {j, l}).

Because oj ∈ T ∪ {i} it follows that l 6= oj . This implies, using (Q1), that l 6∈ Rj . Hence, τ(p) ∈ T ∪ {i}
for all p ≤ |T | + 1, τ(|T | + 2) = j and τ(|T | + 3) = l. It follows that τ ∈ B. We conclude that |B| ≥
|(N\(T ∪{i}))∩Lj |. It also holds that |(N\(T ∪{i}))∩Lj |+ |(T ∪{i})∩Lj | = k+1. Because of oj ∈ T ∪{i},
(Q1) and (Q2) it holds that |(T ∪ {i}) ∩ Lj | + |(T ∪ {i}) ∩ Rj | = |T ∪ {i}| + 1. Hence, we have that

|B| ≥ |(N\(T ∪ {i})) ∩ Lj | = k + 1 − |(T ∪ {i}) ∩ Lj |

= k + 1 + |(T ∪ {i}) ∩ Rj | − (|T ∪ {i}| + 1) ≥ |(T ∪ {i}) ∩ Rj | > |T ∩ Rj |,

where the first inequality follows from k ≥ m = |(T ∪ {i})|. The strict inequality follows from i ∈ T ∪ {i}
and i ∈ Rj .

Using the same argument as in the proof of Theorem 3 we can now obtain a perfect complete set of size
Gn(k). 2

Theorem 3 and Theorem 4 give the formula for the minimum number of marginal vectors needed to charac-
terize convexity. For 3 ≤ n ≤ 10 these numbers are presented in Table 3. Note that Mn is relatively small for
large n. It holds that gn converges to zero exponentially fast, whereas the convergence of gn in Van Velzen
et al.(2002) is rather slow.
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n 3 4 5 6 7 8 9 10
n! 6 24 120 720 5040 40320 362880 3628800
n!

2
3 12 60 360 2520 20160 181440 1814400

Mn 3 12 30 90 210 560 1260 3150
gn

1

2

1

2

1

4

1

8

1

24

1

72

1

288

1

1152

Table 3: The minimum cardinality of complete sets.
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