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1 Introduction

In operations research, sequencing situations are characterized by a finite number of jobs lined up in
front of one (or more) machineg(s) that have to be processed on the maching(s). A single decision maker
wants to determine a processing order of the jobs that minimizes a cost criterion and takes into account
possible restriction on the jobs (e.g. due dates, precedence congtraints, etc.) This single decision maker
problem can be transformed into a multiple decision maker problem by taking agents into account who
own at least one job. In such amodel agroup of agents (coalition) can save costs by cooperation. For the
determination of the maximal cost savings of a coalition one has to solve the combinatorial optimization
problem corresponding to this coalition.

This approach has been taken first in Curiel et al. (1989). They introduce sequencing games, which
arise from one-machine sequencing situations, and showed that these games are convex, and thus, bal-
anced. Moreover, they introduce and characterize an all ocation rule that divides the maximal cost savings
that can be obtained by complete cooperation.

The paper by Curid et al. (1989) hasinspired researchersto study theinteraction between scheduling
theory and cooperative game theory. Hamerset al. (1996) and Van Vel zen and Hamers (2002) investigate
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the class of sequencing situations as in considered Curiel et al. (1989). The first paper focuses on the
structure of a subset of the core, the split core, and the second paper introduces new classes of balanced
sequencing games.

Van den Nouweland et al. (1992), Hamers et al. (1999) and Callgaet al. (2002) investigate se-
guencing games that arise from multiple-machine sequencing situations. These papers focus on the
balancedness of the related sequencing games.

In the class of sequencing situations considered in Curiel et al. (1989) no restrictions like ready
times or due dates are imposed on the jobs. Hamers et al. (1995) included ready times (or release
dates) on the one-machine sequencing situations considered by Curiel et al. (1989). In this case the
corresponding sequencing games are balanced, but are not necessarily convex. For a special subclass,
however, convexity could be established. Similar results are also obtained in Borm et al. (2002), in
which due dates are imposed on the jobs.

This paper isin the same line as Hamers et al. (1995) and Borm et al. (2002). Here, precedence
relations are imposed on the job in one-machine sequencing situations. Precedence relations prescribe
an order in which jobs have to be processed. More specifically, some jobs can only be processed if some
other job(s) have aready been processed. In practice many examples can be found where precedence
relations play arole. For example, scheduling programs on a computer. In many cases one program
needs the output of another program as input data. Another situation where precedence relations are
involved is in the manufacturing of a car. Before you can paint the car you need to have the chassis,
before you can place the wheels you need already the axles, etc. In this paper we establish a convexity
result for sequencing games that arise from segquencing situations in which chain precedence relations
areinvolved.

There are several arguments to ask for convexity. Convex (or supermodular) games are known to
have nice properties, in the sense that some solutions concepts for these games coincide and others have
intuitive descriptions. For example, for convex games the coreis the convex hull of al marginal vectors
(cf. Shapley (1971) and Ichiishi (1981)), and, as a consegquence, the Shapley value is the barycentre of
the core (Shapley (1971)). Moreover, the bargaining set and the core coincide, the kernel coincides with
the nucleolus (Maschler et al. (1972)) and the m-value can easily be calculated (Tijs (1981)).

The paper is organized as follows. In Section 2 we introduce one-machine precedence sequencing
situations and the related precedence sequencing games. We present our convexity result in Section 3.
In the Appendix we prove rather technical lemmata needed for the convexity result of Section 3.

2 Precedence sequencing situations and games

In this section we describe a one-machine sequencing situation in which precedence relations hold for
the jobs. Moreover, we define the corresponding sequencing games.

In a one-machine precedence sequencing situation there is a queue of agents, each with one job,
before a machine (counter). Each agent (player) has to process his job on the machine. The finite set
of agentsis denoted by NV, and its cardindity by | N| = n. A processing order is defined by a bijection
o: N — {1,...,n}. Specificaly, o(i) = k means that player i isin position k. A precedence relation
P on the jobs of the players is defined as follows: if (¢,7) € P then the job of player i has to precede
the job of player j. Obvioudly, for any P we havethat if (i, j) € P then (j,7) ¢ P. A processing order
is called feasible with respect to P if for all (i,7) € P it holds that 7 precedes j in that order. The set
of all feasible processing orders of NV with respect to P is denoted by II(V, P). The processing time p;
of the job of agent ¢ is the time the machine takes to handle this job. We assume that every agent has a



linear cost function ¢; : [0,00) — R defined by ¢;(t) = a;t with a; > 0. Further it is assumed that
thereisan initial feasible order oy : N — {1, ...,n} on the jobs of the players before the processing of
the machine starts.

A precedence sequencing situation as described above is denoted by (IV, P, og, p, @), where N isthe
set of n players, P the set of precedencereations, op : N — {1,...,n} theinitia order, p = (p;)ien €
]Rf the vector representing the processing timesand « = («;)ien € ]RiV the vector denoting the cost
coefficients.

For an order o the set of predecessors of player i € N is Pr(o,i) = {j | o(j) < o(i)}. Then
the completion time C'(o,7) of the job of agent i with respect to some feasible order o is equa to
Pi T 2 jepr(oyi) Pj- Thetotal costs ¢ (S) of acoalition S C N isgiven by

=Y ai(C(o,1))

€S

The (maximal) cost savings of acoalition S depend on the precedence relation P and the set of admissible
orders of this coalition. We call a processing order o € II(N,P) admissible for .S with respect to the
initial order if it satisfies the following condition:

Pr(og,j) = Pr(o,j) foral j € N\S.

This condition impliesthat the completion time of each agent outside the codlition S isequal to his com-
pletion time in the initial order, and that the agents of S are not alowed to jump over playersoutside S.
The set of admissible orders for a coalition S is denoted by (.S, P).

Given aprecedence sequencing situation (N, P, og, p, ) the corresponding precedence sequencing game
is defined in such away that the worth of a codition S isequal to the maximal cost savings the coalition
can achieve by means of an admissible order. Formally we havefor any S C N, S # () that

v(S) = Uergasxp){z a;C(00,1) Z(aiC(a,i))}.

€S

A codlition S iscalled connected with respect to oy if forall i, j € Sand k € N, 0o (i) < oo(k) < o0(4)
implies £ € S. A connected coalition S C T isacomponent of 7"if ¢ € T'\S impliesthat S U {3} is
not connected. The components of 7" form a partition of 7', denoted by 7'/oy. The definition of an
admissible order of acodition S says the players of .S are not allowed to jump over players outside the
codlition. Thisimpliesthat an optimal order is such that the players in each component are rearranged
optimally. Hence, for any coalition T,

v = > (). @

SGT/O’()

Thefollowing example illustrates a precedence sequencing gamein case the precedencerelation isa
tree.

Example2.1 Let (N, P, 09, p, a) be a precedence sequencing situation, where N = {1,2,3,4},P =
{(1,2),(2,4),(1,3)},00 = (1,2,3,4),p = (1,1,1,1) and & = (1,2,3,4). Then the worth of the
connected codlitionsisv({i}) = 0fori =1,2,3,4, v({1,2}) = 0, and

v(S)=1if §={2,3},{3,4},{1,2,3},{2,3,4},{1,2,3,4}. o

3



Note that (1) implies that precedence sequencing games are o-component additive games, and, thus,
balanced (cf. Curiel et al. (1994)). Recall that agame (N, v) is called balanced if its core is non-empty.
The core consists of al vectors that distribute v(V), i.e., the revenues incurred when al playersin N
cooperate, among the playersin such away that no subset of players can be better off by seceding from
the rest of the players and acting on their own behalf. That is, avector z € RY isin the core of agame
(Ny0)if sy xy =v(N)and 3 o;cqx; > v(S) foral S C N,

3 Convexity of precedence sequencing games

In this section we will establish the convexity of the precedence sequencing games corresponding to situ-
ations in which the precedence relations consist of parallel chains and theinitial order is a concatenation
of these chains.

The following example shows that precedence sequencing games that arise from a sequencing situ-
ation in which the precedence relation is a tree need not be convex. Recall that a game (V,v) is called
convex if forany i,j € N,i # jandany S C N\{4,j} it holds

v(S Ui, j}) —o(SU{i}) —v(SU{j}) +0(S) 2 0. @
Example 3.1 Consider the precedence sequencing game of Example 2.1. Then

v({2,3,4}) —v({2,3}) —v({3,4}) +v({3}) = -1 <0,
which impliesthat (N, v) is not convex. o

Let (N, P, 09, p,a) be a precedence sequencing situation. Then P is said to be a network of parallel
chains if each player precedes at most one player and is preceded by at most one player, i.e., for each
i€ Nitholdsthat |{j € N : (i,5) e P} <land |{j € N : (j,i) € P}| < 1. A chainisan ordered
set of players (iy, ..., i) for which (4;,4;4;) € P foreachl € {1,...,k — 1} and for which there does
not exist aplayer j € N suchthat (j,71) € P or (ig,j) € P.

Let (N,P,00,p, ) be a precedence sequencing situation where P is a network of pardlel chains,
1,...,C say. Theset of playersinchainc = 1,...,Cisdenoted by P(c). Thesets P(c) (c = 1,...,C)
define apartition of N. We assume that o is some concatenation of these chains, i.e., P(c) is connected
fordlc=1,...,C. Without loss of generality we assume that the order of the chainsis1,...,C. The
following example illustrates a concatenation of chains.

Example3.2 Let (N, P, 00, p, ) be a precedence sequencing situation, where N = {1,2,3,4,5,6},
P ={(1,2),(3,4),(4,5),(5,6)},p=(1,1,1,1,1,1),and « = (2,5, 6,6, 3,6). The only two possible
initial ordersare (1,2,3,4,5,6) and (3,4,5,6, 1,2), because P(1) = {1,2} and P(2) = {3,4,5,6}.

<&

For determining the precedence sequencing game corresponding to a sequencing situation in which
the precedence relation is a concatenation of chains, we need an optimal order for each coalition. There-
fore, we need the following additional notations and definitions. For any 7' C N, T # (), we define

a(T)
a(T) := Q;, T):= 7y w(T') == —=,
()= p(T)=3p, u(l) =T

€T €T



where u(T") is called the urgency index of coalition T'.

By the component additivity of the precedence games (see (1)), we can restrict ourselves to cal cul at-
ing the worth of connected coalitions. Let S be a connected coalition. Then thereare chainscand ¢ + &
suchthat SN P(c+1) #Qforall=0,....kand SN P(c—1)=SNP(c+k+1)=1{. Forany
1=0,...,kletch(S) = SNP(c+1) = {i,...,i,} bethe (non-empty) intersection of S with the

players of chain ¢ + . Each ch;(.S) ownsin anatural way the ordering induced by oy, i.e., for ciy;(S) it
holds that o (i}) < o0(ih) < ... < oo(ib,). Notethat chy(S) = P(c+ ) forall I =1,... k- 1.

Before stating Sidney’s agorithm, we introduce the concepts of heads and tails. A head of a chain
c=(i1,...,1) isaset T C P(c) suchthat T = {i1,...,4}. Smilarly, atail of cisaset ' C P(c)
suchthat 7' = {il, ... ,ik}.

Now Sidney’s algorithm provides a way to calculate an optimal order of the members of S given
precedence relations that consist of parallel chains and an initial order that is a concatenation of chains.

Procedure: Optimal order of connected S

Step 1: Construction of Sidney-components

Forevery [ =0, ..., k, find the following coalitions:

= {5t ... ,iill}, the largest head of chy(.S) that satisfies

-l -] -] -]
U({Zh .- 71tl1}) = 12}122;” U({Zh .- 7’Lq})'

Form >1

Thoi={ily -1y }, thelargest head of chy(S)\(UZ,'T}) that satisfies
m—1 m

(2

1 1oy 1 1
u({ztin,ﬁl"”’ztlm}) = T?;{qgm u({ltinfﬁl’ ceeslg))

m—1

Let m; be the number of sets we obtain in this way. Then, U,—1__m, Tt = ch(S). The sets T}
(=0,....,kandr =1,...,my) are caled the Sidney-components of S.

Step 2: Ordering Sidney-components

Order the Sidney-components of .S’ in weakly decreasing order with respect to their urgency indices.

The following theorem follows from Sidney (1975).

Theorem 3.3 An order o that results from the procedure is admissible and optimal for S.

Example3.4 Let (N, P,00,p,a) with og = (1,2,3,4,5,6) be defined as in Example 3.2. Let S =
{2,3,4,5,6}. Then cho(S) = {2} and chi(S) = {3,4,5,6}. Following the first step of Sidney’s
agorithm we obtain 79 = {2}, T! = {3,4} and T} = {5,6}, with u({2}) = 5, u({3,4}) = 6 and
u({5,6}) = 43, respectively. From the second step of the algorithm and Theorem 3.3 it follows that
processing the jobs in the order o = (1,3,4,2,5,6) is optimal for coalition S given the precedence
relation P.



Let (V, v) be the precedence sequencing game corresponding to (N, P, og, p, ). It followsfrom (1)
and the optimality of 0% € X(S,P) that v(S) = (25 +3%6 +4%6+5%3+6%6) — (2%6 + 3 «
6+4%x54+5%x3+6%6)=2. o

The following lemmata describe rel ations between urgency indices, which facilitate the proof of our
main result.

Lemma3.5 Let S, T C N be disjoint and non-empty. If w(S) > «(T’), then u(S) > u(SUT) > w(T).
If w(S) = w(T), then w(S) = w(SUT) = u(T).

Proof. Suppose u(S) > w(T). It holds that M =u(S) > uw(T) = ;“(ﬂ)l Therefore «(S)p(T) >
a(T)p(5). Adding a(5)p(S) or a(T)p(T )tObothSdesglvesa(s)(p(SHp(T)) (@(S)+a(T)p(S
and (a(S) + a(T))p(T) > a(T)(p(S) + p(T), respectively. Henoe, u(S) = 5§ > s(EFzlh)
w(SUT) andu(SUT) = 2553 > 91 = u(T).

Now suppose «(.S) = u(T). Thenit holds that a(S)p(T") = a(T)p(S). Adding «(S)p(S) to both
sides gives a(S) (p(S) + p(T)) = (a(S) + a(T'))p(S), and equivaently, u(S) = w(SUT). O

Lemma3.6 Let S, T, W C N be disjoint and non-empty. If w(W) > «(T) > u(S), then
wWSUTUW) >u(SUT).

Proof. Because u(T") > u(S) it follows from Lemma 3.5 that w(7T") > u(SUT) > u(S), and therefore
w(W) > uw(SUT). Applying Lemma3.5 again givesu(W) > w(SUTUW) > u(SUT). O

Lemma3.7 LetT C N, T # (and let 7%, . .. ,T,’m be the Sidney-components of 7" for some chain /.
Then u(T}) > u(T}) > --- > u(T},).

Proof. Followsimmediately from the definition of the Sidney-components and Lemma 3.5. O

To prove our main result we need the foll owing notation. For two codlitionsU, V C N withUnNV =
(), we define?

g(U, V) == (a(V)p(U) — a(U)p(V)), -
Note that ¢(U, V') > 0. For any two non-empty sets U,V C N it holdsthat (U, V') > 0 if and only if

u(V) > u(U). Extending to two collections2/,V C 2N withU NV = () foreachU € U,V € V, we
define

GuUY) = Y gUV). €)

veu,vey

Theorem 3.8 Let (N, P, 09, p, ) be a precedence sequencing situation where P is a network of parallel
chains and o a concatenation of chains. Then the corresponding precedence sequencing game (N, v)
IS convex.

’For x € R wewrite z1 = max{0,z}.



Proof. Theinitial order isaconcatenation of chains. Without loss of generality we assume that the order
of thechainsis1,2,...,C. We have to show that (2) holdsfor every i,j € N,i # jand S C N\{i,j}.

First suppose that ¢ and j are in different components of S U {¢,5}. Then applying (1) implies 2).
Therefore we only consider situationsin which : and ; are in the same component of S U {¢, j }. Because
precedence games are oy-component additive, it is sufficient to consider situations where S U {i,j} is
connected. Without loss of generality assume that o(i) < (7). Now define (see Figure 1 for an
illustration)

S = {keS:op(k) <op(i)},
Sy = {keS:o0(i)<oolk) <oo(j)},
Sz = {keS:00(j) <oo(k)}

s, s, s,

Figure 1. The sets 51, S, and Ss

We distinguish between two cases.

Casel: SUS;=0,i.e, S =25.

Suppose that 7 and j are in the same chain. In that case no reordering of the players is admissible,
and thereforev(SU {4, j}) = v(SU{j}) = v(SU{i}) = v(S) = 0 and (2) holds. So now suppose that
i isan element of chain ¢* and j isan element of chain d*, where ¢* < d*. For convenience weintroduce
the following sets.

ForV = Su{i,j}, Su{i} let C1 (V') bethe collection of Sidney-componentsof V' that are contained
in ¢* and that are not Sidney-componentsof S'U {j}. Notethat C;(S U {4, j}) = C1(S U {i}), because
P(c*)N(SU{i,j}) = P(c)N(SU{i}).

ForV =SU{j}, S let C1(V) bethe collection of Sidney-componentsof V' that are contained in c*
and that are not Sidney-componentsof S U {7, j }. Notethat C;(S U {j}) = C1(95).

ForV = SU{i,j}, SU{j} let C4(V) bethe collection of Sidney-componentsof V' that are contained
in d* and that are not Sidney-components of S U {i}. Notethat C4(S U {i,j}) = Ca(S U {j}).

ForV =S U{i}, S let C4(V') bethe collection of Sidney-components of V' which are contained in
d* and which are not Sidney-components of S U {i, j}. Notethat C4(S U {i}) = C4(S5).

See for an example Figure 2. Note that the end of C; and the beginning of C4 coincide in all four

situations. Thisfollows straightforwardly from LemmaA.1 of the Appendix.
Moreover from LemmaA.2 it follows that

v(SU{i,7}) —v(SU{i}) —o(SU{j}) +v(S)



C.() _ C() Cy() C.()

chajn ¢* | chains c*+1 up to d*-11 chain d*
.. . | (
sy L[] [ | []] Ll [
| |
chain c* | | chaijin d*
sefiy [l L[| [ []] |
| |
chain c* | | chain d*
' | Ll [P d]
sy LI [ L] | j
| |
chajn c* | | chaiin d*
| Ll |
s [l [ [ |
| |

Figure 2: Thesets C1(.) upto Cy(.)

= G(C1(SU{i,4}), Ca(S U4, j}) — G(C1{S U {i}), Ca(S U {i}))
—G(C1(SU{j}),Ca(S U {j})) + G(C1(S), Ca(9)) 4)

From Lemma A.1 it follows that C1(S U {i,5}) and C4(S U {¢,5}) contain only one element (i.e,
Sidney-component). Let U* be the unique element of C1(S U {¢,5}) and let V* be the unique element
of C4(S U {i,7}). Substituting thisin (4) we obtain

v(SU{,j}) —o(SU L) —u(SU{j}) +v(S)
= GUUTL{VTY - GHU™}, Cu(S U {i}))
—G(C1(SU{}), (V7)) + G(C1(S), Cu(S))

VeCy(Su{i})
UeC:(Su{j}) UeC1(S),VelCys(S)

where the second equality holds by (3). Hence, (2) is satisfied if expression (5) is nonnegative.

Subcase la: Suppose g(U*,V*) = 0, i.e, w(U*) > u(V*). Because V* is a Sidney-component,
it follows from the definition of Sidney-components that «(V*) > «(V1), where V; is the first Sidney-
component in C4(S U {i}). Hence, u(U*) > u(V1), and g(U*, V1) = 0. From Lemma 3.7 it follows
that ZV€C4(SU{i}) g(U*,V) = 0. S|m||ar|y, it can be shown that ZUECl(SU{j}) g((]7 V*) = 0 and
Y vecy(s),vecs(s) 9(U, V) = 0, and therefore expression (5) is nonnegative.

Subcase 1b: Supposeg(U*,V*) > 0,i.e, u(V*) > u(U*). Define



V*(a) = Uyeoy(sufit)ygw=vysoV
V*(b) := V*\V*(a).

From Lemma 3.7 it follows that V*(a) is a head of V* that consist of the players of those Sidney-
components of C4(S U {i}) with higher urgency index than U*. Notethat j € V*(b), and therefore
V*(b) # 0. Similarly we define

U* (D) := Uuec, (suijh):g,v=)>oU

U*(a) = U\U*(b).

From Lemma 3.7 it follows that U*(b) is a tail of U* that consist of the players of those Sidney-
components of C1(S U {j}) with lower urgency index than V*. Note that i € U*(a) and therefore
U*(a) # 0. Rewriting the first two terms of (5) we obtain

gus v - > gUV)
VeCy(SU{i})
= g(U" V") - > g(U*, V)
VeCs(SU{i}):VCV*(a)
= a(V')p(U7) —a(U")p(V") - > (@(V)p(U") = a(U")p(V))

VECL(SULi}):VCV*(a)
= a(VI)pU") — a(U)p(V*) = a(V*(a))p(U") + a(U*)p(V*(a))
a(V*(0))p(U”) — a(U*)p(V*(b)), (6)

where the second equality follows from «(V*) > w(U*) and w(V') > w(U*) fordl V € Cy(S U {i})
with V' C V*(a). Rewriting the last two terms of (5) we obtain

Z g(U, V*) - Z g(U, V)

UeC:(Su{j}) UeC1(S),VeC4(S)
UeC(SU{3}):UCU*(b) UEeC:(8),VeC(S):UCU*(b),VCV*(a)
< > (a(V*)p(U) — a(U)p(V")

UEeC, (SU{j}):UCU*(b)

- 2 (a(V)p(U) — a(U)p(V))
UeCi(S),VeCu(S):UCU*(b),VCV*(a)

= a(VI)pU*(b)) — a(U(0))p(V") — (V™ (a))p(U* (b)) + a(U*(0))p(V*(a))

= a(V*(0)p(U*(1)) — a(U*(0))p(V*(b)). @)
Thefirst inequality follows from the definition of U*(b). The second inequality follows from g(U, V') >
a(V)u(U) — a(U)p(V) fordl U,V C N.

Substituting (6) and (7) in (5) we obtain



v(SU{,j}) —o(SU{i}) —v(SU{j}) + ()
> a(V(0))p(U"(a)) — (U (a))p(V*(b))- (8)

To show that expression (8) is nonnegative, we will prove that w(V*(b)) > u(V*) and u(U*) >
w(U*(a)). This implies, using the assumption «(V*) > «(U*), that w(V*(b)) > w(U*(a)). Asa
result expression (8) is nonnegative.

Suppose that V*(a) = 0, then V*(b) = V* and hence w(V*(b)) = w(V*). So suppose that V*(a) # ()
and suppose that w(V*(a)) > w(V*(b)). Then using Lemma 3.5 it follows that w(V*(a)) > u(V*) >
u(V*(b)). Thisimplies that V* is not a Sidney-component of S U {¢, 5}, which is a contradiction.
Hence, u(V*(b)) > w(V*(a)) and using Lemma 3.5 it follows that «(V*(b)) > «(V*). The proof that
w(U*) > w(U*(a)) runssimilarly.

CASE 2: §1 U S3 # 0.
First supposethat S = S» U S3,i.e, S1 = 0. Let S3 = {h1,...,hq} Whereop(hy) < -+ < og(hg).
Then

v(SU{d, j}) —v(SU{i}) —v(SU{j}) +v(S)
= v(S2US3U{i,j}) —v(SaUS3U{i}) —v(S2USsU{j}) +v(S2US3)
= U(SQUS3U{i,j}

) — (W(S2 U{i}) +0(S3)) —v(S2U Sz U{j}) + (v(S2) + v(S3))
= U(SQ U Sz U {Z,j}) — U(SQ U {’L}) — U(SQ US3uU {j}) -+ U(SQ)
= v(S2U{i,j}) —v(S2U{i}) —v(S2 U {j}) + v(S52) ©)
+ v(S2US3U {4, j}) —v(S2U{i,j}) —v(S2USsU{j}) +v(S2U{j}) (10)

where the second equality holds because S, U S3 U {i} and S; U S3 are disconnected. We will show that
expression (9) aswell as expression (10) is nonnegative.

From Case 1 it follows that

’U(SQ U {7,,]}) — ’U(SQ U {Z}) — ’U(Sg U {j}) + 7)(52) >0,

which shows that expression (9) is nonnegative.

Now let 7y = So U {j},andforl € {2,...,q} letT; = So U{j, h1,...,hy_1}. From Case 1 it follows
that foreachl € {1,...,q}

(T3 U {i, y}) —v(T3 U {i}) —o(T3 U {ly}) +v(T}) > 0.

Now it holds that

q

> WM Ui, }) —o(T U{i}) — o(T U {h}) + o(T)))

=1
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SN @ U i) - o(@ U i) i o(T U () + (1)
=1
(v(Ty U{i, he}) —v(T1 U {i})) + (— (Tq U {hq}) +v(T1))
= v(SUS3U{i,j}) —v(S2U{i,j}) —v(S2USsU{j}) +v(S2U{j}) >0,

which shows that expression (10) is nonnegative. Hence (2) holds if S5 # 0 and S1 = (. A similar
argument shows that (2) holdsif S; and S5 are both non-empty. O

Finally weillustrate that convexity islost if theinitial order is not a concatenation of chains.

Example 3.9 Let usconsider the precedence sequencing situation (N, P, 0g, p, ) givenby N = {1, 2,3},
P={(1,3)},00=(1,2,3),p=(1,1,1),and a = (1,2, 3). Hence, oy isnot aconcatenation of chains.
Let (V, v) be the corresponding precedence sequencing game. It can easily be verified that

v({1,2,3}) — v({2,3}) —o({1,2) + v({2}) =1 —1—-14+0 <0,

So (N, v) isnot convex. o

Appendix

LemmaA.l Let (N,P,00,«,p) be a precedence sequencing situation with P a network of parallel
chains and let o be a concatenation of chains. The sets C1(S U {i,5}) and C4(S U {7, j}) contain
precisely one element (i.e., S dney-component).

Proof. We will show that C;(S U {4, j}) contains a single element. If 7 isthe only player in P(c*) N
(SU{i,j}), thenCi(SU{i,j}) = {{i}}. Soassumethat i isnot the only player in P(c*) N (SU{,5})
and suppose that the Sidney-component of S U {7, j} containing ¢ is {:} ugl A; U B, where A4; is
a Sidney-component of S U {j} for each! € {1,...,m} and where B is a proper head of A,,, i.e,
B # (and B # A, Thenit holdsthat w({i} U™, ' A; U B) > u({i} U™,' A;). Now suppose that
u(B) < u({i} U7 A;). Thenfrom Lemma3.5it followsthat u({i} U;" AU B) < u({i} U7 4)),
which is a contradiction. Hence, u(B) > u({i} U™ ;' A)).

Because A, is a Sidney-component of S U {j}, it holds that w(A,,\ B) > u(B). Hence, we have
u(Am\B) > w(B) > u({i} U™, ' A;). From Lemma 3.6, by usng S = {i} U*;' 4, T = B and
W = A,\B, we obtain that w({i} U™, 4;) > u({i} U7 A; U B), which is a contradiction to
the assumption that the Sidney-component of S U {4, j} containing 4 is {i} U™, A; U B. Therefore,
the Sidney-component of S U {4,j} containing 7 is of the form {i} U™, A;, and we conclude that
C1(S U {i,j}) contains a single element. Similarly it can be shown that C4(S U {¢,j}) contains one
element. O

LemmaA.2 Let (N, P,00,,p) be a precedence sequencing situation with 7 a network of paralle
chains let oy be a concatenation of chains. Let (IV,v) be the corresponding precedence sequencing
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game. It holds that

v(SU{,7}) —v(SU{i}) —o(SU{j}) +v(S)
= G(CU(SU{i,7}), Ca(S Ui, 71)) — G(CU(S U{i}), Ca(S U {a}))
—G(CL(SU{}), Ca(SU{j})) + G(C1(5), Cu(S))-

Proof. Besidesthe already introduced sets C, (V') and C4(V'), where V = SU {3, j}, SU{i}, SU{j}, S,
we introduce the following collections of Sidney-components (for an illustration see Figure 2). For
V =5SuU{i,j},Su{i} let Co(V) bethe collection of Sidney-componentsof V' that are contained in c*
and that are also Sidney-components of S U {j}.

For V = S U {j},S let Co(V') be the collection of Sidney-components of V' that are contained in
¢* and that are aso Sidney-components of S U {i,j}. Notethat C2(S U {i,j}) = Ca(S U {i}) =
Ca(S U {j}) = Ca(9).

ForV = Su{i,j},SU{j} let C5(V') bethecollection of Sidney-componentsof V' that are contained
in d* and that are also Sidney-components of S U {¢}.

For V = S U {i},S let C5(V) be the collection of Sidney-components of V' that are contained in
d* and that are aso Sidney-components of S U {4, j}. Note that C5(S U {3,j}) = C3(S U {i}) =
C3(S U {j}) = Cs(9).

Forl € {¢* +1,...,d* — 1} let D; be the collection of Sidney-components that are contained in
chaini.

Finaly, for V = S U {i,j},S U {i},S U {j},S let Clg(V) = Cl(V) U CQ(V) and let C34(V) =
C3(V) U (V).

ForT =Su{ij},SU{i},SuU{j},Sitholdsthat

d*—1
o(T) = Y [G(Cra(T), Dr) + G(C12(T), C3a(T))]
I=c*+1
d*—1

+ > G(Dy, D)+ > G(Dy,Cs4(T)).
I,me{c*+1,...,d*—1}:i<m I=c*+1

Now it is straightforward, using C12(S U {i, j}) = C12(S U {i}), C12(S U {j}) = C12(S),
034(5 U {Z,]}) = 034(5 U {j}) and 034(5 U {Z}) = 034(5), to show that

v(SU{i,7}) —v(SU{i}) —o(SU{j}) +0(S)

= G(C1a(S Ui, j}),Caa(S Ui, j})) — G(Cra(S U {i}), Caa(S U {i}))
—G(C12(S U{j}), C34(S U {j})) + G(C12(S), C34(S))-

= G(C1(SUA{i,j}), Ca(S Ui, j}) — G(CL(S U{i}), Ca(S U {i}))
—G(CL(SU{7}), Ca(SU{j})) + G(C1(5), Cu(S)),

which proves the lemma. O
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