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Abstract

We study sealed-bid auctions with …nancial externalities, i.e., auctions
in which losers’ utilities depend on how much the winner pays. In the
unique symmetric equilibrium of the …rst-price sealed-bid auction (FPSB),
larger …nancial externalities result in lower bids and in a lower expected
revenue. The unique symmetric equilibrium of the second-price sealed-bid
auction (SPSB) reveals ambiguous e¤ects. We further show that a resale
market does not have an e¤ect on the equilibrium bids and that FPSB
yields a lower expected revenue than SPSB. With a reserve price, we …nd
an equilibrium for FPSB that involves pooling at the reserve price. For
SPSB we derive a necessary and su¢cient condition for the existence of a
weakly separating equilibrium, and give an expression for the equilibrium.

Keywords: Auctions, …nancial externalities, reserve price, resale mar-
ket.

JEL classi…cation: D44

1 Introduction
In this paper, we study sealed-bid auctions with …nancial externalities. Finan-
cial externalities arise when losers bene…t directly or indirectly from a high price
paid by the winner(s). In auction theory, it is generally assumed that losers are
indi¤erent about how much the winner(s) pay(s) in an auction. However, in
real life auctions, this assumption may be false. In reality, an auction is not an
isolated game, as winners and losers also interact after the auction. Paying a
high price in the auction may make a winner a weaker competitor later.
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The series of UMTS auctions that took place in Europe o¤ers a concrete
example of auctions where losers bene…t indirectly from a high price paid by the
winners. In this context, there are at least three ways how …rms that do not
acquire a license may bene…t from a winning …rm paying a high price. First,
the share values of winning …rms may drop, which makes the winner vulnerable
to a hostile take-over by competing …rms. For instance, the drop of the share
value of the Dutch telecom company KPN with about 95% is partly explained
by the huge amount of money the company spent to acquire British, Dutch
and German UMTS licences.1 ;2 Second, if …rms are budget constrained, a high
payment in the …rst auction may give competing …rms an advantage in the
later auctions. Third, high payments may force the winning …rms to cut their
budget for investment, which may be favorable for the losers’ position in the
telecommunications market, as the losing …rms are not only competitors of the
winning …rms in the auction, but in the telecommunications market as well.
Börgers and Dustmann (2001) argue that …nancial externalities may have led
to seemingly irrational bidding in the British UMTS auction.

Financial externalities occur directly when losing bidders get money from
the winner(s). For instance, this may happen in the case of bidding rings, in
which a member of the ring receives money when she does not win the object
(McAfee and McMillan, 1992). Also, partnerships are dissolved using an auction
in which losing partners obtain part of the winner’s bid (Cramton et al., 1987).
Finally, the owner of a large estate may specify in his last will that after his
death, the estate is sold to one of the heirs in an auction, where the auction
revenue is divided among the losers (Engelbrecht-Wiggans, 1994).3

In Section 2, we present a model of bidding in sealed-bid auctions with …nan-
cial externalities. The …rst-price sealed-bid auction (FPSB) or the second-price
sealed-bid auction (SPSB) is used to sell an indivisible object. We assume an
independent private signals model, with private values and common value mod-
els as special cases. Financial externalities are exogenously given and modelled
by a parameter ' that is inserted in the bidders’ utility functions. This is the
simplest extension of the independent private signals model which incorporates
…nancial externalities. Despite its admitted simplicity, this model appears to be
su¢ciently rich to generate interesting insights.

In Section 3, we derive results for FPSB and SPSB without reserve price.
We …nd a unique symmetric and e¢cient bid equilibrium for each of the two
auction types. Equilibrium bids in FPSB decrease as ' increases. An intuition
for this result is that larger …nancial externalities make losing more attractive for
the bidders so that they submit lower bids. The e¤ect of …nancial externalities
on the equilibrium bids in SPSB is ambiguous. A possible explanation is that
in SPSB, a bidder is not only inclined to bid less the higher is ' (as she gets
positive utility from losing), she also has an incentive to bid higher, because,
given that she loses, she is able to in‡uence directly the level of payments made

1 In the UK, KPN bought part of the TIW license after the auction. In Germany, KPN
has a majority share in E-plus.

2The other part of the drop is probably explained by the changed sentiment in the market.
3More examples can be found in Goeree and Turner, 2001.
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by the winner. We also study the e¤ect of a resale market. Haile (1999) shows
in an independent private values model that the e¢cient equilibria of FPSB
and SPSB remain una¤ected when the auction is followed by a resale market.
We show that this result still holds in our model, and that it extends to any
auction which leads to an e¢cient assignment of the object. Finally, we give a
revenue comparison between FPSB and SPSB. We …nd that in the two-bidder
case, SPSB results in a higher expected revenue than FPSB.

In Section 4, we characterize equilibrium bid strategies for the case that a
reserve price is imposed in FPSB and SPSB. For simplicity, we assume indepen-
dent private values and two bidders. In this section, we introduce the concept
of a weakly separating Bayesian Nash equilibrium, which is an equilibrium in
which all types below a threshold type abstain from bidding, and all types above
this type submit a bid according to a strictly increasing bid function. We …nd
that FPSB has no weakly separating Bayesian Nash equilibrium. However, we
derive an equilibrium in which bidders with low signals abstain from bidding,
bidders with intermediate signals pool at the reserve price, and bidders with high
signals submit a bid according to a strictly increasing bid function. For SPSB,
we derive a necessary and su¢cient condition for the existence of a weakly sep-
arating Bayesian Nash equilibrium. For low values of the reserve price, such an
equilibrium exists, for high values it does not. If a weakly separating Bayesian
Nash equilibrium exists, then all types above the threshold type submit the
same bid as in the case of no reserve price.

A closely related paper is Engelbrecht-Wiggans (1994), who considers an
auction game in which each bidder receives an equal share ® of the revenue. He
characterizes equilibrium bid functions for both FPSB and SPSB, and gives a
revenue comparison between these two auction types.4 It is straightforwardly
checked that his model is isomorphic to our model. Therefore, the equilib-
rium bids in our model can directly be derived from the equilibrium bids in
Engelbrecht-Wiggans (1994). However, the comparative statics in our model
and Engelbrecht-Wiggans’ model (the e¤ect of ' respectively ® on the equilib-
rium bids and the seller’s revenue) turn out to be di¤erent. Engelbrecht-Wiggans
shows that the equilibrium bid functions of FPSB and SPSB are increasing in
®. In our model, the e¤ect of ' on the equilibrium bids can be both increasing
and decreasing: We add to Engelbrecht-Wiggans’ analysis that, if attention is
restricted to symmetric Bayesian Nash equilibria, these equilibrium bid func-
tions are unique. Also, in addition to Engelbrecht-Wiggans’ study, we analyze
the e¤ect of a resale market, and of a reserve price on the equilibrium bids.

There are several other papers related to ours. Our companion paper (Maasland
4Several other papers make use of Engelbrecht-Wiggans’ model. Ettinger (2000) extends

the model by allowing the revenue shares to di¤er among the bidders and by introducing
reserve prices. Engers and McManus (2000) study charity auctions, in which bidders receive
a warm glow from the auction revenue, so that their utility depends on the auction revenue.
Goeree and Turner (2002) compare standard auctions with k-th price all-pay auctions in
Engelbrecht-Wiggans’ environment. Simultaneously and independently of us, Engers and
McManus, and Goeree and Turner derive similar results as Engelbrecht-Wiggans and we with
respect to equilibrium bidding in FPSB and SPSB, and the revenue comparison among these
two auction types.
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and Onderstal, 2002) focuses on optimal auction design in the context of …nan-
cial externalities. In that paper, we show that in a Double Coasean World, in
which the seller cannot prevent a perfect resale market, nor withhold the object,
the lowest-price all-pay auction is optimal.5 Moreover, in a Myersonean World,
in which the seller can both prevent resale after the auction and fully commit to
not selling the object, we …nd a two-stage mechanism that is revenue maximiz-
ing. In the …rst stage of this mechanism, bidders are asked whether they accept
to pay an entry fee. If and only if all choose to accept, then in the second stage,
bidders play the lowest-price all-pay auction with a reserve price.

Jehiel and Moldovanu (1996, 2000), and Jehiel et al. (1996, 1999) study auc-
tions in which losing bidders receive positive or negative allocative externalities
from the winner. Since the utility of the bidders is a¤ected by the identity of the
winner and not by how much she pays, these externalities are clearly di¤erent
from …nancial externalities. Jehiel and Moldovanu (2000) derive equilibrium bid
strategies that involve some pooling at the reserve price for SPSB with a reserve
price and positive externalities. This equilibrium structure is similar to the one
we found in FPSB.

Benoît and Krishna (2001) study a two-bidder model with complete infor-
mation in which two objects are sold sequentially. As bidders are budget con-
strained, a particular bidder’s payo¤ is a¤ected by the price paid by a rival
bidder, so that their model can be interpreted as a model with endogenously
determined …nancial externalities.

2 The model
We consider a situation with n ¸ 2 risk neutral bidders, numbered 1; 2; :::; n,
who bid for one indivisible object. The auction being used is either FPSB or
SPSB. Each of these auction types may or may not have a reserve price.

Essentially, we use Milgrom and Weber’s (1982) model with independent
signals instead of a¢liated signals as a starting point. We assume that each
bidder i receives a one-dimensional private signal ti which is drawn, indepen-
dently from all the other signals, from a cumulative distribution function F .
(We also say that bidder i is of type ti.) F has support on an interval [t; ¹t], and
continuous density f with f(ti) > 0 for every ti 2 [t; ¹t].

We will let vi(t) denote the value of the object for bidder i given the vector
t ´ (t1; :::; tn) of all signals. Special cases are private value models (vi(t) only
depends on ti), and common value models (vi(t) = vj(t) for all i; j; t).

We make the following assumptions on the functions vi.

Value Di¤erentiability: vi is di¤erentiable in all its arguments, for all i; t:
Value Monotonicity: vi(t) ¸ 0; @vi(t)

@ti
> 0; and @vi(t)

@tj
¸ 0, for all i; j; t:

5 In this auction, the bidder that submits the highest bid wins the object, and every bidder
pays the lowest submitted bid.
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Symmetry: Fi = Fj for all i; j; and vi(:::; ti; :::; tj ; :::) = vj(:::; tj ; :::; ti; :::) for
all ti; tj ; i; j:

Value Di¤erentiability is imposed to make the calculations on the equilibria
tractable. Value Monotonicity indicates that all bidders are serious, and that
bidders’ values are strictly increasing in their own signal, and weakly in the
signals of the others. Symmetry may be crucial for the existence of e¢cient
equilibria in standard auctions.6 Value Di¤erentiability, Value Monotonicity,
and Symmetry together ensure that the bidder with the highest signal is also
the bidder with the highest value, so that these assumptions imply that the
seller assigns the object e¢ciently if and only if the bidder with the highest
signal gets it.

We de…ne F [1] and f [1] as the cumulative distribution function and density
function respectively of maxj 6=i tj . Also, let us de…ne v(x; y) as the expected
value that bidder i assigns to the object, given that her signal is x, and that the
highest signal of all the other bidders is equal to y:

v(x; y) ´ Efvi(t)jti = x;max
j 6=i

tj = yg:

By Symmetry, F [1], f [1], and v do not depend on i.
The bidders are expected utility maximizers. Each bidder is risk neutral,

and cares about what other bidders pay in the auction. More speci…cally, the
utility function of bidder i is de…ned as follows:

ui(j; b) =
½

vi ¡ b if j = i
'b if j 6= i,

where vi is the value that i attaches to the object, j is the winner of the object
and b is the payment by j. It is a natural assumption to let a bidder’s interest
in her own payments be larger than her interest in the payments by the other
bidders, so that we assume ' · 1=(n ¡ 1).

A speci…c interpretation of the model is a situation of an auction in which all
losing bidders receive an equal share of the auction revenue. In particular, when
' = 1=(n ¡ 1), the entire auction revenue is divided among all losing bidders,
which may be the case in situations of dissolving partnerships, or heirs bidding
for a family estate. If n = 2 and ' = 1, then FPSB and SPSB are special cases
of the k-double auction with k = 0 and k = 1 respectively.7 ;8

6Bulow et al. (1999) show that a slight asymmetry in value functions may have dramatic
e¤ects on bidding behavior in the English auction in a common value setting, as the bidder with
the lower value function faces a strong winner’s curse, and therefore bids zero in equilibrium.

7The k-double auction has the following rules. Both bidders submit a bid. The highest
bidder wins the object, and pays the loser an amount equal to kbL + (1¡ k)bW , where bL is
the loser’s bid, bW the winner’s bid, and k 2 [0; 1].

8Cramton et al. (1987) study k-double auctions in a private values environment with
symmetric value distributions. It is shown that partners with equal shares may dissolve a
partnership e¢ciently using these auctions. McAfee and McMillan (1992) show that the 0-
double auction is a mechanism that allows a bidding ring to allocate the obtained object
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3 Zero reserve price
Consider FPSB and SPSB with a zero reserve price.

3.1 First-price sealed-bid auction
The following proposition characterizes the equilibrium bid function for FPSB.
To derive equilibrium bidding, we suppose that in equilibrium, all bidders use the
same bid function. By a standard argument, this bid function must be strictly
increasing and continuous. Let U(t; s) be the utility for a bidder with signal t
who behaves as if having signal s, whereas the other bidders play according to
the equilibrium bid function. A necessary equilibrium condition is that

@U(t; s)
@s

= 0

at s = t. From this condition, a di¤erential equation can be derived, from
which the equilibrium bid function is uniquely determined (at least if we restrict
our attention to di¤erentiable bid functions). The auction outcome is e¢cient.
Observe that in the case of private values (v(x; y) only depends on x), the bid
function is strictly increasing in n.

Proposition 1 The unique symmetric di¤erentiable Bayesian Nash equilibrium
of FPSB is characterized by

B1('; t) = v(t; t) ¡ '
1 + '

v(t; t) ¡ 1
1 + '

tZ

t

dv(y; y)
dy

µ
F [1](y)
F [1](t)

¶1+'

dy, (1)

where B1('; t) is the bid of a bidder with signal t. The outcome of this auction
is e¢cient.

Proof. A higher type of a bidder cannot submit a lower bid than a lower
type of the same bidder. (If the low type gets the same expected surplus from
strategies with two di¤erent probabilities of being the winner of the object, the
high type strictly prefers the strategy with the highest probability of winning,
so the high type will not submit a lower bid than the low type.) Also, B1('; t)
cannot be constant on an interval [t0; t00]. (By bidding slightly higher, a type t00
can largely improve its probability of winning, while only marginally in‡uencing
the payments by her and the other bidders.) Moreover, B1('; t) cannot be
discontinuous at any t. (Suppose that B1('; t) makes a jump from b to b at t¤.
A type just above t¤ has an incentive to deviate from b + ± to b. Doing so, she
is able to decrease the auction price, while just slightly a¤ecting its probability
of winning the object. As ' is small enough, this type is able to improve its

e¢ciently among the ring members. Van Damme (1992) shows that k-double auctions may
lead to unfair equilibrium outcomes. Angeles de Frutos (2000) and Kittsteiner (2001) gen-
eralize the model of Cramton et al. (1987) allowing for asymmetric value distributions and
interdependent valuations respectively.
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utility.) Hence, a symmetric equilibrium bid function must be strictly increasing
and continuous.

De…ne the utility U(t; s) for a bidder with signal t who misrepresents herself
as having signal s, whereas the other bidders report truthfully, if the bid function
is indeed strictly increasing. Then,

U(t; s) =
sZ

t

v(t; y)dF [1](y) ¡ F [1](s)B1('; s) + '
tZ

s

B1('; y)dF [1](y).

The …rst two terms of the RHS of this expression refer to the case that this
bidder wins the object. The third term refers to the case that she does not win.
Assume that B1('; s) is di¤erentiable in s. Maximizing U(t; s) with respect to
s and equating s to t gives the FOC of the equilibrium

f [1](t)v(t; t) ¡ f [1](t)B1('; t) ¡ F [1](t)B0
1('; t) ¡ 'B1('; t)f [1](t) = 0.

With some manipulation we get

F [1](t)'f [1](t)v(t; t) = (1 + ')B1('; t)f [1](t)F [1](t)' + B0
1('; t)F [1](t)1+', (2)

or, equivalently

C1 +
tZ

t

F [1](y)'f [1](y)v(y; y)dy = F [1](t)1+'B1('; t),

where C1 is a constant. Substituting t = t gives C1 = 0, so that the bid function
is given by

B1('; t) =
1

F [1](t)

tZ

t

µ
F [1](y)
F [1](t)

¶'

f [1](y)v(y; y)dy: (3)

It is readily checked that the second order condition sign
³

@U(t;s)
@s

´
= sign(t¡s)

is ful…lled. Using integration by parts, (3) can be rewritten as (1).
From (2), we infer that @B1(';t)

@t > 0 if and only if B1('; t) < v(t;t)
1+' , so that

indeed B1('; t) is strictly increasing in t; as Value Monotonicity implies that
dv(y;y)

dy > 0 for all y. Finally, by Value Di¤erentiability, Value Monotonicity,
and Symmetry, the e¢ciency of the auction outcome is established.

Each of the terms of the RHS of (1) has an attractive interpretation. The …rst
term is the equilibrium bid for a bidder with type t in SPSB without …nancial
externalities, as in the absence of …nancial externalities, in SPSB, a bidder will
submit a bid equal to her maximal willingness to pay given that her strongest
opponent has the same signal as she (Milgrom and Weber, 1982). The second
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term can be interpreted as the bid shading because of …nancial externalities.
The reason for bid shading is that in the case of …nancial externalities, the
willingness to pay of a bidder with type t bidding against an opponent who has
the same signal is given by 1

1+'v(t; t). This can be seen as follows. When a
bidder wins at a bid of b, her utility is v(t; t)¡b. When her opponent wins at the
same bid, her utility is 'b. Equating these utilities results in a bid of 1

1+'v(t; t).
The third term can be interpreted as the strategic bid shading because in FPSB,
a bidder has to pay her own bid rather than the second highest bid which she
has to pay in SPSB.

This interpretation of the equilibrium bid function suggests that this function
is decreasing in ', which in fact holds, as Proposition 2 shows. From Proposition
2, it immediately follows that the expected revenue is decreasing in '.

Proposition 2 Increasing ' decreases B1('; t):

Proof. The proof immediately follows from Proposition 1, since F [1](y) <
F [1](t) for every y 2 [t; t).

Corollary 3 Increasing ' decreases the seller’s expected revenue.

3.2 Second-price sealed-bid auction
Equilibrium bids for SPSB are obtained using the same logic as for FPSB. The
analysis reveals, just as in situations without …nancial externalities, uniqueness
and e¢ciency of the equilibrium bid function. Observe that in the case of private
values, the bid function does not depend on n.9

Proposition 4 The unique symmetric di¤erentiable Bayesian Nash equilibrium
of SPSB is characterized by

B2('; t) = v(t; t) ¡ '
1 + '

v(t; t) +

+
'

(1 + ')(1 + 2')

tZ

t

dv(y; y)
dy

µ
1 ¡ F (y)
1 ¡ F (t)

¶ 1+'
'

dy (4)

where B2('; t) is the bid of a bidder with signal t. The outcome of this auction
is e¢cient.

Proof. Following the lines of the proof of Proposition 1 it can be established
that a symmetric equilibrium function must be strictly increasing and continu-
ous. The utility for a bidder with signal t acting as if she had signal s is given

9This is actually a quite subtle observation, as n does not appear in the expression for the
equilibrium bid. However, in general, v(t; t) depends on n.
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by

U(t; s) =
sZ

t

[v(t; y) ¡ B2('; y)]dF [1](y) + '¼(s)B2('; s) + '
tZ

y=s

B2('; y)d¼(y),

where ¼(s) denotes the probability that there is exactly one opponent with a
signal larger than s. The …rst term of the RHS refers to the case that this bidder
wins, the second term to the case that she submits the second highest bid, and
the third case to her bid being the third or higher. Assume that B2('; s) is
di¤erentiable in s. The FOC of the equilibrium is

[v(t; t) ¡ B2('; t)]f [1](t) + '
@¼(t)B2('; t)

@t
¡ 'B2('; t)¼0(t) = 0

or, equivalently

v(t; t)f [1](t) = B0
2('; t)'¼(t) + B2('; t)[(1 + ')f [1](t)]: (5)

The general solution to the above di¤erential equation is equal to

B2('; t)(1 ¡ F (t))
1+'

' = C2 ¡
tZ

t

(1 ¡ F (y))
1
' v(y; y)f(y)dy;

where C2 is a constant. Substituting t = t yields a unique solution for C2:

C2 =
tZ

t

(1 ¡ F (y))
1
' v(y; y)f(y)dy.

The only possible di¤erentiable bid function that may constitute a symmetric
equilibrium is given by

B2('; t) =
1

'(1 ¡ F (t))

tZ

t

µ
1 ¡ F (y)
1 ¡ F (t)

¶ 1
'

f(y)v(y; y)dy. (6)

It is readily checked that the second order condition sign
³

@U(t;s)
@s

´
= sign(t¡s)

holds. Using integration by parts on B2('; t), we see that (6) can also be written
as (4).

To complete the proof, we must show that B2('; t) is indeed increasing in t.
From (6), it follows that

B2('; t) >
v(t; t)

tR
t
(1 ¡ F (y))

1
' f(y)dy

'(1 ¡ F (t))
1+'

'
=

v(t; t)
1 + '

:

9



As (5) implies that B0
2('; t) > 0 if and only if B2('; t) > v(t;t)

1+' , B2('; t) is indeed
strictly increasing in t. Then, by Value Di¤erentiability, Value Monotonicity,
and Symmetry, it follows that the outcome of the auction is e¢cient.

Each term of the RHS of (4) has its attractive interpretation. From the
discussion of FPSB it follows that the …rst term is the bid in SPSB in the
absence of …nancial externalities. The second term is the bid shading due to
positive externalities from the payment of the winning bidder. The third term
increases the bid due to the fact that each bidder is willing to drive up the …nal
price, as it is the second highest bid that is paid by the winner.

In contrast to FPSB, the e¤ect of an increase in ' on the equilibrium bids in
SPSB is dependent on a bidder’s type. From (4), it is clear that the equilibrium
bid of the highest type is decreasing in '. The reason is that as this bidder
does not have a type above her, she does not have an incentive to drive up the
price. However, the e¤ect of ' on the equilibrium bids of the other types is not
clear. The e¤ect of the second term of the RHS of (4) (without the minus sign)
may be larger as well as smaller than the third term. The following example
illustrates how equilibrium bidding is a¤ected when ' is varied.

Example 5 (E¤ect of ' on equilibrium bidding) Let F (t) = t (uniform
distribution), v(t; t) = t (independent private values) for all t 2 [0; 1]: The
equilibrium bid function is given by

B2('; t) =
'

(1 + ')(1 + 2')
+

1
1 + 2'

t, t 2 [0; 1].

As B2 is a continuous function in both ' and t, the following can be derived.
First, there is a strictly positive mass of types close to zero for which the e¤ect
of ' is ambiguous in the sense that for ' close to 0, an increase in ' leads
to higher bids and for ' close to 1, an increase in ' leads to lower bids. This
follows from the following observations.

@B2(0; 0)
@'

= 1 > 0,

and

@B2(1; 0)
@'

= ¡ 1
36

< 0.

Intuitively, if ' is large enough, B2('; t) decreases as for each bidder, losing
becomes more interesting due to higher …nancial externalities. Second, the equi-
librium bids of types close to 1 are decreasing in '. This follows from the fact
that B2('; 1) = 1

1+' .

Also, the e¤ect of ' on the expected revenue may be ambiguous. This follows
from Example 6, in which the expected revenue is increasing if ' is small, and
decreasing if ' is large.
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Example 6 (E¤ect of ' on the expected revenue) Let F (t) = t (uniform
distribution), v(t; t) = t (independent private values) with t 2 [0; 1] and n = 2
(two bidders): The expected revenue is equal to the expectation of B2('; t(2))
with respect to the second highest signal t(2), which is given by

Et(2)fB2('; t(2))g =
1 + 4'

3(1 + ')(1 + 2')
:

This continuous function is increasing for ' close to 0 and decreasing for '
close to 1, as

@Et(2)fB2(0; t(2))g
@'

=
1
3

> 0,

and

@Et(2)fB2(1; t(2))g
@'

= ¡ 11
108

< 0.

3.3 Resale market
The presence of a resale market does not have any e¤ect on equilibrium behavior.
In order to obtain this result, the following assumptions are made. First, trade
is voluntary. None of the bidders can be forced to be involved in an exchange if
she is made worse o¤ by it. Thus, trade only takes place if it is mutual pro…table
for the bidders. Second, the participants in the resale market are the same as
in the auction. There are no third parties involved.

We assume the following conditions for trade to occur in the resale market.
Let bidder i be the winner of the object in the auction, and bidder j be another
bidder, who desires to buy the object from bidder i in the resale market. Let ~p
be the price of the object in the resale market. As trade is voluntary, none of
the bidders may be worse o¤ by the trade. For bidder i, the following condition
for trade must be ful…lled:

~p + '~p ¸ vi: (7)

In words, bidder i prefers receiving a price of ~p, which also yields her a …nancial
externality of '~p, to keeping the object, which gives her a value of vi. For bidder
j a similar condition holds:

vj ¡ ~p ¡ '~p ¸ 0; (8)

which is equivalent to

~p + '~p · vj : (9)

Note that, 'ep in (8) is a correction factor. This can be seen as follows. Without
trade, the utility of bidder j is 'p, where p is the price paid by bidder i in

11



the auction. With trade in the resale market, bidder i has paid p ¡ ep. This
would give bidder j a utility increase of '(p ¡ ep) due to …nancial externalities.
Therefore, bidder j loses an extra 'ep, if she decides to buy the object in the
resale market. Observe that, (7) and (9) exclude ine¢cient trade (trade from a
bidder with a high value to one with a low value). Moreover, for both bidders
the maximal gains from trade are vj ¡ vi.

Proposition 7 shows that equilibrium bidding is not a¤ected by the presence
of a resale market if the equilibrium of the auction without resale market leads
to an e¢cient outcome. We prove this proposition by assuming that all bidders,
apart from bidder i, bid “as usual”, i.e., they bid in the auction as if there
were no resale market. Then we calculate bidder i’s utility both for the case
when she submits a lower bid than “usual”, and for the case that she submits
a higher bid. In both cases, we separately calculate bidder i’s utility from the
auction, and the maximal utility she can obtain in the resale market, which is
the di¤erence between her value, and the highest value among the other bidders.
Adding these, we show that bidder i has no incentive to deviate from bidding
“as usual”.

Proposition 7 A Bayesian Nash equilibrium of an auction (without resale
market) which leads to an e¢cient assignment of the object, is also a Bayesian
Nash equilibrium when the same auction is followed by a resale market where the
same bidders participate. In equilibrium, no trade will take place in the resale
market.

Proof. To prove that “bidding as usual” is still an equilibrium, suppose
that all bidders, apart from bidder i, bid as usual. Then it should be a best
response for bidder i to bid as usual as well. Let U(t; s) be the expected surplus
for bidder i from the auction plus the resale market, when she has signal t, but
behaves as if she has type s.

Suppose for the moment that all bidders play the e¢cient Bayesian Nash
equilibrium of the auction game without resale market. Then, by Value Dif-
ferentiability, Value Monotonicity, and Symmetry, the bidder with the highest
signal wins the auction. Moreover, by the assumption of voluntary trade (which
exclude ine¢cient trade), no trade will take place after the auction. From the
Revenue Equivalence Theorem,10 U(t; t) is given by

U(t; t) = U(t; t) +
tZ

t

xZ

t

@v(x; y)
@x

dF [1](y)dx.

When we change the order of integration and integrate the inner integral we get

U(t; t) = U(t; t) +
tZ

t

[v(t; y) ¡ v(y; y)]dF [1](y): (10)

10See Maasland and Onderstal (2002) for this result in the context of …nancial externalities.
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The utility eU(t; s) from the auction alone for bidder i who has type t, but
represents herself as if she has type s is given by

eU(t; s) = eU(s; s) +
tZ

t

[v(t; y) ¡ v(s; y)]dF [1](y). (11)

Suppose that bidder i misrepresents herself as having a signal s > t. Trade will
only take place when bidder i wins the auction, and there is another bidder j
who has a higher valuation for the object. The gains from trade for bidder i
from the resale market are at most the absolute di¤erence between her value and
the value of bidder j, which is, by Value Di¤erentiability, Value Monotonicity,
and Symmetry, the bidder with the highest signal. Let y be bidder j’s signal,
then bidder j’s value is at most v(y; y). Bidder i’s value is given by v(t; y).
Then, with (10) and (11),

U(t; s) ¡ U(t; t) · eU(s; s) +
sZ

t

[v(t; y) ¡ v(s; y)]dF [1](y) +

+
sZ

t

[v(y; y) ¡ v(t; y)]dF [1](y) ¡ U(t; t)

=
sZ

t

[v(s; y) ¡ v(y; y)]dF [1](y) ¡
tZ

t

[v(t; y) ¡ v(y; y)]dF [1](y)

+
sZ

t

[v(t; y) ¡ v(s; y)]dF [1](y) +
sZ

t

[v(y; y) ¡ v(t; y)]dF [1](y)

= 0:

So, bidder i cannot gain from deviating to a higher signal.
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Suppose instead that bidder i deviates to a lower signal. Then, similarly,

U(t; s) ¡ U(t; t) · eU(s; s) +
sZ

t

[v(t; y) ¡ v(s; y)]dF [1](y) +

+
tZ

s

[v(t; y) ¡ v(y; t)]dF [1](y) ¡ U(t; t)

·
sZ

t

[v(s; y) ¡ v(y; y)]dF [1](y) ¡
tZ

t

[v(t; y) ¡ v(y; y)]dF [1](y)

+
sZ

t

[v(t; y) ¡ v(s; y)]dF [1](y) +
tZ

s

[v(t; y) ¡ v(y; y)]dF [1](y)

= 0:

Hence a deviation to a lower type is not pro…table. So, indeed it is a best
response for bidder i to bid as usual.

As the equilibrium of the auction is e¢cient, it is always the bidder with the
highest value who obtains the object after the auction. As ine¢cient trade is
excluded in the resale market, no trade will take place there.

A corollary of the above result is that the equilibrium bids in FPSB and
SPSB do not change when resale market opportunities are introduced. This
immediately follows from the fact that both auctions have e¢cient equilibria,
as was shown in Propositions 1 and 4. Moreover, no trade will take place in the
resale market.

3.4 Revenue comparison for n = 2
For the tractable case of two bidders, if 0 < ' < 1, SPSB generates a strictly
higher expected revenue than FPSB.11 This revenue ranking result is obtained
by proving that the utility of the lowest type is strictly higher for FPSB than
for SPSB. This short-cut immediately follows from the Revenue Equivalence
Theorem (Myerson, 1981) which remains valid in case …nancial externalities
are introduced (Maasland and Onderstal, 2002). According to the Revenue
Equivalence Theorem, two auctions which are both e¢cient, and yield zero
utility for the lowest type, yield the same expected revenue. For ' = 1, both
auctions are revenue equivalent, which follows as the utility of the lowest type
is the same for both auctions.

To obtain the proof of Proposition 9, the following lemma appears to be
useful.

11Engelbrecht-Wiggans (1994) claims the same result for n bidders, but his proof is not
correct, even not for the case of two bidders.
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Lemma 8 For every y 2 (0; 1) and ' 2 (0; 1), the following inequality is satis-
…ed:

y +
'

1 + '
(1 ¡ y)

1+'
' ¡ 1

1 + '
y1+' ¡ '

1 + '
< 0:

If ' = 1, then for every y 2 (0; 1),

y +
'

1 + '
(1 ¡ y)

1+'
' ¡ 1

1 + '
y1+' ¡ '

1 + '
= 0:

Proof. See the Appendix.

Proposition 9 For ' < 1 and n = 2, SPSB generates a strictly higher expected
revenue than FPSB. For ' = 1 and n = 2, FPSB and SPSB are revenue
equivalent.

Proof. Let U1(t) and U2(t) be the equilibrium utility of the lowest type
in FPSB and SPSB respectively. As the outcome of both auctions is e¢cient,
a bidder with type t loses the auction with probability 1, and gets …nancial
externalities as the other bidder has to pay. So, U1(t) and U2(t) are respectively
given by

U1(t) = '

¹tZ

t

B1('; t)dF (t)

and

U2(t) = 'B2('; t).

Applying integration by parts twice on the expression for
¹tR
t

B1('; t)dF (t), we

obtain

'

¹tZ

t

B1('; t)dF (t) = '

¹tZ

t

1
F (t)

tZ

t

µ
F (y)
F (t)

¶'

f(y)v(y; y)dydF (t)

=

¹tZ

t

(1 ¡ F (t)')v(t; t)dF (t)

=
'

1 + '
v(¹t; ¹t) ¡

¹tZ

t

µ
F (t) ¡ 1

1 + '
F (t)1+'

¶
dv(t; t)

dt
dt.
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Manipulating B2('; t), we …nd

'B2('; t) =
tZ

t

(1 ¡ F (t))
1
' f(t)v(t; t)dt

=
'

1 + '
v(t; t) +

'
1 + '

¹tZ

t

(1 ¡ F (t))
1+'

'
dv(t; t)

dt
dt.

Then

U1(t) ¡ U2(t) = '

¹tZ

t

B1('; t)dF (t) ¡ 'B2('; t)

=

¹tZ

t

µ
F (t)1+'

(1 + ')
¡ F (t) ¡ '

1 + '
(1 ¡ F (t))

1+'
' +

'
1 + '

¶
dv(t; t)

dt
dt.

When we apply Lemma 8 with y = F (t) to the di¤erence between U1(t) and
U2(t), we …nd for ' 2 (0; 1) that the utility of the lowest type is strictly higher
for FPSB than for SPSB. For ' = 1, by Lemma 8, U1(t) ¡ U2(t) = 0.

4 Positive reserve price
Consider FPSB and SPSB with a reserve price R > 0. In order to keep the model
tractable, we assume that the standard independent private values model holds,
i.e., vi(t) = ti for all i, t. Also, we restrict our attention to the case of two
bidders.

This section mainly focuses on the existence of weakly separating Bayesian
Nash equilibria, for which the following de…nition applies.

De…nition 10 A weakly separating Bayesian Nash equilibrium is a Bayesian
Nash equilibrium in which all types below a threshold type abstain from bidding,
and all types above this type submit a bid according to a strictly increasing bid
function.

4.1 First-price sealed-bid auction
In contrast to a situation without …nancial externalities, there exists no weakly
separating Bayesian Nash equilibrium for FPSB. Proposition 11 shows that, if
such an equilibrium would exist, R must be the threshold type. The equilibrium
bid function can be constructed analogous to the equilibrium bid function for
FPSB without reserve price. But then a contradiction is established, as a bidder
with type R turns out to submit a bid below the reserve price.
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Proposition 11 Let vi(t) = ti for all i, t, and n = 2. There exists no weakly
separating Bayesian Nash equilibrium of FPSB if R > 0.

Proof. The proof is by contradiction. Suppose for the moment that a weakly
separating equilibrium does exist. Then it is easily derived that all bidders with
a type below R abstain from bidding, and all types above R submit a bid
according to a strictly increasing bid function, which we denote by h. Using
similar arguments as in the proof of Proposition 1, it can be established that
h0(t) ¸ 0 if and only if h(t) · t

1+' . Hence, for t = R, it holds that h(R) · R
1+' .

In other words, in a weakly separating equilibrium, a bidder with type R submits
a bid strictly below R. This contradicts the fact that all submitted bids should
exceed the reserve price R.

However, there is a symmetric equilibrium that involves pooling at the re-
serve price. Proposition 12 describes a Bayesian Nash equilibrium in which
bidders with a type below a threshold type L do not bid, bidders with a type t
above a threshold type H bid gR(t), where gR is a strictly increasing function,
and types in the interval [L;H] submit a bid equal to R. More speci…cally, let

H = (1 + ')R;

L the unique solution to

'[F (H) ¡ F (L))]R
F (H) + F (L)

= L ¡ R;

and

gR(t) = F [1](t)¡1¡'

tZ

(1+')R

F [1](y)'f [1](y)ydy + F [1]((1 + ')R)1+'R.

This is an equilibrium, as L turns out to be indi¤erent between abstaining from
bidding, and submitting a bid equal to the reserve price, and H turns out to be
indi¤erent between bidding R (and therefore pool with all types in the interval
[L;H]), and bidding marginally higher than R, and gR is derived from the same
di¤erential equation as the bid function for FPSB without reserve price.

Proposition 12 Assume independent private values and two bidders. Let BR
1 ('; t),

the bid of a bidder with value t, be given by

BR
1 ('; t) =

8
<
:

gR(t) if t > H
R if L · t · H
\no bid" if t < L.

Then BR
1 ('; t) constitutes a symmetric Bayesian Nash equilibrium of FPSB

if R > 0.12

12Note that BR1 ('; t) is continuous at H: This must be the case in equilibrium. Suppose,
on the contrary, that the bid function has a jump at H. Then a bidder with a type slightly
higher than H has an incentive to deviate from the bid strategy to a bid of just above R.
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Proof. Assume that threshold types L and H exist such that in equilibrium
all types t < L abstain from bidding, all types t 2 [L;H] bid R, and all types
t > H bid according to a strictly increasing bid function gR.

A type L is indi¤erent between not bidding and bidding R. The utility of
abstaining from bidding is equal to

'
tZ

H

gR(t)dF (t) + 'R[F (H) ¡ F (L)]:

The utility when bidding R is equal to

'
tZ

H

gR(t)dF (t) + bd [F (H) ¡ F (L)]f'R + (L ¡ R)g + F (L)(L ¡ R).

Equating both expressions yields

'[F (H) ¡ F (L)]R
F (H) + F (L)

= L ¡ R: (12)

L is uniquely determined from (12) as the LHS of (12) is strictly decreasing in
L and the RHS of (12) is strictly increasing in L for L ¸ 0:

A type H is indi¤erent between bidding R and bidding an in…nitesimal ±
above R. The utility when bidding R is equal to

'
tZ

H

gR(t)dF (t) + bd [F (H) ¡ F (L)]f'R + (H ¡ R)g + F (L)(H ¡ R):

The utility when bidding R + ± when ± converges to 0 is equal to

'
tZ

H

gR(t)dF (t) + [F (H) ¡ F (L)](H ¡ R) + F (L)(H ¡ R):

Equating both expressions, and some manipulation yields

H = (1 + ')R.

In order to complete the proof, we need to check whether types have no incentive
to deviate from the proposed equilibrium. We only check if a type t > H has
no incentive to mimic another type t0 > H, as by a standard argument, other
deviations are not pro…table. Incentive compatibility of types t > H implies that
gR should follow from the same di¤erential equation as derived in the proof of
Proposition 1 with the boundary condition gR(H) = R. Analogous to the proof
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of Proposition 1, it can be established that gR(t) is strictly increasing for t ¸ H
if and only if gR(t) < t

1+' : Now, for t > H;

gR(t) = F [1](t)¡1¡'

tZ

H

F [1](y)'f [1](y)ydy + F [1](H)1+'R

< F [1](t)¡1¡'

tZ

H

F [1](y)'f [1](y)tdy + F [1](H)1+'R

=
t

1 + '
¡

·
t

1 + '
¡ R

¸ ·
F [1](H)
F [1](t)

¸1+'

· t
1 + '

:

To get an intuition why pooling at R occurs in equilibrium, consider a sit-
uation in which R ¸ ¹t

1+' . The threshold level H, above which bidders bid
according to a strictly increasing bid function, lies above ¹t, so that bidders ei-
ther abstain from bidding, or bid R. Why is this an equilibrium? Suppose that
one of the two bidders submits a bid b ¸ R. Then the other bidder prefers
losing to winning. This can be seen as follows. If she loses, then her utility is

'b ¸ 'R ¸ '¹t
1 + '

¸ 't
1 + '

,

whereas winning gives her a utility of at most

t ¡ R · t ¡
¹t

1 + '
· t ¡ t

1 + '
=

't
1 + '

.

Low types are then willing to lose the opportunity of getting the object by
abstaining from bidding. High types bid R, assuring themselves the object if
the other bidder does not bid, but also making sure that if the other bids, to
lose as often as possible.

4.2 Second-price sealed-bid auction
In contrast to FPSB, SPSB sometimes has a (weakly) separating Bayesian Nash
equilibrium when a reserve price is imposed. This observation follows trivially
when the reserve price is smaller than the lowest submitted equilibrium bid,
which is strictly positive according to Proposition 4. However, also in nontrivial
cases weakly separating Bayesian Nash equilibria exist. Proposition 13 gives
a necessary and su¢cient condition for the existence of a weakly separating
Bayesian Nash equilibrium. If the equilibrium exists, types up to a threshold
type bt abstain from bidding, and types above bt submit the same bid as in the
case of no reserve price.
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Proposition 13 Assume independent private values and two bidders. Let R 2
[B2('; t); B2('; t)]. SPSB with a reserve price R has a weakly separating Bayesian
Nash equilibrium if and only if B2(';R) ¸ R. If an equilibrium exists, then it
is given by

BR
2 ('; t) =

½
B2('; t) if t ¸ bt
“no bid” if t < bt

where BR
2 ('; t) is the bid of a bidder with value t, and where bt is the unique

solution to

'(B2(';bt) ¡ R)(1 ¡ F (bt)) = F (bt)[R ¡ bt].

Proof. Suppose there is an R for which a weakly separating equilibrium
exists. Suppose that an indi¤erence type bt exists, such that

BR
2 ('; t) =

½
B2('; t) if t ¸ bt
\no bid" if t < bt

is an equilibrium, where B2 is the equilibrium bid function in the case of R = 0. bt
is indi¤erent between submitting no bid, and submitting a bid equal to B2(';bt).
Hence, bt follows from the following equation

(1 ¡ F (bt))'R = F (bt)(bt ¡ R) + (1 ¡ F (bt))'B2(';bt),

which is equivalent to

'R =
F (bt)

(1 ¡ F (bt))
(bt ¡ R) + 'B2(';bt). (13)

For t ¸ bt, BR
2 ('; t) follows from the same di¤erential equation as derived in the

proof of Proposition 4 with the same boundary condition BR
2 ('; t) = t

1+' , so
that indeed BR

2 ('; t) = B2('; t) for all R and t ¸ bt.
A weakly separating equilibrium exists if and only if B2(';bt) ¸ R, as all

bids should be above R. We will show now that B2(';bt) ¸ R is equivalent to
the condition B2(';R) ¸ R, which completes the proof.

De…ne et such that

B2(';et) = R: (14)

As B2('; t) is strictly increasing in t, et is uniquely determined. Consider the
function h with

h(t) ´ F (t)
1 ¡ F (t)

(t ¡ R) + 'B2('; t)

for all t. Note that h is a strictly increasing function, with

h(bt) = 'R,
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(which follows from (13)), and

h(et) =
F (et)

1 ¡ F (et)
(et ¡ R) + 'R. (15)

Now, with (14), as B2 is strictly increasing,

B2(';R) ¸ R () B2(';et) = R · B2(';R) () et · R:

Moreover, with (15), as h is strictly increasing,

et · R () h(et) · 'R = h(bt) () et · bt:

Finally, as B2 is strictly increasing, and from (14),

et · bt () B2(';bt) ¸ R:

An intuition for the condition B2(';R) ¸ R being necessary is the following.
In a weakly separating Bayesian Nash equilibrium, a bidder with type R is
always prepared to submit a bid of at least R. To see this, observe that for
this bidder, in a weakly separating Bayesian Nash equilibrium, a bid equal to R
yields the same revenue as abstaining from bidding. However, in equilibrium,
each type that submits a bid, does so according to the equilibrium bid function
for the situation with no reserve price. This implies that if B2(';R) < R, a
bidder with type R would submit a bid below the reserve price, which is not
possible, so that a contradiction is established.

The intuition for the condition being su¢cient is as follows. In a weakly
separating Bayesian Nash equilibrium, each bidder who submits a bid, submits
a bid as if there were no reserve price. Then, for the existence of a weakly sepa-
rating equilibrium, it remains to be checked that B2(';bt) ¸ R. If B2(';R) ¸ R,
then there is a type et · R for which B2(';et) = R. As a reserve price does not
a¤ect equilibrium bidding of types that submit a bid, it follows that if type et
would submit a bid in equilibrium, she would submit a bid equal to R. How-
ever, type R is indi¤erent between bidding R and not submitting a bid, so
that et prefers not to submit a bid. Therefore, bt must exceed et, so that indeed
B2(';bt) ¸ B2(';et) = R.

The necessary and su¢cient condition B2(';R) ¸ R implies that for small
R a weakly separating Bayesian Nash equilibrium exists, but not for large R.
As said, the existence of such an equilibrium is trivial in the case of small R.
However, for R close to ¹t, B2(';R) < R, as, by Proposition 4, B2('; ¹t) < ¹t.

5 Concluding remarks
We have studied auctions in which losing bidders obtain …nancial externalities
from the winning bidder. We have derived bidding equilibria for FPSB and
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SPSB, and have established that the presence of a resale market does not a¤ect
equilibrium behavior. Also, we have shown that in the two-bidder case SPSB
dominates FPSB in terms of expected auction revenue if ' < 1 and that both
auctions are revenue equivalent if ' = 1. Moreover, we have studied equilib-
rium bidding for FPSB and SPSB when a reserve price is imposed. We have
observed pooling at the reserve price for FPSB. For SPSB, we found a necessary
and su¢cient condition for the existence of a weakly separating Bayesian Nash
equilibrium.

An interesting possibility for future research is to investigate what the e¤ects
are of asymmetric …nancial externalities in a private values environment. For
instance, one may examine what happens in case only one of the bidders imposes
a …nancial externality on the other bidders. Bulow et al. (1999) consider a
situation in which two bidders bid for a common value object, and one of the
bidders receives a fraction of the auction revenue. The bidder without toehold
in the auction revenue faces a strong winner’s curse, and therefore bids zero in
equilibrium, even if the toehold of the other bidder in the auction revenue is
in…nitesimally small. Although the authors restrict their attention to a common
value environment, their analysis shows that asymmetric …nancial externalities
may have dramatic e¤ects on the auction revenue.

Motivated by the observation that in SPSB, low signal bidders increase their
bids when ' is increased (for ' not too large), also a model with asymmetries in
the valuation function may be fruitful to study. One may imagine that with one
bidder with a low value, and one bidder with a high value, the price in SPSB
may be higher with …nancial externalities than without …nancial externalities,
as the bidder with the low value has an incentive to push up the price when '
is strictly positive.

6 Appendix

Proof of Lemma 8. De…ne Ã(y) ´ y + '
1+'(1 ¡ y)

1+'
' ¡ ( 1

1+')y1+' ¡ '
1+' .

The …rst and second order derivatives of Ã are respectively given by

Ã0(y) = 1 ¡ (1 ¡ y)
1
' ¡ y', and

Ã00(y) =
1
'

(1 ¡ y)
1
' ¡1 ¡ 'y'¡1:

Observe that

Ã(0) = Ã(1) = 0,
Ã0(0) = Ã0(1) = 0,

lim
y#0

Ã00(y) = ¡1,

Ã00(1) = ¡' < 0.

Hence, if y is close to 0, Ã(y) must be below zero and concave, and similarly
for y close to 1, Ã(y) is negative and concave. Suppose now that, in contrast
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to what is stated in the lemma, Ã(y) > 0 for some y 2 (0; 1). As Ã and all its
derivatives are continuous functions on the interval (0; 1), Ã00(y) must change
sign at least four times, or, equivalently, Ã00(y) = 0 for at least four values of y
in (0; 1). De…ne ¹ ´ 1

' , º ´ ' ¡ 1, and » ´ 1
' ¡ 1. Note that »

º < 0. Then,

Ã00(y) = ¹(1 ¡ y)» ¡ 'yº = 0 =)
'
¹

=
yº

(1 ¡ y)» =

Ã
y

(1 ¡ y)
»
º

!º

=)

'
¹

1
º (1 ¡ y)

»
º = y.

The last expression has at most two solutions in the interval [0; 1], as the left
hand side is strictly convex in y, and the right hand side is a linear function in
y. A contradiction is established, so the …rst part of the lemma must be true.
The second part is trivial. ¥
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