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A canonical procedure is described, which associates to each

infinite information collecting situation a related information col-

lecting situation with finite state and action spaces, in such a

way that the two corresponding IC-games are near to each other.

Compensations for informants are then also near to each other in

the two IC-situations, if they are based on continuous compensa-

tion rules.

Keywords: Bi-monotonic allocation scheme; Cooperative game;

Core; Discretization; Information collecting situation

1 Introduction

In this paper information collecting (IC) situations and games (cf. Brânzei

et al., 2001 (a, b); Tijs et al., 2001) are central. They model decision-making

situations where the outcome of any decision depends on the state of the

nature and the decision-maker is imperfectly informed. Collecting informa-

tion from available agents who are more informed about the situation creates

the potential for better decisions. More refined information to support the

decision-making process yields, in principle, additional reward which is the

source to compensate the informants.

Different procedures for collecting information have given rise to natural

compensation rules in the context of cooperative game theory. Relevant for

the class of information collecting games are marginal based compensation

rules and bi-monotonic allocation schemes.

The state space and the action space in an information collecting sit-

uation can be infinite. We consider possibilities of approximating such an

IC-situation with a finite IC-situation where the state space and the action
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space are finite and we relate the original IC-game with the IC-games of fi-

nite approximations. The considered approximations turn out to be good in

the sense that the corresponding games are nearby. So continuity properties

of relevant solutions for the class of IC-games are interesting. We compare

relevant solutions such as the core (Gillies, 1953), the set of bi-monotonic al-

location schemes (Brânzei et al., 2001b) and marginal-based allocation rules

(Tijs et al., 2001) of the approximate game with those of the original game,

extending results from Lucchetti et al. (1987).

The outline of the paper is as follows. In Section 2 we introduce IC-

situations and the corresponding games, look at properties and also at the

subclass of IC-games, where a certain concavity condition holds. Section 3

deals with compensation rules and continuity properties of solution concepts

which are relevant for the class of IC-games. In Sections 4 and 5 we present

procedures for discretizing the state space (going from an infinite state space

to a finite one) and for reducing the dimension of the action space, respec-

tively. Section 6 concludes.

2 Information collecting situations and games

Information collecting situations model cooperative behavior of agents when

one of them (the decision-maker) is facing uncertainty due to informational

deficiencies when making decisions and the others (the informants) can pro-

vide additional information about the state of the nature.

In an information collecting (IC) situation the decision-maker has to de-

cide which action to take in order to maximize his expected reward which

depends upon both his choice and the true state of the world not precisely
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known by the agent. An IC situation C is described by the tuple

C =
D
N,n, (Ω,F , µ) , {Ii}i∈N , A, r : Ω×A→ <

E
where agent n ∈ N is the decision-maker (action taker) who has to choose

an action a from infinite action set A and can consult the several informants

in N \{n}. (Ω,F , µ) is a measure space, where Ω is the set of possible states
which are relevant to the decision situation, F is a σ-algebra of subsets of

Ω and µ is a probability measure, which describes the prior belief of the

decision maker over all the states ω in Ω. The information of each (partially)

informed agent in N about the state ω ∈ Ω at hand is represented by the

information partition Ii, a finite partition of Ω into F-measurable sets Ii(ω)
with positive measure. If ω ∈ Ω is the true state, then agent i knows that

the event Ii(ω) happens, where Ii(ω) is that element (atom) of the partition

Ii of Ω that contains ω. Decision-maker n receives the reward r(ω, a) if ω

turns out to be the true state and he chooses action a. We assume that

the reward function is a bounded F-measurable function and that agent n is
risk-neutral.

Related to an IC-situation with decision-maker n, we define a cooperative

game, the IC-game. The IC-game (N, v) is defined by the player set N =

{1, 2, . . . , n} and the characteristic function v : 2N → <, with domain the
family 2N of subsets of N , where v(S) = 0 if n /∈ S and

v(S) =
X
I∈IS

sup
a∈A

Z
I
r(ω, a)dµ (ω)

for all S ∈ 2N with n ∈ S. Here IS = ∧i∈SIi is the coarsest partition of Ω
that is a refinement of Ii for each i ∈ S :

IS =
(\
i∈S
Ii | Ii ∈ Ii,

\
i∈S
Ii 6= ∅

)
.
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Notice that alone agent n can attain the expected payoff

v ({n}) = X
I∈In

sup
a∈A

Z
I
r(ω, a)dµ (ω) .

Example 1 Let C =
D
N,n, (Ω,F , µ) , {Ii}i∈N , A, r : Ω×A→ <

E
be the in-

formation collecting situation with N = {1, 2, 3}, n = 3; Ω = [0, 1], F
is the σ-algebra of Borel sets of [0, 1] and µ is the Lebesgue measure on

[0, 1]; I1 =
nh
0, 1

3

i
,
³
1
3
, 1
io
, I2 =

nh
0, 2

3

i
,
³
2
3
, 1
io
, I3 = {[0, 1]}; A = [0, 1];

r (ω, a) = 60 − 36 |a− ω| for each a,ω ∈ [0, 1]. Then v (∅) = v ({1}) =
v ({2}) = v ({1, 2}) = 0,

v ({3}) = sup
a∈A

Z
[0,1]
r(ω, a)dµ (ω) =

Z
[0,1]
r
µ
x,
1

2

¶
dx =

60− 36
Z 1

0

¯̄̄̄
1

2
− x

¯̄̄̄
dx = 60− 9 = 51;

v ({1, 3}) = sup
a∈A

Z 1
3

0
r(x, a)dx+ sup

a∈A

Z 1

1
3

r(x, a)dx =

Z 1
3

0
r
µ
x,
1

6

¶
dx+

Z 1

1
3

r
µ
x,
2

3

¶
dx =

60− 36
Z 1

3

0

¯̄̄̄
1

6
− x

¯̄̄̄
dx− 36

Z 1

1
3

¯̄̄̄
2

3
− x

¯̄̄̄
dx = 55 = v ({2, 3}) ,

v ({1, 2, 3}) = 57 = 60−36
ÃZ 1

3

0
r
µ
x,
1

6

¶
dx+

Z 2
3

1
3

r
µ
x,
1

2

¶
dx+

Z 1

2
3

r
µ
x,
5

6

¶
dx

!
.

A characterization of IC-games is given in Brânzei et al. (2001 (a, b))

where it is shown that a game is an IC-game with decision-maker n if and

only if it is a n-monotonic game in which the decision-maker has veto power,

that is v(S) ≤ v(T ), for all n ∈ S ⊂ T ⊂ N , and v(S) = 0 for each S ⊂ N
with n /∈ S. We denote by MVn the set of such games.
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For each coalition S ⊂ N and i ∈ S, the marginal contribution of player
i in the game hN, vi is defined by

Mi(S, v) = v(S)− v (S \ {i}) .

A game hN, vi in MVn is a so-called big-boss game if it satisfies

v(N)− v(S) ≥ X
i∈N\S

Mi(N, v)

for all S ⊂ N with n ∈ S.
Interesting are those IC-games with the n-concavity property. An IC-

game (N, v) is called n-concave if

Mi(S, v) = v(S)− v(S \ {i}) ≥ v(T )− v(T \ {i}) =Mi(T, v)

for all i ∈ N \ {n}, and for all S ⊂ T ⊂ N with {i, n} ⊂ S.
We denote this subclass of IC-games byMVnCn. It is shown in Brânzei et

al. (2001b) that a non-negative IC-game with decision maker n is n-concave

if and only if it is a total big-boss game (cf. Muto et al., 1988).

A game hN, vi in MVn is called a total big-boss game if it satisfies

v(T )− v(S) ≥ X
i∈T\S

Mi(T, v)

for all S ⊂ T ⊂ N with n ∈ S.

3 Compensation rules and continuity

considerations

If the decision-maker n works together with the agents in N \ {n} to im-
prove his reward, then the question ’How to compensate the informants?’

6



arises. The introduced IC-game opens the possibility to consider compensa-

tion schemes which correspond to solution concepts for cooperative games.

In particular, we focus on marginal based allocation rules, where the com-

pensation of each informant is based on the marginal contribution induced

by his information to the decision-maker’s reward and on bi-monotonic al-

location schemes which take the decision-maker’s veto power into account.

Both of these compensation solutions are related with the core of an IC-game,

which is always non-empty.

Recall that the core of the game hN, vi (Gillies) is defined by

C(v) =

(
x ∈ <N |X

i∈S
xi ≥ v(S) for each S ⊂ N ,

X
i∈N
xi = v(N)

)
.

The continuity properties of the core for cooperative games are discussed

in Lucchetti et al. (1987). In that paper and also here the linear space of

n-person games is endowed with a metric d defined by

d(v, w) = kv − wk∞ = max
S∈2N

|v(S)− w(S)| .

In order to study continuity properties of relevant solution concepts for

IC-games, we give some definitions and introduce some useful notations.

Denote by Pn the set {S ⊂ N | n ∈ S} of coalitions containing the decision-
maker n.

An allocation scheme [bS,i]S∈Pn,i∈S is a bi-mas of v if

(bS,i)i∈S ∈ C(S, v), bS,n ≤ bT,n and bS,i ≥ bT,i

for all S, T ∈ Pn with S ⊂ T and all i ∈ S \ {n}. Here C(S, v) denotes the
core of the subgame (S, v).

Example 2 Take the information collecting situation of Example 1. Note
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that v ∈MV3 and that also v is 3-convex. The allocation scheme

1 2 3

{3} − − 51

{1, 3} 2 − 53

{2, 3} − 2 53

N 1 1 55

is a bi-monotonic allocation scheme corresponding to the τ -value (cf. Tijs,

1981), where each of the informants 1 and 2 obtains half of his marginal

contribution in the subgames to which he belongs.

An imputation x is bi-mas extendable if there is a bi-mas [bS,i]S∈Pn,i∈S,

such that xj = bN,j for all j ∈ N .
We denote by BMN

n the set of all games (N, v) which have at least one

bi-mas, and where n is a veto-player.

Let

En =
n
(S, i) ∈

³
2N \ {∅}

´
×N | n, i ∈ S

o
.

Then consider the multifunction

BIMAS : BMN
n → <En.

BIMAS is the non-empty-valued multifunction which assigns to each v ∈
BMN

n the set of all bi-monotonic allocation schemes [bS,i]S∈Pn,i∈S of v, where

for each S ∈ Pn the ’row’ (bS,i)i∈S is a core element of the subgame (S, v) with
extra conditions of the form bS,i ≥ bT,i for each i ∈ N \ {n} and bS,n ≤ bT,n,
which are linear inequalities.

By the related stability theorems in this field (Walkup and Wets, 1969;

Lucchetti et al., 1987) we obtain
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Theorem 1 The multifunction BIMAS is upper and lower semicontinuous.

It is shown in Brânzei et al. (2001b) that any core element of a game

v ∈ MVnCn is extendable to a bi-mas. In total big-boss games the use of
the nucleolus (cf. Schmeidler, 1969) as an allocation mechanism generates

a bi-mas (see Voorneveld et al., 2000) and the nucleolus coincides here with

the τ -value (cf. Tijs, 1981).

Now we concentrate on marginal based allocation rules, where the reward

compensation of each informant is a fraction of his marginal contribution.

In a marginal based allocation rule informant i receives αiMi(N, v) with

αi ∈ [0, 1] and the decision-maker is given the remainder

v(N)− X
i∈N\{n}

αiMi(N, v).

For every fixed α = (α1,α2, . . . ,αn−1) ∈ [0, 1]N\{n}, we define the marginal
allocation rule

Ψα :MVnCn → <n,

Ψα(v) =

α1M1(N, v), . . . ,αn−1Mn−1(N, v), v(N)−
X

i∈N\{n}
αiMi(N, v)

 .
Theorem 2 For every fixed α, the function Ψα is (2n− 1)-Lipschitz.

Proof. Let v and w belong to MVnCn :

αi |Mi(N, v)−Mi(N,w)| ≤ αi |v(N)− w(N)|+αi |v(N \ {i})− w(N \ {i})| ≤

2 kv − wk∞
for every i ∈ N \ {n} and¯̄̄̄

¯̄v(N)− X
i∈N\{n}

αiMi(N, v)−
w(N)− X

i∈N\{n}
αiMi(N,w)

¯̄̄̄¯̄ ≤
9



|v(N)− w(N)|+2α1 kv − wk∞+ . . .+2αn−1 kv − wk∞ ≤ (2n−1) kv − wk∞ .
So

kΨα(v)−Ψα(w)k∞ ≤ (2n− 1) kv − wk∞ .

It is shown (Tijs et al., 2001) that any core element of a game v ∈MVn is
a marginal based allocation rule and that the set of marginal based allocation

rules for a game v in MVn coincides with the core of the game if and only if

v is a big-boss game.

4 The canonical discretization of an IC-situation

In this section we describe a natural way to discretize the infinite state space

Ω of an IC-situation

C =
D
N,n, (Ω,F , µ) , {Ii}i∈N , A, r : Ω×A→ <

E
and to arrive at a strategic equivalent IC-situation

C0 =
D
N,n, (Ω0, µ0) , {I 0i}i∈N , A, r0 : Ω0 ×A→ <

E
where the state space Ω0 is finite. The idea behind the discretization is

simple. Each of the players in the IC-situation C is provided with a finite
information partition Ii of Ω. The common refinement IN = ∧i∈NIi is also a
finite partition of Ω. Each atom of this common refinement consists of points

which are neither distinguishable by agents nor by coalitions who pool their

information. So it is natural to replace such an atom by one point and then

these points generate Ω0. The probability measure, the information parti-

tions and the reward function can then be adjusted, leading to the canonical

discretization.
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In the following we describe these constituents of C0 in terms of C. Each
atom I(J,K, . . .) in the common refinement IN of I1, I2, . . . ,In is consid-
ered as one point of Ω0 and we denote this point by i (j, k, . . .). Hence,

Ω0 = {i | I ∈ IN} is a finite set. The probability measure µ on Ω induces

canonically the measure µ0 on Ω0, where each subset B of Ω0 is measurable

and the measure µ(B) is given by
Pm
k=1 µ (Ik), if B consists of the points

i1, i2, . . . , ik corresponding to the atoms I1, I2, . . . , Ik in IN .
Note that for each of the partitions I1,I2, . . . , In (and also for IS = ∧i∈SIi

for each S ∈ 2N \ {∅}) the atoms are finite unions of elements in IN . So the
atoms in Ii (i ∈ N) correspond to disjoint subsets of Ω0, which form a

partition of Ω0, that we denote by I 0i.
The reward r0(i, a) corresponding to action a ∈ A and state i ∈ Ω0 is

defined by

r0(i, a) = µ(I)−1
Z
I
r(ω, a)dµ(ω)

where I is the atom in IN corresponding to i.
So, we have defined the canonical discretization C0 of C. Note that there is

also a one to one relation between the atoms of IS and I 0S = ∧i∈SI 0i. We will
denote in the following the atom in I 0S which corresponds to the atom J in IS
by J . The question arises: What is the relation between the corresponding

IC-games v0 and v? The answer is simple.

Theorem 3 The IC-games v0 and v corresponding to C0 and C coincide.

Proof. Take S ∈ 2N \ {∅}. We have to show that v0(S) = v(S). Using

the definition of v0(S) and the fact that (Ω0, µ0) is a finite measure space we

obtain

v0(S) =
X
J∈I0S

sup
a∈A

Z
J
r0(i, a)dµ0(i) =

11



X
J∈I0S

sup
a∈A

X
i∈J
µ0({i})r0(i, a). (1)

Now using the definition of µ0 and r0we obtain

X
i∈J
µ0({i})r0(i, a) = X

I⊂J,I∈IN
µ(I)

³
µ(I)−1

´ Z
I
r(ω, a)dµ(ω) =

Z
J
r(ω, a)dµ(ω). (2)

Combining (1) and (2) we obtain

v0(S) =
X
J∈IS

sup
a∈A

Z
J
r(ω, a)dµ(ω) = v(S).

Example 3 Take the information collecting situation of Example 1. Then

IN = {P,Q,R} with P =
h
0, 1

3

i
, Q =

³
1
3
, 2
3

i
and R =

³
2
3
, 1
i
. In the canonical

discretization

C0 =
D
N,n, (Ω0, µ0) , {I 0i}i∈N , A, r0 : Ω0 ×A→ <

E
of C we have
Ω0 = {p, q, r}, where p is the point corresponding to P , etc
µ0({p}) = µ0({q}) = µ0({r}) = 1

3
, µ0({p, q}) = µ0({p, r}) = µ0({q, r}) =

2
3
, µ0({p, q, r}) = 1.
I 01 = {p, {q, r}} ,I 02 = {{p, q} , r} ,I 03 = {{p, q, r}}.
A = [0, 1]

r0(p, a) = 60− 108 R 1
3
0 |a− x| dx for each a ∈ A,

etc

In the next section we go one step further and we will describe a method

to find for an IC-situation with a finite state space a related appropriate

IC-situation with the same state space and also with a finite action space.
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5 A reduction procedure for the action space

Let C =
D
N,n, (Ω, µ) , {Ii}i∈N , A, r : Ω×A→ <

E
be an IC-situation with Ω

finite. Take ε > 0. The objective is to find an IC-situation

Cε =
D
N,n, (Ω, µ) , {Ii}i∈N , A(ε), r : Ω×A(ε)→ <

E
,

where A(ε) is a finite subset of A, such that the distance of the two corre-

sponding games v and vε does not exceed ε. Since Ω is finite, also the family

2Ω of non-empty subsets of Ω is finite. For each J ∈ 2Ω we take an action
a (ε, J) ∈ A with the property thatZ

J
r(ω, a(ε, J))dµ(ω) ≥ sup

a∈A

Z
J
r(ω, a)dµ(ω)− εµ (J) . (3)

Define A(ε) =
n
a (ε, J) | J ∈ 2Ω

o
. Then A(ε) ⊂ A and for the corre-

sponding Cε and its IC-game vε we have

Theorem 4 d (v, vε) ≤ ε.

Proof. Take S ∈ 2N \ {∅}.Then
(i) v(S) =

P
J∈IS supa∈A

R
J r(ω, a)dµ(ω) ≥P

J∈IS maxa∈A(ε)
R
J r(ω, a)dµ(ω) = v

ε(S).

(ii) In view of (3)

v(S) =
P
J∈IS supa∈A

R
J r(ω, a)dµ(ω) ≤P

J∈IS (
R
J r(ω, a (ε, J))dµ(ω) + εµ(J)) ≤

ε+
P
J∈IS maxa∈A(ε)

R
J r(ω, a)dµ(ω) = ε+ vε(S).

Hence, d (v, vε) = maxS∈2N\{∅} |vε(S)− v(S)| ≤ ε.

Example 4 Take the information collecting situation C0 from Example 3.

Then Ω0 = {p, q, r} and optimal actions corresponding to the subsets {p} , {q} ,

13



{r} , {p, q} , {p, r} , {q, r} , and {p, q, r} of Ω0 are 1
6
, 1
2
, 5
6
, 1
3
, 1
2
, 2
3
and 1

2
, respec-

tively. So the information collecting situation C00, obtained from C0 by replac-
ing A = [0, 1], by A00 =

n
1
6
, 1
3
, 1
2
, 2
3
, 5
6

o
is an information collecting situation

for which the corresponding game v00 coincides with v0.

6 Concluding remarks

Combining the procedures in Sections 4 and 5 we can find for each IC-

situation C with infinite state and action spaces a related finite approxi-
mation C00 such that the two involved IC-games are as near to each other as
one wants. The continuity properties of the different compensation schemes

guarantee then that the corresponding compensations in the two games are

also near to each other. A similar discretization procedure can be developed

for information sharing games, introduced in Slikker et al. (2000). In this

context it is interesting to note that the multifunction PMAS, which assigns

to a game the set of its population monotonic allocation schemes (cf. Spru-

mont, 1990) is upper and lower continuous by the same argument used for

the multifunction BIMAS.
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