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Which graphs are determined by their spectrum?

Edwin R. van Dam∗ and Willem H. Haemers
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P.O. Box 90153, 5000 LE Tilburg, The Netherlands,
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Abstract

For almost all graphs the answer to the question in the title is still unknown. Here we
survey the cases for which the answer is known. Not only the adjacency matrix, but also
other types of matrices, such as the Laplacian matrix, are considered.
Keywords: graph, spectrum; 2000 Math.Subj.Clas. 05-02, 05C50, 05E30; Jel-code C0

1 Introduction

Consider the following two graphs with their adjacency matrices.
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0 1 0 1 0
1 0 0 0 1
0 0 0 0 0
1 0 0 0 1
0 1 0 1 0




0 0 1 0 0
0 0 1 0 0
1 1 0 1 1
0 0 1 0 0
0 0 1 0 0



Figure 1: Two graphs with cospectral adjacency matrices

∗The research of E.R. van Dam has been made possible by a fellowship of the Royal Netherlands Academy
of Arts and Sciences
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It is easily checked that both matrices have spectrum

{[2]1, [0]3, [−2]1}
(exponents indicate multiplicities). This is the usual example of non-isomorphic cospec-
tral graphs. For convenience we call this couple the Saltire pair (since the two pictures
superposed give the Scottish flag: Saltire). For graphs on less than five vertices, no pair
of cospectral graphs exists, so each of these graphs is determined by its sprectrum.
We abbreviate ‘determined by the spectrum’ to DS. The question ‘which graphs are

DS ?’ goes back for about half a century, and originates from chemistry. In 1956 Günthard
and Primas [37] raised the question in a paper that relates the theory of graph spectra
to Hückel’s theory from chemistry (see also [21, Ch.6]). At that time it was believed that
every graph is DS until one year later Collatz and Sinogowitz [17] presented the Saltire
pair.
Another application comes from Fisher [30] in 1966, who considered a question of

Kac [47]: ‘Can one hear the shape of a drum?’ He modeled the shape of the drum by a
graph. Then the sound of that drum is characterized by the eigenvalues of the graph.
Thus Kac’s question is essentially ours.
After 1967 many examples of cospectral graphs were found. The most striking result of

this kind is that of Schwenk [57] stating that almost all trees are non-DS (see Section 3.1).
After this result there was no consensus for what would be true for general graphs (see,
for example Godsil [33, p.73]). Are almost all graphs DS, are almost no graphs DS, or
is neither true? As far as we know the fraction of known non-DS graphs on n vertices
is much larger than the fraction of known DS graphs (see Sections 3 and 5). But both
fractions tend to zero as n→∞, and computer enumerations (Section 4) show that most
graphs on 11 or fewer vertices are DS. If we were to bet, it would be for: ‘almost all
graphs are DS’ .
Important motivation for our question comes from complexity theory. It is still undi-

cided whether graph isomorphism is a hard or an easy problem. Since checking whether
two graphs are cospectral can be done in polynomial time, the problem concentrates on
checking isomorphism between cospectral graphs.
Our personal interest for the problem comes from the characterisation of distance-

regular graphs. Many distance-regular graphs are known to be determined by their
parameters, and some of these are also determined by their spectrum (see Section 6).

1.1 Some tools

We assume familiarity with basic results from linear algebra, graph theory, and combi-
natorial matrix theory. Some useful books are [21], [11] and [33]. Nevertheless we start
with some known but relevant matrix properties.

Lemma 1 For n× n matrices A and B, the following are equivalent.
i. A and B are cospectral.
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ii. A and B have the same chararacteristic polynomial.
iii. tr(Ai) = tr(Bi) for i = 1, . . . , n.

Proof. The equivalence of i and ii is obvious. By Newton’s relations the roots r1 ≥
. . . ≥ rn of a polynomial of degree n are determined by the sums of the powers Pn

j=1 r
i
j

for i = 1, . . . n. Now tr(Ai) is the sum of the eigenvalues of Ai which equals the sum of
the ith powers of the roots of the chararacteristic polynomial. tu

If A is the adjacency matrix of a graph, then tr(Ai) gives the total number of closed
walks of length i (we assume that a closed walk has a distinguished vertex were the walk
begins and ends). So cospectral graphs have the same number of closed walks of a given
length i. In particular they have the same number of edges (take i = 2) and triangles
(take i = 3).
Other useful tools are the following eigenvalue inequalities.

Lemma 2 Suppose A is a symmetric n× n matrix with eigenvalues λ1 ≥ . . . ≥ λn.
i. (Interlacing) The eigenvalues µ1 ≥ . . . ≥ µm of a principal submatrix of A of size m
satisfy λi ≥ µi ≥ λn−m+i for i = 1, . . . ,m.
ii. Let s be the sum of the entries of A. Then λ1 ≥ s/n ≥ λn, and equality on either side
implies that every row sum of A equals s/n.

1.2 The path

As a warming up we shall show how the results in the previous subsection can be used
to prove that Pn, the path on n vertices, is DS.

Proposition 1 The path with n vertices is determined by the spectrum of its adjacency
matrix.

Proof. The eigenvalues of Pn are λi = 2cos
πi
n+1 , i = 1, . . . , n (see for example [21, p.73]).

So λ1 < 2. Suppose Γ is cospectral with Pn. Then Γ has n vertices and n − 1 edges.
Furthermore, since the circuit has an eigenvalue 2, it cannot be an induced subgraph of
Γ, because of eigenvalue interlacing (Lemma 2). Therefore Γ is a tree. Similarly, K1,4
has an eigenvalue 2, so K1,4 is not a subgraph of Γ. Also the following graph has an
eigenvalue 2 (as can be seen from the given eigenvector).u1

u1
u1
u1u2 u2u2 u2QQ

´́ QQ
´́

So Γ is a tree with no vertex of degree at least 4 and at most one vertex of degree 3.
Suppose x is a vertex of degree 3. Moving one branch at x to an endpoint of Γ, changes
Γ into Pn. Since Γ and Pn are cospectral, this operation shouldn’t change the number of
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closed walks of length 4. But it clearly does (in a graph without 4-cycles, the number of
closed walks of length 4 equals twice the number of edges plus four times the number of
induced paths of length 2; and the operation decreases the latter number by one)! Hence
Γ has no vertex of degree 3, so Γ is isomorphic to Pn. tu

2 The matrix

In the introduction we considered the usual adjacency matrix. But other matrices are
customary too, and of course the answer to the main question depends on the choice of
the matrix.
Suppose G is a graph on n vertices with adjacency matrix A. A linear combination

of A, J (the all-ones matrix) and I (the identity matrix) with a nonzero coefficient for A,
is called a generalised adjacency matrix. Let D be the diagonal matrix with the degrees
of G on the diagonal (A and D have the same vertex ordering). In this paper we will
mainly consider matrices that are a linear combination of a generalised adjacency matrix
and D. The following matrices are distinguished.

1. The adjacency matrix A.

2. The adjacency matrix of the complement A = J −A− I.
3. The Laplacian matrix L = D −A (sometimes called Laplace matrix, or matrix of
admittance)

4. The signless Laplacian matrix |L| = D +A.
5. The Seidel matrix S = A−A = J − 2A− I.

Note that in this list A, A and S are generalised adjacency matrices. It is clear that for
our problem it doesn’t matter if we consider the matrix A or αA + βI (with α 6= 0).
Moreover the Laplacian matrix has the all-ones vector 1 as an eigenvector and therefore
L and J have a common basis of eigenvectors. So two Laplacian matrices L1 and L2 are
cospectral if and only if αL1+βI+γJ and αL2+βI+γJ (with α 6= 0) are. In particular
this holds for the Laplacian matrix of the complement L = nI − J −L.

2.1 Regularity

If G is regular, the all-ones vector 1 is an eigenvector for every matrix considered above
and so, as far as cospectrality is concerned, there is no difference between the matrices
A, A, L, |L| and S. One must be careful here. The observation only holds within the
class of regular graphs. In the next subsection we shall see that for the Seidel matrix a
non-regular graph may be cospectral with a regular graph, whilst they are not cospectral
with respect to one of the other matrices. In fact, we have the following result.
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Proposition 2 Let α 6= 0. With respect to the matrix Q = αA + βJ + γD + δI, a
regular graph cannot be cospectral with a non-regular one, except possibly when γ = 0 and
−1 < β/α < 0.

Proof. Without loss of generality we may assume that α = 1 and δ = 0. Let n be the
number of vertices of the graph (which follows from the spectrum), and let di, i = 1, . . . , n
be a putative sequence of vertex degrees.
First suppose that γ 6= 0. Then it follows from tr(Q) that

P
i di is determined by

the spectrum of Q. Since tr(Q2) = β2n2 + (1 + 2β + 2βγ)
P
i di + γ2

P
i d
2
i , it also

follows that
P
i d
2
i is determined by the spectrum. Now Cauchy’s inequality states that

(
P
i di)

2 ≤ v
P
i d
2
i with equality if and only if d1 = d2 = . . . = dn. This shows that

regularity of the graph can be seen from the spectrum of Q.
Next we consider the case γ = 0, and β ≤ −1 or β ≥ 0. Since tr(Q2) = β2n2 +

(1 + 2β)
P
i di, also here it follows that

P
i di is determined by the spectrum of Q (we

only use here that β 6= −1/2). Now Lemma 2 states that λ1(Q) ≥ s/n ≥ λn(Q), where
s = βn2 +

P
i di is the sum of the entries of Q, and equality on either side implies that

every row sum of Q equals s/n. Thus equality (which can be seen from the spectrum
of Q) implies that the graph is regular. On the other hand, if β ≥ 0 (β ≤ −1), then Q
(−Q) is a nonnegative matrix, hence if the graph is regular, then the all-ones vector is
an eigenvector for eigenvalue λ1(Q) = s/n (λn(Q) = s/n). Thus also here regularity of
the graph can be seen from the spectrum. tu

If in this paper, we state that a regular graph is DS, without specifying the matrix, we
mean that it is DS with respect to any matrix Q for which regularity can be deduced
from the spectrum. By the above proposition, this includes A, A, L and |L|. If γ = 0 and
β/α = −1/2, Q is essentially the Seidel matrix, which is the subject of the next section.
In case γ = 0, −1 < β/α < 0 and β/α 6= −1/2 we don’t know if a regular graph can be
cospectral with a non-regular one.

2.2 Seidel switching

For a given partition of the vertex set of G, consider the following operation on the Seidel
matrix S of G.

S =

"
S1 S12

S>12 S2

#
∼
"

S1 −S12
−S>12 S2

#
= eS

Observe that eS = eIS eI−1, where eI = eI−1 = diag(1, . . . , 1,−1, . . . ,−1), which means that
S and eS are similar, and therefore S and eS are cospectral. Let eG be the graph with Seidel
matrix eS. The operation that changes G into eG is called Seidel switching. It has been
introduced by Van Lint and Seidel [49] and further explored by Seidel (see for example
[60]). Note that only in the case that S12 has equally many times a −1 as a +1, eG has
the same number of edges as G. So eG is hardly ever isomorphic to G. And it is easy to
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check the S12 cannot have the mentioned property for all possible partitions. Thus we
have:

Proposition 3 With respect to the Seidel matrix, no graph with more than one vertex
is DS.

It is also clear that if G is regular, eG is in general not regular.
2.3 The signless Laplacian matrix

There is a straighforward relation between the eigenvalues of the signless Laplacian matrix
of a graph and the adjacency eigenvalues of its line graph.
Suppose G is a connected graph with n vertices and m edges. Let N be the n ×m

vertex-edge incidence matrix of G. It easily follows (see [56]) that rank(N) = m− 1 if G
is bipartite, and rank(N) = m otherwise. Moreover NN> = |L|, and N>N = 2I + B,
where |L| = A+D is the signless Laplacian matrix of G and B is the adjacency matrix
of the line graph L(G) of G. Since NN> and N>N have the same non-zero eigenvalues
(including multiplicities), the spectrum of B follows from the spectrum of |L| and vice
versa. More precisely, suppose λ 6= 0, then λ is an eigenvalue of |L| with multiplicity µ
(say) if and only if λ− 2 is an eigenvalue of B with multiplicity µ. The matrix N>N is
positive semi-definite, hence the eigenvalues of B are at least −2 and the multiplicity of
the eigenvalue −2 equals m− n+ 1 if G is bipartite and m− n otherwise.
For example, if G is the path Pn, then L(G) = Pn−1. In Section 1.2 we mentioned that

the adjacency eigenvalues of Pn−1 are 2 cos πin (i = 1, . . . , n− 1). So −2 has multiplicity
0. Since Pn is bipartite, the signless Laplacian matrix |L| of Pn has one eigenvalue 0 and
the other eigenvalues are 2 + 2 cos πin for i = 1, . . . , n− 1.
Suppose G is bipartite. Then it is easily seen that the matrices L and |L| are similar

by a diagonal matrix with diagonal entries ±1 (like we saw with Seidel switching), so
they have the same spectrum. In particular the above eigenvalues are also the Laplacian
eigenvalues of Pn. Also here some caution is needed. A non-bipartite graph may be
cospectral with a bipartite graph with respect to both matrices L and |L|. An example
for L is given in Figure 7. So, for a bipartite graph, being DS with respect to one matrix
doesn’t have to imply being DS with respect to the other.

2.4 Generalised adjacency matrices

For matrices that are just a combination of A, I and J , the following theorem of Johnson
and Newman [46] roughly states that cospectrality for two generalised adjacency matrices
implies cospectrality for all.

Theorem 1 For the adjacency matrix A of a graph, define A = {A+ αJ |α ∈ IR}. If G
and eG are cospectral with respect to two matrices in A, then G and eG are cospectral with
respect to all matrices in A.
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Proof. Suppose that the two graphs are cospectral with respect to A+αJ and A+βJ ,
α 6= β. Let A and eA be the adjacency matrices of G and eG, respectively. Then

tr((A+ αJ)i) = tr(( eA+ αJ)i) and tr((A+ βJ)i) = tr(( eA+ βJ)i), i = 1, . . . , n.

From properties of the trace function like tr(XY ) = tr(Y X), tr(XJY J) = tr(XJ)tr(Y J),
and since J2 = nJ , it follows that

tr((A+ αJ)i) = tr(Ai) + iαtr(Ai−1J) + fi(α, tr(AJ), tr(A2J), . . . , tr(Ai−2J))

for some function fi for i = 1, . . . , n. For tr(( eA+αJ)i), tr((A+βJ)i), and tr(( eA+βJ)i)
we find similar expressions with the same function fi, for i = 1, . . . , n. From the above
equations, and by using induction on i, it can be deduced that tr(Ai) = tr( eAi) and
tr(Ai−1J) = tr( eAi−1J) for i = 1, . . . , n. Indeed, if tr(AjJ) = tr( eAjJ) for j = 1, . . . , i− 2,
then

tr(Ai) + iαtr(Ai−1J) = tr( eAi) + iαtr( eAi−1J) and
tr(Ai) + iβtr(Ai−1J) = tr( eAi) + iβtr( eAi−1J) ,

and therefore tr(Ai) = tr( eAi) and tr(Ai−1J) = tr( eAi−1J). Hence tr((A + γJ)i) =
tr(( eA + γJ)i) for i = 1, . . . , n for any γ. Thus, according to Lemma 1, G and eG are
cospectral with respect to all matrices in A. tu

The above argument is due to Godsil and McKay [34, Thm.3.6]. They used it for a
related characterisation of graphs that are cospectral with respect to both A and A.
Note that −A− I ∈ A and −12(S + I) ∈ A, so G and eG are cospectral for all matrices
in A if they are for example cospectral with respect to A and A, A and S, or A and S.
But no combination of L and I, or |L| and I is in A, unless G is regular.
One might wonder if a similar result holds for linear combinations of A and D. This

is not the case, as the example in Figure 2 found by Spence [private communication]
shows. The two graphs have the same spectrum with respect to the adjacency matrix A
and the Laplacian matrix L, but not with respect to the signless Laplacian matrix |L|.
Hence (see Section 2.3) also the line graphs of the graphs from Figure 2 have different
adjacency spectra.

uu u u u uu u u u u
@
@ ¡

¡
uu u u u uu u u u u
@
@ ¡

¡

Figure 2: Two graphs cospectral w.r.t. A and L, but not w.r.t. |L|

Godsil and McKay [34, Table 4, third pair] already gave a pair of graphs which
are cospectral with respect to the adjacency matrix A and with respect to the signless
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Laplacian matrix |L| (so their line graphs are cospectral with respect to the adjacency
matrix), but not with respect to D (i.e. they have different degree sequences). It turns
out that the two graphs are also not cospectral with respect to the Laplacian matrix.

2.5 Other matrices

The distance matrix ∆ is the matrix for which (∆)i,j gives the distance in the graph
between vertex i and j. Note that ∆ = 2J − 2I − A for graphs with diameter two.
Since almost all graphs have diameter two, the spectrum of a distance matrix only gives
additional information if the graphs have relatively few edges, such as trees (see Section
3.1). Other matrices that have been considered are polynomials in A or L, and Chung [16]

prefers a scaled version of the Laplacian matrix: D−
1
2LD−

1
2 . But with respect to all these

matrices there exist cospectral non-isomorphic graphs. The examples come from finite
geometry, more precisely from the classical generalised quadrangle Q(4, q), where q is
an odd prime power (see for example [54]). The point graph and the line graph of this
geometry are cospectral (see Section 3.2) and non-isomorphic (in fact they are strongly
regular, see Section 6.1). The automorphism group acts transitivily on vertices, edges
and non-edges. This means that there is no combinatorial way to distinguish between
vertices, between edges and between non-edges. Therefore the graphs will be cospectral
with respect to every matrix mentioned so far (and to every other sensible matrix).
The question arises whether it is possible to define the matrix of G in a (not so

sensible) way such that every graph becomes DS. This is indeed the case, as follows from
the following example. Fix a graph F and define the corresponding matrix AF of G
by (AF )i,j = 1 if F is isomorphic to an induced subgraph of G that contains i and j
(i 6= j), and put (AF )i,j = 0 otherwise. If F = K2, then AF = A, the adjacency matrix.
However, AF = J− I for G = F , and AF = O for every other graph on the same number
of vertices, and so F is DS with respect to AF . If it is required that the graph G can be
reconstructed from its matrix, one can take A+ 2AF . And moreover, let gn denote the
number of non-isomorphic graphs on n vertices and let F1, F2, . . . , Fgn be these graphs
in some order, then every graph on n vertices is DS with respect to the matrix

A+ 2
gnX
i=1

iAFi .

In [42], Halbeisen and Hungerbühler give a result of this nature in terms of a scaled
Laplacian. They define W = diag(n−1, n−2, n−4, . . . , n−2n−1) and show that two graphs
G1 and G2 on n vertices are isomorphic if and only if there exist orderings of the vertices
such that the scaled Laplacian matrices WL1W and WL2W are cospectral.
In both of the above cases, it is more work to check cospectrality of the matrices than

testing isomorphism. If there would be an easily computable matrix for which every
graph becomes DS, the graph isomorphism problem would be solved.
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3 Constructing cospectral graphs

Nowadays, many constructions of cospectral graphs are known. Most constructions from
before 1988 can be found in [21, Sect.6.1] and [20, Sect.1.3]; see also [33, Sect.4.6]. The
smallest regular non-DS graph has 12 vertices. It is due to Hoffman and RayChaud-
huri [44]. They found a graph cospectral with, but not isomorphic to the line graph of
the cube (see also [21, p.157]). Thus all regular graphs on less than 12 vertices are DS.
More recent constructions of cospectral graphs are presented by Seress [61], who gives
an infinite family of cospectral 8-regular graphs. Graphs cospectral to distance-regular
graphs can be found in [8], [39], [25], and Subsection 3.2. Notice that the mentioned
graphs are regular, so they are cospectral with respect to any generalised adjacency
matrix, which in this case includes the Laplacian matrix.
There exist many more papers on cospectral graphs. On regular, as well as non-regular

graphs, and with respect to the Laplacian matrix as well as the adjacency matrix. We
mention [5], [31], [42], [50], [53] and [55], but don’t claim to be complete.
In the present paper we discuss three construction methods for cospectral graphs. One

used by Schwenk to construct cospectral trees, one from incidence geometry to construct
graphs cospectral with distance-regular graphs, and one presented by Godsil and McKay,
which seems to be the most productive one.

3.1 Trees

Consider the adjacency spectrum. Suppose we have two cospectral pairs of graphs.
Then the disjoint unions one gets by uniting graphs from different pairs, are clearly also
cospectral. Schwenk [57] examined the case of uniting disjoint graphs by identifying a
fixed vertex from one graph with a fixed vertex from the other graph. Such a union
is called a coalescence of the graphs with respect to the fixed vertices. He proved the
following (see also [21, p.159] and [33, p.65]).

Lemma 3 Consider the adjacency spectrum. Let G and G0 be cospectral graphs and let
x and x0 be vertices of G and G0 respectively. Suppose that G−x (that is the subgraph of
G obtained by deleting x) and G0−x0 are cospectral too. Let Γ be an arbitrary graph with
a fixed vertex y. Then the coalescence of G and Γ with respect to x and y is cospectral
with the coalescence of G0 and Γ with respect to x0 and y.

For example, let G = G0 be as given below, then G−x and G−x0 are cospectral, because
they are isomorphic. uu u u u u u u u uu

x x0

Suppose Γ = P3 and let y be the vertex of degree 2. Then Lemma 3 gives that the graphs
in Figure 3 are cospectral.
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Figure 3: Cospectral trees

It is clear that Schwenk’s method is very suitable for constructing cospectral trees.
In fact, the lemma above enabled him to prove his famous theorem:

Theorem 2 With respect to the adjacency matrix, almost all trees are non-DS.

After Schwenk’s result, trees were proved to be non-DS with respect to all kinds of
matrices. Godsil and McKay [34] proved that almost all trees are non-DS with respect to
the adjacency matrix of the complement A, while McKay [51] proved it for the Laplacian
matrix L (and hence also for |L|; see Section 2.3) and for the distance matrix ∆.
Others have also looked at stronger characteristics than the spectrum and showed that

they are still not strong enough to determine trees. Cvetković [18] defined the angles of
a graph and showed that almost all trees share eigenvalues and angles with another tree.
Botti and Merris [4] showed that almost all trees share a complete set of immanental
polynomials with another tree.

3.2 Partial linear spaces

A partial linear space consists of a (finite) set of points P, and a collection L of subsets
of P called lines, such that two lines intersect in at most one point (and consequently,
two points are on at most one line). Let (P,L) be such a partial linear space and assume
that each line has exactly q points, and each point is on q lines. Then clearly |P| = |L|.
Let N be the point-line incidence matrix of (P,L). Then NN>− qI and N>N − qI both
are the adjacency matrix of a graph, called the point graph (also known as collinearity
graph) and line graph of (P,L), respectively. These graphs are cospectral, since NN>

and N>N are. But in many examples they are non-isomorphic. In fact, the pairs of
cospectral graphs coming from generalised quadrangles mentioned in Section 2.5 are of
this type.
Here we present more explicitly an example from [39]. The points are all ordered

q-tuples from the set {1, . . . , q}. So |P| = qq. Lines are the sets consisting of q such
q-tuples that are identical in all but one coordinate. The point graph of this geometry
is the well-known Hamming graph H(q, q). It is a famous distance-regular graph (see
Section 6) of diameter q, with the property that any two vertices at distance two have
exactly 2 common neighbours. If q ≥ 3, the line graph doesn’t have this property: two
vertices at distance two have 1 or q common neighbours. In fact, this implies that the
line graph is not even distance-regular. For q = 3 the geometry is displayed in Figure 4.

10
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Figure 4: The geometry of the Hamming graph H(3, 3)

The point graph is defined on the points, with adjacency being collinearity. The vertices
of the line graph are the lines, where adjacency is defined as intersection.

3.3 GM switching

In some cases Seidel switching (see Section 2.2) also leads to cospectral graphs for the
adjacency spectrum (for example if the graphs G and eG are regular of the same degree).
Godsil and McKay [35] consider a more general version of Seidel switching and give
conditions under which the adjacency spectrum is unchanged by this operation. We
will refer to their method as GM switching. Though GM switching has been invented
to make cospectral graphs with respect to the adjacency matrix, the idea also works
for the Laplacian and the signless Laplacian matrix, as will be clear from the following
formulation.

Theorem 3 Let N be a (0, 1)-matrix of size b× c (say) whose column sums are 0, b or
b/2. Define eN to be the matrix obtained from N by replacing each column v with b/2
ones by its complement 1−v. Let B be a symmetric b× b matrix with constant row (and
column) sums, and let C be a symmetric c× c matrix. Put

M =

"
B N
N> C

#
and fM =

"
B eNeN> C

#
.

Then M and fM are cospectral.

Proof. Define Q =

"
2
bJ − Ib O
O Ic

#
. Then Q−1 = Q and QMQ−1 = fM . tu
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The matrix partition used in [35] is more general than the one presented here. But this
simplified version suffices for our purposes: to show that GM switching produces many
cospectral graphs.
IfM and fM are adjacency matrices of graphs then GM switching also gives cospectral

complements and hence, by Theorem 1, it produces cospectral graphs with respect to
any generalised adjacency matrix.
If one wants to apply GM switching to the Laplacian matrix L of a graph G, define

M = −L. Then the requirement that B has constant row sums means that N must have
constant row sums, that is, the vertices of B all have the same number of neighbours in
C. Of course, GM switching also applies if M = |L|, the signless Laplacian matrix. In
this case all vertices corresponding to B must also have the same number of neighbours
in C, but in addition, the subgraph of G induced by the vertices of B must be regular.
In the special situation that all columns of N have b/2 ones, GM switching is the

same as Seidel switching. So the above theorem also gives sufficient conditions for Seidel
switching to produce cospectral graphs with respect to the adjacency matrix A and the
Laplacian matrix L.
If b = 2, GM switching just interchanges the two corresponding vertices, and we call

it trivial. But if b ≥ 4, GM switching almost always produces non-isomorphic graphs.
In Figures 5 and 6 we have two examples of pairs of cospectral graphs produced by GM
switching. In both cases b = c = 4 and the upper vertices correspond to the matrix B
and the lower vertices to C. In the example of Figure 5, B corresponds to a regular
subgraph and so the graphs are cospectral with respect to the adjacency matrix A, but
also with respect to the adjacency matrix of the complement A and the Seidel matrix S.
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Figure 5: Two graphs cospectral w.r.t. any generalised adjacency matrix

In the example of Figure 6 all vertices of B have the same number of neighbours in
C, so the graphs are cospectral with respect to the Laplacian matrix L.
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Figure 6: Two graphs cospectral w.r.t. the Laplacian matrix
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3.4 Lower bounds

GM switching gives lower bounds for cospectral graphs with respect to several types of
matrices.
Let G be a graph on n − 1 vertices and fix a set X of three vertices. There is a

unique way to extend G by one vertex x to a graph G0, such that X ∪ {x} induces a
regular graph in G0 and that every other vertex in G0 has an even number of neighbours
in X ∪ {x}. Thus the adjacency matrix of G0 admits the structure of Theorem 3, where
B corresponds to X ∪ {x}. This implies that from a graph G on n − 1 vertices one
can make

¡n−1
3

¢
cospectral pairs on n vertices (with respect to any generalised adjacency

matrix). Of course some of these graphs may be isomorphic, but the probability of such
a coincidence tends to zero as n→∞ (see [40] for details). So, if gn denotes the number
of non-isomorphic graphs on n vertices, then:

Theorem 4 The number of graphs on n vertices which are non-DS with respect to any
generalised adjacency matrix is at least

n3gn−1(16 − o(1)).

The fraction of graphs with the required condition with b = 4 for the Laplacian matrix
is roughly 2−n

√
n. This leads to the following lower bound (again see [40] for details):

Theorem 5 The number of non-DS graphs on n vertices with respect to the Laplacian
matrix is at least

r
√
ngn−1,

for some constant r > 0.

In fact, a lower bound like the one in Theorem 5 can be obtained for any matrix of the
form A+ αD, including the signless Laplacian matrix |L|.

4 Computer results

The mentioned papers [34] and [35] of Godsil and McKay also give interesting com-
puter results for cospectral graphs. In [35] all graphs up to 9 vertices are generated and
checked on cospectrality. Recently, this enumeration has been extended to 11 vertices,
and cospectrality was tested with respect to the adjacency matrix A, the set of generalised
adjacency matrices (A&A), the Laplacian matrix L, and the signless Laplacian matrix
|L|, by Haemers and Spence [40]. The results are in Table 1, where we give the fractions
of non-DS graphs for each of the four cases. The last columns give the fractions of graphs
for which the GM switching gives cospectral non-isomorphic graphs with respect to the
adjacency matrix (GM-A) and the Laplacian matrix (GM-L). So column GM-A gives

13



n # graphs A A&A L |L| GM-A GM-L

2 2 0 0 0 0 0 0
3 4 0 0 0 0 0 0
4 11 0 0 0 0 0 0
5 34 0.059 0 0 0 0 0
6 156 0.064 0 0.026 0.1026 0 0
7 1044 0.105 0.038 0.125 0.0977 0.038 0.069
8 12346 0.139 0.094 0.143 0.0973 0.085 0.088
9 274668 0.186 0.160 0.155 0.0692 0.139 0.110
10 12005168 0.213 0.201 0.118 0.0530 0.171 0.080
11 1018997864 0.211 0.208 0.079 0.0281 0.174 0.060

Table 1: Fractions of non-DS graphs

a lower bound for column A&A (and, of course, for column A) and column GM-L is a
lower bound for column L.
Notice that for n ≤ 5 there are no cospectral graphs with respect to L, |L| and A&A,

and there is just one such pair with respect to A. This is of course the Saltire pair.
An interesting result from the table is that the fraction of non-DS graphs is nonde-

creasing for small n, but starts to decrease at n = 10 for A, at n = 9 for L, and at n = 6
for |L|. Especially for the Laplacian and the signless Laplacian matrix, these data arouse
the expectation that the fraction of DS graphs tends to 1 as n → ∞. In addition, the
last two columns show that the majority of non-DS graphs with respect to A&A and
L comes from GM switching (at least for n ≥ 7). If this tendency continues, the lower
bounds given in Theorems 4 and 5 will be asymptotically tight (with maybe another
constant) and almost all graphs will be DS for all three cases. Indeed, the fraction of
graphs that admit a non-trivial GM switching tends to zero as n tends to infinity, and
the partitions with b = 4 account for most of these switchings (see also [35]).

5 DS graphs

In Section 3 we saw that many construction for non-DS graphs are known, and in the
previous section we remarked that it is more likely that almost all graphs are DS, than
that almost all graphs are non-DS. Yet much less is known about DS graphs than about
non-DS graphs. For example, we do not know of a satisfying counterpart to the lower
bounds for non-DS graphs given in Section 3.4. The reason is that it is not easy to
prove that a given graph is DS. We saw an example in the introduction, and in the
coming sections we will give some more graphs which can be shown to be DS. Like in
Proposition 1, the approach goes via structural properties of the graph that follow from
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the spectrum. So let us start with a short survey of such properties.

5.1 Spectrum and structure

Lemma 4 For the Laplacian matrix as well as the adjacency matrix of a graph G, the
following can be deduced from the spectrum.
i. The number of vertices.
ii. The number of edges.
iii. Whether G is regular.
iv. Whether G is regular with any fixed girth.
For the adjacency matrix the following follows from the spectrum.

v. The number of closed walks of any fixed length.
vi. Whether G is bipartite.
For the Laplacian matrix the following follows from the spectrum.

vii. The number of components.
viii. The number of spanning trees.

Proof. Item i is clear, while ii and v have been proved in Section 1.1. Item vi follows
from v, since G is bipartite if and only if G has no closed walks of odd length. Item iii
follows from Proposition 2, and iv follows from iii and the fact that in a regular graph the
number of closed walks of length less than the girth depends on the degree only. The last
two statements follow from well-known results on the Laplacian matrix, see for example
[11]. Indeed, the corank of L equals the number of components and if G is connected,
the product of the nonzero eigenvalues equals n times the number of spanning trees (the
matrix-tree theorem). tu

Remark that the Saltire pair shows that vii and viii do not hold for the adjacency matrix.
The following two graphs have cospectral Laplacian matrices. They illustrate that v and
vi do not follow from the Laplacian spectrum.
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Figure 7: Two graphs cospectral w.r.t. the Laplacian matrix

5.2 Some DS graphs

Lemma 4 immediately leads to some DS graphs.
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Proposition 4 The complete graph Kn, the regular complete bipartite graph Km,m, the
cycle Cn and their complements are DS.

Recall that a regular graph is said to be DS, if it is DS with respect to any generalised
adjacency matrix for which regularity can be deduced from the spectrum; see Section 2.1.
This includes A, A, L and |L|.

Proof (of Proposition 4). We only need to show that these graphs are DS with respect
to the adjacency matrix. A graph cospectral with Kn has n vertices and n(n−1)/2 edges
and therefore equals Kn. A graph cospectral with Km,m is regular and bipartite with
2m vertices and m2 edges, so it is isomorphic to Km,m. A graph cospectral with Cn is
2-regular with girth n, so it equals Cn. tu

Proposition 5 The disjoint union of k complete graphs, Km1 + . . .+Kmk
, is DS with

respect to the adjacency matrix.

Proof. The spectrum of the adjacency matrix A of any graph cospectral with Km1 +
. . . +Kmk

equals {[m1 − 1]1, . . . , [mk − 1]1, [−1]n−k}, where n = m1 + . . . +mk. This
implies that A + I is positive semi-definite of rank k, and hence A + I is the matrix
of inner products of n vectors in IRk. All these vectors are unit vectors, and the inner
products are 1 or 0. So two such vectors coincide or are orthogonal. This clearly implies
that the vertices can be ordered in such a way that A+ I is a block diagonal matrix with
all-ones diagonal blocks. The sizes of these blocks are non-zero eigenvalues of A+ I. tu

In general, the disjoint union of complete graphs is not DS with respect to A and L. The
Saltire pair shows that K1+K4 is not DS for A, and K5+5K2 is not DS for L, because
it is cospectral with the Petersen graph extended by five isolated vertices (both graphs
have Laplacian spectrum {[5]4, [2]5, [0]6}). Note that the above proposition also shows
that a complete multipartite graph is DS with respect to A.
In Section 1.2 we saw that Pn, the path with n vertices, is DS with respect to A. In

fact, Pn is also DS with respect to A, L, and |L|. The result for A, however, is nontrivial
and the subject of [28]. For the Laplacian and the signless Laplacian matrix, there is a
short proof for a more general result.

Proposition 6 The disjoint union of k disjoint paths, Pn1+. . .+Pnk , is DS with respect
to the Laplacian matrix L and the signless Laplacian matrix |L|.

Proof. The Laplacian and the signless Laplacian eigenvalues of Pm are 2 − 2 cos πim ,
i = 0, . . . ,m− 1; see Section 2.3. Suppose G is a graph cospectral with Pn1 + . . .+ Pnk
with respect to L. Then all eigenvalues of L are less than 4. Lemma 4 implies that G
has k components and n1+ . . .+nk− k edges, so G is a forest. By eigenvalue interlacing
(Lemma 2) every diagonal entry of L is less than 4. So every degree of G is at most 3. Let
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L0 be the Laplacian matrix of K1,3. The spectrum of L0 equals {[4]1, [1]2, [0]1}. If degree
3 occurs then L0 + D is a principal submatrix of L for some diagonal matrix D with
nonnegative entries. But then L0 +D has largest eigenvalue at least 4, a contradiction.
So the degrees in G are at most two and hence G is the disjoint union of paths. The
length m (say) of the longest path follows from the largest eigenvalue. Then the other
lengths follow recursively by deleting Pm from the graph and the eigenvalues of Pm from
the spectrum.
For a graph G0 cospectral with Pn1 + . . .+Pnk with respect to |L|, the first step is to

see that G0 is bipartite. This follows by eigenvalue interlacing (Lemma 2): a circuit in G0

gives a submatrix L0 in |L| with all row sums at least 4. So L0 has an eigenvalue at least
4, a contradiction, and hence G0 is bipartite. Since for bipartite graphs, L and |L| have
the same spectrum, G0 is also cospectral with Pn1 + . . .+ Pnk with respect to L. Hence
G0 = Pn1 + . . .+ Pnk . tu

The above two propositions show that for A, A, L, and |L| the number of DS graphs on
n vertices is bounded below by the number of partitions of n, which is asymptotically
equal to 2α

√
n for some constant α. This is clearly a very poor lower bound, but we know

of no better one.
In the above we saw that the disjoint union of some DS graphs is not necessarily DS.

One might wonder whether the disjoint union of regular DS graphs with the same degree
is always DS. The disjoint union of cycles is DS, as can be shown by a similar argument
as in the proof of Proposition 6. Also the disjoint union of some copies of a strongly
regular DS graph is DS; see also Proposition 9. In general we expect a negative answer,
however.

5.3 Line graphs

It is well-known (see Section 2.3) that the smallest adjacency eigenvalue of a line graph
is at least −2. Other graphs with least adjacency eigenvalue −2 are the cocktailparty
graphs (mK2, the complement of m disjoint edges) and the so-called generalised line
graphs, which are mixtures of line graphs and cocktailparty graphs (see [20, Ch.1]).
Graphs with least eigenvalue −2 have been characterised by Cameron, Goethals, Seidel
and Shult [14]. They prove that such a graph is a generalised line graph or is in a finite
list of exceptions that comes from root systems. Graphs in this list are called exceptional
graphs. A consequence of the above characterisation is the following result of Cvetković
and Doob [19, Thm.5.1] (see also [20, Thm.1.8]).

Theorem 6 Suppose a regular graph Γ has the adjacency spectrum of the line graph
L(G) of a connected graph G. Suppose G is not one of the fifteen regular 3-connected
graphs on 8 vertices, or K3,6, or the semiregular bipartite graph with 9 vertices and 12
edges. Then Γ is the line graph L(G0) of a graph G0.
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We would like to deduce from this theorem that the line graph of a connected regular
DS graph, which is not one of the mentioned exceptions, is DS itself. This, however, is
not possible. The reason is that the line graph L(G) of a regular DS graph G can be
cospectral with the line graph L(G0) of a graph G0, which is not cospectral with G. Take
for example G = L(K6) and G0 = K6,10, or G = L(Petersen) and G0 = IG(6, 3, 2), the
incidence graph of the 2-(6, 3, 2) design. The following lemma gives neccessary conditions
for this phenomenon (cf. [12, Thm.1.7]).

Lemma 5 Let G be a k-regular connected graph on n vertices and let G0 be a connected
graph such that L(G) is cospectral with L(G0). Then G0 is cospectral with G, or G0 is a
semiregular bipartite graph with n+1 vertices and nk/2 edges, where (k, n) = (αβ,β2−1)
for integers α and β, with α ≤ 1

2β.

Proof. Suppose that G has m edges. Since L(G0) is cospectral with L(G), L(G0) is
regular and hence G0 is regular or semiregular bipartite. If G0 is not bipartite, G0 is
regular with n vertices and hence G and G0 are cospectral. Otherwise G0 is semiregular
bipartite with n + 1 vertices and m edges with parameters (n1, n2, k1, k2) (say). Then
m = nk/2 = n1k1 = n2k2 and n = n1 + n2 − 1. Also the signless Laplacian matrices
|L| and |L0| of G and G0 have the same non-zero eigenvalues. In particular the largest
eigenvalues are equal. So 2k = k1 + k2. Write k1 = k − α and k2 = k + α, then

(n1 + n2 − 1)k = nk = n1k1 + n2k2 = n1(k − α) + n2(k + α).

Hence k = (n1−n2)α, which among others implies that α 6= 0. Now n1(k−α) = n2(k+α)
gives

αn1(n1 − n2 − 1) = αn2(n1 − n2 + 1),
which leads to (n1 − n2)2 = n1 + n2. Put β = n1 − n2, then (k, n) = (αβ,β2 − 1). Since
k1 ≤ n2 and k2 ≤ n1, it follows that α ≤ 1

2β. tu

Now the following can be concluded from Theorem 6 and Lemma 5.

Theorem 7 Suppose G is a connected regular DS graph, which is not a 3-connected
graph with 8 vertices, or a regular graph with β2 − 1 vertices and degree αβ for some
integers α and β, with α ≤ 1

2β. Then also the line graph L(G) of G is DS.

This theorem enables us to construct recursively infinitely many DS graphs by repeatedly
taking line graphs or complements. We have to avoid the 3-connected graphs on 8 vertices,
which is not a problem, and if a graph with parameters (αβ,β2 − 1) arises we take the
complement. As a starting graph we can take any connected regular graph with k ≥ 3,
n ≤ 11 and n 6= 8, or one of the graphs from Proposition 4 with n 6= 8. Though this
construction gives many DS graphs, they all are line graphs and complements of line
graphs of regular graphs. In particular they do not give examples for every n and hence
do not improve the lower bound mentioned in the previous subsection.
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Bussemaker, Cvetković, and Seidel [12] determined all connected regular exceptional
graphs. There are exactly 187 such graphs, of which 32 are DS. This leads to the following
characterisation.

Theorem 8 Suppose Γ is a connected regular DS graph with all its adjacency eigenvalues
at least −2, then one of the following occurs.
i. Γ is the line graph of a connected regular DS graph.
ii. Γ is the line graph of a connected semiregular bipartite graph, which is DS with respect
to the signless Laplacian matrix.
iii. Γ is a cocktailparty graph.
iv. Γ is one of the 32 connected regular exceptional DS graphs.

Proof. Suppose Γ is not an exceptional graph or a cocktailparty graph. Then Γ is the
line graph of a connected graph G, say. Whitney [63] has proved that G is uniquely
determined from Γ, unless Γ = K3. If this is the case then Γ = L(K3) = L(K1,3), so i
and ii are both true. Suppose G0 is cospectral with G with respect to the the signless
Laplacian |L|. Then Γ and L(G0) are cospectral with respect to the adjacency matrix, so
Γ = L(G0) (since Γ is DS). Hence G = G0. Because Γ is regular, G must be regular, or
semiregular bipartite. If G is regular, DS with respect to |L| is the same as DS. tu

6 Distance-regular graphs

All regular DS graphs constructed so far have the property that either the adjacency
matrix A or the adjacency matrix A of the complement has smallest eigenvalue at least
−2. In this section we present other examples.
Consider a connected graph G on n vertices with diameter d. For vertices x and y of

G at distance d(x, y), let bx,y denote the number of neighbours of y at distance d(x, y)+1
from x, and let cx,y denote the number of neighbours of y at distance d(x, y)− 1 from x.
Suppose that for all x and y, the value of bx,y and cx,y only depends on d(x, y). Then
G is called distance-regular and we write bd(x,y) and cd(x,y) instead of bx,y and cx,y. Let
x be a vertex of G, then it follows that the number ki of vertices at distance i from x is
independent of x. In particular G is regular of degree k1 = b0. The array

Υ = {b0, . . . , bd−1; c1, . . . , cd}

is called the intersection array of G. The numbers n, d, bi, ci, ki and ai = k1 − bi − ci
(take bd = c0 = 0) are the parameters of G. They satisfy the relations k0 = c1 = 1,
kici = ki−1bi−1 for i = 1, . . . , d, and

Pd
i=0 ki = n. Thus all parameters are determined

by Υ. Distance-regular graphs were introduced by Biggs [2]. The best reference for the
subject is the monograph by Brouwer, Cohen and Neumaier [8]; see also [33, Ch.11]. If
d = 2, G is called strongly regular, a concept first defined by Bose [3]. A basic result is
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that a distance-regular graph with diameter d has d+1 distinct eigenvalues and that its
(adjacency) spectrum

Σ = {[λ0]1, [λ1]m1 , . . . , [λd]
md}

can be obtained from the intersection array and vice versa (see for example [25]). How-
ever, in general the spectrum of a graph doesn’t tell you wether it is distance-regular or
not. A famous distance-regular graph is the Hamming graph H(d, q), and for q = d ≥ 3
we have constructed graphs cospectral with, but non-isomorphic to H(d, q) in Section 3.2.
Many more examples are given in [39].
In the theory of distance-regular graphs an important question is: ‘Which graphs

are determined by their intersection array Υ ?’ For many distance-regular graphs this
is known to be the case. The question ‘Which distance-regular graphs are determined
by Σ ?’ is a natural restriction. Candidates are distance-regular graphs determined by
Υ. For these candidates, we have to investigate whether it can be deduced from the
spectrum that the graph is distance-regular. An important class of graphs for which this
is the case is the class of strongly regular graphs.

6.1 Strongly regular DS graphs

A connected regular graph with three distinct (adjacency) eigenvalues is strongly regular.
Indeed, the Hoffman polynomial gives that A2 is a linear combination of A, I and J (for
a graph with distinct adjacency eigenvalues λ0 > λ1 > . . . > λt, the Hoffman polynomial
h is defined by h(x) =

Q
i6=0(x−λi); if the graph is regular and connected with adjacency

matrix A, then h(A) = h(λ0)
n J , cf. [43]). Therefore (A2)i,j , the number of walks of

length 2 between i and j, only depends on whether i and j are adjacent, non-adjacent,
or coincide. Hence the graph is distance-regular with diameter 2. The disjoint union of k
(k ≥ 2) complete graphs of size `, denoted by kK`, is also defined to be a strongly regular
graph (this makes the set of strongly regular graphs closed under taking complements).
Other examples of strongly regular graphs are the line graphs of Kn and Km,m (also
known as the triangular graphs and the lattice graphs, respectively). By Propositions 4
and 5 and Theorem 7, we find the following infinite families of strongly regular DS graphs.

Proposition 7 If n 6= 8 and m 6= 4, the graphs kK`, L(Kn) and L(Km,m) and their
complements are strongly regular DS graphs.

For n = 8 and m = 4 cospectral graphs exist. There is exactly one graph cospectral with
L(K4,4), the Shrikhande graph (see [62]), and there are three graphs cospectral with
L(K8), the so called Chang graphs (see [15]). Besides the graphs of Proposition 7, only
a few strongly regular DS graphs are known; these are surveyed in Table 2 (GQ(3, 9) is
the point graph of the unique generalised quadrangle of order (3, 9), and a local graph of
a graph G is a graph induced by the neighbours of a vertex of G). Being DS seems to
be a very strong property for strongly regular graphs. Most strongly regular graphs have
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(many) cospectral mates. For example, there are exactly 32548 non-isomorphic strongly
regular graphs with spectrum {[15]1, [3]15, [−3]20} (cf. [52]). Other examples can be
found in Brouwer’s survey [7]. The list of strongly regular DS graphs is not growing
rapidly. The latest result concerns a graph on 81 vertices, and dates from 1992 (cf. [10]).
Although we don’t have enough evidence to conjecture that there are only finitely many
strongly regular DS graphs besides the ones from Proposition 7, we do expect that only
very few more strongly regular DS graphs will ever be found.

n spectrum name reference

5 {[2]1, [− 1
2
+ 1

2

√
5]2, [− 1

2
− 1

2

√
5]2} Pentagon

13 {[6]1, [− 1
2
+ 1

2

√
13]6, [− 1

2
− 1

2

√
13]6} Paley [59]

16 {[5]1, [1]10, [−3]5} Clebsch [58]

17 {[8]1, [− 1
2
+ 1

2

√
17]8, [− 1

2
− 1

2

√
17]8} Paley [59]

27 {[10]1, [1]20, [−5]6} Schläfli [58]
50 {[7]1, [2]28, [−3]21} Hoffman-Singleton [39]
56 {[10]1, [2]35, [−4]20} Gewirtz [32], [9]
77 {[16]1, [2]55, [−6]21} Local Higman-Sims [6]
81 {[20]1, [2]60, [−7]20} Local GQ(3, 9) [10]
100 {[22]1, [2]77, [−8]22} Higman-Sims [32]
112 {[30]1, [2]90, [−10]21} GQ(3, 9) [13]
162 {[56]1, [2]140, [−16]21} Local McLaughlin [13]
275 {[112]1, [2]252, [−28]22} McLaughlin [36]

Table 2: The known sporadic strongly regular DS graphs (up to complements)

6.2 Distance-regularity from the spectrum

If d ≥ 3 only in some special cases it follows from the spectrum of a graph that it is
distance-regular. The following result surveys the cases known to us.

Theorem 9 If G is a distance-regular graph with diameter d and girth g satisfying one
of the following properties, then every graph cospectral with G is also distance-regular,
with the same parameters as G.
i. g ≥ 2d− 1,
ii. g ≥ 2d− 2 and G is bipartite,
iii. g ≥ 2d− 2 and cd−1cd < −(cd−1 + 1)(λ1 + . . .+ λd),
iv. G is a generalised odd graph, that is, a1 = . . . = ad−1 = 0, ad 6= 0,
v. c1 = . . . = cd−1 = 1,
vi. G is the dodecahedron, or the icosahedron,
vii. G is the coset graph of the extended ternary Golay code.

For result i, iv, and vi we refer to [9] (see also [38]), [45], and [39], respectively. Results
ii, iii, v, and vii are proved in [25] (in fact, ii is a special case of iii). Notice that
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the polygons Cn and the strongly regular graphs are special cases of i, while bipartite
distance-regular graphs with d = 3 (these are the incidence graphs of symmetric block
designs, see also [21, Thm.6.9]) are a special case of ii.
An important result on spectral characterisations of distance-regular graphs is due to

Fiol and Garriga [29]. They proved the following theorem.

Theorem 10 Suppose eG is cospectral with a distance-regular graph G with diameter d.
If for every vertex x of eG, the number of vertices at distance d from x has the right value:
kd, then eG is distance-regular.

In fact, Fiol and Garriga’s result is stronger, since they do not require eG to be cospectral
with a distance-regular graph. Let us illustrate the use of this result by proving case i
of Theorem 9. Since the girth and the degree follow from the spectrum, any graph eG
cospectral with G also has girth g and degree k1. Fix a vertex x in eG. Clearly cx,y = 1
for every vertex y at distance less than (g− 1)/2 from x, and ax,y = 0 (where ax,y is the
number of neighbours of y at distance d(x, y) from x) if the distance between x and y
is less then (g − 2)/2. This implies that the number eki of vertices at distance i from x
equals k1(k1− 1)i−1 for i = 1, . . . , d− 1. Hence eki = ki for i = 1, . . . , d− 1. But then alsoekd = kd and eG is distance-regular by Theorem 10.

6.3 Distance-regular DS graphs

The book by Brouwer, Cohen, and Neumaier [8] gives many distance-regular graphs
determined by their intersection array. We only need to check which ones satisfy one of
the properties of Theorem 9. First we give the known infinite families:

Proposition 8 The following distance-regular graphs are DS.
i. The polygons Cn.
ii. The complete bipartite graphs minus a complete matching.
iii. The odd graphs Od+1.
iv. The folded (2d+ 1)-cubes.

As mentioned earlier, item i follows from property i of Theorem 9 (and from Proposi-
tion 4). Item ii follows from property ii of Theorem 9, and the graphs of items iii and
iv are all generalised odd graphs, so the result follows from property iv, due to Huang
and Liu [45].
The remaining known distance-regular DS graphs are presented in Tables 3 and 4.

In these tables we denote by IG(v, k,λ) the point-block incidence graph of a 2-(v, k,λ)
design, and by GH, GO, and GD the point graph of a generalised hexagon, generalised
octagon, and generalised dodecagon, respectively. By IG(AG(2, q)\pc) we denote the
point-line incidence graph of the affine plane of order q minus a parallel class of lines
(sometimes called a bi-affine plane). The last columns in these tables refer to the relevant
theorems.

22



n spectrum g name Thm.

12 {[5]1, [√5]3, [−1]5, [−√5]3} 3 Icosahedron 9vi

14 {[3]1, [√2]6, [−√2]6, [−3]1} 6 Heawood; IG(7, 3, 1); GH(1, 2) 9i

14 {[4]1, [√2]6, [−√2]6, [−4]1} 4 IG(7, 4, 2) 9ii
15 {[4]1, [2]5, [−1]4, [−2]5} 3 L(Petersen) 7

21 {[4]1, [1 +√2]6, [1−√2]6, [−2]8} 3 GH(2, 1); L(IG(7, 3, 1)) 9v, 7

22 {[5]1, [√3]10, [−√3]10, [−5]1} 4 IG(11, 5, 2) 9ii

22 {[6]1, [√3]10, [−√3]10, [−6]1} 4 IG(11, 6, 3) 9ii

26 {[4]1, [√3]12, [−√3]12, [−4]1} 6 IG(13, 4, 1); GH(1, 3) 9i

26 {[9]1, [√3]12, [−√3]12, [−9]1} 4 IG(13, 9, 6) 9ii
36 {[5]1, [2]16, [−1]10, [−3]9} 5 Sylvester 9i
42 {[6]1, [2]21, [−1]6, [−3]14} 5 Second subconstituent Hoffman-Singleton 9i
42 {[5]1, [2]20, [−2]20, [−5]1} 6 IG(21, 5, 1); GH(1, 4) 9i
42 {[16]1, [2]20, [−2]20, [−16]1} 4 IG(21, 16, 12) 9ii

52 {[6]1, [2 +√3]12, [2−√3]12, [−2]27} 3 GH(3, 1); L(IG(13, 4, 1)) 9v, 7

62 {[6]1, [√5]30, [−√5]30, [−6]1} 6 IG(31, 6, 1); GH(1, 5) 9i

62 {[25]1, [√5]30, [−√5]30, [−25]1} 4 IG(31, 25, 20) 9ii
105 {[8]1, [5]20, [1]20, [−2]64} 3 GH(4, 1); L(IG(21, 5, 1)) 9v, 7

114 {[8]1, [√7]56, [−√7]56, [−8]1} 6 IG(57, 8, 1); GH(1, 7) 9i

114 {[49]1, [√7]56, [−√7]56, [−49]1} 4 IG(57, 49, 42) 9ii

146 {[9]1, [√8]72, [−√8]72, [−9]1} 6 IG(73, 9, 1); GH(1, 8) 9i

146 {[64]1, [√8]72, [−√8]72, [−64]1} 4 IG(73, 64, 56) 9ii
175 {[21]1, [7]28, [2]21, [−2]125} 3 L(Hoffman-Singleton) 7

186 {[10]1, [4 +√5]30, [4−√5]30, [−2]125} 3 GH(5, 1); L(IG(31, 6, 1)) 9v, 7

456 {[14]1, [6 +√7]56, [6−√7]56, [−2]343} 3 GH(7, 1); L(IG(57, 8, 1)) 9v, 7
506 {[15]1, [4]230, [−3]253, [−8]22} 5 M23 graph 9i
512 {[21]1, [5]210,−3]280, [−11]21} 4 Coset graph doubly truncated binary Golay code 9iii

657 {[16]1, [7 +√8]72, [7−√8]72, [−2]512} 3 GH(8, 1); L(IG(73, 9, 1)) 9v, 7
729 {[24]1, [6]264, [−3]440, [−12]24} 3 Coset graph extended ternary Golay code 9vii
819 {[18]1, [5]324, [−3]468, [−9]26} 3 GH(2, 8) 9v
2048 {[23]1, [7]506, [−1]1288, [−9]253} 4 Coset graph binary Golay code 9iii, iv
2457 {[24]1, [11]324, [3]468, [−3]1664} 3 GH(8, 2) 9v

Table 3: Sporadic distance-regular DS graphs with diameter 3

Note that Proposition 8 and Tables 3 and 4 include some famous distance-regular
graphs, such as the Heawood graph, the Pappus graph, the line graph of the Petersen
graph and Tutte’s 8-cage. We remark finally that also the complements of distance-
regular DS graphs are DS (but not distance-regular, unless d = 2).

7 Graphs with few eigenvalues

Like distance-regular graphs, graphs with few distinct eigenvalues have a lot of structure.
The regular graphs with two (complete graphs) or three eigenvalues (strongly regular
graphs) have been considered in the above. Here we consider the nonregular graphs
with three adjacency, or three Laplacian eigenvalues, and the regular graphs with four
eigenvalues. From the results on these graphs (see for example [23], [24], [22], [26]) we
find that there are among them some (families of) DS graphs.
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n spectrum d g name Thm.

18 {[3]1, [√3]6, [0]4, [−√3]6, [−3]1} 4 6 Pappus; IG(AG(2, 3)\pc) 9ii

20 {[3]1, [√5]3, [1]5, [0]4, [−2]4, [−√5]3} 5 5 Dodecahedron 9vi

28 {[3]1, [2]8, [−1 +√2]6, [−1]7, [−1−√2]6} 4 7 Coxeter 9i
30 {[3]1, [2]9, [0]10, [−2]9, [−3]1} 4 8 Tutte’s 8-cage; GO(1, 2) 9i
32 {[4]1, [2]12, [0]6, [−2]12, [−4]1} 4 6 IG(AG(2, 4)\pc) 9ii
45 {[4]1, [3]9, [1]10, [−1]9, [−2]16} 4 3 GO(2, 1); L(GO(1, 2)) 9v, 7

50 {[5]1, [√5]20, [0]8, [−√5]20, [−5]1} 4 6 IG(AG(2, 5)\pc) 9ii

80 {[4]1, [√6]24, [0]30, [−√6]24, [−4]1} 4 8 GO(1, 3) 9i

98 {[7]1, [√7]42, [0]12, [−√7]42, [−7]1} 4 6 IG(AG(2, 7)\pc) 9ii

102 {[3]1, [ 1+
√
17

2
]9, [2]18, [θ1]16, [0]17, [θ2]16, [

1−√17
2

]9, [θ3]16} 7 9 Biggs-Smith graph 9v
(θ1, θ2, θ3 roots of θ3 + 3θ2 − 3 = 0)

126 {[3]1, [√6]21, [√2]27, [0]28, [−√2]27, [−√6]21, [−3]1} 6 12 GD(1, 2) 9i

128 {[8]1, [√8]56, [0]14, [−√8]56, [−8]1} 4 6 IG(AG(2, 8)\pc) 9ii

160 {[6]1, [2 +√6]24, [2]30, [2−√6]24, [−2]81} 4 3 GO(3, 1); L(GO(1, 3)) 9v, 7

170 {[5]1, [√8]50, [0]68, [−√8]50, [−5]1} 4 8 GO(1, 4) 9i

189 {[4]1, [1 +√6]21, [1 +√2]27, [1]28, [1−√2]27, [1−√6]21, [−2]64} 6 3 GD(2, 1); L(GD(1, 2)) 9v, 7
330 {[7]1, [4]55, [1]154, [−3]99, [−4]21} 4 5 M22 graph 9v

425 {[8]1, [3 +√8]50, [3]68, [3−√8]50, [−2]256} 4 3 GO(4, 1); L(GO(1, 4)) 9v, 7

Table 4: Sporadic distance-regular DS graphs with diameter at least 4

7.1 Regular DS graphs with four eigenvalues

Many regular graphs with four eigenvalues can be constructed from other regular graphs
with at most four eigenvalues. For example, the complement of the disjoint union of
some copies of a strongly regular graph has four adjacency eigenvalues. It is easy to
show that if this strongly regular graph is DS, then the corresponding regular graph with
four eigenvalues (and its complement, of course) is also DS. Hence, by considering the
strongly regular DS graphs in Section 6.1, we find an infinite family of DS graphs.
Another way to produce regular graphs with four eigenvalues is the following product

construction. For a graph G with adjacency matrix A, we define G ⊗ Jt as the graph
with adjacency matrix A⊗ Jt, where ⊗ denotes the Kronecker product, and Jt the t× t
all-ones matrix. It is shown in [22] that the graphs C5 ⊗ Jt and H ⊗ Jt (and their
complements), where H is the complement of the distance-regular graph obtained by
removing a complete matching from the complete bipartite graph Km,m (the incidence
graph IG(m,m− 1,m− 2) of a 2-(m,m− 1,m− 2) design), are regular DS graphs with
four eigenvalues. To summarize the above:

Proposition 9 The following graphs and their complements, which have at most four
eigenvalues, are regular DS graphs .
i. The disjoint union of t copies of a strongly regular DS graph.
ii. C5 ⊗ Jt.
iii. IG(m,m− 1,m− 2)⊗ Jt.
About line graphs we can be more specific than in Section 5.3 (cf. [27, Thm.3, Thm.5]).
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A connected regular line graph with four eigenvalues must be the line graph of a strongly
regular graph, or the line graph of the incidence graph of a symmetric 2-design, or the
line graph of a complete bipartite graph. Moreover, L(Km,n) is not DS if and only if
{m,n} = {4, 4}, {m,n} = {6, 3}, or {m,n} = {2t2+ t, 2t2−t} and there exists a strongly
regular graph with spectrum {[2t2]1, [t]2t2−t−1, [−t]2t2+t−1} (such a strongly regular graph
comes from a symmetric Hadamard matrix with constant diagonal of size 4t2).
The line graph of a strongly regular graph G is DS if and only if G is DS, G is not

K4,4 or CP (4), and G does not have spectrum {[2t2]1, [t]2t2−t−1, [−t]2t2+t−1}.
The line graph of the incidence graph of a symmetric design is DS if and only if the

design is determined, up to duality, by its parameters, and its incidence graph is not the
Cube or K4,4.
Note that the non-DS graph L(K4,4) has only three distinct eigenvalues, i.e., it is

strongly regular (see Section 6.1).
Besides the line graphs and the graphs from Proposition 9, there are some sporadic

regular DS graphs with four eigenvalues (cf. [26]). Except for the distance-regular ones,
we list them in Table 5 (up to complements); for explanation of the names of the graphs
we refer to [26].

n spectrum name
13 {[4]1, [θ1]4, [θ2]4, [θ3]4} Cycl(13)

(θ1, θ2, θ3 roots of θ3 + θ2 − 4θ + 1 = 0)
18 {[5]1, [3]1, [−1+

√
13

2
]8, [−1−

√
13

2
]8} twisted double L(K3,3)

18 {[5]1, [2]6, [−1]9, [−4]2} K3,3 ⊕K3

18 {[10]1, [4]2, [1]4, [−2]11} BCS179 [12]
19 {[6]1, [θ1]6, [θ2]6, [θ3]6} Cycl(19)

(θ1, θ2, θ3 roots of θ3 + θ2 − 6θ − 7 = 0)
20 {[5]1, [√5]7, [−1]5, [−√5]7} 2-cover of C5 ⊗ J2
24 {[5]1, [3]6, [−1]14, [−3]3} 2-cover of C6 ⊗ J2
24 {[12]1, [−2 + 2√5]3, [0]17, [−2− 2√5]3} Icosahedron⊗ J2
24 {[14]1, [4]4, [2]2, [−2]17} BCS183 [12]

24 {[14]1, [√7]8, [−2]7, [−√7]8} distance 2 graph of Klein graph

26 {[7]1, [5]1, [−1+
√
17

2
]12, [−1−

√
17

2
]12} twisted double Paley(13)

27 {[8]1, [5]4, [−1]20, [−4]2}
27 {[8]1, [ 1+

√
45

2
]6, [−1]14, [ 1−

√
45

2
]6} 3-cover of K9

30 {[20]1, [2]5, [0]19, [−6]5} L(Petersen)⊗ J2
34 {[9]1, [7]1, [−1+

√
21

2
]16, [−1−

√
21

2
]16} twisted double Paley(17)

Table 5: Sporadic regular DS graphs with 4 (adjacency) eigenvalues

For completeness we mention that the line graph of the incidence graph of a non-
symmetric 2-(v, k, 1) design with v−1

k−1 + k > 18 (a regular graph with five eigenvalues) is
DS if and only if the design is uniquely determined by its parameters (cf. [21, Thm.6.22]).
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7.2 Nonregular DS graphs with three eigenvalues

In [23], the connected nonregular graphs with three adjacency eigenvalues have been
studied. Among others, all such graphs with least eigenvalue −2 have been determined.
Among them are 5 graphs which are DS with respect to the adjacency matrix, one of
them being the cone over the Petersen graph (obtained by adding one vertex adjacent
to all vertices of the Petersen graph). The sixth graph in Table 6 of sporadic nonregular
DS graphs with three adjacency eigenvalues (we exclude the complete bipartite graphs)
is the cone over the Gewirtz graph. It would be interesting to see if also other cones
over strongly regular DS graphs are DS. In [24], the connected nonregular graphs with

n spectrum name
11 {[5]1, [1]5, [−2]5} cone over Petersen
14 {[8]1, [1]6, [−2]7} IG(7, 4, 2) plus clique on blocks
22 {[14]1, [2]7, [−2]14} graph on points and planes of AG(3, 2)
24 {[11]1, [3]7, [−2]16} ”switched” L(K5,5)
36 {[21]1, [5]7, [−2]28} switched L(K9)
57 {[14]1, [2]35, [−4]21} cone over Gewirtz

Table 6: Sporadic nonregular DS graphs with 3 eigenvalues w.r.t. A

three Laplacian eigenvalues have been studied. Among them is one infinite family of DS
graphs: the so-called bird cages. Such a graph is constructed by connecting a clique and
a coclique (of the same size) by a complete matching, and adding one extra vertex, which
is adjacent to all vertices of the coclique.

Proposition 10 The bird cages and their complements are DS with respect to the Lapla-
cian matrix.

All other known connected nonregular DS graphs with three eigenvalues with respect to
L are listed in Table 7 (up to complements). For explanations of the names of these
graphs we refer to [24].

8 Concluding remarks

Answering the question in the title for adjacency or Laplacian matrices seems out of
reach. Proving that graphs are non-DS is easier than proving that they are DS. If it is
indeed the case that almost all graphs are DS, then it will be very difficult to make a
substantial step forward in proving this, with the described methods. The tools that we
use for proving DS only seem to work for graphs with special structure, such as distance-
regular graphs, but for these kind of graphs, being DS seems to be a much more special
property than for arbitrary graphs. However, one could try to solve some more modest
problems such as:
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n spectrum name

11 {[5 +√3]5, [5−√3]5, [0]1} P (11, 5, 2)

13 {[4 +√3]6, [4−√3]6, [0]1} P (13, 4, 1)

13 {[ 11+
√
17

2
]6, [ 11−

√
17

2
]6, [0]1} G(7, 3, 1)

21 {[7]10, [3]10, [0]1} P (21, 5, 1) with 5 absolute points
21 {[7]9, [3]11, [0]1} P (21, 5, 1) with 9 absolute points;

construction 4b from AG(2, 3)

21 {[ 17+
√
37

2
]10, [ 17−

√
37

2
]10, [0]1} G(11, 5, 2)

21 {[12]6, [7]14, [0]1} switched L(K7)

25 {[ 11+
√
21

2
]12, [ 11−

√
21

2
]12, [0]1} construction 4c from AG(2, 3)

25 {[ 19+
√
61

2
]12, [ 19−

√
61

2
]12, [0]1} G(13, 4, 1)

31 {[6 +√5]15, [6−√5]15, [0]1} P (31, 6, 1)
36 {[9]16, [4]19, [0]1} construction 4b from AG(2, 4)

41 {[7 +√8]20, [7−√8]20, [0]1} construction 4c from AG(2, 4)
55 {[11]25, [5]29, [0]1} construction 4b from AG(2, 5)

61 {[ 17+
√
45

2
]30, [ 17−

√
45

2
]30, [0]1} construction 4c from AG(2, 5)

105 {[15]49, [7]55, [0]1} construction 4b from AG(2, 7)

113 {[ 23+
√
77

2
]56, [ 23−

√
77

2
]56, [0]1} construction 4c from AG(2, 7)

136 {[17]64, [8]71, [0]1} construction 4b from AG(2, 8)

145 {[13 +√24]72, [13−√24]72, [0]1} construction 4c from AG(2, 8)

Table 7: Sporadic nonregular DS graphs with 3 eigenvalues w.r.t. L

• Which trees are DS? Or, more modestly: Which trees are not cospectral to another
tree. Some non-trivial results can be found in [28], [48].

• Which linear combination of D, A, and J gives the most DS graphs? There is some
evidence that the signless Laplacian matrix |L| = D + A is a good candidate, see
Table 1.

• Improve the lower bounds 2α
√
n from Section 5.2 for the number of DS graphs with

respect to A, A, L, or |L|.
• Extend the list of distance-regular DS graphs. Especially another unique strongly
regular graph would be very interesting. A good candidate is the graph of Berlekamp,
Van Lint and Seidel [1].

• Which graphs with least adjacency eigenvalue −2 are DS? For regular graphs we
saw an almost complete answer in Section 5.3. But the non-regular case is open.
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