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Abstract

Response Surface Methodology (RSM) searches for the input combination maximizing the

output of a real system or its simulation. RSM is a heuristic that locally fits  first-order

polynomials, and estimates the corresponding steepest ascent (SA) paths. However, SA is

scale-dependent; and its step size is selected intuitively. To tackle these two problems, this

paper derives novel techniques combining mathematical statistics and mathematical program-

ming. Technique 1 called ‘adapted’ SA (ASA) accounts for the covariances between the

components of the estimated local gradient. ASA is scale-independent. The step-size problem

is solved tentatively. Technique 2 does follow the SA direction, but with a step size inspired

by ASA. Mathematical properties of the two techniques are derived and interpreted; 

numerical examples illustrate these properties. The search directions of the two techniques

are explored in Monte Carlo experiments. These experiments show that - in general - ASA

gives a better search direction than SA.

Keywords: Heuristics; Metaheuristics; RSM; Statistical analysis; Scale-dependence

JEL: C1

1. Introduction

Response Surface Methodology (RSM) is a stagewise heuristic that searches for the input

combination maximizing the output (finding the minimum is equivalent to finding the

maximum of ‘minus’ the output; the maximization problem is without explicit constraints or
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side-conditions). Originally, Box and Wilson (1951) meant RSM for experiments with real

(non-simulated) systems; see Box (1999), Khuri (1996), Khuri and Cornell (1996), Myers

(1999), Myers and Montgomery (1995).

Later on, RSM was also applied to random simulation models; see Donohue,  Houck,

and Myers (1993, 1995), Hood and Welch (1993), Irizarry, Wilson, and Trevino (2001),

Kleijnen (1998), Law and Kelton (2000, pp. 646-655), Neddermeijer et al. (2000), Safizadeh

(2002), etc.

Note: (Hasty readers may skip paragraphs starting with ‘Note:’.)We assume that these

random simulations are so complicated that methods such as stochastic approximation and

sample path optimization, cannot be applied. RSM treats simulation models - either random

or deterministic - and real systems as black boxes. Other black box methods are meta-

heuristics, including tabu search, simulated annealing, and genetic algorithms. The black

box approach is discussed by Jones et al. (1998). Various simulation optimization methods

are presented by Fu (2002).

In this paper, we do not explain all stages of RSM, but refer to the literature cited

above. We focus on the first stages, in which RSM fits a first-order polynomial in the inputs,

per local area. This fitting uses Ordinary Least Squares (OLS), and estimates the steepest-

ascent path, as follows. Let xj denote the value of the original (non-standardized) input j

with j = 1, ..., k. Hence k main or first-order effects (say) �j are estimated. To enable this

estimation, RSM uses a Resolution-3 design, which specifies which n  k + 1 input

combinations are to be observed (simulated). These n input/output (I/O) combinations give

the estimates . So the SA path implies  = / ; in other words, SA uses the

local gradient, .
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Unfortunately, SA suffers from two well-known problems; see Myers and Montgo-

mery (1995, pp. 192-194): (i) it is scale-dependent; (ii) the step size along its path is selected

intuitively. In practice, analysts try an intuitively selected value for the step size. If that

value yields a lower response, then they reduce the step size. Otherwise, they take one

more step. An example is the case study in Kleijnen (1993), which uses a step size that

doubles the most important input.

Note: Some disciplines interpret RSM completely differently: RSM becomes a one-

shot approach that fits a single response surface - either a second-order polynomial or a

Kriging model - to the I/O data of a random or deterministic simulation model, over the

whole experimental area (instead of a series of  local areas). Next, that single model is used to

estimate the optimal input combination. See Sacks et al. (1989), and also Jones et al. (1999),

Simpson et al. (2001), etc.

Our research contribution is the following. We derive ASA; that is, we adjust the

estimated first-order factor effects through their estimated covariance matrix. We prove that

ASA is scale independent. In most of our experiments, ASA gives a better search direction.

We also propose and explore a solution for the step size.

The remainder of this article is organized as follows. §2 summarizes those parts of

linear regression analysis that we need to formulate our two techniques. §3 derives these

techniques, and their mathematical properties and interpretation. To get further insight into

these properties, §4 applies the step-size selection of ASA to simple numerical problems. §5

compares the search directions of the two techniques, by means of Monte Carlo experiments.

§6 gives conclusions and future research plans.

2. Linear-regression basics
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We define the estimated signal/noise ratio (say)  as

(1)

where  denotes the estimate of  in the following local first-order polynomial approxima-

tion:

(2)

where y denotes the regression predictor of the corresponding expected output; e denotes

white noise; that is, e is normally, identically, and independently distributed (NIID) with zero

mean  and constant variance .

Note: Each of the k ratios in (1) equals Student’s statistic t under the null-hypothesis

of zero input effect, . However,  this does not mean that we propose to test this

. Actually, if we use OLS to estimate  =  , then  is the Best Linear

Unbiased Estimator (BLUE). Testing  makes sense only if we have good reasons

to postulate such a hypothesis. But in our case, effects that are not significant in a certain

stage, may still be practically important in that stage - or in later stages! And unimportant

factors may be significant if the signal/noise ratio is high: in applications of RSM to random

simulation the simulation may have small ‘intrinsic’ noise, or very many simulation runs may

be executed if computer time per run is small; in deterministic simulation the intrinsic noise

is zero, by definition.

The OLS estimator of the regression parameters  is
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(3)

with (in order of appearance)

: vector with the q estimated effects in the regression model (q = 1 + k in equation 2)

q: number of regression effects including the intercept 

: N×q matrix of explanatory (independent) regression variables including the ‘dummy’

variable  with constant value 1;   is assumed to have linearly independent

columns (so  has full column rank)

N = : number of observations (simulation runs)

: number of replicates at input combination (point) i, with   � Û Y  > 0

n: number of different observed combinations of the k inputs, with n � Û Y n � q

(necessary condition for avoiding singularity in equation 3)

w: vector with N outputs (real or simulated) corresponding to the N inputs.

Note: Obviously, the first  rows of X are identical and equal to ,

..., the last  rows of  X are identical and equal to . A simulation example

is a single-server simulation with w in (3) denoting the vector of average waiting times per

replicate, and  in (2) denoting the traffic rate. 

Because of (1) through (3), we call  the estimated signal of input j. The signal’s

noise (see equation 1’s denominator) is the square root of the corresponding element on the

main diagonal of

(4)

For example, (2) implies that is the second element on the main diagonal of (4).
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Equation (4) leads to the estimated noise: replace the unknown parameter  in (4) by

the mean squared residual (MSR) estimator

(5)

where  denotes the output for input combination i and replicate r, and   denotes the

OLS regression predictor for the simulation’s input combination i that follows from

(6)

For example, (6) combined with (2) gives  .

The variance of this predictor is a function of x (input combination for which estimate

is computed), since elementary regression analysis gives

(7)

Notice that x in (7) may correspond with either one of the actually observed input combinati-

ons X - as in (6) - or a new point. A new point means interpolation or extrapolation.

To illustrate the implications of (7), suppose that X is orthogonal; that is,  = 

. Combining (4) and (7) then gives

(8)

Obviously, the regression predictor becomes less reliable, as the number of observations N

decreases. Likewise, the predictor gets inaccurate, as the noise  increases (for example, a

single-server simulation implies that a higher traffic rate not only increases the mean but also
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(9)

the variance of waiting times so the intrinsic simulation noise increases and so does the white

noise e). But what is the effect of x, the point that we wish to predict?

In Appendix 1 we derive the design point that minimizes the variance of the regression

predictor, (say) . Note that  where the element 1 corresponds with the

intercept . We find =  where  is the covariance matrix of  which equals

 excluding the intercept  (also see equation 4):

where  is a scalar, b a k-dimensional vector, and C a k × k matrix. Hence, if X is orthogonal,

then (8) is minimal at the center of the experimental area:  = 0 (also see the ‘funnel’ shape

of Figure 1, discussed below). Hence, extrapolation should be less trusted as the extrapolated

point moves farther away into regions not yet observed. This property will guide our ASA.

(The term ‘trust region’ is used in nonlinear optimization; see Conn, Gould, and Toint 2000.)

3. Two new search techniques

We consider a lower (one-sided) 1 -  confidence interval for the predictor based on (2),

given x. This interval ranges from infinity down to

where  denotes the 1 -  quantile of the distribution of t with N - q degrees of freedom,

and  follows from the basic linear-regression formulas in (4) through (7). The first

term in  (9) concerns the signal, whereas the second term concerns the noise.
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(11)

Note: When we consider a set of x values, then the set of intervals following from (9)

has a joint (simultaneous) probability lower than 1 - . This complication is ignored in our

two techniques. 

Technique 1 (ASA) finds the x that maximizes the minimum output predicted through

(9), (say) . This  gives both a search direction and a step size. First we prove in

Appendix 2 that the objective function in (9) is concave in d. Next in Appendix 3 we derive

the following explicit solution for the optimal input values of the next observation:

(10a)

where  is the ASA direction, and  the step size specified by 

(10b)

where  is the vector of estimated first-order effects (so it excludes the intercept ). 

Technique 2 still maximizes , but the new point is restricted to the SA path;

that is, the search direction is specified by the estimated local gradient, . In Appendix 4

we derive the optimal step size (say)  along this path:
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(12)

This step size is unique, because (9) is concave (see Appendix 2).

We derive the following mathematical properties and interpretations of these two

techniques.

The first term in (10a) means that the path on which the next observation is placed,

starts from the point with minimal predictor variance, namely  (also see end of §2).

The second term means that this path is in the ASA direction; that is, the classic SA direction

 (second term’s last factor) is adjusted for the covariance matrix of , which is C (see

§2, last paragraph). Finally, the step size  is quantified in (10b).

For the orthogonal case (  = ) it is easy to verify that  = 1/N, b = 0, and C

= I/N, so (10) reduces to

This solution implies identical search directions for ASA and SA, in case of orthogonality.

Moreover, for the orthogonal case we prove that the two techniques coincide (both the search

direction and the step size are the same), provided SA starts from the design center; see

Appendix 4. 

In practice, however, designs are not orthogonal. The classic textbooks on Design Of

Experiments (DOE) and RSM do present many orthogonal designs (for example, 2k - p

designs), but these designs use standardized inputs (say) , that is, inputs ranging between -1

and +1, with an average value of zero. In practice, we apply the following linear

transformation to obtain original inputs  that range between  and :
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(13)

Consequently, the first-order polynomial regression model (2) implies that  and (say)  -

the main effects of the original and standardized inputs respectively - are related as follows:

 = . Hence, the steepest-ascent path directions for the original and the standardized

inputs differ (unless  = 1). (The interpretation of standardization is controversial in

mathematical statistics; see the many references in Kleijnen 1987, pp. 221, 345.)

We prove that ASA is scale independent; see Appendix 5. So ASA is not affected by

switching from (say) inches to centimeters when measuring inputs. Driessen et al. (2001)

prove that ASA is also independent of linear transformations with  g 0 in (13).

In case of large signal/noise ratios (defined in equation 1), the denominator under the

square root in (10b) is negative so this equation does not give a finite solution for ; that is,

(9) can be driven to infinity (unbounded solution). Indeed, if the noise is negligible, we have a

deterministic problem, which our technique is not meant to address (many other researchers -

including Conn et al. (2000) - study optimization of deterministic simulation models.)

In case of a small signal/noise ratio, no step is taken. Actually, we distinguish two

cases: (i) the signal is small, (ii) the noise is big. These two cases are discussed next.

In case (i), the signal may be small because the first-order polynomial approximation

is bad. Then we should switch to an alternative metamodel using transformations of  such

as log( ) and 1/  (inexpensive alternative), a second-order polynomial, which adds  and 

 with  > j (expensive because many more observations are required to estimate the

corresponding effects), etc.; see the RSM literature (for example, Irizarry et al. 2001).

In case (ii), however,  the first-order polynomial may fit, but the intrinsic noise may be



-12-

high (also see the comment below equation 8). To decrease this noise, we should increase the

number of observations, N; see the denominator in (8). Hence, we should increase either n

or  (see the definitions below equation 3). When our technique gives a value  that is

‘close’ to one of the old points, then in practice we may increase . Otherwise we observe a

new combination: we increase n. So our technique suggests an approach to the old problem of

how to choose between either using the next observation to increase the accuracy of the

current local approximation, or trusting that approximation and moving into a new area! A

different approach is discussed in Kleijnen (1975, p. 360). In the literature on maximizing the

output of deterministic simulation, this is called the geometry improvement problem; see

Conn et al. (2000). More research on this problem is needed.

  If we specify a different  value in , then  (10) gives a different step size (in

the same direction). Obviously,  increases to infinity, as  decreases to zero. So, a

sufficiently small  always gives a finite solution. However, if we increase , then we make

a bigger step. And we prefer to take a bigger step, in order to get quicker to the top of the

response surface! We feel that a reasonable maximum  value is 0.20 (so we are ‘80%

sure’); however, more empirical research is needed.

Note: We assume that the noise (defined in equation 2) has zero mean when deriving

the 1 -  confidence interval in (9), which leads to the techniques in (10) and (11). Actually,

the locally fitted first-order polynomials may show lack of fit so the expected value of 

(defined in equation 5) exceeds ; see the lack-of-fit tests in many RSM textbooks.

Fortunately, this bias has the ‘right’ sign; that is, this bias increases  in (10) and (11) so

that it decreases the step size.

4. Numerical examples of step-size selection in ASA
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To obtain a better understanding of ASA - especially its step size -  we apply this technique to 

the following three numerical examples: 

(i) single input, and orthogonal X; 

(ii) two inputs, and orthogonal X; 

(iii) two inputs, and one-at-a-time X. 

For each example, we study several cases; that is, different signal/noise ratios. We suppose

that the regression estimates happen to equal the true values:  =  and  = . Without

loss of generality we take = 0 and  = 1 (  and X determine the noise of ; see

equation 4).  We start with example (iii), which is most relevant for practice; then we

summarize results for the other two examples.

We use a non-orthogonal design, namely a one-factor-at-a-time design with = (-1,

-1), = (1, -1), and = (-1, 1) so n = 3 (= q). To estimate  through the MSR in (5), we

duplicate combination 1:  = 2 so N = 4. We consider two extreme signal/noise cases.

Case 1: high/low signal/noise, = 10 and = 0.10

The given X and  result in  = 6.124 and  = 0.061. Equation  (10b) does not give a

finite step size for the traditional � values 0.20, 0.10, and 0.05.

Case 2: low signal/noise, = 0.3 and = 0.5 

This case implies  = 0.184 and  = 0.306. Then  = 0.20 gives ( ) = (-0.404, -

0.212);  = 0.05 gives (-0.4804, -0.4416): no move outside the original input area (the N

outputs were obtained for -1 � x � 1).

The other two examples can be summarized as follows.

Example (i), single input and orthogonal X

Obviously, we now have  q = 2. Suppose = (1, -1) and = (1, 1), so n = 2. Suppose  =

2, so N = 4. Then, (4) gives  =  = 1/4. Then (12) reduces to
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(14)

(15)

which gives a finite solution if . 

Consider a case with high signal/noise: = 10; that is,  = 5. A finite solution

results only for  � 0.0049; for example,  = 0.001 gives such a solution in Figure 1 (where

= 0.50 or  = 0 corresponds with  itself).

INSERT Figure 1: High signal/noise case: lower 1 -  confidence intervals for the regression

predictor  for different 

 Example (ii), two inputs and orthogonal X

A  design gives n = 4;  = 1 implies N = 4.  So (12) becomes 

We consider a case with high/low signal/noise: = 10, = 0.10; that is,  = 5 and

 = 0.05. Then neither  = 0.20 nor  = 0.10 give a finite solution. So we might split the

inputs into two parts: a high signal/noise input 1 treated as in deterministic simulation, and a

low signal/noise input 2. Further,  = 0.025 does give a finite solution, namely  =

(1.2759, 0.0128); so the input with the highest signal changes almost 30%.

5.  Comparison of the ASA and SA search directions through Monte Carlo experiments
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(16)

We perform Monte Carlo experiments to compare the search directions of the two techniques,

ASA and SA. The Monte Carlo method is an efficient and effective way to estimate the

behavior of search techniques applied to random simulations (such as discrete-event dynamic

systems, including simulated queuing and inventory systems); see Appendix 6.

We experiment with two inputs: k = 2. Our Monte Carlo experiments generate output

w (defined below equation 3) through second-order polynomials in two inputs with white

noise: 

 RSM fits first-order polynomials defined in (2) locally, and then estimates the SA

(see §1). The global experimental area is the area over which the inputs of the real system can

be varied, or the area over which the simulation model is assumed to be valid. We assume

that this area is the unit square: -1 �  � 1 and -1 �  � 1. In the local area we use a

specific design D, namely a one-at-a-time design (as in §4). The specific local area is the

upper corner of Figure 2, discussed below.

There are infinitely many polynomials that satisfy (16). To study the scale dependence

problem, we apply a linear transformation to the canonical case, as follows. We define the 

canonical case as  =  =  =  = 0;  =  = -1; see Figure 2. Our linear

transformation replaces  by 1000  + 1, so  = -1,  = 0,  =-2000,  = 0;  = -

1,  = -106; that is, the contours form ellipsoids parallel to the two main axes. In the

canonical case, our local starting area is the upper-right corner (1, 1) with 0.2 input ranges:

= (1, 1),  = (1, 0.8), and  = (0.8, 1). So, now the local starting area becomes = (1,

0),   = (1, -0.0002), and  = (0.8, 0). Obviously, the true optimal input combination (say)

 is (0, -0.001).
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(17)

INSERT Figure 2: Ellipsoid contours  with global and local experimental areas

For  = (1, 0) we observe the output w twice: = 2. After fitting the first-order

polynomial, we start the search from = (0.95, -0.00005); see Appendix 1. In this Monte

Carlo experiment we know that the truly optimal search direction is the vector (say) e that

starts at  and ends at the true optimum (0, -0.001); also see Figure 3 below. We compute

the angle (say)  between this true search direction  e and the estimated search direction v:

So, the smaller the resulting  is, the better the search technique performs.

We take 100 macro-replications. Each time we apply the two techniques to the same

I/O data (w, , ). Then we compute the 100 search directions v for ASA; see Figure 3. We

characterize ‘s empirical distribution through its average, standard deviation, and specific

quantiles. This gives Table 1 (left part), which demonstrates the superiority of ASA, unless

we focus on the worst case for low variance or the 95% quantile for high variance. (Actually,

we can prove that if  = 0, then  � 0° and  � 90°.)

INSERT Figure 3: ASA’s search direction when  = 0.10

 Next we investigate the effects of  (see e in equation 16): we increase  from

0.10 to 0.25. We use the same random numbers as we used for the smaller noise. Now the
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estimated search directions may be very wrong. ASA still performs better, unless we focus on

outliers (see the 95% or 100% quantiles in the right-hand part of Table 1).

Finally, we consider interaction between the two inputs: we take  =  =  =  0;

 = -2,  = -1;  = 2 in (16). We again find that ASA is better; see Table 2.

6. Conclusions

In this paper we addressed the problem of searching for the input combination that gives the

maximum output. RSM is a classic techniques for tackling this problem, but it has two well-

known problems: (i) RSM uses steepest ascent (SA), which is scale-dependent; (ii) RSM

intuitively selects the step size on the SA path. 

To address these two problems, we devised two new techniques. In technique 1 -

called adapted SA or ASA - we select both a step direction and a step size. In technique 2, we

use classic SA but we select a step size inspired by ASA.

Our main conclusion is that - except for orthogonal cases  - ASA gives a better search

direction than SA, because ASA is scale-independent.

Appendix 1. Derivation of the minimum variance of the regression predictor

The variance of the regression predictor  at  follows from (4) and (7), where

without loss of generality we take a unit variance,  = 1:
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This can be rewritten as

where , b, and C are defined in §2.

Because C is positive definite, the necessary and sufficient condition for the point that

gives minimal variance (say)  is

which gives

If X is orthogonal, then b = 0 so the variance is minimal at the design center:  = 0.

Appendix 2. Proof of the concavity  in d for the objective function (9)

In (9) the first term  is linear, and  the second term has the factors  and , which 

are positive. Hence, it suffices to show that

is convex in d.

If in this expression the factor ( ) is not orthogonal, then we orthogonalize by the

well-known Gramm-Schmidt QR method. It can be proven that convexity is preserved by

linear transformations, so it suffices to show convexity for the orthogonal case.

If ( ) is orthogonal, then it suffices to show that
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is convex in d. Obviously,

and

In this expression,  is positive semi-definite: for all (say) v we have

This means that  is positive definite; hence, f(d) is convex. Consequently, (9) is an

‘easy’ problem; that is, the local maximum is the global maximum.

Appendix 3. Maximization of the objective function (9)

We rewrite (9) as

where , , b, and C are defined in §2. Since this function is concave (see Appendix 2),

the necessary and sufficient first-order conditions for the maximizing point  are

Substituting
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in which � is an unknown scalar, we get 

For an orthogonal design (implying  = 1/N, b = 0, and C = I/N) this equation simplifies to

Hence for an orthogonal design the new point is 

Appendix 4: Optimization of the step size in SA

We assume that the SA path starts from = , which is the point at which the predictor

variance is minimal; if X is orthogonal, then b = 0 so  = 0 (see Appendix 1). In SA we

make a step of size (say)  in the  direction. This means
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(5.1)

Substitution of  into the regression predictor (9) gives

Since this expression is concave in , it is easy to verify that  defined in (11) indeed

maximizes .

Comparison with Appendix 3 proves that in the orthogonal case the two techniques

coincide - provided SA starts from the design center.

Appendix 5: Scale independence of ASA

Affine scaling means Az = x or z = A-1x with non-singular A. Then (9) expressed in z becomes

where

or
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(6.1)

In (5.1) we write the square-root factor as

Hence (5.1) becomes

which is indeed identical to the original expression in (9). This proves that ASA is scale

independent.

Appendix 6: Black-box model of I/O behavior of dynamic stochastic simulation

As Law and Kelton (2000, p. 12) - the best selling textbook on simulation - states, a single

server queuing system is quite representative of more complex, dynamic, stochastic

simulation models. For further simplification, we suppose that the output of interest is the

mean waiting time in the steady state, E(W). This output can be estimated through a

simulation that uses the following non-linear stochastic difference equation:

where W(i) denotes the waiting time of customer i, S(i) the service time of customer i, and

A(i) the interarrival time between customers i and i -1. It is standard to start the simulation
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(6.2)

(6.3)

run in the empty (idle) state: W(0) = 0. For additional simplification, we assume that the

arrival times form a Poisson process, and so do the service times. This gives the well-known

M/M/1 (which can actually be solved analytically; see equation 6.4 below). By definition,

M/M/1 implies that S(i) and A(i) are identically and independently distributed (IID) so

simulation is straightforward. The output E(W) is usually estimated through the simulation

run’s average 

where b denotes the length of the initialization (start-up, transient) phase (which may be

zero), and n the run length. (In M/M/1 analysis and simulation through renewal analysis, this

initialization is no issue; in practical simulations, however, it is a major problem; see Law

and Kelton (2000, pp 496-552).) In other words, the dynamic simulation model generates the

time series (6.1), but this series is characterized through the single statistic (6.2).

Actually, simulation is done for sensitivity analysis (possibly followed by

optimization). Such an analysis aims at estimating the input/output (I/O) function (say)

where z denotes the (multiple) output and x the (multiple) input; in the M/M/1 example we

have z = ,  = ,  and  =  with arrival rate  and service rate .

In general, in (6.3) has unknown shape and parameters. However, when studying

the performance of a specific simulation methodology (such as RSM), researchers often use

the M/M/1 simulation model because the I/O function is then known - assuming that the

methodology has selected an appropriate initialization length b in (6.2) (obviously,
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(6.4)

(6.5)

knowledge of  may not be used by the methodology itself):

Unfortunately, the latter assumption is very questionable: it is well-known that selecting an

appropriate transient-phase length b and run length n in (6.2) is difficult (see Law and Kelton

2000).

Moreover, most methodologies (including RSM) assume that - in general - the

simulation observations (say) V have  additive white  noise �; that is,

where NIID(0, )) stands for normally (Gaussian) IID with mean zero and standard deviation

). 

In the M/M/1 example, (6.5) gives (i) V = , (ii) = , (iii) normality

holds if  in (6.2) uses a sample size (n - b +1) such that an asymptotic central limit theorem

holds, (iv) constant variances result if different simulated traffic rates use different and

appropriate sample sizes, and (v) independence results if no common pseudorandom numbers

are used. Altogether, (6.5) applies to the M/M/1 example only if a slew of assumptions hold!

Hence, it is much more efficient and effective to generate test data for the simulation

methodology through sampling from the latter equation, (6.5), instead of (6.1) and (6.2).

Indeed, using (6.5) requires less computer time, and guarantees that the white noise

assumption holds, including the desired value for the variance of the white noise. The

alternative -using (6.1) and (6.2) - would require very long runs, especially for high traffic

rates � 1 this alternative requires n � �.

Finally, even if the researcher has solved the problems resulting from using (6.1) and
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(6.2), the following additional problem arises. Often, sensitivity analysis and optimization

locally approximate the I/O function f(x) through low-order polynomials. But then the

question is: for which values of the traffic rate  is a first-order polynomial adequate?

To solve the latter problem, we use a second-order polynomial for  in (6.5). After

all, (6.4) is no more than a simple example of ; in practice the simulation models are

much more complex than M/M/1 so they have unknown . 

In conclusion, to test a simulation methodology we generate data through a static,

random Monte Carlo model such as (6.5); we do not use a dynamic stochastic simulation

model such as (6.1) combined with  (6.2). So, the Monte Carlo technique is both efficient and

effective.
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Table 1: Statistics for ASA and SA’s estimated angle error  (defined in equation 17), for

two noise values 

Statistics   = 0.10   = 0.25 

ASA SA ASA SA

Average  1.83 89.87 19.83 89.84

Standard deviation 17.89 0.04 56.45 0.19

Median (50% quantile)  0.03 89.88 0.06 89.89

75% quantile  0.00 89.89 0.12 89.91

25%     ,,  0.01 89.87 0.03 89.85

95% quantile  0.13 89.91 179.81 89.99

5%       ,,  0.00 89.79 0.01 89.46

100% quantile 178.92 89.93 179.88 90.06

0%      ,, 0.00 89.59 0.00 88.74

Table 2: Statistics in case of interaction, for ASA and SA’s estimated angle error , for two

noise values 

Statistics   = 0.10   = 0.25 

ASA SA ASA SA

Average 9.72 16.01 10.14 17.33

Standard deviation 3.30 6.23 7.69 12.88

Median (50% quantile) 9.68 16.02 8.99 14.94

75% quantile 12.37 21.12 16.13 27.87

25%    ,, 6.99 10.76 3.21 5.84

95% quantile 15.66 27.05 24.78 41.55

5%       ,, 4.99 6.80 0.61 0.81

100% quantile 17.41 30.08 32.07 50.99

0%         ,, 0.85 1.46 0.04 0.25
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