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GROUP TESTING MODELS WITH

PROCESSING TIMES AND INCOMPLETE

IDENTIFICATION

Shaul K. Bar-Lev�, Wolfgang Stadjey

and Frank A. Van der Duyn Schoutenz

Abstract

We consider the group testing problem for a �nite population of

possibly defective items with the objective of sampling a prespeci�ed

demanded number of nondefective items at minimum cost. Group

testing means that items can be pooled and tested together; if the

group comes out clean, all items in it are nondefective, while a \con-

taminated" group is scrapped. Every test takes a random amount of

time and a given deadline has to be met. If the prescribed number

of nondefective items is not reached, the demand has to be satis�ed

at a higher (penalty) cost. We derive explicit formulas for the distri-

butions underlying the cost functionals of this model. It is shown in

numerical examples that these results can be used to determine the

optimal group size.

1 Introduction

Since the pioneering work of Dorfman (1943), various group testing proce-

dures have been introduced and discussed in the literature. Their general

�Department of Statistics, University of Haifa, Haifa 31905, Israel
yDepartment of Mathematics and Computer Science, University of Osnabr�uck, 49069

Osnabr�uck, Germany
zCenter for Economic Research, Tilburg University, 5000 LE Tilburg, The Netherlands

1



purpose is to reduce the number of tests needed to decide for each item in a

given \contaminated" population whether it is good or defective. The basic
idea is to pool samples from the given population, screen them together and

observe, for any such sample group, one of two possible outcomes: either it is

\clean", implying that all items in the group are good, or it is contaminated,

implying that at least one item in the group is defective, but without knowing

which and how many are defective, so that such a group may need individual

rescreening. Intuitively it seems clear that such an approach can save tests,
and thus time and money, in particular when the fraction of defective items

is rather small.

Group testing procedures have been applied in various areas, for example for

analysing blood or urine samples to detect syphilis, HIV or other diseases

as well as for DNA screening, but also in quality control for industrial pro-
duction systems. One of the key references is the monograph by Ding-Zhu
and Hwang (2000) in which algorithms for the worst case analysis of the

detection problem for defective items are studied in detail. Applications to
HIV screening are given, among others, by Hammick and Gastwirth (1994),

Litvak, Tu and Pagano (1994), Tu, Litvak and Pagano (1995), Wein and

Zenios (1996), and Hung and Swallow (2000) who used binomial grouping
in hypotheses testing for the classi�cation of quantitative covariables. Com-
binatorial questions in the context of DNA library screening were recently
studied by Macula (1999a,1999b).

Many of the group testing models deal with the problem of a complete iden-

ti�cation of all items in a population, requiring a correct classi�cation of each
item as good or defective. The main goal in early group testing models has
been to �nd optimal group pooling policies (e.g., to �nd the optimal group

size at any stage of the testing process) in order to minimize the expected
number of tests required for a complete identi�cation (cf. Hwang, Pfeifer

and Enis (1981)). However, no such optimal policies have been found for

reasonably large population sizes and only suboptimal policies have been

suggested.

Moreover, the majority of models assumes that each group test provides a

correct answer: a group labeled clean or contaminated really is of this type.

In recent papers on the subject (see e.g. Litvak, Tu and Pagano (1994) on

HIV screening) it was pointed out that the phenomena of \false negative" and

\false positive" outcomes prevails in some situations, especially in clinical
trials. Groups can be declared clean although they contain contaminated

material, while groups labeled \defective" can be free of contaminations.
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Group testing ideas are also often useful in industrial contexts such as pro-

duction systems and inventory models. Consider for example quality control
of batteries or electronic circuits. The group tests in such situations can be

conducted by connecting electronic items in series. Here complete identi�ca-

tion of the defective items is not the only interesting objective. In practice,

one often has to meet a given demand requirement of good items and wants

to minimize expenditures. A sequential quality control problem of this kind,

i.e. with group testing and incomplete identi�cation, was studied by Bar-
Lev, Boneh and Perry (1990). In this real-world example the production

department of some electronic company needed one million chips and had

two options for purchasing them: paying $2.5 per chip with a 100% quality

guarantee or paying $0.5 per chip with a 99% probability for each of them

to be of acceptable quality. The chips of the second category were group

testable in two phases. In the �rst phase a set of chips was exposed to heat-
ing in a helium environment. If a chip in this set was defective, then some
helium would penetrate the chip. In the second phase, the same set was
exposed to a helium sensor recording a helium leak if and only if at least one

chip is defective. Since the chips of the second alternative were much cheaper
than the �rst one, it had been chosen. The problem was how many chips to
acquire and what group size to choose for testing the chips in order to ful�ll
the demand requirement of one million good chips at minimum cost.

Incomplete identi�cation group testing processes can be considered to be-

long to the theory of optimization and optimal stopping under probabilistic
constraints. The aim of this paper is to extend the approach of Bar-Lev,
Boneh and Perry (1990), introducing several new features. We consider two
incomplete identi�cation group testing models with processing times. The

two models (denoted by I and II) assume stochastic independence between
the items constituting the population. Model I assumes that tests of groups

of m items are conducted sequentially by one machine, while in Model II
h � 1 of such machines are available to work in parallel. Although Model

I is the special case of the second model with h = 1, we have preferred to
consider it �rst separately for the ease of exposition.

It is assumed that N items constitute the contaminated population, that the

probability of an item being good is q (so that the expected proportion of
good items is also q) and that the demand requirement is d. The time for
running a group test is a random variable. Moreover, there is a prespeci-

�ed threshold time b by which the testing must be �nished or stopped. The

process ends when either the demand requirement is met or the total time

for running the group tests reaches b or no more groups are left. The conse-
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quences of running out of time before the required number of good items has

been found can be of di�erent types. It may occur that missing items can
always be purchased at higher cost. However, it is also possible that the deci-

sion whether to use a contaminated population or a clean population cannot

be revoked, implying that an insuÆcient number of good items cannot be

supplemented afterwards. In this case a penalty clause for the supplier will

apply against which he can take an insurance.

We assume that the underlying distributions as well as q and b are known. A

detailed description of the models is presented in Section 2. In Sections 2.1

and 2.2 we de�ne the stopping times for the two models and derive suitable
formulas for their distributions. In Section 3 we introduce appropriate objec-

tive functions and deterministic as well as probabilistic constraints depending

on the various model parameters. The resulting optimization problems turn
out to be analytically intractable. Our results can, however, be used for a
numerical analysis. This is illustrated in Section 4, which shows the depen-

dence of the optimal group size and the objective functions on the model
parameters in several examples.

2 The Models

The following assumptions are common to both models.

(i) The contaminated population consists of N items which are testable in
groups of any size m. (In practice, there may be a constraint m � m0 for

the group size.)

(ii) For every group test there are two possible outcomes: \clean", implying
that all group items are good, or \contaminated", implying that at least one

item in the group tested has to be defective. Under this assumption, out-
comes like \false negative" or \false positive" for tested groups are excluded.

(iii) Every item is good with probability q independently of the others. The

expected proportion q of good items in the population is assumed to be

known in advance and will generally be close to 1.

(iv) The demand requirement is for d good items.

(v) The cost for testing a group of size m is c(m) and thus depends on the

group size. For simplicity we assume that c(m) has a �xed and a linearly
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increasing part, i.e. c(m) = c1+ c2m for some known cost parameters c1 and

c2.

(vi) The time for running a group test is a random variable. For simplicity we

assume that its distribution does not depend on the group size. The running

times for di�erent tests are i.i.d.

(vii) There is a �xed (deterministic) deadline b by which the testing process

must be �nished. b can be a business constraint or a deterioration time after

which the items are no longer considered to be usable.

(ix) Groups which are found clean are kept and recorded for meeting the

demand requirement. Contaminated groups are set aside but recorded for,
perhaps, other possible uses.

(x) The group testing process ends as soon as one of the following events
occurs: Either the demand requirement is met, or the aggregated time for
running the group tests exceeds the predetermined deterioration survival time

threshold b, or no more items are available for further group testing.

(xi) In order to avoid computational and analytic complexity, we only con-
sider group sizes m that divide both d and N . This assumption avoids some
computational and analytic complexity and causes only a negligible loss of
generality in practical situations. If dxe; x 2 R, denotes the ceiling function,

then clearly de = d d

m
e is the total number of good groups of size m needed

to satisfy the demand requirement, and l = dN
m
e is the maximum number of

possible group tests.

(xii) The cost of purchasing (or producing) an item belonging to N is b1.
We assume there exists an alternative by which it is possible to buy good

items at the price b2 per item, where b2 > b1. We make such an alternative

available in order to ful�ll the demand requirement in case the group testing

process does not end with enough good items. Finally, there might be a

budget limit C for the entire testing process.

2.1 The single-machine case: stopping times and anal-

ysis

In this model independent groups of size m are tested sequentially by one

machine. If a group is found clean, it is kept and aggregated to meet the

demand requirement, otherwise it is discarded. The basic random variables
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are

Yi =

�
1; if the ith group of size m is found clean

0; otherwise.
(2.1)

By our assumptions, Yi s B(1; qm), for any i 2 N, so that
rP

i=1

Yi s B(r; qm)

for r 2 N.

Let Vi; i 2 N, be the time required to run the group test at stage i. The Vi's

are independent with a common distribution function F and are independent

of the Yi's. The stopping times associated with this model are:

TGI = inf

(
r :

rX
i=1

Yi > de

)
; (2.2)

TbI = inf

(
r :

rX
i=1

Vi > b

)
; (2.3)

TbGI = minfTGI ; TbIg ; (2.4)

and

TI = minfTbGI ; lg = minfTGI ; TbI ; lg : (2.5)

TI is the total number of group tests conducted during the process, which

stops if the number of detected good items is d, the time constraint is reached
or the whole population has been tested, whichever comes �rst. Note that
we assume that the test running at the time limit can be completed and its

outcome used. Clearly, the support of TGI is STGI
= fde; de + 1; :::g, whereas

that of TbI is STbI
= N. The number of good items identi�ed is

DI = m

TIX
i=1

Yi = m

lX
i=1

YiI(TI = l) + dI(TI = TGI) +m

TbIX
i=1

YiI(TI = TbI):

(2.6)

At the end of the process, the remaining number of clean groups of size m

required to ful�ll the demand requirement is

RI = de �

TIX
i=1

Yi =

 
de �

lX
i=1

Yi

!
I(TI = l) +

 
de �

TbIX
i=1

Yi

!
I(TI = TbI):

(2.7)

The exact distributions of the stopping times TbGI and TI are needed in the
optimization problems. They are derived with the help of the following
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Proposition 1 Let fYig be a sequence of f0; 1g-valued r.v.'s (not necessarily

independent) and fVig be a sequence of i.i.d. nonnegative r.v.'s with com-

mon distribution function F; such that the two sequences are independent of

each other. Let F �k denote the kfold convolution of F with itself and let

the stopping times TGI ,TbI, and TbGI be as de�ned by (2.2), (2.3) and (2.4),

respectively. Then, for any k 2 N, the probability function of TbGI is given

by

P (TbGI = k) =

8>>>>>>>>>><
>>>>>>>>>>:

P (
k�1P
i=1

Yi = de � 1; Yk = 1)F �k(b)+

P (
k�1P
i=1

Yi = de � 1; Yk = 1)
�
F
�k�1(b)� F

�k(b)
�
+

P (
kP

i=1

Yi � de � 1)
�
F
�k�1(b)� F

�k(b)
�
; if k = de; de + 1; :::

�
F
�k�1(b)� F

�k(b)
�
; if k = 1; :::; de � 1;

(2.8)

with F �0(b) � 1; and that of the stopping time TI is

P (TI = k) =

8<
:

P (TbGI = k); k = 1; :::; l� 1
1P
i=l

P (TbGI = i) k = l:
(2.9)

Proof. If k 2 f1; :::; de � 1g, then, since TGI � de, the event (TbGI = k) can

occur only if the event (
k�1P
i=1

Vi � b <

kP
i=1

Vi) occurs, where
k�1P
i=1

Vi is de�ned

to be 0 if k = 1. This proves the second part of equation (2.8). For the

�rst part of (2.8), let k 2 fde; de + 1; :::g, then the event (TbGI = k) can be

represented as the union of three disjoint sets:

(TbGI = k) = (TGI = k < TbI) [ (TGI = k = TbI) [ (TGI > k = TbI): (2.10)

By using the stochastic independence between the two sequences fYig and
fVig, we obtain expressions for the probabilities of the three events on the

right-hand side of (2.10). These are given, respectively, by (2.11), (2.12) and
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(2.13):

P (TGI = k < TbI) = P (
k�1P
i=1

Yi = de � 1; Yk = 1;
kP

i=1

Vi � b)

= P (
k�1P
i=1

Yi = de � 1; Yk = 1)P (
kP

i=1

Vi � b)

= P (
k�1P
i=1

Yi = de � 1; Yk = 1)F �k(b);

(2.11)

P (TGI = k = TbI) = P (
k�1P
i=1

Yi = de � 1; Yk = 1)P (
k�1P
i=1

Vi � b <

kP
i=1

Vi)

= P (
k�1P
i=1

Yi = de � 1; Yk = 1)
�
F
�k�1(b)� F

�k(b)
�
;

(2.12)

and

P (TGI > k = TbI) = P (
kP

i=1

Yi � de � 1)P (
k�1P
i=1

Vi � b <

kP
i=1

Vi)

= P (
kP

i=1

Yi � de � 1)
�
F
�k�1(b)� F

�k(b)
�
;

(2.13)

which is the desired result (2.8). Equation (2.9) is obvious. 2

Corollary 1 In Model I the probability functions of TbGI and TI are given

by

P (TbGI = k) =

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

�
k � 1

de � 1

�
q
mde(1� q

m)k�deF �k(b) +

�
k � 1

de � 1

�
q
mde(1 � q

m)k�de
�
F
�k�1(b)� F

�k(b)
�
+

de�1X
j=0

�
k

j

�
q
mj(1 � q

m)k�j
�
F
�k�1(b)� F

�k(b)
�
;

for k = de; de + 1; :::

�
F
�k�1(b)� F

�k(b)
�
; for k = 1; :::; de � 1;

(2.14)
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and

P (TI = k) =

8<
:

P (TbGI = k); k = 1; :::; l� 1
1P
i=l

P (TbGI = i) k = l .
(2.15)

Proof. The proof is straightforward since the Yi's are i.i.d. with Yi s

B(1; qm) so that

P (

k�1X
i=1

Yi = de � 1; Yk = 1) =

�
k � 1

de � 1

�
q
mde(1 � q

m)k�de (2.16)

and

P (

kX
i=1

Yi � de � 1) =

de�1X
j=0

�
k

j

�
q
mj(1� q

m)k�j : 2 (2.17)

2.2 The multiple-machine case: stopping times and

analysis

Model II generalizes Model I with one major di�erence: h � 1 machines
are available for simultaneous group testings at any stage. For simplicity we

assume that each of the h machines tests groups of size m. We also assume

that all h machines are used at the same time and work simultaneously
with full capacity. A new stage in the group testing process starts only

after all machines have completed their job in the previous stage. All other
assumptions are the same as in Model I. The basic counting variables are
now

Yij =

�
1; if in stage i machine j �nds its group clean

0; otherwise
(2.18)

where i 2 N and j 2 f1; :::; hg : Let

Yi� =

hX
j=1

Yij ; (2.19)

denote the total number of clean groups of size m found at stage i by the

h machines. Since the Yij's are independent and Yij s B(1; qm), we have
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Yi� s B(h; qm) and
rP

i=1

Yi� s B(rh; qm), for r 2 N. Let Vij be the time for

running group test i on machine j, where i 2 N and j 2 f1; :::; hg : As in

Model, the Vij 's are assumed to be independent of the Yij 's and i.i.d. with

common distribution F . Then V(i) = maxj2f1;:::;hg fVijg ; i 2 N, is the running
time of stage i. The distribution function of V(i) is given by G(�) = F

h(�).

The basic stopping times are now de�ned as follows, analogously to (2.2),
(2.3) and (2.4) in Model I:

TGII = inf

(
r :

rX
i=1

Yi� > de

)
; TbII = inf

(
r :

rX
i=1

V(i) > b

)
; (2.20)

and

TbGII = minfTGII ; TbIIg ; TII = minfTbGII ; lg = minfTGII ; TbII; lg : (2.21)

Clearly, Proposition 1 and its corollary are also applicable for Model II with

appropriate changes in (2.8) in which Yi�, V(i), and G have to replace Yi, Vi,

and F; respectively. This leads to the following proposition.

Proposition 2 In model II the probability functions of TbGII and that of TII
are given by

P (TbGII = k) =

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

G
�k(b)

h�1X
j=0

�
h(k � 1)

de � h+ j

�
q
m(de�h+j)(1 � q

m)h(k�1)�(de�h+j)

�

 
hP

r=h�j

�
h

r

�
q
rm((1� q

m)h�r

!

+
h�1P
j=0

�
h(k�1)

de�h+j

�
q
m(de�h+j)(1 � q

m)h(k�1)�(de�h+j)

�

 
hP

r=h�j

�
h

r

�
q
rm((1� q

m)h�r

!�
G
�(k�1)(b)�G

�k(b)
�

+
de�1P
j=0

�
hk

j

�
q
mj(1� q

m)hk�j
�
G
�(k�1)(b)�G

�k(b)
�
;

for k = dde=he; dde=he+ 1; :::

�
G
�(k�1)(b)�G

�k(b)
�
; for k = 1; :::; dde=he � 1

(2.22)

and

P (TII = k) =

8<
:

P (TbGII = k); k = 1; :::; l� 1
1P
i=l

P (TbGII = i) k = l .
(2.23)
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Proof. (2.23) is obvious. In a manner analogous to that used in Proposition

1, the last part (line) of equation (2.22) follows. Indeed if k 2 f1; :::; dde=he � 1g ;
then the event fTGIIg cannot occur since the support of TGII is STGII

=

fdde=he; dde=he + 1; :::g :Hence for k 2 f1; :::; dde=he � 1g, the event (TbGI = k)

can occur only if the event

�
k�1P
i=1

V(i) � b <

kP
i=1

V(i)

�
occurs, where

k�1P
i=1

V(i) is

void if k = 1. Since P (V(i) � v) = G(v) = F
h(v); and the V(i)'s are indepen-

dent, we obtain the last part of equation (2.22).

Now let k 2 fde; de + 1; :::g ; then relation (2.10) holds with TGII;TbII and

TbGII replacing TGI;TbI and TbGI ; respectively. Accordingly,

(TbGII = k) = (TGII = k < TbII) [ (TGII = k = TbII) [ (TGII > k = TbII):

(2.24)

Now the respective �rst term on the right hand side of (2.24) can be written
as:

P (TGII = k < TbII) = P

�
h�1S
j=0

�
f
k�1P
i=1

Yi� = de � h+ jg \ fh� j � Yk� � hg

�

\f
kP

i=1

V(i) � bg

�

=
h�1P
j=0

P (
k�1P
i=1

Yi� = de � h+ j)P (h� j � Yk� � h)

�P (
kP

i=1

V(i) � b)

=

h�1X
j=0

�
h(k � 1)

de � h+ j

�
q
m(de�h+j)(1� q

m)h(k�1)�(de�h+j)

�

 
hX

r=h�j

�
h

r

�
q
rm((1� q

m)h�r

!
G
�k(b);

(2.25)

where in (2.25) we have used the following facts: The Yi�'s are mutually

independent and independent of the V(i)'s, Yi� s B(h; qm);
k�1P
i=1

Yi� s B(h(k�

1); qm); and V(i) s G = F
h
: Similarly, the probability of the second term on
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the right hand side of (2.24) is

P (TGII = k = TbII)

= P

�"
h�1S
j=0

f
k�1P
i=1

Yi� = de � h+ jg \ fh� j � Yk� � hg

#

\f
k�1P
i=1

V(i) � b �
kP

i=1

V(i)g

�

=
h�1P
j=0

P (
k�1P
i=1

Yi� = de � h+ j)P (h � j � Yk� � h)

�P (
k�1P
i=1

V(i) � b �
kP

i=1

V(i)))

=

h�1X
j=0

�
h(k � 1)

de � h+ j

�
q
m(de�h+j)(1 � q

m)h(k�1)�(de�h+j)

�

 
hX

r=h�j

�
h

r

�
q
rm(1� q

m)h�r

!�
G
�(k�1)(b)�G

�k(b)
�
:

(2.26)

Finally, the probability of the last term on the right hand side of (2.24) has
the form

P (TGII > k = TbII) = P (

kX
i=1

Yi� � de � 1)P (

k�1X
i=1

V(i) � b �

kX
i=1

V(i)) (2.27)

=

de�1X
j=0

�
hk

j

�
q
mj(1 � q

m)hk�j
�
G
�(k�1)(b)�G

�k(b)
�
;

(2.28)

which completes the proof. �

The stopping time TII counts the number of group tests conducted during
the testing process. In a manner similar to de�ning DI and RI for Model I
(see (2.6) and (2.7)), we de�ne for Model II, DII and RII as the respective

number of good items identi�ed during the testing process and the remaining

number of clean groups of size m required to ful�ll the demand requirement.

These are clearly given by

RII = de �

TIIX
i=1

Yi� . (2.29)

12



3 Objective functions and constraints

For simplicity we formulate several optimization problems only for Model II

since Model I is just the special case h = 1. In Assumption (v) of Section 1

we have assumed that the cost for testing groups of size m by one machine

is given by c1 + c2m. Let P be the price of running one machine. The cost
for purchasing an item from the contaminated population is b1. Hence the

total cost of the group testing process is

CG = b1lm+ (c1 + c2m)hTII + hP + b2RII ; (3.1)

which is composed of the cost of (i) purchasing N = lm units from the

contaminated population, (ii) running the group testing process, (iii) using h
machines, and (iv) purchasing missing items at higher acquisition cost. The
expected value of CG depends on the decision variables m, l and h; therefore

we denote it by

g(m; l; h) = E(CG) = b1lm+ (c1 + c2m)hE(TII) + hP + b2E(RII): (3.2)

We denote by e(m; l; h) the expected value of TII :

e(m; l; h) = E(TII) =

l�1X
k=1

kP (TbGII = k) + l

 
1�

l�1X
k=1

P (TbGII = k)

!
:

(3.3)

An expression for P (TbGII = k) is given by (2.22).

We de�ne the stopping time

TlbII = minfTbII ; lg ; (3.4)

whose distribution is clearly given by

P (TlbII = k)

=

8<
:

P (TbII = k); k = 1; :::; l� 1

1�
l�1P
i=1

P (TbII = i); k = l

=

8<
:

�
G
�(k�1)(b)�G

�k(b)
�
; k = 1; :::; l� 1

1�
l�1P
i=1

�
G
�(i�1)(b)�G

�i(b)
�
; k = l:

(3.5)
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The �rst constraint that we impose is

p1 = P (TGII � TlbII) � 1� � (3.6)

for some preassigned value � 2 (0; 1); where in practice � is of course small.

This constraint assures that, with reliability of at least 100(1 � �)%, the

demand requirement is met before the deadline is reached or no items are left
for group testing. Since TGII is independent of TbII and therefore independent

of TlbII , the probability of the event in (3.6) is given by

P (TGII � TlbII)

=

lX
k=de

lX
r=k

P (TGII = k)P (TlbII = r)

=

lX
k=de

lX
r=k

 
h�1X
j=0

P (

k�1X
i=1

Yi� = de � h+ j)P (h� j � Yk� � h)

!
P (TlbII = r)

=

lX
k=de

 
h�1X
j=0

P (

k�1X
i=1

Yi� = de � h+ j)P (h � j � Yk� � h)

!

�

 
l�1X
r=k

P (TbII = r) +

 
1�

l�1X
i=1

P (TbII = i)

!!

=

lX
k=de

� h�1X
j=0

�
h(k � 1)

de � h+ j

�
q
m(de�h+j)(1� q

m)h(k�1)�(de�h+j)

�

 
hX

r=h�j

�
h

r

�
q
rm((1� q

m)h�r

!�

�

"
l�1X
r=k

�
G
�(r�1)(b)�G

�r(b)
�
+

 
1 �

l�1X
i=1

�
G
�(i�1)(b)�G

�i(b)
�!#

;(3.7)

where in (3.7) we have used (2.26).

As a second constraint we consider

p2 = P (b1lm+ (c1 + c2)TII � C) � 1� �; (3.8)

for some preassigned � 2 (0; 1). This constraint implies that, with reliability

of at least 100(1 � �)%; the total cost incurred by the group testing process

does not exceed the preassigned budget limit C.

We now formulate two optimization problems. The decision variables are
the group size m, the number l of possible groups of size m (or equivalently,

14



the number of groups of size m that should be purchased), and the number

of machines h that should be used simultaneously at any stage of the group
testing process. The parameters involved in these optimization problems are

c1; c2; b1; b2; C; b; �; �;m0;H, and q:

Problem 1. The objective is to minimize the expected total cost incurred
by the group testing process subject to two essential constraints (3.12) and

(3.13) below. Accordingly, the optimization problem is given by

min
m;l;h

g(m; l; h) (3.9)

subject to

N

m
= l > de =

d

m
; l 2 N; de 2 N; (3.10)

1 � m � m0; 1 � h � H; m 2 N; h 2 N; (3.11)

p1 = P (TGII � TlbII) � 1� �; (3.12)

p2 = P (b1lm+ (c1 + c2m)TII � C) � 1 � �: (3.13)

Problem 2. The objective is to minimize the expected number of group
tests required in the testing process and is subject to the same constraints

as in Problem 1:

min
m;l;h

e(m; l; h) (3.14)

subject to constraints (3.10), (3.11), (3.12), and (3.13).

Obviously, our group testing model gives rise to several other meaningful
optimization problems. Using the explicit expressions derived above they

can be solved numerically. In our �nal section we discuss some examples.

4 Numerical analysis

In the numerical examples of this section we take the processing times as
exponentially distributed random variables with mean 1. This assumption
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facilitates (indeed trivializes) the handling of convolutions. Moreover, we

only consider the case H = 1 of one machine. The population size N is
assumed to be �xed so that the only decision variable is the group size m.

Of course, various other optimization problems can be treated numerically

in the same way, and the sensitivity analysis can be conducted similarly. .

First we let the demand requirement d vary and �x the other parameters as

follows:

N = 720 (population size)
q = 0:99 (probability of an item to be nondefective)

C = 1500 (budget limit)

b = 100 (deadline)

c1 = 5; c2 = 2 (c1 + c2m being the cost of a group test of size m)
b1 = 1 (price per item in the population)
b2 = 11 (price per good item from a secure source)

In each of the subsequent Tables 1-4 another value of d is chosen. They give,
for the possible group sizes m, the corresponding values of

� l and de (the maximum and the minimum number of performed tests),

� p1 and p2 (the probabilities in the constraints (3.12) and (3.13)),

� and the objective functions g and E(TII).

Table 1 is for d = 120. It shows that for this demand requirement g is
unimodal with the minimum of g attained for the group size m� = 15. The

two constraints on p1 and p2 are satis�ed for very small values of � and

�, namely for � = 10�7, � = 10�7. (Note that the probabilities given as
1.000000 are not exactly equal to one, as there is always a positive probability

that the demand cannot be met.)
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m ` de p1 p2 g E(TII)

1 720 120 0.0000000 1.0000000 1427.00 101.00

2 360 60 1.0000000 1.0000000 1270.96 61.22

3 240 40 1.0000000 1.0000000 1173.47 41.22

4 180 30 1.0000000 1.0000000 1126.00 31.23
5 144 24 1.0000000 1.0000000 1098.55 25.24

6 120 20 1.0000000 1.0000000 1081.13 21.24

8 90 15 1.0000000 1.0000000 1061.37 16.26

10 72 12 1.0000000 1.0000000 1051.72 13.27

12 60 10 1.0000000 1.0000000 1047.17 11.28

15 48 8 1.0000000 1.0000000 1045.56 9.30

20 36 6 1.0000000 0.9999967 1050.11 7.34

24 30 5 1.0000000 0.9999137 1057.29 6.36

30 24 4 1.0000000 0.9994565 1071.49 5.41
40 18 3 0.9999985 0.9920668 1101.18 4.48
60 12 2 0.9988474 0.9288587 1176.63 3.65
120 6 1 0.8817248 0.6560884 1441.57 2.95

Table 1: d = 120; minimum at m� = 15 yielding g� = 1045:56.

In Table 2 we consider d = 240. Again m
� = 15 is the optimal group size,

as long as one is satis�ed with p1 � 1 � 10�7 and p2 � 0:974. If a stronger

constraint on p2 is required, one has to choose a smaller group size.

m ` de p1 p2 g E(TII)

1 720 240 0.0000000 1.0000000 1427.00 101.00

2 360 120 0.0000000 0.0000000 1629.00 101.00
3 240 80 1.0000000 0.0000000 1626.94 82.45
4 180 60 1.0000000 0.0896286 1532.00 62.46

5 144 48 1.0000000 0.8896824 1477.11 50.47
6 120 40 1.0000000 0.9538497 1442.27 42.49
8 90 30 1.0000000 0.9935817 1402.75 32.51

10 72 24 1.0000000 0.9926342 1383.44 26.54
12 60 20 1.0000000 0.9771914 1374.34 22.56
15 48 16 1.0000000 0.9738097 1371.12 18.60

16 45 15 1.0000000 0.9726243 1371.82 17.62

20 36 12 1.0000000 0.9271561 1380.22 14.67

24 30 10 1.0000000 0.8374891 1394.58 12.73

30 24 8 0.9999944 0.8203720 1422.99 10.82
40 18 6 0.9992090 0.6559637 1482.24 8.97
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48 15 5 0.9936655 0.4580517 1536.83 8.09

60 12 4 0.9628223 0.4357783 1623.14 7.23

80 9 3 0.8469702 0.2381818 1753.24 6.26

120 6 2 0.5784851 0.2152198 1914.97 4.88

Table 2: d = 240; minimum at m� = 15 yielding g� = 1371:12.

In Tables 3 and 4 we take d = 360 and d = 600 and, for the higher demands,

also larger budget limits C = 1900 and C = 2500, respectively. From now

on only those values of m for which p1 � 0:8 and p2 � 0:8 are displayed.

The optimal group sizes for d = 360 and d = 600 are m� = 15 and m
� = 12,

respectively.

m ` de p1 p2 g E(TII)

5 144 72 1.0000000 0.9121741 1855.66 75.71
6 120 60 1.0000000 0.9932918 1803.40 63.73
8 90 45 1.0000000 0.9989887 1744.12 48.77

9 80 40 1.0000000 0.9988748 1727.10 43.79
10 72 36 1.0000000 0.9987512 1715.15 39.81

12 60 30 1.0000000 0.9959470 1701.51 33.85

15 48 24 1.0000000 0.9877209 1696.68 27.91
18 40 20 0.9999998 0.9680841 1702.61 23.97
20 36 18 0.9999969 0.9651321 1710.33 22.01
24 30 15 0.9998742 0.9205772 1731.85 19.09
30 24 12 0.9969061 0.8362332 1774.12 16.22

Table 3: d = 360, C = 1900; minimum at m� = 15 yielding g� = 1696:68.

m ` de p1 p2 g E(TII)

8 90 75 0.9986095 0.8869988 2426.82 81.28
10 72 60 0.9817695 0.9637853 2377.75 66.31
12 60 50 0.9264780 1.0000000 2351.44 56.26

Table 4: d = 600, C = 2500; minimum at m� = 12 yielding g� = 2351:44.

The value m = 15 actually turned out to be optimal in several variations

of N and d with N=d kept �xed. In Table 5 we give the feasible results for
N = 480 and d = 240, i.e. N=d = 2, and C = 2000. The same robustness

could be seen if b was varied.
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m ` de p1 p2 g E(TII)

3 160 80 1.0000000 1.0000000 1386.94 82.45

4 120 60 1.0000000 1.0000000 1292.00 62.46

5 96 48 1.0000000 1.0000000 1237.11 50.47

6 80 40 1.0000000 1.0000000 1202.27 42.49
8 60 30 1.0000000 1.0000000 1162.75 32.51

10 48 24 1.0000000 1.0000000 1143.44 26.54

12 40 20 1.0000000 1.0000000 1134.34 22.56

15 32 16 0.9999998 1.0000000 1131.12 18.60

16 30 15 0.9999990 1.0000000 1131.82 17.62

20 24 12 0.9999203 1.0000000 1140.22 14.67

24 20 10 0.9989552 1.0000000 1154.49 12.73

30 16 8 0.9901037 1.0000000 1181.87 10.80

40 12 6 0.9358330 1.0000000 1231.40 8.84
48 10 5 0.8612057 1.0000000 1266.67 7.79

Table 5: N = 480, d = 240, C = 2000; minimum at m� = 15 yielding
g
� = 1131:118600.

On the other hand, the optimal m� is highly sensitive to changes of q. An
example is shown in Table 6, where the optimal values of m and the objective
function g are given for several values of q approaching 1. It is seen that m�

increases from 6 to 180.

q m
�

g
�

0.9500 6 2107.551
0.9990 45 1514.999

0.9995 72 1492.316
0.9999 180 1463.251

Table 6: N = 720, d = 360, C = 2200. Optimal values of m and the
corresponding minimal values of the objective function for q1 approaching 1.
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