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Abstract
Using high frequency data on ten infrequently traded stocks dur-

ing the year 1999, we measure the information content of a trade
and its relation to the trading intensity. While the price impact curve
for frequently traded stocks monotonically increases towards the full
information price, we find impulse response functions that first ‘over-
shoot’ and subsequently decrease towards the full information price.
The overshooting effect strongly depends upon the bid-ask spread and
the trading intensity, which can be explained by inventory imbalances
and asymmetric information of informed and uninformed traders. Fur-
thermore, we show that the difference in price impact between peri-
ods of slow and fast trading is much larger for illiquid stocks than
for frequently traded stocks. We model the overnight behavior of the
trading intensity and returns and show that information contained in
the trading intensity of illiquid stocks is carried over to the next day.
Additionally, we show that, for infrequently traded stocks, it may take
several days before the full information price that follows a trade is
attained, even in periods of relatively high market activity. Moreover,
the adjustment time crucially depends upon the bid-ask spread and
the trading intensity.
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1 Introduction

An extensive literature is available on the price impact of trades in frequently
traded stocks. Hasbrouck (1991a, 199b) reports that the price impact of a
trade is larger when the spread is wide and is more significant for firms with
smaller market capitalization. Kavajecz and Odders-White (2001) analyze
how the price impact of trades depends on the information in the limit order
book. Dufour and Engle (2000) argue that, for liquid stocks, the price impact
of a trade is larger and convergence to its full information value faster when
subsequent trades are close together in time, i.e. when the trading intensity
is high.
While the analysis of the price impact of trading in liquid stocks is clearly
of interest, a very substantial part of actual trading is related to less liquid
stocks. Moreover, for these stocks the price impact of trades is likely to be
substantially larger. Furthermore, for stocks that are typically traded a few
times per hour the potential information content of fast trading seems much
more important than for the most liquid stocks. Little attention seems to
have been paid in the literature to modeling the microstructure properties
of illiquid stocks. Manganelli (2000) jointly models trading intensity, trading
volume, and volatility and concludes that the less liquid the stock the more
time it takes before the price impact of a trade has died out. Easley, Kiefer,
O’Hara, and Paperman (1996) show that the probability of information based
trading is lower for high volume stocks and higher for low volume assets. In-
tuitively, since illiquid stocks are traded only occasionally, the market maker
would make a large loss when he would face an informed trader. As a con-
sequence, low volume stocks generally have wider spreads than high volume
stocks to account for this risk. Hasbrouck (1991a, 199b) uses a VAR-model
for returns and trade size to model the price impact of trades. Since smaller
market value and traded volume are usually positively correlated and the per-
sistent price impact of trades is directly linked to the information contents
of trades, Hasbrouck (1991a, 199b)’s result that the price impact of trades is
larger for firms with smaller market value is consistent in the framework of
Easley et al. (1996). The same result is reported by Engle and Patton (2001)
who use an error correction model for bid and ask quotes with the lagged log
bid-ask spread as the error correction term.
The papers referred to above distinguish between frequently and less fre-
quently traded stocks, but are restricted to models in transaction time and
consequently do not condition on the information content that the current
trading intensity might have. In this paper we analyze to what extent the cost
of trading and the impact of trading differ between periods of low and high
trading activity. While it has been shown e.g. in Dufour and Engle (2000),
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Zebedee (2001), and Spierdijk (2002) that the current trading intensity has
impact on liquid stocks, intuition suggests that the impact will be much more
important for the illiquid stocks that are analyzed in this paper. Moreover,
inventory effects may play a more important role than for frequently traded
stocks, cf. Easley et al. (1996). Finally, since illiquid stocks are usually traded
only a few times a day or may not be traded for several days, the price effect
of a trade may last for several days. Therefore, appropriate duration mod-
eling for these stocks has to assess the impact of the closure of the market
from 4.00 PM until 9.30 AM on returns and durations.
This paper considers the price impact of trades in illiquid stocks traded on
the NYSE. A VAR-model in transaction time for returns, trade size, and
bid-ask spread is combined with an ACD-model for the trading intensity in
the line of Dufour and Engle (2000), Zebedee (2001), and Spierdijk (2002)
to measure the information content of a trade and its relation to the trading
intensity, taking overnight behavior into account. The results show that the
price impact of a trade is larger for illiquid stocks than for frequently traded
stocks, which is in line with Easley et al. (1996). Moreover, we establish
price impact functions that first overshoot and subsequently decrease towards
the full information price. We explain this using inventory and asymmetric
information arguments. Adjustment to the full information price can easily
take several days and the amount of overshooting and the speed of adjustment
are shown to depend crucially on the current trading intensity and spread.
The organization of this paper is as follows. Section 2 provides a brief review
of relevant market microstructure issues. The data are presented in Section
3. Section 4 describes the VAR-model for returns, trade volume and bid-ask
spread in transaction time and its use to model the price impact of trades.
The model for the trading intensity is presented in Section 5. Section 6 is
devoted to the estimation of a joint model for the trade characteristics and
the trading intensity, while Section 7 is focused on the price impact of a trade
in this framework. Finally, Section 8 summarizes and concludes.

2 Existing models for the impact of the trad-

ing intensity on trading costs

An important component of market microstructure theories is the concept
of asymmetric information. This phenomenon arises when both uninformed
and informed traders are present at the market. Uninformed traders trade for
liquidity reasons. Informed traders, however, have private information on the
fundamental value of the security to be traded. They trade to take advantage
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of their superior information. Due to the presence of informed traders, the
transaction process itself potentially reveals information on the underlying
fundamental value of the security. In this section we first discuss a model
that focuses on the risk of informed trading in infrequently traded stocks.
Subsequently, we discuss some existing models that relate the existence of
information to the trading intensity.
Easley, Kiefer, O’Hara and Paperman (1996) focus on the risk on informed
trading in illiquid stocks. The authors empirically show that the risk of infor-
mation based trading is higher for infrequently traded stocks. The absolute
number of informed traders is generally higher for liquid stocks than for in-
frequently traded stocks. However, the problem with illiquid stocks is not
that there are too many informed traders, but there are too few uninformed
traders present at the market. As a consequence, illiquid stocks tend to have
wider spreads than frequently traded securities. Apart from the increased
risk of information based trading, Easley et al. (1996) provide two other pos-
sible explanations for this phenomenon. First, market makers trading illiquid
stocks have to deal with inventory effects. Since illiquid stocks are traded only
occasionally, the market makers want to be compensated for the inventory
imbalances which are inherently large. Secondly, since the market maker of
an infrequently traded stock inherently has a monopoly position, a market
power argument can also explain why spreads of infrequently traded stocks
are usually wider than the spreads of frequently traded stocks. Since the
persistent price impact of trades is considered the most accurate measure of
the risk of informed trading is, the price impact of a trade will be higher for
infrequently traded stocks according to Easley et al. (1996).
Several market microstructure studies relate the trading intensity to the un-
derlying value of the asset.
In the model of Easley and O’Hara (1992) the market maker is uncertain
about the existence of an information signal; i.e. he does not know whether
or not an information event has taken place. Additionally, he does not know
the direction of the possible news event (good or bad news). Whether or
not an information event has taken place, a no trade outcome can occur in
both cases. In the model it is more likely that a no trade will take place
when no news has been released. Since the market maker knows all relevant
probabilities, he will lower the probability he attaches to a news event when
the trading intensity is low. Hence, in the model of Easley and O’Hara (1992)
slow trading is associated to the absence of ‘news’.
In a different framework Diamond and Verrecchia (1987) also relate the trad-
ing intensity to the presence of news. In this model traders either own or do
not own the stock. If they do not own the stock, they might wish to short-sell
when there is an opportunity to trade. However, all traders fall into three
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groups: those who face no costs in short selling, those who are prohibited
from short selling and finally, those who are restricted in short selling. In the
latter case the proceeds from short-selling are delayed until the price of the
asset falls. Neither the market maker, nor the traders can observe why there
has been no trade and whether a sell is a short sell or not. However, every
agent knows all relevant probabilities. A no trade outcome may indicate sev-
eral situations. A trader may wish to refrain from trading, or he may not be
able to trade due to the short-sell restrictions or prohibitions. In this specific
setup of the model, the probability of no trade is higher in case of bad news.
Hence, in this model slow trading is associated to bad news.
Admati and Pfleiderer (1988) distinguish informed and liquidity traders. Liq-
uidity traders are either nondiscretionary traders who must trade a certain
number of shares at a particular time or discretionary traders who time
their trades such that the expected cost of their transactions are minimized.
We consider the version of the model with endogenous information acqui-
sition; i.e. private information is acquired at some cost and traders obtain
this information if and only if their expected profit exceeds this cost. In this
framework the presence of informed traders lowers the cost of trading for
liquidity traders. Moreover, informed traders prefer to trade when there are
many liquidity traders are present at the market. Hence, both informed and
uninformed traders want to trade when the market is ‘thick’. This results in
concentrated patterns of trading: informed traders and liquidity traders tend
to clump together. This implies that prices are more informative in periods
of frequent trading; i.e. the trading intensity positively affects volatility.
In Dufour and Engle (2000), Zebedee (2001), and Spierdijk (2002) the pre-
dictions made by Easley and O’Hara (1992) have been empirically confirmed
for frequently traded stocks by showing that the price impact of trades is
higher in periods of fast trading, and vice versa. In this paper we will inves-
tigate the price impact of trades and the relation to the trading intensity for
infrequently traded stocks.

3 The data

We analyze a sample of illiquid stocks that are traded on the NYSE. In line
with Engle and Patton (2001), we focus on stocks in the deciles two and
four after ordering all NYSE stocks from least actively traded (decile one)
to most actively traded (decile ten). Following many other studies we report
results for a random sub sample of the stocks in that decile only. For ease
of comparison, the sample of five stocks from deciles two and four that we
consider is taken to be a sub sample of the sample of 25 stocks from that
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decile for which Engle and Patton (2001) report results. For the same reason
we include the ‘representative’ stocks in the analysis, for which Engle and
Patton (2001) report detailed results. For decile two this is Greenbrier Com-
panies and for decile four this is Commercial Intertech Corp. (TEC). To allow
for some comparison with frequently traded stocks, we moreover consider the
IBM stock obtained from liquidity decile ten. Furthermore, IBM is the sev-
enth most frequently traded stock in the year 1999 and has been extensively
analyzed in the literature. The list of illiquid stocks considered in this paper
is given in Table 1.
Before introducing the variables analyzed in this paper, we briefly discuss
the institutional setting on the NYSE. Each security has one specialist. All
trades have a specialist as intermediate party. A market order is a trade for
immediate execution, while a limit order is contingent on e.g. price or time.
Limit orders are registered in the market maker’s limit order book which is,
in general, not publicly known. The market starts at 9.30 AM with a call
auction, while the remaining market is a continuous auction that ends each
day at 4.00 PM. We remove all trades before 9.30 AM and after 4.00 PM.
Moreover, we also delete those trades that take place before the first quotes
of the day are posted.
For each trade the following associated characteristics are recorded: trade mo-
ment τt in seconds after midnight, trade price pt, where t indexes subsequent
transactions (i.e. t indexes ‘transaction time’). The duration (in ‘calendar
time’) between subsequent trades is defined as yt = τt − τt−1. Durations
which contain a night period deserve special attention. The overnight dura-
tion is defined as the duration from the last trade until 4.00 PM (closure of
the market) plus the duration from 9.30 AM (opening of the market) at the
next day that the stock is traded until the moment that stock is traded for
the first time that day. Moreover, when the overnight period contains one or
more days without any trading in the stock under consideration, we add 6.5
hours per day (the number of hours during which the market is open) of no
trading to the overnight duration.
To each trade we also associate a prevailing bid and ask quote, denoted
by qb

t and qa
t . To obtain these prevailing quotes we use the ‘five-seconds

rule’ by Lee and Ready (1989) which associates each trade to the quote
posted at least five seconds before the trade, since quotes can be posted more
quickly than trades are recorded. The five-second rule solves the problem
of potential mismatching. From the prevailing quote the prevailing bid-ask
spread st = qa

t − qb
t is constructed. Following many empirical studies for

NYSE, we avoid the bid-ask bounce (see e.g. Campbell, Lo, and McKinlay
(1997), page 101), by not taking the transaction price pt as ‘the’ price of a
trade. Instead, we consider the prevailing mid quote mt as ‘the’ price of a
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trade, where mt = (qb
t + qa

t )/2. The return corresponding to the t-th trade is
then defined as the log return over the prevailing and subsequent mid quote:
rt = log(mt+1/mt). We express log returns in base points. Overnight returns
are included in sample. We dealt with dividend payments by removing the
first return in which the dividend payment is incorporated.
Since the transaction data provided by NYSE are not classified according
to the nature of a trade (buy or sell), we use the Lee and Ready (1991)
‘midpoint rule’ to classify a trade. With this rule, the prevailing mid quote
corresponding to a trade is used to decide whether a trade is a buy, a sell, or
undecided. If the price is lower (higher) than the mid quote, it is viewed as
a sell (buy). If the price is exactly at the mid quote, its nature (buy or sell)
remains undecided. To each trade we associate a trade indicator x0

t which
indicates the nature of the trade: 1 (buy), −1 (sell), or 0 (undecided). To
avoid the problem of zero-durations, we follow Engle and Russell (1998) and
treat multiple transactions at the same time as one single transaction. We
aggregate their trade volume and average prices and bid-ask spreads.
To get an idea of the sample properties of the data, we present an explorative
data analysis. Table 1 shows some sample statistics (sample mean, median,
and quantiles) of the durations and trade characteristics of the stocks that are
included in our analysis. The mean duration for stocks in liquidity decile two
and four varies from 10 minutes to 3 hours (say 4− 30 trades a day), rather
than say 10 seconds (thousands of trades a day) for the most liquid stocks
like IBM. The mean overnight durations − which measures the time elapsed
between the last trade on the previous trading day and the first trade on
the next trading day − are somewhat above mean of the intraday durations.
Although trading takes place more frequently in the early morning and at
the end of a trading day (reflected in the U-shaped pattern of the trading
intensity), this can be explained by the fact that we do not take trades into
account that take place before the first quotes have been posted.
By comparing sample average and sample median of the durations of each
stock in the sample, we see that the distribution of the durations is much
more skewed for the infrequently traded stocks than for IBM. This is due
to the fact that sometimes several hours (decile four) or even several days
(decile two) can elapse before a subsequent trade takes place in stocks in the
lower liquidity deciles.
Although illiquid stocks usually trade only several times a day (decile 4) and
may not be traded for several days (decile 2), infrequently traded stocks have
periods in which they are traded relatively often.
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4 The price impact of trades in a model in

transaction time

In this section we assume that the price impact of trades does not depend
on the trading intensity in calendar time and condition on past returns,
spread, and volume only. The model that we analyze is the standard VAR-
specification proposed by Hasbrouck (1991a, 199b).
We specify the VAR-model (in transaction time) for zt = (rt, stx

0
t , x

0
t )
′ as

A(L)zt = c + υt, IEυt = 0,Var υt = Σt, (1)

where A(L) is an m-th order (3×3) matrix polynominal in the lag operator L.
The contemporaneous term in this matrix polynomial, A0, and the possibly
heteroscedastic covariance matrix of the residuals, Σ, can be normalized in
various forms which do not affect the properties of the model. We choose the
formulation of Hasbrouck (1991a, 1991b) where trade sign and the product
of trade sign and bid-ask spread contemporaneously influence returns1. We
also assume covariance stationarity of (zt)t.
Hasbrouck (1991a, 1991b) points out that the persistent price impact of a an
unexpected trade is naturally interpreted as the information content of the
trade. The expected impact of an unexpected trade on prices is measured
by the impulse response function, cf. Lütkepohl (1993). In the VAR-model
of equation (1), the price impact of an unexpected buy after k transactions
reduces to the coefficient of Lk in element (1, 3) of A(L)−1 and the long term
cumulative impulse response equals element (1, 3) of A(1)−1. The impulse
response function is estimated by replacing the matrix coefficients by their
estimated values.

Estimation results
Following many others in the literature, e.g. Hasbrouck (1991a, 1991b), we
impose a low order on the VAR-model (m = 5) and estimate the model using
OLS. Point estimates and heteroskedasticity-consistent standard errors based
on the procedure proposed by White (1980) for the representative illiquid
stocks (Greenbrier Companies and Commercial Intertech) as well as for IBM
are reported in Tables 2, 3 and 4. Estimation results for the other stocks
under consideration are available upon request.
To investigate the specification of the models, we test several hypotheses.
First of all the truncation of A(L) to lag five is tested using a Ljung-Box
test for autocorrelation in the residuals in each of the equations of the VAR-
model. This test is asymptotically equivalent to the standard LM-test for

1The normalization sets the elements (2, 1), (2, 3), (3, 1) and (3, 2) of A0 equal to zero
and imposes

(
Σt

)
12

= 0, IEt(υt) = 0.
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serial correlation in the residuals of a regression model and computationally
far less demanding than that test. The test shows no evidence against the
imposed truncation at lag five for all stocks in the sample including IBM.
For each equation of the VAR-model we test whether each group of lagged
(explanatory) variables Granger-causes the variable to be explained. The
results are summarized in the first panel of Table 5. For IBM, for which the
results are not included in Table 5 there is significant Granger-causality in
all cases. The Granger-causality results show that it is important to take
the feedback between the variables under consideration into account. Engle
and Patton (2001) make strong assumptions on the exogeneity of the trading
process and ignore this feedback. Table 5 also shows that the differences
between the results for decile two and decile four are small.

The price impact of trades
As discussed above the impulse response function, which reflects the price
impact of a trade, is fully determined by the VAR-model. The structure of
the VAR-model implies that the price impact of a trade will also depend on
returns, bid-ask spread and volume of the five last trades. Throughout these
are set equal to their sample average, apart from the bid-ask spread for the
trade under consideration. This is set at either the 5% or the 95% sample
quantile of the spreads for that stock as reported in Table 1. These two
cases will be referred to as ‘low’ and ‘high’ bid-ask spread, respectively. The
estimates of the long run price impact for the stocks under consideration are
reported in the first column of Table 6. For example, for Commercial Intertech
the long run price impact with small spreads equals 27.8 bp and 50.6 bp with
wide spreads.
The impulse response function shows that the price impact of trades in illiq-
uid stocks is very large in comparison to trades in frequently traded stocks
such as IBM. For example, for Greenbrier Companies the price impact of a
trade with low spreads equals 30.8 bp, while a trade in IBM has a price effect
of only 2.4 bp with low spreads. This result is consistent with Easley et al.
(1996) and can be explained by the higher risk of informed trading for in-
frequently traded stocks. We also notice that the price impact of trades for
stocks in decile two is generally higher than for stocks in decile four, which
is also consistent with Easley et al. (1996).
We observe several other differences between the impulse response functions
corresponding to the infrequently and frequently traded stocks. First, we see
that the usual monotonically increasing shape that is found for IBM and other
frequently traded stocks (see Dufour and Engle (2000) and Spierdijk (2002))
is replaced by a price impact function that first ‘overshoots’ and subsequently
returns to the full information price level. This effect is illustrated in Figure
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1. With wide bid-ask spreads, a significant overshooting effect is documented
for seven out of ten infrequently traded stocks − see the again first column
of Table 6 − while with low spreads three out of ten stocks overshoot2. For
example, for Commercial Intertech the overshooting effect with small spreads
equals 3.4 bp and 4.0 bp with wide spreads. Later we will discuss the con-
vergence time to the full information price that is also reported in Table
6.
A possible explanation for the phenomenon of overshooting would be the
influence of inventory effects. To avoid inventory costs, the market maker
will keep his inventory low. Generally, his inventory will be lower the more
infrequently traded the stock. When the request for a trade is posted, the
market maker has to rely on other sources than his own inventory to fulfill the
order demand. Liquidity is provided by other agents who, however, request
a premium that is caused by the fact that they expect to buy the stock
back at a lower price. The price of the stock will therefore temporarily rise
to a higher level. After some time this effect dies out and the stock price
converges to its full information level. The ‘overshooting’ effect is observed
more often with wide spreads than with small spreads. Since wide spreads
indicate an increased risk of informed trading, the party providing liquidity
to the market maker is likely to incorporate this uncertainty in the price he
or she sets. The larger overshooting effect at wide spreads may thus be the
consequence of adverse selection.
Moreover, in the presence of wide spreads not only the overshooting effect is
documented for more stocks than with low spreads, the long term price im-
pact itself is also larger. For example, for Commercial Intertech the long-term
price impact of a trade equals 27.8 bp and 50.6 bp with low and high spreads,
respectively. See again Figure 1. The long term impulse response with wide
spreads is significantly larger than with low small spreads for all stocks in-
cluding IBM. Hasbrouck (1991a, 199b) also establishes the positive effect on
the price change and explains it as follows. Since wide bid-ask spreads indi-
cate an increased risk of informed trading, the information content of trades
will be larger. Therefore, the persistent price impact of a trade will be higher
in periods of wide spreads. We also note that the difference in price impact
with low and wide spreads is much higher for infrequently traded stocks.

2We investigate the significance of the overshooting effect as follows. Using the (joint)
asymptotically normal distribution of the estimated coefficients (based on White (1980)’s
heteroskedasticity-consistent covariance matrix), we randomly draw values of the parame-
ters from this distribution and compute the corresponding impulse response functions. We
repeat this 1,000 times and compute the number of draws for which the impulse response
function overshoots. Whenever the price impact function overshoots (α × 100) or more
times, the effect is significant at (approximately) an α% significance level.
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5 Modeling the trading intensity

In the previous section we measured the price impact of trades in a VAR-
model in transaction time for returns, trade volume, and bid-ask spread.
However, as discussed in Section 2, the models put forward by Diamond and
Verrecchia (1987) and by Easley and O’Hara (1992) predict that calendar
time plays a role as well and that the price impact of trades depends upon the
trading intensity. The model in Easley and O’Hara (1992) implies, e.g., that
the price impact is larger in periods of frequent trading. In order to analyze
this issue empirically we consider in Section 6 to what extent the parameters
in the VAR-model in transaction time depend on the trading intensity, follow-
ing the approach of Dufour and Engle (2000), Zebedee (2001), and Spierdijk
(2002). Moreover, a model for the trading intensity allows transformation
from calendar time to transaction time and vice versa, including the analysis
of the time it takes until the price adjustment to the new equilibrium value
is completed. In this section we consider a simple univariate ACD-model (see
Engle and Russel (1998)) to model the diurnally corrected3 duration process
(yt)t. We assume that the duration process is strongly exogenous, cf. Engle,
Hendry and Richard (1983)4. Let It−1 denote the information known up to
time t− 1. An ACD(1, 1) specification assumes that the marginal process for
the durations (yt)t satisfies yt = ψtεt, where ψt = IE(yt | It−1) and (εt)t iden-
tically distributed with unit mean and independent of It−1. The conditional
expected duration is specified according to

ψt = ω + αyt−1 + βψt−1.

The modeling of the duration process of an infrequently traded stock gives
rise to several problems. Most importantly, we need to deal with overnight
durations. The usual approach to modeling the trading intensity ignores
overnight duration and initializes the first duration on a new day with the un-
conditional duration. This assumes that information contained in the trading

3Throughout all durations are diurnally corrected as follows. We obtain the diurnally
adjusted durations by approximating the expected duration given the time of the day by
a piecewise linear and continuous spline. We therefore set nodes on 9.30 − 10.00, 10.00 −
11.00, . . . , 14.00−15.00, 15.30−16.00 hours. We compute the diurnally corrected durations
by dividing each duration by its corresponding diurnal correction φt = const+

∑8
i=1 λiTi,t,

with Ti,t = (τt−1− ki)1{τt−1>ki}, where ki corresponds to the i-th time interval as defined
above.

4In Spierdijk (2002) it is shown that there is significant feedback from trade character-
istics (returns, spreads, trade volume) to the trading intensity of five frequenctly traded
stocks traded at the NYSE. It is shown that this feedback affects the impulse response
functions, both in transaction and in calendar time. However, the effect is quite small.
Therefore, we do not take the feedback into account in the sequel.
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intensity is not carried over to the next day. For infrequently traded stocks,
however, we deal with this as follows. Without loss of generality, consider
the ACD(1, 1)-model with5 α + β < 1. The standard specification of the
conditional expected duration can be rewritten as

ψt = µ + α(yt−1 − µ) + β(ψt−1 − µ),

where µ = ω/(1− α − β) is the unconditional expected duration (see Engle
and Russel (1998)). To incorporate overnight effects, we now insert a dummy
variable to allow the conditional duration to deviate from the unconditional
expected duration at the beginning of a day; i.e.

ψt = µ + (1− γdt−1){α(yt−1 − µ) + β(ψt−1 − µ)}, (2)

where dt is a binary variable indicating whether or not the t-th duration
contains an overnight period and 0 ≤ γ ≤ 1. With this specification of the
conditional expected duration, the unconditional expected duration is µ as
before, provided that dt is weakly exogenous. If γ = 1, the first duration
of each day is initialized with the unconditional expected duration µ. This
reduces to the common approach to frequently traded stocks. If γ = 0, how-
ever, the usual autoregressive structure of the model remains valid and hence,
the overnight duration is used to compute the first duration at a new day.
Finally, if 0 < γ < 1, the component containing the overnight durations
weighted and used for the initialization of the new day together with the
unconditional expected duration µ.
A second issue is the distribution of εt. In case of infrequently traded stocks,
the distribution of εt is likely to have relatively fat tails. Several distribu-
tions have been proposed to model the disturbance term εt, for example a
Weibull-distribution (see Engle and Russell (1998)). However, in Drost and
Werker (2001) it is pointed out that this may lead to inconsistent estimators
in case of misspecification. We therefore prefer the approach of quasi max-
imum likelihood (QML). This method yields (under some regularity condi-
tions) consistent (but generally inefficient) estimates and does not require
any additional distributional assumptions. To obtain consistent estimates of
the standard errors in this case, we use the Bollerslev and Wooldridge (1992)
robust covariance matrix.

Estimation results
We jointly estimate the ACD-model and the diurnal correction factor using
QML. We apply the BHHH-algorithm to do the numerical optimization, see
Berndt, Hall, Hall, and Hausman (1974). To ensure identification, we nor-
malize the constant in the diurnal correction factor such that its expected

5This assumption ensures strict stationarity and finiteness of the first moment.
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value equals the sample mean of the durations. Moreover, since we take the
overnight durations into account, we fix the coefficient of the last node so
that the diurnal correction factor is continuous from the end of one day to
the next day. The estimation results for the ACD-model are shown in Table 7
(the results for the linear spline are available upon request). The persistence
parameter β is generally lower for infrequently traded stocks than for liquid
stocks.
For all stocks − including IBM − the overnight durations play a role, since
the parameter γ is significantly different from one in all cases. The coefficient
γ of the overnight dummy is significantly different from both zero and one
(although it is close to one) for IBM. Hence, the overnight duration is taken
into account for the initialization of a new day. This means that the usual
approach in the literature that simply ignores the overnight durations is
not fully efficient. The same holds for the approach to treat the overnight
durations the same as the other durations.
The overnight durations will have different impact for liquid and illiquid
stocks. The intuition is as follows. In case of frequently traded stocks such
as IBM, there will be many trades during the first minutes of the opening of
the market so that the effect of the information from the previous trading
day − if relevant − would quickly disappear and would only be relevant for
a small fraction of the total number of observations. The standard treatment
of the overnight durations will therefore have little impact on the estimates
of ω, α, and β and on the market impact of trades. However, for infrequently
traded stocks there are only few trades a day. This suggests that the overnight
durations could have a long lasting impact on the remaining transactions for
that day or even for subsequent days. They will thus affect a large fraction
of the observations as well as estimates of the market impact of trading.
We indeed see that the estimated values of γ are much lower for the infre-
quently traded stocks than for the frequently traded stock IBM. In fact, for
four out of five stocks from decile two the overnight coefficient γ is not signifi-
cant, meaning that we cannot reject that the overnight duration is taken into
account entirely. For four out of five stocks from decile four γ is significantly
different from both zero and one, so a weighted average of the overnight
duration and the unconditional mean is used to initialize the first duration
of the new day. Thus, the more illiquid the stocks, the more important the
overnight duration.

The price impact of trades in calendar time
Now that we have endogenized the trading intensity, it is possible to compute
the impulse response functions corresponding to the VAR-model in calendar
time. We do this by fixing a moment of the day at which a trade takes place
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(we have taken 12.30 PM). Subsequently, we simulate N = 1, 000 paths of
durations and compute the value of the cumulative impulse response func-
tion at each second. Finally, we average the impulse responses over the N
simulations which results in an estimate of the price impact function at each
second. We simulate paths of durations by randomly drawing from the empir-
ical distribution of the (consistently estimated) ACD-residuals. We compute
the price impact function of a trade in periods of ‘slow’ trading (we initialize
durations with the 95% sample quantile) and in times of ‘fast’ trading (5%
sample quantile). We set past values of the trade characteristics equal to
their equilibrium values. We do this for all stocks, including IBM. We con-
sider ‘small’ and ‘wide’ initial spreads, as we did before. The time to reach
the new efficient price is measured as the time it takes until the price has
stabilized and attained 99.5% of the long-term impulse response.
The results are displayed in the first column of Table 6. For example, for
Commercial Intertech it takes one hour and fourty minutes before 99.5% of
the full information price has been attained in case of fast trading and small
spreads. We see that it may sometimes take several days before the new
efficient price has been reached. For example, with slow trading it takes
approximately six hours before the new efficient price has been reached in
case of the Commercial Intertech stock. Since the trade was initiated at 12.30
PM, the price will have reached the new efficient price the next day around
12.30 PM. For Huntingdon Life Science it takes more than twelve hours to
reach the new efficient price in case of fast trading and small spreads. So
even in periods of fast trading, it may take several days before the effect of
a trade in a stock from decile two has died out.

6 Dependence of the price impact on the trad-

ing intensity

In Section 4 we estimated the original Hasbrouck (1991a, 199b) model in
which the trading intensity does not play a role. In Section 5 we modeled
the trading intensity and we now turn to VAR-model in transaction time in
which the trading intensity is incorporated.
As in Section 4, we specify the VAR-model for zt = (rt, stx

0
t , x

0
t )
′ according

to equation (1) with identical assumptions regarding the disturbances (υt)t.
Again we assume covariance stationarity. We no allow A(L) to depend upon
the trading intensity; i.e.

A(L) = A(yt)(L).
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An extensive specification search shows that only impact of trades on returns
significantly depends upon the trading intensity. We let the coefficient cor-
responding to the impact of trade sign on returns depend upon the trading
intensity in the following way

aj,(1,3) = γj + δj · 1

1 + yt−j

[j = 0, . . . , 5]. (3)

Although we do not have any zero-durations in our data, we still add one
second in the denominator. This will appear convenient for simulation pur-
poses6. This specification is in line with Dufour and Engle (2000), Zebedee
(2001) and Spierdijk (2002). However, while Dufour and Engle (2000) and
Spierdijk (2002) use the function log(1 + y) to model the dependence on the
trading intensity and Zebedee (2001) uses exp(c · y), we use the function
1/(1 + y) since this gives a better fit to the data.
Furthermore, we also have to deal with overnight-effects. Information may
be released overnight, see Foster and Vishwanathan (1990). For this reason
we want to take into account that the first trade on a day may be more
informative than the other trades. Therefore, we extend equation (3) with a
dummy dt indicating whether or not the t-th transaction is the first trade of
the day; i.e.

aj,(1,3) = γj + δj · 1

1 + yt−j

+ ξ · 1{j=0} · dt−j [j = 0, . . . , 5].

We thus allow the first trade of the day to have more impact than the re-
maining trades, since it may contain overnight information.

Estimation results
To estimate the duration dependent VAR-model, we set again m = 5. We esti-
mate the model using OLS with White (1980)’s heteroskedasticity-consistent
covariance matrix.
From Table 8 we see that the durations have negative contemporaneous im-
pact on returns. This also holds for the stocks for which the results are not
reported. These results coincide with the predictions made by Easley and
O’Hara (1987, 1992) and the empirical results of Dufour and Engle (2000),
Zedebee (2001) and Spierdijk (2002).
For all stocks from decile four apart from Commercial Intertech the impact
of the first trade of the day is significantly higher than the impact of the

6Simulated durations are generally not integer valued. As a consequence, simulated
durations may be close to zero. To avoid numerical problem due to this, we add one second
to the durations is the denominator. Adding one second does not have much impact on
the estimation results.
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remaining trades of the day. This means that the price impact and thus the
information content of the first trade of the day is significantly larger than the
other trades on that day, suggesting that information is revealed overnight
(cf. Foster and Viswanathan (1990)). For IBM the price impact of the first
trade of the day is also significantly higher. For all stocks in liquidity decile
two the first trade of the day does not have a significantly different impact
on prices. This can be explained by the fact that trading in the latter type
of stocks is so infrequent that many trades in the sample are the first of that
day.
For each equation of the VAR-model we test whether each group of lagged
(explanatory) variables Granger-causes the variable to be explained. The re-
sults are summarized in Table 5. For IBM (not included in Table 5) there is
significant Granger-causality in all cases. These results emphasize the impor-
tance of taking the feedback among the various variables into account, which
is ignored in Engle and Patton (2001) as noticed before.

7 Trading intensity and the price impact of

trades

In this section we focus on the price impact of trades in the settng of Section 6
where the trading intensity is allowed to influence the price impact of trades.
Since some coefficients in the VAR-model now depend upon the trading in-
tensity, analytical expressions for the impulse response function are no longer
available. Therefore, we simulate N = 1, 000 paths of durations in the same
way as we did for the impulse response function in calendar time in Section
5. For each path of durations we obtain a price impact, which we average out
over all simulations to obtain the final impulse response functions.
We present impulse response functions both in transaction and in calendar
time. We compute the impact of a trade in a period of ‘slow’ trading and in
times of ‘fast’ trading, as before. We again set past values of the trade char-
acteristics equal to their equilibrium values. We consider ‘small’ and ‘wide’
initial spreads. The results are displayed in the second and third column of
Table 6.
First of all, we observe large differences in the price impact between fast and
slow trading for infrequently traded stocks, see also Figure 2 for the impulse
response function corresponding to Commercial Intertech. This plot displays
the price impact function in periods with fast and slow trading. It shows
that the price impact of a trade is much larger in periods of frequent trading.
For example, with small spreads the difference between fast and slow trading
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is significant and equals 14.8 bp for Commercial Intertech and 6.9 Greenbrier
Companies. For IBM the difference is only 0.1 bp in this situation, which is not
significant. This effect, but much weaker than established here, has also been
reported by Dufour and Engle (2000), Zebedee (2001), and Spierdijk (2002).
It confirms the intuition that, for infrequently traded stocks, the trading
intensity is very informative.
As in the model without durations, we find price impact functions for illiq-
uid stocks that first overshoot and subsequently decrease towards the full
information level, see Table 6. The overshooting effect is documented more
often for wide spreads than for small spreads. Both in periods of fast and
slow trading the overshooting effect occurs, as shown again by Table 6. With
small spreads, three out of ten stocks overshoot, while eight (seven) out of
ten stocks overshoot with wide spreads and fast (slow) trading. Figure 2 dis-
plays the impulse response function for Commercial Intertech with slow and
fast trading.
We interpret the relation between the trading intensity and the overshooting
effect as follows. In periods of very slow trading the market maker will keep his
inventory low. When a large order is posted, he has to rely almost completely
on other parties to fulfill the order demand. This can cause overshooting as
discussed in Section 4. In case of frequent trading, however, he will be able
to fulfill the demand entirely or to a large extent with his own inventory.
However, in the latter case the risk of informed trading is considered larger,
cf. Easley and O’Hara (1992), and the market maker wants to rebalance his
inventory quickly. This explains why the overshooting effect is documented
both in periods of fast and slow trading.
To get insight in the adjustment process of the price following a large trade,
we now turn to the impulse response functions in calendar time. From the
second and third column of Table 6 it follows that for the least liquid stocks
(decile 2) the convergence process may take several trading days, in particu-
lar in periods of slow trading. For example, with slow trading it takes about
six hours for Commercial Intertech to reach the new price that follows a trade
initiated around noon. This means that the new efficient price after a shock
at noon is expected to be attained around noon the next day. For Hunting-
don Life Science it takes almost fourteen hours to reach the full information
price in case of fast trading, see Figure 3. Again we see again that even in
periods of relatively high market activity, it may take some days before the
full information price level has been reached.
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8 Conclusions

In this paper we investigated the price impact of a trade and its relation to
the trading intensity, taking the overnight behavior of the stock into account.
We applied a VAR-model based upon Hasbrouck (1991a, 199b) to ten infre-
quently traded stocks and one very liquid stock (IBM) traded on the NYSE
in the year 1999. We established the following results.
The price impact function of both frequently and infrequently traded stocks
depends upon the trading intensity and the bid-ask spread. The higher the
trading intensity and the wider the spreads, the higher the price impact of
a trade. For infrequently traded stocks the difference in price impact with
fast and slow trading and small and wide spreads is much larger than for
frequently traded stocks. Moreover, infrequently traded stocks show the phe-
nomenon of ‘overshooting’. Prices increase to the full information level after
a buy has taken place. However, before the price reaches the new higher level,
it temporarily increases to a value higher than the new efficient price. Sub-
sequently prices decrease to the new efficient price. The price of frequently
traded stocks such as IBM monotonically increase to the new efficient price
after a buy and do not overshoot, as is shown in our analysis and in the
literature such as Dufour and Engle (2000), Zebedee (2001) and Spierdijk
(2002). Furthermore, although overnight durations are significant for both
liquid and illiquid stocks, we showed that its impact on the convergence to the
full information price is economically negligible for IBM both in transaction
and in calendar time, while the economic effect is large for the infrequently
traded stocks. Hence, the information contained in the trading intensity of
infrequently traded stocks is carried over to the next day. Finally, the con-
vergence to the new efficient price that follows after a trade in an illiquid
stock may last for several days.
We have analyzed ten infrequently traded stocks, taking five randomly se-
lected stocks from decile two as well as liquidity decile four. While stocks in
the decile four are traded every day, stocks in decile two may not trade for
several days. According to Easley et al. (1996) we would expect to find sim-
ilar results for both deciles. In fact, we established the same results for both
deciles: the majority of stocks have a price impact function that overshoots,
in particular when spreads are wide and trading takes place either fast or
slow. For stocks in decile two and three, it may take several days before the
new efficient price is attained. For stocks in decile two this even holds in
periods of relatively high market activity.
There are various directions for further research. Since most of the stocks
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traded at the NYSE and other organized exchanges are illiquid7, further re-
search should investigate the effect of overshooting and the impact of the
overnight period on (optimal) trading strategies; for example for institutional
investors. An important issue for institutional investors is how large trades
have to be split into smaller orders and how the individual orders should
be spread out over one or more days in an optimal way. In this paper we
have shown that the answers to these questions are likely to be very different
for frequently and infrequently traded stocks. For example, the fact that the
price of an infrequently traded stock may overshoot after a large trade, is
likely to influence the optimal moment to post a new order after that trade.
To find out about illiquid stocks and optimal trading, a model is required
that includes not only trade sign but also trade size. We hope that future
research will fill out the gaps.

7This is illustrated by the fact that only 1.6% of the listed stocks produced 58% of the
total trade volume in the year 1999 at the NYSE.
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lag GBX TEC IBM

estimate st.error
const j −3.9764 1.1761 −0.4204 0.7976 −0.2377 0.0078

aj,(1,1) 1 0.0172 0.0228 0.0201 0.0201 −0.0062 0.0027
2 0.0558 0.0226 −0.0012 0.0160 0.0293 0.0045
3 −0.0138 0.0234 −0.0018 0.0154 0.0211 0.0045
4 0.0153 0.0208 0.0111 0.0156 0.0182 0.0031
5 −0.0053 0.0200 −0.0049 0.0157 0.0118 0.0035

aj,(1,2) 0 146.8265 18.9262 99.9678 10.2178 5.9198 0.1957
1 −0.1874 19.0183 −25.1515 8.2923 0.6625 0.2009
2 −26.9100 17.2379 −24.7075 7.9774 −0.6383 0.1583
3 −27.4651 18.2281 −2.1631 8.3432 −0.3953 0.1415
4 −0.6414 17.8405 3.8334 7.6075 −0.2816 0.1257
5 −25.7380 16.5146 −3.4959 7.6808 −0.3323 0.1182

aj,(1,3) 0 13.1685 2.6576 13.9108 2.1807 0.5202 0.0304
1 −1.9179 2.7249 4.5528 1.8642 0.3173 0.0284
2 0.1766 2.5991 2.1375 1.7771 0.0744 0.0258
3 2.1845 2.7540 −0.2219 1.8882 0.0087 0.0227
4 −0.1012 2.5633 −2.0602 1.7012 0.0059 0.0204
5 1.8278 2.3802 −1.9847 1.7027 −0.0227 0.0187

Table 2:
Estimation results for the return equation without duration dependence

The return equation of the VAR-model defined in equation (1) is estimated using OLS. The standard errors in
the columns on the right-hand-side are computed from White (1980)’s heteroskedasticity-consistent
covariance matrix.
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lag GBX TEC IBM

estimate st.error
const j 0.0017 0.0030 0.0019 0.0029 0.0103 0.0003

aj,(2,1) 1 −0.0006 0.0001 −0.0007 0.0001 −0.0054 0.0006
2 −0.0002 0.0001 −0.0003 0.0001 0.0005 0.0001
3 0.0000 0.0001 −0.0001 0.0001 0.0004 0.0001
4 −0.0001 0.0001 0.0000 0.0001 0.0002 0.0001
5 −0.0001 0.0001 0.0000 0.0001 0.0002 0.0001

aj,(2,2) 1 0.2414 0.0516 0.2527 0.0331 0.5503 0.0084
2 0.0748 0.0482 0.1008 0.0324 −0.0093 0.0070
3 0.0170 0.0450 0.0005 0.0317 −0.0157 0.0064
4 0.0424 0.0441 −0.0202 0.0312 −0.0038 0.0062
5 0.0038 0.0443 0.0278 0.0298 −0.0015 0.0055

aj,(2,3) 1 0.0116 0.0065 0.0187 0.0058 −0.0183 0.0014
2 0.0039 0.0068 0.0004 0.0064 0.0115 0.0011
3 −0.0009 0.0067 0.0031 0.0064 0.0079 0.0011
4 −0.0024 0.0067 0.0043 0.0064 0.0054 0.0010
5 0.0117 0.0064 −0.0048 0.0062 0.0050 0.0009

Table 3:
Estimation results for the bid-ask spread/trade sign equation

The equation for bid-ask spread/trade sign of the VAR-model defined in equation (1) is estimated using OLS.
The standard errors in the columns on the right-hand-side are computed from White (1980)’s
heteroskedasticity-consistent covariance matrix.
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lag GBX TEC IBM

estimate st.error
const j 0.0492 0.0177 0.0092 0.0123 0.0577 0.0017

aj,(3,1) 1 −0.0036 0.0004 −0.0038 0.0002 −0.0278 0.0029
2 −0.0007 0.0003 −0.0012 0.0002 −0.0011 0.0003
3 0.0000 0.0003 −0.0005 0.0002 0.0009 0.0004
4 −0.0004 0.0003 −0.0002 0.0002 0.0006 0.0004
5 −0.0004 0.0003 −0.0002 0.0002 0.0006 0.0004

aj,(3,2) 1 0.3367 0.2534 0.2318 0.1230 0.7383 0.0231
2 0.0585 0.2595 0.2968 0.1247 −0.2418 0.0201
3 0.1256 0.2513 −0.0454 0.1244 −0.1186 0.0195
4 0.0554 0.2513 −0.1201 0.1230 −0.0784 0.0195
5 −0.2371 0.2489 0.0074 0.1208 −0.0286 0.0179

aj,(3,3) 1 0.2759 0.0422 0.3029 0.0287 0.2534 0.0041
2 0.0836 0.0430 0.0084 0.0294 0.1148 0.0040
3 −0.0135 0.0423 0.0395 0.0289 0.0603 0.0038
4 0.0194 0.0418 0.0272 0.0288 0.0443 0.0038
5 0.1188 0.0404 0.0033 0.0279 0.0346 0.0036

Table 4:
Estimation results for the trade sign equation

The trade sign equation of the VAR-model defined in equation (1) is estimated using OLS. The standard
errors in the columns on the right-hand-side are computed from White (1980)’s heteroskedasticity-consistent
covariance matrix.
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causality from returns trade sign spread × trade sign trade sign ×
trade sign durations

causality to

VAR-model in transaction time

decile 2
returns − 4 4 −
trade sign 5 − 2 −
spread ×
trade sign 4 1 − −

decile 4
returns − 5 5 −
trade sign 5 − 5 −
spread ×
trade sign 5 2 − −

extended VAR-model

decile 2
returns − 5 5 5

decile 4
returns − 3 3 4

Table 5:
Tests for Granger-causality

This table reports the number of stocks in deciles two and four for which there is significant Granger-causality
(at a 5% confidence level) in the VAR-model defined in equation (1) and in the VAR-model extended with a
role for the trading intensity. This table shows, for example, that for four stocks in decile 2 there is significant
Granger-causality from trade sign to returns (see the first element in the column ‘trade sign’).
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stock transaction time fast trading slow trading
small, wide spreads small, wide spreads small, wide spreads

decile 2
GBX
price impact (bp) 30.5, 50.3 36.8, 54.9 29.9, 48.1
overshooting (bp) 0.0, 1.5 0.0, 6.9 0.0, 4.7
convergence time (hh:mm:ss) fast: 02:46:50, 02:46:40 03:20:00, 01:06:40 36:06:40, 10:50:00

slow : 19:10:00, 08:36:40
HTD
price impact 93.2, 238.4 111.6, 246.8 72.6, 212.3
overshooting 46.0, 33.0 44.9.3, 29.7 55.0, 41.6
convergence time fast: 12:30:00, 08:20:00 13:36:40, 07:46:40 172:46:40, 130:00:00

slow : 161:40:00, 118:03:20
IAL
price impact 21.3, 40.3 37.1, 52.3 15.1, 29.8
overshooting 0.0, 0.2 0.0, 3.5 0.0, 0.8
convergence time fast: 13:53:20, 12:46:40 23:03:20, 06:23:40 83:20:00, 69:26:40

slow : 83:20:00, 69:26:40
JAX
price impact 142.0, 208.3 180.7, 214.6 136.6, 168.8
overshooting 2.2, 23.7 8.5, 26.6 2.2, 23.1
convergence time fast: 11:06:40, 13:53:20 08:03:20, 16:06:40 33:20:00, 33:20:00

slow : 27:46:40, 27:26:40
PIC
price impact 61.8, 92.8 115.7, 155.3 41.8, 71.5
overshooting 0.0, 9.6 0.0, 0.0 0.3, 17.1
convergence time fast: 01:56:40, 01:56:40 01:56:40, 01:23:20 25:00:00, 27:46:40

slow : 22:46:40, 23:33:00
decile 4
CHP
price impact 17.3, 46.2 24.0, 53.8 14.2, 43.9
overshooting 0.0, 0.0 0.0, 0.0 0.0, 0.0
convergence time fast: 02:13:20, 01:40:00 01:56:40, 01:40:00 07:13:30, 06:56:40

slow : 08:36:40, 07:13:20
FC
price impact 33.4, 66.4 43.0, 75.9 29.6, 61.6
overshooting 0.0, 0.0 0.0, 1.1 0.0, 0.0
convergence time fast: 01:06:40, 00:33:20 00:50:00, 00:33:20 07:46:40, 04:43:20

slow : 07:30:00, 04:26:40
FMN
price impact 15.2, 31.5 19.1, 35.5 13.9, 30.6
overshooting 0.0, 2.1 0.0, 3.5 0.0, 2.3
convergence time fast: 02:30:00, 01:40:00 01:06:40, 00:33:20 02:13:20, 04:43:20

slow : 09:43:20, 07:13:20
TEC
price impact 27.8, 50.6 38.5, 61.6 23.7, 46.6
overshooting 3.4, 4.0 4.3, 9.5 2.9, 5.4
convergence time fast: 01:40:00, 01:43:20 01:23:20, 01:23:20 05:33:20, 05:50:00

slow : 05:50:00, 05:50:00
XTR
price impact 13.3, 25.1 19.3, 30.4 11.8, 22.9
overshooting 0.0,1.7 0.4, 2.6 0.0, 2.8
convergence time fast: 01:40:00, 03:20:00 01:56:40, 01:23:20 07:13:30, 07:30:00

slow : 08:03:20, 08:20:00
decile 10
IBM
price impact 2.4, 4.8 2.4, 5.3 2.3, 5.2
overshooting 0.0, 0.0 0.0, 0.0 0.0, 0.0
convergence time fast: 00:01:10, 00:01:30 00:01:50, 00:01:30 00:04:20,00:04:30

slow : 00:03:30, 00:04:00

Table 6:
Long-run impulse responses, overshooting effect and convergence time

This table reports the long-term impulse response in bp, the overshooting effect in bp and the convergence
time in the VAR-model defined in equation equation (1) in transaction time and in the VAR-model extended
with a role for the trading intensity. Both periods of small and wide spreads are considered. Significant
overshooting effects (at a 5% level) are displayed in boldface. In the model with durations two scenarios are
considered: fast and slow trading. Fast trading refers to the duration process initialized with the 5% sample
quantile of the durations, while slow trading applies to the model initialized with the 95% sample quantile.
The convergence reflects the time (expressed in hh:mm:ss) it takes until the price has stabilized and reached
99.5% of the long-term impulse response.
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stock TEC GBX IBM

coeff. estimate std.error
ω const 0.0036 0.0024 0.0026 0.0004 0.0090 0.0005
α yt−1 0.0446 0.0088 0.0795 0.0009 0.0281 0.0006
β ψt−1 0.9524 0.0074 0.9191 0.0008 0.9629 0.0009
γ dt−1 0.1878 0.1115 0.0814 0.0418 0.9100 0.0361

Table 7:
Estimation results for the ACD-model

The coefficients of the ACD(1, 1)-model as specified in equation (2) are estimated using QML. The standard
errors are between parentheses and are computed from the Bollerslev and Wooldridge (1992) robust
covariance matrix.
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lag GBX TEC IBM

estimate st.error
const j −3.7775 1.1768 −0.3949 0.7895 −0.2385 0.0077

aj,(1,1) 1 0.0227 0.0229 0.0285 0.0205 −0.0064 0.0036
2 0.0531 0.0228 −0.0088 0.0159 0.0293 0.0044
3 −0.0196 0.0230 −0.0048 0.0155 0.0209 0.0045
4 0.0102 0.0208 0.0063 0.0155 0.0173 0.0031
5 −0.0060 0.0201 −0.0036 0.0156 0.0123 0.0035

aj,(1,2) 0 141.5759 18.8604 96.2212 10.3784 5.7349 0.1808
1 −2.2587 19.0450 −23.6423 8.2559 0.7131 0.1890
2 −25.3066 17.2003 −25.4846 7.9142 −0.5879 0.1579
3 −26.9614 18.1174 0.5168 8.2477 −0.3851 0.1402
4 −2.1111 17.8144 3.9387 7.5475 −0.3028 0.1223
5 −26.3202 16.4724 −3.5512 7.6343 −0.2958 0.1158

γj 0 11.4955 2.6713 11.4691 2.2023 0.4466 0.0307
1 −2.7788 2.7578 1.8393 1.8953 0.3251 0.0289
2 0.1021 2.6044 2.9234 1.7922 0.0714 0.0274
3 2.9883 2.7700 −0.5184 1.9003 0.0149 0.0242
4 0.3102 2.5992 −1.6755 1.7174 0.0083 0.0227
5 1.8046 2.3944 −1.7579 1.7262 −0.0154 0.0207

δj 0 127.7821 26.0987 145.7875 17.9367 0.5889 0.0614
1 4.0977 23.6109 0.1759 15.3827 −0.1305 0.0686
2 −3.7168 19.3886 −7.7590 14.0404 −0.0157 0.0607
3 −32.7644 22.9360 −3.8229 14.2702 −0.0480 0.0609
4 10.9712 25.5844 −5.1400 13.5868 0.0177 0.0800
5 −2.1946 20.4632 −4.6157 12.9629 −0.0803 0.0653

ξ 7.5003 4.3659 4.6650 3.9800 31.9244 6.4514

Table 8:
Estimation results for the return equation with duration dependence

The return equation of the VAR-model defined in equation (1) with duration dependence is estimated using
OLS. The standard errors in the columns on the right-hand-side are computed using White (1980)’s
heteroskedasticity-consistent covariance matrix.
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Figure 1:
Price impact of a trade in TEC: small versus wide spreads

Impulse response functions corresponding to a trade in Commercial Intertech measured in the VAR-model

defined in equation (1) in periods of small and wide spreads.

28



transaction time
�

pr
ice

 ch
an

ge
 in

 b
as

is 
po

int
s

0
�

2 4 6
�

8
�

45
50

55
60

65
70

75

fast trading
�

slow trading�

Figure 2:
Price impact of a trade in TEC: slow versus fast trading

Impulse response functions corresponding to a trade in Commercial Intertech measured in the VAR-model

defined in equation (1) with duration dependence. Both periods of slow and fast trading are considered.
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Figure 3:
Price impact of a trade in HTD: convergence time to the new efficient price

Impulse response functions corresponding to a trade in Huntingdon Life Science measured in the VAR-model

defined in equation (1) with duration dependence in a period of fast trading and small spreads.

30



References

[1] Admati, A. R., Pfleiderer, P., 1988, A Theory of Intraday Patterns:
Volume and Price Variability, The Review of Financial Studies, 1,
pp. 3-40.

[2] Berndt, E.R., Hall, B.H., Hall, R.E., Hausman, J.A., 1974, Estima-
tion and Inference in Nonlinear Structural Models, Annals of Eco-
nomic and Social Measurement, pp. 653-665.

[3] Bollerslev, T., Wooldridge, J.M., 1992, Quasi Maximum Likelihood
Estimation and Inference in Dynamic Models with Time-Varying
Covariances, Econometric reviews, 11, 2, p. 143.

[4] Campbell, J.Y., Lo, A.W., McKinlay, A.C., 1997, The Econometrics
of Financial Markets, Princeton University Press, Princeton NJ.

[5] Diamond, D.W., Verrecchia, R.E., 1987, Constraints on Short-
Selling and Asset Price Adjustments to Private Information, Jour-
nal of Financial Economics, 18, pp. 277-311.

[6] Drost F.C., Werker, B.J.M., 2001, Semiparametric Duration Mod-
els, Tilburg University, mimeo.

[7] Dufour, A., Engle, R.F., 2000, Time and the Impact of a Trade,
Journal of Finance, 55, 6, pp. 2467-2498.

[8] Easley D., O’Hara, M., 1992, Time and the Process of Security
Price Adjustment, Journal of Finance, 47, pp. 577-605.

[9] Easley, D., Kiefer, N.M., O’Hara, M., Paperman, J.B., 1996, Liq-
uidity, Information and Infrequently Traded Stocks, Journal of
Finance, 51, 4, pp. 1405-1437.

[10] Engle, R.F., Hendry, D.F., Richard, J.F., 1983, Exogeneity, Econo-
metrica, 51, 2, pp. 277-304.

[11] Engle, R.F., Lunde, 1998, Trades and qQuotes: a Bivariate Point
Process, University of California San Diego, mimeo.

[12] Engle, R. F., Patton, A.J., 2001, Impact of Trades in an Error-
Correction Model of Quote Prices, forthcoming Journal of Finan-
cial Markets.

31



[13] Engle, R.F., Russell, J.,1998, Autoregressive Conditional Duration:
A New Model for Irregularly Spaced Transaction data, Economet-
rica, Vol. 66, No. 5, pp. 1127-1162.

[14] Foster, F. D., Viswanathan, S., 1990, A Theory of the Intraday
Variations in Volume, Return Volatility and Trading Costs: Ev-
idence in Recent Price Information Models, Journal of Finance,
48, pp. 187-211.

[15] Hasbrouck, J., 1991a, Measuring the Information Content of Stock
Trades, Journal of Finance, 66, 1, 179-207.

[16] Hasbrouck, J., 1991b, The Summary Informativeness of Stock
Trades: an Econometric Analysis, Review of Financial Studies,
4, 3, pp. 571-595.

[17] Manganelli, S., 2000, Time, Volume and the Price Impact of
Trades, European Central Bank, mimeo.

[18] Spierdijk, L., 2002, An Empirical Analysis of the Role of the Trad-
ing Intensity in Information Dissemination on the NYSE, Tilburg
University, mimeo.

[19] Zebedee, A.A., 2001, The Impact of a Trade on National Best
Bid and Offer Quotes: A New Approach to Modeling Irregularly
Spaced Data, Journal of Multinational Management, 11, pp. 363-
383.

[20] White, H., 1980, A Heteroskedasticity-Consistent Covariance Ma-
trix Estimator and a Direct Test for Heteroskedasticity, Econo-
metrica, 48, pp. 817-838.

32


