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Multiple fund investment situations and related
games

Stefan Wintein1 Peter Borm1 Ruud Hendrickx1,2

Marieke Quant1

Abstract

This paper deals with interactive multiple fund investment situations, in
which investors can invest their capital in a number of funds. The investors,
however, face some restrictions. In particular, the investment opportunities
of an investor depend on the behaviour of the other investors. Moreover,
the individual investment returns may differ. We consider this situation from
a cooperative game theory point of view. Based on different assumptions
modelling the gains of joint investment, we consider corresponding types of
games and analyse their properties. We propose an explicit allocation process
for the maximal total investment revenues.

1 Introduction

Of the many decisions that a firm has to make, none is likely to have more impact

than the decision to invest capital, which often involves large, extended commit-

ments of money and management time. Such investment decisions determine the

company’s future course and, hence, its market value. It is not surprising, therefore,

that firms devote much time and effort to planning capital expenditure.

The importance of investment decisions is also reflected in the enormous amount

of attention that is devoted to it in the economic literature. In most of this litera-

ture on investment, firms are modelled as individually acting agents, ie, cooperation

between firms is not taken into account. Another assumption that is predominant

in the literature on investment, is that the agents face investment opportunities

that are exogenously given. That is, the investment opportunities of an agent are

1CentER and Department of Econometrics and Operations Research, Tilburg University.
2Corresponding author. P.O. Box 90153, 5000 LE Tilburg, The Netherlands. E-mail:

ruud@uvt.nl.
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not influenced by the investments of other agents; the strategic aspects of invest-

ment are often overlooked. In this paper, we analyse situations in which investment

opportunities of an agent depend on the behaviour of other investors. Moreover,

the situations will be analysed by taking into account the consequences of possible

cooperative behaviour.

In this paper, we introduce a new class of cooperative situations, called multiple

fund investment (MFI) situations. In an MFI situation, agents can invest their

capital in a certain number of funds. There are restrictions on the funds such

that there is a maximum number of capital units that can be invested in each of

them. The agents (players) in an MFI situation are characterised by the amount of

capital they can invest and by their individual returns on the different funds. That

is, we consider the possibility that the return of an investment project depends

on the player (eg, firm) that is involved in this project. Furthermore, investment

opportunities are limited; we assume that the total capital available exceeds the

total investment opportunities.

Associated with each MFI situation, we define three cooperative MFI games in

characteristic function form. These games are based on three possible assumptions

on the coalitional expectations of the return on their joint investments. These

coalitional expectations relate to the behaviour of the players outside the coalition.

To actually calculate the coalitional values of the MFI games, one has to solve linear

programs. These turn out to be transportation problems, allowing for a fairly quick

calculation of these values.

The central question in an MFI situation is how to divide, in an acceptable

way, the maximal total investment revenues of the players if they all cooperate and

coordinate their investment plans in an optimal way. In this context, we study

properties of the associated cooperative games, in particular convexity and (total)

balancedness. We also propose a two-stage allocation rule for MFI situations. In

the first stage, an allotment is made, which gives each player investment rights in

the various funds. In the second stage, the players are thought of as facing a linear

production situation (cf. Owen (1975)) in which their investment rights and capital

stock are resources. Owen vectors of this linear production situation are then seen

as solutions of the original MFI situation. Stability of these solutions is shown.

This paper is organised as follows. Section 2 introduces MFI situations and the

three corresponding MFI games. In section 3, the properties of convexity and (total)

balancedness of these games are studied. In section 4, we introduce the concept of
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allotment and propose our two-stage solution for MFI situations. In section 5, we

elaborate on how our analysis can be extended when some of the assumptions are

modified.

2 The MFI model

A multiple fund investment or MFI situation is a tuple (N, M, e, A, d), where N =

{1, . . . , n} is the set of players, M = {1, . . . , m} denotes the set of available funds

and e ∈ RM
++ is the vector of fund restrictions. An element ej denotes the maximum

number of capital units that can be invested in fund j. Furthermore, A ∈ RN×M
+

is the return matrix, where an element Aij denotes the revenue player i obtains

when he invests one unit of his capital in fund j. Finally, d ∈ RN
++ is the vector of

individual investment capital. We assume that
∑

j∈M ej <
∑

i∈N di
1.

Let (N,M, e, A, d) be an MFI situation. In order to define corresponding MFI

games, we first state the program that determines the maximum revenue a coalition

S ⊂ N, S 6= ∅ can obtain when the fund restrictions are given by a vector z ∈ RM
+ .

These direct revenues are denoted by DR(S, z) and defined by

DR(S, z) = max
X∈RS×M

∑
j∈M

∑
i∈S

AijXij (2.1)

such that
∑
j∈M

Xij ≤ di for all i ∈ S,

∑
i∈S

Xij ≤ zj for all j ∈ M,

Xij ≥ 0 for all i ∈ S, j ∈ M.

By introducing a dummy fund or player in order to obtain equality restrictions, this

problem is translated into a balanced transportation problem (cf. Hitchcock (1941)),

which can be solved very efficiently.

Facing fund restrictions z ∈ RM
+ , the players in S will construct an optimal plan

XS ∈ RS×M according to this program in order to maximise their total revenue.

The set of all feasible plans is given by

FP (S, z) = {XS ∈ RS×M
+ | ∀i∈S :

∑
j∈M

XS
ij ≤ di,∀j∈M :

∑
i∈S

XS
ij ≤ zj}.

1This assumption will be elaborated upon in section 4.
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For a plan X ∈ RS×M , the corresponding revenues are given by the direct payoff

vector O(X) ∈ RS, where Oi(X) =
∑

j∈M AijXij for all i ∈ N . The set of all

optimal feasible plans XS is denoted by OP (S, z):

OP (S, z) = {XS ∈ FP (S, z) |
∑
i∈S

Oi(X) = DR(S, z)}.

Once the members of a coalition S have decided upon a paricular plan XS, they

will invest their capital accordingly, thereby tightening the fund restrictions z. The

resulting fund restrictions z(XS) are given by

zj(X
S) = zj −

∑
i∈S

XS
ij

for all j ∈ M .

Using this notation, we now introduce three TU games that correspond to an MFI

situation. A TU (transferable utility) game is a pair (N, v), where N = {1, . . . , n} is

the set of players and v : 2N → R is the characteristic function, assigning to every

coalition S ⊂ N a value v(S), representing the total monetary payoff the members

of S can guarantee themselves if they cooperate. By convention, v(∅) = 0.

Depending on how the “guarantee” in the last paragraph is interpreted, an MFI

situation gives rise to three TU games, which will be denoted by v1, v2 and v3.

The common feature is that first the players outside S can invest their capital and

afterwards the members of S invest optimally given the resulting (tightened) fund

restrictions. The difference between the games lies in the way the players outside S

are assumed to behave in the first stage.

Let (N, M, e,A, d) be an MFI situation. The game v1 is defined by

v1(S) = min{DR(S, e(XN\S)) |XN\S ∈ FP (N\S, e)}

for all S ⊂ N, S 6= ∅. That is, the players outside S, facing fund restrictions e, are

assumed to choose that feasible plan XN\S for which the resulting revenue for S,

facing fund restrictions e(XN\S), is minimal.

For our second game, we again take a pessimistic approach, but with the assump-

tion that the choice of the players in N\S is restricted to plans that maximise their

own revenue, ie, that they choose an investment plan in OP (N\S, e):

v2(S) = min{DR(S, e(XN\S)) |XN\S ∈ OP (N\S, e)}

for all S ⊂ N,S 6= ∅.
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For the third game, the players outside S also choose an optimal plan for them-

selves, giving them a revenue of DR(N\S, e). In the second stage, we assume that

the players in S can persuade the members of N\S to change their investment plan

as long as they still receive DR(N\S, e). Of course, coalition S will persuade them

to choose a plan in such a way that the two coalitions together generate a total

revenue of DR(N, e). After giving up the promised DR(N\S, e), the net revenue of

coalition S equals

v3(S) = DR(N, e)−DR(N\S, e).

Example 2.1 Consider the MFI situation (N, M, e, A, d) with three players (rows)

and two funds (columns):

3 3
10 9 1
1 4 4
4 10 3

So, N = {1, 2, 3}, M = {1, 2}, e = (3, 3), A =




10 9
1 4
4 10


 and d = (1, 4, 3).

The unique optimal plan for the grand coalition is

XN =




1 0
2 0
0 3




with total payoff 42 and direct payoff O(XN) = (10, 2, 30).

Next, take S = {2, 3}. In order to compute v1(S), we have to determine

where player 1 should invest his single unit of capital so that the resulting op-

timal payoff to S is minimal. If player 1 invests his unit in fund 1 (X1 =

[ 1 0 ] ∈ FP (N\S, e)), then z(X1) = (2, 3) and coalition S can obtain 32 with

plan

[
2 0
0 3

]
∈ OP (S, z(X1)). If player 1 invests in fund 2, coalition S can get 26

with plan

[
2 0
1 2

]
. Hence, v1(S) = 26.

For our second game, player 1 has to invest in fund 1, which is optimal for him.

As a result, v2(S) = 32.

For the third game, we first determine DR(N\S, e), which equals 10 with plan

[ 1 0 ] for player 1. Hence, v3(S) = DR(N, e)−DR(N\S, e) = 42− 10 = 32.
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In the following table, we list the direct revenues and the three coalitional values

of each coalition:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
DR(S, e) 10 13 30 23 40 33 42

v1(S) 0 2 4 12 14 26 42
v2(S) 0 2 4 12 14 32 42
v3(S) 9 2 19 12 29 32 42

/

The first game is the most pessimistic, whereas the third game is the most optimistic,

as is shown in the following proposition.

Proposition 2.1 Let (N, M, e, A, d) be an MFI situation. Then for the three

corresponding games we have that v1(N) = v2(N) = v3(N) = DR(N, e) and

v1 ≤ v2 ≤ v3.

Proof:

The first part of the proposition follows immediately from the definitions. The rela-

tion between v1 and v2 is obvious. It remains to show that v2 ≤ v3. Let S ⊂ N, S 6= ∅
and let XN\S ∈ OP (N\S, e), resulting in the revenue of DR(N\S, e) for coalition

N\S. Let XS ∈ OP (S, e(XN\S)), resulting in the revenue of DR(S, e(XN\S)) for

coalition S. If we combine the plans XN\S and XS, we obtain a feasible plan for

the grand coalition. Therefore,

v2(S) + DR(N\S, e) ≤ DR(S, e(XN\S)) + DR(N\S, e) ≤ DR(N, e).

Hence, v2(S) ≤ v3(S). ¤

3 Properties of MFI games

In this section, we analyse some properties of our three MFI games. In particular,

we consider convexity and (total) balancedness.

A TU game (N, v) is called convex if

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) (3.1)

for all i ∈ N,S ⊂ T ⊂ N\{i}.
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In order to prove convexity of v3 we first show that in terms of direct revenues,

larger coalitions benefit more from a rise in the fund restrictions than do smaller

coalitions. For this, we consider the following class of linear programs for S ⊂
N,S 6= ∅:

DR(S, k, `) = min
y∈RS ,z∈RM

∑
i∈S

diyi +
∑
j∈M

ejzj (3.2)

such that yi + zj ≥ Aij for all i ∈ S, j ∈ M,

yi ≥ ki for all i ∈ S,

zj ≥ `j for all j ∈ M,

where k ∈ RS
+ and ` ∈ RM

+ . If k = 0 and ` = 0, then (3.2) is the dual of (2.1).

First, we show how the solution of (3.2), (ȳ(k, `), z̄(k, `)) depends on `.

Lemma 3.1 Let `, `′ ∈ RM
+ be such that `′ ≥ `. Then

z̄(k, `′) ≥ z̄(k, `) (3.3)

for all k ∈ RN
+ .

Proof: If m = 1, then (3.3) is trivial. If n = 1, then we cannot have ȳ(k, `′) >

ȳ(k, `), since this would contradict optimality of (ȳ(k, `), z̄(k, `)). From this, (3.3)

immediately follows. So, assume that m > 1, n > 1.

Clearly, it suffices to show that (3.3) holds for ` and `′ which differ in only one

coordinate, so without loss of generality assume that `j = `′j for all j ∈ M\{1}.
Then we can immediately conclude that z̄1(k, `′) ≥ z̄1(k, `). Substituting z̄1(k, `)

back into the program for DR(S, k, `) we obtain

DR(S, k, `) = e1z̄1(k, `) + min
y∈RS ,z∈RM\{1}

∑
i∈S

diyi +
∑

j∈M\{1}
ejzj

such that yi + zj ≥ Aij for all i ∈ S, j ∈ M\{1},
yi ≥ k̂i for all i ∈ S,

zj ≥ `j for all j ∈ M\{1},

where k̂i = max{ki − z̄1(k, `), 0} for all i ∈ S. So,

DR(S, k, `) = ej z̄1(k, `) + DR(S, k̂, `M\{1}),

where `M\{1} = (`j)j∈M\{1}. Similarly,
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DR(S, k, `′) = ej z̄1(k, `′) + DR(S, k̂′, `M\{1})

with k̂′i = max{ki− z̄1(k, `′), 0} for all i ∈ S. Note that k̂′i ≤ k̂i for all i ∈ S. In order

to prove (3.3), we must show that z̄(k̂′, `M\{1}) ≥ z̄(k̂, `M\{1}). Again, it suffices to

show this for all k̂ and k̂′ which differ only in one coordinate, so, without loss of

generality assume that k̂i = k̂′i for all S\{1}. Then we can immediately conclude

that ȳ1(k̂
′, `M\{1}) ≤ ȳ1(k̂, `M\{1}). Substituting ȳ1(k̂, `M\{1}) back into the program

for DR(S, k̂, `M\{1}) we get

DR(S, k̂, `M\{1}) = d1ȳ1(k̂, `M\{1}) + min
y∈RS\{1},z∈RM\{1}

∑

i∈S\{1}
diyi +

∑

j∈M\{1}
ejzj

such that yi + zj ≥ Aij for all i ∈ S\{1}, j ∈ M\{1},
yi ≥ k̂i for all i ∈ S\{1},
zj ≥ ˆ̀

j for all j ∈ M\{1},

where ˆ̀
j = max{`j − ȳ1(k̂, `M\{1}), 0} for all j ∈ M\{1}. So,

DR(S, k̂, `M\{1}) = d1ȳ1(k̂, `M\{1}) + DR(S\{1}, k̂S\{1}, ˆ̀
M\{1}).

Similarly,

DR(S, k̂′, `M\{1}) = d1ȳ1(k̂
′, `M\{1}) + DR(S\{1}, k̂S\{1}, ˆ̀′

M\{1})

with ˆ̀′
j = max{`j − ȳ1(k̂

′, `M\{1}), 0} for all j ∈ M\{1}. Note that ˆ̀′
j ≥ ˆ̀

j for all

j ∈ M\{1}. So, in order to prove (3.3), we have to show that z̄(k̂S\{1}, ˆ̀′
M\{1}) ≥

z̄(k̂S\{1}, ˆ̀
M\{1}). This is the same problem that we started with, but with one player

and one fund less. Repeating the same procedure until either m = 1 or n = 1, we

arrive at the result. ¤

With the previous lemma, we can now show that larger coalitions benefit more from

an increase in the fund restrictions (in terms of direct revenues) than do smaller

coalitions.

Theorem 3.2 Let (N,M, e, A, d) be an MFI situation. Then for all e′ ∈ RM such

that e′ ≥ e, we have

DR(T, e′)−DR(T, e) ≥ DR(S, e′)−DR(S, e)

for all S ⊂ T ⊂ N, S 6= ∅.
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Proof: Clearly, it suffices to show the statement for all S ⊂ T ⊂ N, S 6= ∅ such

that |T\S| = 1. So, let t ∈ N, S ⊂ N\{t}, S 6= ∅ and define T = S ∪ {t}.
The dual program for coalition S is given by (3.2) with k = 0 and ` = 0. The dual

for coalition T is as follows:

DR(T, 0, 0) = min
y∈RT ,z∈RM

∑
i∈S

diyi + dtyt +
∑
j∈M

ejzj

such that yi + zj ≥ Aij for all i ∈ S, j ∈ M,

yt + zj ≥ Atj for all j ∈ M,

yi ≥ 0 for all i ∈ T,

zj ≥ 0 for all j ∈ M.

Now we are going to increase the fund restrictions from e to e′ and show that the

increase in direct revenues for coalition T is larger than the increase for coalition

S. It suffices to show this for an increase in only one fund restriction, so assume

without loss of generality that e′1 > e1 and e′j = ej for all j ∈ M\{1}.
First note that when the first fund restriction increases from e1 to e′1, the feasible

regions of the two linear programs remain the same. The only thing that can happen

by altering the objective functions is that the optimal face in one (or both) of the

programs changes. When gradually increasing the first fund restriction from e1 to

e′1, the optimal faces of the two minimisation programs may change several times.

However, the number of such changes is finite. So, we divide the increase from e1

to e′1 into a finite number of smaller increases for which the optimal face is constant

(except at the boundary, where the optimal face may be larger), and show for each

of these smaller increases that coalition T benefits more than coalition S. Hence,

without loss of generality, we can assume that there exist solutions (ȳS, z̄S) and

(ȳT , z̄T ) for the programs for S and T , respectively, which remain solutions if we go

from e1 to e′1.

Since by assumption, the solutions of the two programs do not change and the first

fund restriction only appears in the objective function, it suffices to show that its

coefficient z1 is larger in the solution for T that in the solution for S, ie,

z̄T
1 ≥ z̄S

1 .

Given ȳT
t , the program for T can be rewritten as follows:

DR(T, 0, 0) = dtȳ
T
t + min

y∈RT ,z∈RM

∑
i∈S

diyi +
∑
j∈M

ejzj
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such that yi + zj ≥ Aij for all i ∈ S, j ∈ M,

yi ≥ 0 for all i ∈ S,

zj ≥ cj for all j ∈ M,

where cj = max{Atj − ȳT
t , 0} for all j ∈ M . So, DR(T, 0, 0) = dtȳ

T
t + DR(S, 0, c).

Hence, the difference with the program for S only lies in the right hand sides of the

inequalities corresponding to the zj, j ∈ M . If c = 0, then we immediately have

z̄T
1 = z̄S

1 . For other c ∈ RM
+ , the result follows from Lemma 3.1. ¤

Theorem 3.3 Let (N, M, e, A, d) be an MFI situation. Then the corresponding

game v3 is convex.

Proof: Let i ∈ N,S ⊂ T ⊂ N\{i}. If S = ∅, then (3.1) is trivial. Otherwise, it

suffices to show that

DR(S ∪ {i}, e)−DR(S, e) ≥ DR(T ∪ {i}, e)−DR(T, e). (3.4)

Let XT∪{i} ∈ OP (T ∪ {i}, e) and denote x = (X
T∪{i}
ij )j∈M . Then we have

DR(T ∪ {i}, e)−DR(T, e) = DR(T, e− x) + Oi(X
T∪{i})−DR(T, e).

Suppose that player i invests according to x and that the players in S invest ac-

cording to some plan XS ∈ OP (S, e − x). Combining these, we obtain a plan

XS∪{i} ∈ FP (S ∪ {i}, e). Therefore,

DR(S ∪ {i}, e)−DR(S, e) ≥ DR(S, e− x) + Oi(X
T∪{i})−DR(S, e).

So, in order to prove (3.4), it suffices to show that

DR(S, e− x) + Oi(X
T∪{i})−DR(S, e) ≥ DR(T, e− x) + Oi(X

T∪{i})−DR(T, e),

or equivalently,

DR(T, e)−DR(T, e− x) ≥ DR(S, e)−DR(S, e− x).

This is a direct consequence of Theorem 3.2, so v3 is a convex game. ¤

From convexity of v3 and from Proposition 2.1 it follows that all three games are

balanced, ie, that their respective cores are nonempty, where the core of a game

(N, v) is defined by
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C(v) = {x ∈ RN |
∑
i∈N

xi = v(N), ∀S⊂N :
∑
i∈S

xi ≥ v(S)}.

The games v1 and v2 need not be convex. However, the game v1 is totally balanced,

ie, for each S ⊂ N, S 6= ∅, the subgame (S, v1
S) defined by v1

S(T ) = v1(T ) for all

T ⊂ S is balanced.

Proposition 3.4 Let (N, M, e, A, d) be an MFI situation. Then the corresponding

game v1 is totally balanced.

Proof: Let S ⊂ N, S 6= ∅. In calculating v1(S), first the players in N\S use their

investment capital to lower the fund restrictions in such a way that the revenues that

thereafter can be obtained by S are as low as possible. Let XN\S ∈ FP (N\S, e)

denote an investment plan that is chosen by N\S for that reason. Consider the MFI

situation (S, M, e(XN\S), AS, dS) with AS = (Aij)i∈S,j∈M and dS = (di)i∈S. Denote

the corresponding most pessimistic game by v1,S. Trivially, we have that

v1,S(S) = v1
S(S).

Moreover, we have that

v1,S(T ) ≥ v1
S(T )

for all T ⊂ S. To see this, notice that the fund restrictions faced by a coalition T in

calculating v1,S(T ) are equal to the restrictions faced by T in calculating v1
S(T ). Since

in the case of v1
S(T ) this sum is distributed over the funds in the most pessimistic

way for coalition T , we have the stated inequality. Since v1,S is balanced, we have

that the subgame v1
S is balanced and hence, v1 is totally balanced. ¤

4 MFI solutions: a linear production approach

In this section, we present a procedure for solving MFI situations, ie, we propose

a method of dividing DR(N, e) among the players. This procedure consists of two

stages. In the first stage, a division of the investment rights in the available funds

(an allotment) is made. In the second stage, this allotment is used as an input

vector of a related linear production process and the eventual allocation for the

grand coalition is an Owen vector of this process.
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Let (N,M, e, A, d) be an MFI situation. An allotment is an investment plan

Y ∈ FP (N, e) satisfying
∑
i∈N

Yij = ej

for all j ∈ M .

An element Yij represents the amount that player i is allowed to invest in fund

j. When the players individually invest in the funds according to the investment

rights they receive from an allotment Y , a payoff vector O(Y ) ∈ RN
+ results.

Example 4.1 One way to construct an allotment is simply to divide the investment

rights of each fund proportional to the investment capital of the players, ie,

Yij =
di∑

k∈N dk

ej

for all i ∈ N, j ∈ M . For the MFI situation in Example 2.1, this yields

Y =
3

8




1 1
4 4
3 3


 .

Note that the corresponding direct payoff O(Y ) = 1
8
(57, 60, 126) is not efficient with

respect to DR(N, e) = 42. /

The payoff Oi(Y ) to player i ∈ N according to Y can be viewed as the direct revenue

of coalition {i} with fund restrictions (Yij)j∈M , ie,

Oi(Y ) = DR({i}, (Yij)j∈M)

for all i ∈ N .

The players may decide to merge their investment rights and thereafter maximise

their joint revenues. Suppose a coalition S ⊂ N,S 6= ∅ of players decides to work

together. Define

Y S = (
∑
i∈S

Yij)j∈M .

The joint revenues that coalition S can obtain when working together is then given

by DR(S, Y S). So, after an allotment Y is made, a new situation arises, which can

be modelled as a TU game. This game, denoted by vY , is defined by

vY (S) = DR(S, Y S)

12



for all S ⊂ N,S 6= ∅.

This process of joining the investment rights according to an allotment turns out

to be a linear production process. A linear production situation (cf. Owen (1975)

and Van Gellekom et al. (2000)) is a tuple (N, R, P,Q, B, c), where N is a finite

set of players, R is a finite set of resources, P is a finite set of products, Q ∈ RR×P

is a technology matrix where Qrp represents the number of units of resource r ∈ R

necessary to produce one unit of product p ∈ P , B ∈ RR×N is a resource matrix

where Bri represents the amount player i ∈ N possesses of resource r ∈ R and

c ∈ RP is a market price vector of the products.

The maximal profit that can be made from a resource bundle b ∈ RR equals the

maximum of the linear program

max
x∈RP

+

{c>x |Qx ≤ b},

where the coordinate xp denotes the amount of product p that is produced.

A linear production situation L = (N, R, P,Q, B, c) gives rise to a corresponding

linear production game vL, defined by

vL(S) = max
x∈F (S)

c>x

for every S ⊂ N , where F (S) = {x ∈ RP
+ |Qx ≤ (

∑
i∈S Bri)r∈R}.

From duality theory we know that

vL(S) = min
y∈F ∗

∑
r∈R

∑
i∈S

yrBri

with F ∗ = {y ∈ RR
+ | y>Q ≥ c>}, since it is readily checked that the feasible regions

F (S) and F ∗ are both nonempty.

Let (N,M, e, A, d) be an MFI situation and let Y be an allotment. Each player

i is allowed to invest Yij units of his capital di in fund j, resulting in revenues of

Aij per invested unit. This is equivalent with saying that each player i can produce

one unit of a product pij by using one unit of his “capital resource” (of which he

possesses di) and one unit of his “investment right in fund j resource” (of which he

possesses Yij), with a market price for one unit of pij equal to Aij. So the situation

that arises after making the allotment Y can be characterised as a linear production

process (N, R, P, Q,B, c) in the following way:

13



• N : the set of agents coincides with the player set of the underlying MFI

situation.

• R: we define |M |+ |N | different resources consisting of |M | “fund” resources

{rf
1 , . . . , rf

m} and |N | “capital” resources {rc
1, . . . , r

c
n}.

• P : each player makes |M | different products corresponding to the resources,

so we define |N ||M | products (pij)i∈N,j∈M .

• Q: the technology matrix is constructed in the following way. Every unit of

product is made by using one unit of a “fund” resource as well as one unit

of a “capital” resource. The first |M | columns of A represent the products

made by the first player, the following |M | columns represent the products of

the second player, and so on. The first |M | rows of Q represent the “fund”

resources, the other rows represent the “capital” resources. For n = 3,m = 2,

the technology matrix Q looks as follows:

p11 p12 p21 p22 p31 p32

rf
1 1 0 1 0 1 0

rf
2 0 1 0 1 0 1

rc
1 1 1 0 0 0 0

rc
2 0 0 1 1 0 0

rc
3 0 0 0 0 1 1

• B: the “capital” resource bundles are provided directly by the MFI situation,

whereas the fund resources are given by Y . For n = 3,m = 2, the resource

matrix looks as follows:

1 2 3

rf
1 Y11 Y21 Y31

rf
2 Y12 Y22 Y32

rc
1 d1 0 0

rc
2 0 d2 0

rc
3 0 0 d3

• c: a product that is made of fund resource rf
j and capital resource rc

i has price

Aij. So, given the structure of Q, c looks as follows:

14



c = [A11, . . . , A1m, A21, . . . , A2m, . . . , An1, . . . , Anm].

The Owen set of a linear production situation L = (N, R, P, Q,B, c) is defined by

Owen(L) = {y>B ∈ RN | y ∈ F ∗(N), vL(N) =
∑
r∈R

∑
i∈N

yrBri},

where the vector y, being an optimal solution of the dual program, reflects the

shadow prices of the resources. An element of the Owen set is called an Owen

vector. Every Owen vector is an element of the core of the corresponding linear

production game:

Owen(L) ⊂ C(vL).

In particular, this implies that every linear production game is balanced. Also,

since every subgame corresponds in a natural way to a linear production situation

which is a “subsituation” of the original one, every linear production game is totally

balanced.

So, when an allotment Y is made, the situation that arises can be viewed as a

linear production process. We will refer to this process as L(Y ). It is easily verified

that the corresponding linear production game vL(Y ) coincides with vY .

Theorem 4.1 Let (N,M, e, A, d) be an MFI situation and let Y ∈ FP (N, e) be an

allotment. Then vL(Y ) = vY .

As a consequence, vY is totally balanced for every allotment Y .

Given an allotment Y , we propose Owen(L(Y )) as solution for the MFI situa-

tion, where every Owen vector is an efficient division of DR(N, e) (= vL(Y )(N)).

Irrespective of the allotment that is chosen, the resulting allocation lies in the core

of the most pessimistic MFI game v1, as is shown in the following theorem.

Theorem 4.2 Let (N,M, e, A, d) be an MFI situation and let Y ∈ FP (N, e) be an

allotment. Then Owen(L(Y )) ⊂ C(v1).

Proof: Let S ⊂ N, S 6= ∅. Then

vL(Y )(S) = vY (S) = DR(S, Y S)
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and

v1(S) = DR(S, e(XN\S))

for some XN\S such that the resulting direct revenue for coalition S is minimal. So,

by construction, we have
∑
j∈M

ej(X
N\S) = max{0,

∑
j∈M

ej −
∑

i∈N\S
di}.

Also, we have that
∑
j∈M

Y S
j ≥ max{0,

∑
j∈M

ej −
∑

i∈N\S
di},

and so,
∑
j∈M

Y S
j ≥

∑
j∈M

ej(X
N\S).

Moreover, we have that given the total of fund restrictions
∑

j∈M ej(X
N\S), the

division of this sum over the funds is such that DR(S, e(XN\S)) is as low as possible.

Hence,

vL(Y )(S) ≥ v1(S).

Now, since any Owen vector of L(Y ) is in the core of the corresponding linear

production game L(Y ) and, trivially, vL(Y )(N) = v1(N), the statement follows. ¤

Example 4.2 Consider the MFI situation (N, M, e,A, d) of Example 2.1. Solving

the (dual) linear production program for the grand coalition yields a solution set

with two extreme points: (1, 7, 9, 0, 3) and (1, 4, 9, 0, 6), where the first two coor-

dinates correspond to the “fund” resources and the other three to the “capital”

resource. Using the resource matrix corresponding to the proportional allotment of

Example 4.1,

B =




3
8

12
8

9
8

3
8

12
8

9
8

1 0 0
0 4 0
0 0 3




,

this yields
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Owen(L(Y )) = Conv{(12, 12, 18), (
87

8
,
60

8
,
189

8
)}.

Note that Owen(L(Y )) ⊂ C(v1). However, the Owen solution (12, 12, 18) is not an

element of C(v2), since 12 + 18 = 30 < 32 = v2({2, 3}). /

Suppose that for an allotment Y the corresponding direct division of revenues is

already efficient with respect to DR(N, e), ie,
∑
i∈N

Oi(Y ) = DR(N, e),

or equivalently,

Y ∈ OP (N, e).

Then the corresponding direct division of the revenues O(Y ) coincides with the

allocation that is proposed by the Owen set of the corresponding linear production

game. So according to this process there is no need to redistribute the allocation of

revenues as given by O(Y ). This is the result of the following theorem.

Theorem 4.3 Let (N, M, e,A, d) be an MFI situation. Let Y ∈ OP (N, e). Then

Owen(L(Y )) = {O(Y )}.

Proof: Consider the linear production process L(Y ) and let S ⊂ N, S 6= ∅. For

the corresponding linear production game we have

vL(Y )(S) =
∑
i∈S

Oi(Y ),

because Y ∈ OP (N, e). Let y ∈ Owen(L(Y )). Since the Owen vector is in the core

of the linear production game, we have
∑
i∈S

yi ≥ vL(Y )(S) =
∑
i∈S

Oi(Y ).

Efficiency of both y and O(Y ) with respect to DR(N, e) implies
∑
i∈S

yi =
∑
i∈S

Oi(Y )

for all S ⊂ N and hence,

Owen(L(Y )) = {O(Y )}.
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For an optimal allotment Y ∈ OP (N, e), the resulting allocation O(Y ) belongs to

the core of the most optimistic game v3, as is shown in the next theorem.

Theorem 4.4 Let (N,M, e, A, d) be an MFI situation and let Y ∈ OP (N, e). Then

O(Y ) ∈ C(v3).

Proof: Let S ⊂ N, S 6= ∅. Then

v3(S) = DR(N, e)−DR(N\S, e)

≤ DR(N, e)−
∑

i∈N\S
Oi(Y )

=
∑
i∈S

Oi(Y ).

Together with efficiency, we obtain O(Y ) ∈ C(v3). ¤

Because of Proposition 2.1, O(Y ) also belongs to C(v1) and C(v2).

To compare the various solutions, consider again the MFI situation of Exam-

ple 2.1. As we saw in Example 4.1, the direct payoff corresponding to the propor-

tional allotment is not efficient and hence, not an element of any of the three cores.

After constructing the corresponding linear production game and applying the Owen

procedure we obtained a solution set which is part of the core of v1, although not not

of v2 (and hence, v3). According to Theorem 4.4, the direct division corresponding

to the optimal plan XN in Example 2.1 should be in all three cores, which is indeed

the case.

5 Extensions

One of the assumptions in our MFI model is that the total capital available is

larger than the sum of the fund restrictions, ie,
∑

j∈M ej <
∑

i∈N di. Note that this

assumption is common in the bankruptcy literature (cf. O’Neill (1982)), where the

total amount of the “claims” (capital) exceeds the available “estate” (investment

opportunities). If we do not impose this assumption, we can still compute the three

corresponding games in the same way and the results of section 2 still hold.

The problem with dropping this assumption, however, lies in the concept of al-

lotment. An allotment is a feasible plan which is efficient with respect to the fund
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restrictions. If the sum of the fund restrictions is larger than the total capital, such

a feasible plan does not exist. If we drop the requirement of feasibility of an al-

lotment and allow a player to have more investment rights than his total capital,

Theorem 4.2 no longer holds. However, an allotment Y for which the direct division

of revenues O(Y ) is efficient with DR(N, e) is always in the core of all three games,

regardless whether we require an allotment to be feasible or not.

Another (implicit) assumption in our MFI model is that when a coalition S of

players decides to cooperate, they can coordinate their investment actions, but they

cannot pool their capital. If we allow capital to be transferable, the direct revenues

of S would be given by

D̃R(S, z) = max
X∈RS×M

∑
j∈M

∑
i∈S

AijXij

such that
∑
j∈M

∑
i∈S

Xij ≤
∑
i∈S

di,

∑
i∈S

Xij ≤ zj for all j ∈ M,

Xij ≥ 0 for all i ∈ S, j ∈ M.

This maximisation problem, however, is quite trivial to solve. For each fund j ∈ M ,

the players in S determine ÃSj = maxi∈S Aij and invest their capital in those funds

with the highest ÃSj, taking the fund restrictions into account.

For the transferable capital case, we can define the same three corresponding

games as for the nontransferable capital case. Again, we have that v1 ≤ v2 ≤ v3

and that v1 is totally balanced. However, the game v3 need not be convex (or even

balanced).

Allotments can be defined in the same way as for nontransferable MFI situa-

tions, but the constructions of the corresponding linear production game is different

and involves the introduction of an additional resource representing “total capital”.

With this adjusted linear production situation, the analysis of Section 3 can be fully

translated to the transferable capital setting.

A more detailed discussion of these and other extensions can be found in Wintein

(2002).
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