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Abstract

We study equilibrium selection by cheap talk in symmetric 2 £ 2 coordination

games. Before playing the game, players exchange simultaneously messages com-

ing from a …nite set. The messages have no a priori meaning. Individuals from a

single population are matched in a round robin fashion to play the game. They

update startegies by imitating the currently most succesful individuals. When

risk dominance selects a di¤erent equilibrium than payo¤ dominance, the game

outcome of a stochastically stable state depends on the number of messages in the

message set. For su¢ciently many messages, the e¢cient equilibrium is played.

We link the bound on the message set size to the payo¤ structure of the game.

JEL Classi…cation Number: C720, D830.

Keywords: Cheap talk, evolutionary game theory, coordination games, risk

dominance.

1 Introduction

Introducing payo¤ irrelevant strategies into a game does not destroy the existing equi-

libria, therefore cheap talk per se does not select equilibria from the equilibrium set
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of the game without communication. It rather creates new equilibria that are payo¤

equivalent to the existing ones, and supported by di¤erent beliefs about the meaning

of the messages. Does cheap talk give evolutionary support to the play of the e¢cient

equilibria?

In this paper, we address the evolution of communication via cheap talk in 2£ 2 sym-

metric coordination games. We link the evolution of meaningful messages to the payo¤

structure of the game and extend hereby the equilibrium selection in evolutionary games

studied by Kandori, Mailath and Rob [13] (henceforth KMR) in the presence of cheap

talk communication.

There have been identi…ed in the literature conditions under which adding cheap talk

selects e¢cient outcomes in evolutionary models. Common interest1 in two player games

has been found su¢cient and necessary condition in multi-population models with best

response dynamics, or static solution concepts based on the Nash equilibrium concept.

Sobel [24] …rst showed that for …nite two-player games with common interest, for every

e¢cient outcome there is a strategy pro…le supporting this outcome in the evolutionary

stable set. Matsui [16] introduced a set valued concept, cyclically stable set2. In [17],

he shows for the class of 2£2 common interest games in a two population scenario that

CSS contains only states yielding the e¢cient equilibrium.

The multipopulation modelling is a crucial assumption. Schlag [23] shows that with two-

population replicator dynamics, common interest is necessary and su¢cient for e¢cient

stable outcomes. With one population dynamics, common interest implies that e¢cient

outcomes are stable, but ine¢cient evolutionary stable strategies may persist.

The most general result for a multipopulation dynamics is presented by Kim and Sobel

[15]. Two …nite populations play asymmetric n£n game. The strategy updating process

followed by the individuals is rather restrictive. At any occasion, a single individual is

given the opportunity to change the current strategy for a strategy that weakly improves

upon this strategy. Any better performing strategy is chosen with positive probability.

Strategy updates continue even if all strategies perform equally well, in order to avoid

lock in suboptimal states.

Under this dynamics, two-sided communication leads to the e¢cient outcome in games

1Denote by ei the maximal payo¤ player i can achieve in the underlying game G, i.e. ei =

maxsi;sj ¼i(si; sj); where ¼i(si; sj) is the payo¤ to player i when he chooses strategy si and the other

player chooses strategy sj : Game G is a game of common interest if ¼i(si; sj) = ei ) ¼j(sj ; si) = ej .
2A collection of strategies forms a cyclically stable set (CSS) if it is a set closed under the best

response dynamics, and any two members of CSS are mutually accessible by a path generated by the

best response dynamics in CSS.
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with common interest. For general games, all e¢cient outcomes recur in…nitely often.

One-sided communication always leads to the preferred outcome of the player sending

the message, if it is part of a strict Nash equilibrium.

Kim and Sobel [15] consider an environment without mistakes or mutations, and there-

fore cannot address two important aspects: e¤ect of noise in communication, and the

role of simultaneous strategy adjustments. The …rst issue is handled by Bhaskar [3], the

second by Blume [4].

Bhaskar [3] considers noisy communication in …nite, possibly asymmetric games, played

as a truly asymmetric contest. With a strictly positive probability, the message received

by a player does not coincide with the message sent by the other player. The exchanged

messages are thus not common knowledge, and successful strategies have to be resistant

to the noise. When allowing countably in…nitely many messages, a noise robust Nash

equilibrium, a limit of Nash equilibria in games with the noise level converging to zero,

is e¢cient.

Blume [4] assumes that members of two populations update strategies simultaneously

according to a best response dynamics with incomplete sampling from the currently

used strategies. With one-sided communication, the author …nds an upper bound on

the message set size so that communication is e¤ective in selecting the preferred outcome

of the sender population as the only outcome in the set closed under best responses. If

the risk measure of the preferred equilibrium increases, the minimal required number of

messages increases as well. In 2£ 2 symmetric games, the appropriate risk measure is

Harsanyi and Selten’s risk dominance.

With both-sided communication, Blume …nds no upper bound on message set size con-

nected to the risk of the preferred equilibrium of senders, so that the e¢cient outcome

is stable under the evolutionary best response dynamics. When the symmetry of the

messages is broken, the e¢ciency result is recovered. In particular, Blume assumes that

for any strict Nash equilibrium in the underlying game, there is one message exogenously

linked to it. If players exchange the messages linked to that equilibrium, an individual

linking the message to the equilibrium receives a small additional payo¤ boost. Hence,

a priori information content is assigned to particular messages in an equilibrium. The

payo¤ boosts exclude the possibility of an unrestricted drift. Once the e¢cient equilib-

rium is played. players are locked in using the message connected to that equilibrium.

E¢ciency is achieved disregarding the message space size and risk.

We introduce a few important relaxations compared to Kim and Sobel [15] and Blume

[4]. Players are allowed to update their strategies simultaneously. Strategies performing
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worse in the current population than the present strategies can enter the population via

mutations. We study two-sided communication, but do not restrict the meaning of the

messages. While Blume [4] uses the assumption that players ”recognize” meaningful

communication if the messages form a strict Nash equilibrium, we let the players who

behave according to this assumption compete with players who ignore the messages

and players who use di¤erent messages to ”recognize” the same equilibrium. Hence, the

communicating individuals we consider behave as if the messages had some pre-speci…ed

a priori information content, and we study under which conditions these individuals

survive the pressure of the imitation dynamics. There is no payo¤ boost connected to

any message/strategy combination.

The adaptation dynamics is driven by imitation. Moreover, we choose a single-population

evolutionary dynamics, in order to be able to confront selection criteria based on risk

with the presence of cheap talk communication.

The time runs in discrete steps, and in one period, an individual is randomly re-matched

in a round robing fashion to play the game against all other individuals in the population.

Each individual is preprogrammed to play a …xed strategy during one time period. At

the end of any period, all individuals imitate the most successful strategies, that earned

the highest average payo¤ in that period. Occasionally, an individual makes a mistake

and chooses another strategy.

The one shot game consists of a communication stage and actual strategy choice in the

coordination game. In the communication stage, both players send simultaneously a

message from the message set. A strategy of an individual is the message sent in the

communication stage, and a map from the exchanged message pair to the action set of

the 2£ 2 coordination game.

We restrict the set of strategies to fully ”communicating” and ”not communicating”

strategies. A strategy is a fully communicating strategy if it assigns probability one

to one message in the communication stage, and it conditions the action taken in the

underlying game on the sent and received messages. In particular, a communicating

strategy assigns in the underlying game probability one to the action corresponding to

the payo¤ dominant equilibrium whenever the message received in the communication

stage is the same as the message sent. Otherwise, a communicating strategy assigns in

underlying game probability one to the action corresponding to the payo¤ dominated

equilibrium.

Hence, a communicating strategy, prescribing to sent message m in the communication

stage, leads to behavior that can be interpreted in the following way. Individual using
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such a strategy behaves as if the messagem indicates the intention to play the payo¤

dominant equilibrium and all individuals in the population share the belief that message

m indicates the intention to play the payo¤ dominant equilibrium.

A strategy is not communicating if it assigns a positive probability to any message in the

communication stage, and it does not condition the action taken in the underlying game

on the sent and received messages. This amounts to ”babbling” in the communication

stage.

We assume that an individual cannot recognize the strategy of the individual he is

matched to. The babbling of the noncommunicating individuals therefore creates noise

for the ”communicating” individuals. The ”as if” type of behavior of an individual using

a communicating strategy when matched to an individual using a noncommunicating

strategy may lead to an out-of-equilibrium play.

We show that under these conditions, the stochastically stable states do not always

lead to the play of the risk dominant equilibrium, as it is in the model without com-

munication. For coordination games where the risk dominant equilibrium is not payo¤

dominant, there are games where the message set with two messages is large enough

for the communicating player type to turn the population dynamics towards the play of

the e¢cient equilibrium in the long run, but also games where the number of messages

must be considerably higher to achieve this e¤ect. We are able to link the noise in the

communication stage, represented by the number of messages in the message set, and

riskiness of the payo¤ dominant equilibrium to the e¢cient equilibrium play in the long

run. In particular, we show that when the message space is small, the result of KMR

prevails and the ine¢cient equilibrium will be played in the long run if it is risk domi-

nant. Otherwise, e¢cient equilibrium play will be the long run outcome. Increasing the

number of messages makes the survival of communicating strategies more likely. This

is in contrast to Kim and Sobel’s [15] results based on gradual evolutionary dynamics,

where there is no connection between the message set size and stability of communi-

cation as soon as the message set contains at least two messages, or Blume’s [4] result

where messages are assigned meaning exogenously.

In order to assess the importance of the uniform babbling assumption, we also investigate

a model restricting the message set to two messages such that one message is more

informative in the sense of being used with lower probability by the noncommunicating

individuals.

The remainder of the paper is organized as follows. In Section 2 we present the model

and the solution concept. In Section 3, we analyze communication when the message
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A B

A (a; a) (b; c)

B (c; b) (d; d)

Figure 1: The underlying game G

set consists of at least two messages and noncommunicating players babble uniformly.

We identify the set of long run outcomes of the imitation dynamics depending on the

number of messages in the message set. In Section 4, we restrict the message set to two

messages and consider noncommunicating strategies that use one of the messages with

a smaller probability than the other message. Hence, we introduce exogenously some

asymmetry into the message set. Both in Section 3 and Section 4, we investigate under

what conditions the e¢cient equilibrium is played by the population in the long run.

Section 5 concludes. The proofs are given in the Appendix.

2 The model

Consider a …nite population consisting of N individuals. N is even, to avoid an un-

matched individual at any moment. Time runs in discrete steps (periods). In every

period, any individual in the population is sequentially anonymously matched to any

other individual in the population to play the symmetric two-player game G in Figure

1: So, in one period, an individual plays the game G to every other individual in the

population exactly once. In each of the games an individual earns payo¤ according to

the payo¤ matrix in Figure 1, and the relevant evolutionary …tness of the individual is

the average payo¤ earned in one period. Before the begin of the next period, all indi-

viduals update their strategies simultaneously and independently by imitating currently

the most successful strategy.

We focus on games with strictly positive payo¤s satisfying a > c; d > b; a > d; i.e.

games with two strict Nash equilibria, one of which, (A;A), payo¤ dominates the other

equilibrium, (B;B). Payo¤ dominance of (A;A) and the assumption that (B;B) is an

equilibrium implies a > d > b; i.e. a > b: If, additionally, (A;A) is dominated in risk by

(B;B) as de…ned by Harsanyi and Selten [12], then a¡ c < d¡ b: For games where this

inequality is satis…ed, moreover, 0 < a¡ d < c¡ b implies here c > b .

The underlying gameG is preceded by a communication stage. Two matched individuals

send simultaneously to each other a message from a …nite set M with cardinality m:

Each player in a match observes the message sent by the other player. Then both players
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simultaneously choose an action in the underlying game G: We denote the game with a

communication stage by GM: The messages in GM are cheap talk because the identity

of the message that is sent in the communication stage does not a¤ect per se the payo¤s

players earn in the underlying game.

Each individual is programmed to play a particular strategy in GM: A strategy in GM is

a message sent in the communication stage, and a mapping f from the product set of the

messages sent and the messages received to the strategy set of G; f : M£M ! fA;Bg:
Individual’s strategy is his type. We restrict the set of feasible types to a subset X of

the set of all feasible types.

In general, we consider two classes of types - communicating and noncommunicating.

A noncommunicating type sends any available message with positive probability and

chooses a …xed action in the underlying game. We consider …rst uniform babbling

where all available messages are sent with equal probability. Later, restricting the

message set to two messages, we consider also a restriction where one message is sent

by the noncommunicating types with a lower probability than the other message.

A communicating type sends a unique message as a signal to play the e¢cient equilib-

rium. For any message available in the message set, there is one type who sends that

message in the communication stage. The communicating types also di¤er from the

noncommunicating types in the action choice in the underlying game. A communicat-

ing type chooses action A in the underlying game if the message he received coincides

with the message he sent, otherwise he chooses action B:

The population state is described by a vector z 2 Z ´ N jXj with components zx denoting

the number of individuals of type x 2 X in the population. zx ¸ 0 for all x 2 X and
P

x2X zx = N: An individual of type x earns in one period of the game GM a payo¤

¼x(z). It depends on the current population state z and on the individual’s type x, but

not on individual’s name. Let us denote by ¼(x; y) the payo¤ earned by type x; if he is

matched to type y; in the one-shot game GM: Then ¼x(z) can be written as

¼x(z) =
1

N ¡ 1

ÃX

y2X
zy¼(x; y)¡ ¼(x; x)

!
:

The payo¤ function ¼x(z) summarizes how well type x 2 X is performing in state z:

We now postulate a dynamic process on the set of population states z; derived from

individuals’ behavior.
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2.1 Imitation dynamics

We assume that the individual behavior is driven by imitation of types that currently

perform best in the population. We index by t the population state in period t: Denote

byW (zt) µ X the set of types who earn in period t the highest average payo¤s,W (zt) ´
argmaxy2X ¼y(zt):

The imitation dynamics is such that if zt;x > 0 and x 2 W (zt) then zt+1;x ¸ 0 otherwise

zt+1;x = 0: In other words, if there is a unique type in the population at time t which

achieves a maximal average payo¤ in the population; then it is the only type that will be

present in the population in time period t+1: If several types achieve maximal average

payo¤ in time t; then any population composition where all or at least one of these types

are present is achieved in time t + 1 with positive probability. We will not specify the

imitation dynamics in detail in this case. Later we show that the speci…cation does not

a¤ect our conclusions because nonmonomorphic states are never the long run outcome

of the imitation dynamics.

The imitation dynamics generates a Markov chain on the …nite state space Z and we

let P = (pzz0)z;z02Z denote the transition matrix where pzz0 is the probability that the

state z0 is reached from the initial state z via imitation dynamics:

2.2 Solution concept

We introduce now some concepts and results we use to solve for the long run equilibria

of our model.

De…nition 1 The vector ¸ = (¸1; :::; ¸jZj), ¸i 2 [0; 1] and
P

i ¸i = 1 is a stationary

distribution over the states in Z of the process P if ¸P = ¸:

A state that is assigned probability 1 in a stationary distribution is called a stationary

state. Trivially, all monomorphic states where zx = N for some x 2 X are stationary

under the imitation dynamics.

In general, the Markov process derived from the imitation dynamics can have several

stationary distributions and the initial state of the population determines which sta-

tionary distribution will be reached in the long run. The intriguing observation in the

literature on stochastic evolutionary dynamics is that if the individuals’ behavior is per-

turbed by allowing mistakes or experimentation then the long run behavior does not

depend on the initial conditions.
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We take this approach to guarantee path independence of the long run outcomes and

perturb the process P in the following way. Each time period, an individual updates

his current type to a new type by imitating the currently most successful type(s) with

probability 1 ¡ "; and updates to any type with probability " > 0. Let this perturbed

dynamics be described by a transition matrix P " = (p"zz0)z;z02Z: Now, p"zz0 > 0 for any

z; z0: The Markov process associated with P " is irreducible. It is a standard result in

the theory of Markov processes3 that P " has a unique stationary distribution ¸" being

i) stable: for any ¸ = (¸1; :::; ¸jZj); ¸i 2 [0; 1] and
P

i ¸i = 1; ¸P
t ! ¸" as t ! 1

ii) ergodic: for any initial state z; 1
T

PT
t=1 zt ! ¸"z almost surely as T ! 1

Foster and Young [10] introduce the concept of stochastic stability.

De…nition 2 The stochastically stable distribution ¸¤ of the process associated with the

transition matrix P "; is ¸¤ = lim"!0 ¸":

Ultimately, we look for the states that will be observed in the long run with positive

probability, which are the stochastically stable states.

De…nition 3 The set of stochastically stable states SSS is given by SSS = fz 2 Zj¸¤z >
0g.

To characterize the limit distribution ¸¤ of the perturbed dynamics we apply the method

of directed graphs on the state space and mutation counting method by Freidlin and

Wentzell [11], and introduced into economics in KMR [13] and Young [26]. Now, we

introduce some preliminaries of the tools applied later.

De…nition 4 For z 2 Z; a z-tree T is a set of ordered pairs (z0; z00), z0; z00 2 Z; such

that 8zi 2 Z; zi 6= z; there is only one pair (z0; z00) 2 T such that z0 = zi, and from every

state x 2 Z; x 6= z; there is a sequence of pairs (z0; z1); (z1; z2); :::; (zk¡1; zk) such that

z0 = x and zk = z:

A z-tree is a tree on the state space Z with the root at the state z 2 Z; and a unique

directed path without cycles from any state z0 2 Z; z0 6= z, to the root z:

Denote by Tz the set of all z-trees: To every state z, we assign a measure of the transition

probability along all trees of this state. This number, denoted by q"z; is the sum of

3A classical reference to introduction into theory of Markov processes is the text by Karlin and

Taylor [14].
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transition probabilities along all z-trees in Tz. The transition probability along a z-tree

is the product of the transition probabilities associated with the pairs of states creating

the tree, i.e. q"z =
P

T2Tz
Q
(z0;z00)2T p

"
z0;z00:

Individuals update their types independently, therefore this expression is a polynomial in

": For a tree T 2 Tz, we denote by cz(T ) the lowest order of the polynomial summarizing

the cost of tree T , and by cz the order of a z¡tree with the lowest order polynomial,

i.e. cz = minT2Tz cz(T ): Also, let az be the coe¢cient of the term "cz in a minimum cost

z-tree.

Freidlin and Wentzell [11] prove the following.

Lemma 5 Let be given a Markov chain with a set of states Z and transition probabilities

pzz0 for z; z0 2 Z, and assume that every state can be reached from any other state in

a …nite number of steps. Then the stationary distribution of the chain is the vector³
q"zP

z02Z q
"
z0

´
z2Z

.

The following theorem (Theorem 1 in KMR [13], p. 42) utilizes the polynomial form of

q"z to describe the set of stochastically stable states.

Theorem 6 The limit distribution ¸¤ exists and is unique. In particular, ¸¤z =
azP
x2Z ax

;

z 2 Z; and the set of stochastically stable states is given by argminx2Z cx:

Stochastically stable states are the states with the lowest order in the polynomial q"z.

We show that cz is the minimal number of mutations needed to construct a minimum

cost tree of state z:

First, let us consider a transition probability pzz0 between two states z; z0 2 Z under the

perturbed dynamics.

Lemma 7 pzz0 is a polynomial in " of order czz0 =
P

x=2W (z) z
0
x:

Proof. Denote by czz0 the minimal number of individuals that have to update their type

via mutation so that z0 can be reached from z under the perturbed imitation dynamics.

These are all the individuals of types present in the state z0 that would not be imitated

under the state z; i.e. czz0 =
P

x=2W (z) z
0
x.

All individuals in the population update their type according to the perturbed imitation

dynamics independently, therefore any transition from state z to z0 that requires k

mutations will be realized with probability (1¡ ")N¡k "k = (1¡"+:::+(¡1)N¡k"N¡k)"k:
Denote by Bzz0(k) the number of mutually exclusive events that require k mutations so
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that state z0 is reached from state z: Then, p"zz0 =
PN

k=czz0
Bzz0(k) (1¡ ")N¡k "k: The

leading term of p"zz0 is of order czz0 with coe¢cient Bzz0(czz0):

The coe¢cientBzz0(czz0) is the product of two combinatorial expressions, one quantifying

the number of times we can sample czz0 individuals from the population described by z so

that state z0 can be reached performing necessary mutations by the sampled individuals,

and another quantifying the number of times we can allocate these mutating individuals

to the types so that …nal state z0 is reached.

Consequently, q"z as a product of transitions pz0z00 along a z-tree is polynomial in "

with the smallest power to the mutation probability " equal to the sum of mutations

needed to achieve transitions between pairs of states in some z-tree T; and so cz(T ) =P
(z0;z00)2T cz0z00: The lowest order of a z-tree T is the total mutation cost of this tree:

The state(s) with a tree that uses the smallest number of mutations among all minimum

cost trees are the stochastically stable states. In this way the search for the set of

stochastically stable states reduces to the search of states for which we can build a tree

using the smallest number of mutations to achieve transitions between the pairs of states

forming arcs of the tree.

We now prove two lemmas that simplify this task for our imitation dynamics. Both

proofs are based on a tree cutting procedure which is often used in the literature to pro-

vide counterexamples to minimal cost trees, see Young [26] and Levine and Pesendorfer

[18]. If we ”cut” a tree at a certain point by eliminating one arc, the set of nodes of the

tree is divided into two subsets, and the structure induced on each of these subsets by

the pairs of nodes as in the original tree is a tree as well. A new tree can now be created

by adding an arc from the root of the original tree to a new root of the new tree created

by this cutting procedure. The proofs can be found in Appendix 3.

Lemma 8 Denote the set of stationary states under the unperturbed dynamics P by F:

Then, z 2 SSS implies z 2 F:

According to this lemma, when looking for states with the cost of minimum cost tree

that is smallest among all states we may focus on trees constructed on the restricted set

of states F that are stationary under the unperturbed dynamics. A cost of transition

between any two states in F is given by the number of individuals that have to mutate

so that the transition takes place.

We can also eliminate from among the candidates for stochastically stable states those

stationary states which are not monomorphic. The following proposition states that

the mutation cost of a minimum cost tree for some state z 2 Z is minimized at a

monomorphic state. The proof is again based on a tree cutting procedure.
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Proposition 9 If z 2 Z is such that for some x 2 X, zx 2 (0; 1); then there exists

z0 6= z; z0 2 Z so that cz0 < cz:

The least costly way to incorporate a stationary mixed population state into a mini-

mum cost tree of a monomorphic stationary state is to introduce su¢cient number of

mutations to achieve this mixed state from one of the monomorphic states, and then a

single mutation leads to another monomorphic state. Travelling back and forth between

monomorphic states via the mixed states is the cheapest way to incorporate the mixed

states into the minimum cost tree at an additional cost of one mutation.

Moreover, any monomorphic state tree has to include the same nodes corresponding to

the mixed stationary states (if any), hence these additional mutations costs add up to

the same number in any minimum cost tree of a monomorphic state. We can therefore

simplify the search for stochastically stable states by constructing minimum cost on

trees on the set of monomorphic states only.

3 Uniform babbling and a …nite number of messages

Let us now assume that there is a …nite number of messages, m ¸ 2: For each message,

there is one communicating type who sends this message in the communication stage,

and chooses the action corresponding to the e¢cient equilibrium after receiving this

message. Otherwise, the type chooses the action corresponding to the other strict Nash

equilibrium. So, a communicating type behaves as if the population members shared

information content of messages, and exactly the message he sends has the meaning

”let’s play the e¢cient equilibrium”.

There are two noncommunicating types, programmed to choose a …xed action, A or B,

in the coordination game in Figure 1. These noncommunicating type send each message

with equal probability 1
m
: Therefore we call this form of ”noncommunication” uniform

babbling.

We show in this case that the set of outcomes implied by the stochastically stable states

is not always robust to the introduction of cheap talk. When there are su¢ciently many

messages in the message set, then the outcome of the Kandori, Mailath and Rob’s model

without communication, the play of the risk dominant equilibrium, does not coincide

with the outcome we derive, the play of the e¢cient equilibrium. The e¢ciency, however,

is not achieved if the message set is small. The size of the message set is measured relative

to a number that is derived from the payo¤ structure of the game. These results hold

under the assumption that the population size is large, as speci…ed later.
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The set of types X ´ fA;B;C1; :::; Cmg. The noncommunicating types are denoted by

the action they choose in the underlying game G as A and B; and the m communicating

types are denoted by Ci where index i denotes the i-th message in the set M. Let us

denote an arbitrary communicating state byM: The state of the world at any time is the

population composition z = (zA; zB; zC1; :::; zCm); where zx is the number of individuals

of type x 2 X: Z is the set of all feasible population states, Z = fz 2 Nm+2j zA + zB +Pm
i=1 zCi = Ng. We refer to a monomorphic state with zx = N for some x 2 X as state

x. If x 2 fA;Bg; the state is a noncommunicating state, and if x 2 fC1; :::; Cmg, the

state is a communicating state.

When the population state is z; the payo¤ to the player type x 2 X is equal to:

¼A(z) =

"
a(zA ¡ 1) + bzB +

mX

k=1

a+ (m¡ 1)b
m

zCk

#
1

N ¡ 1

¼B(z) =

"
czA + d(zB ¡ 1) +

mX

k=1

c+ (m¡ 1)d
m

zCk

#
1

N ¡ 1

¼Ci(z) =

"
a+ (m¡ 1)c

m
zA +

b+ (m¡ 1)d
m

zB + (zCk ¡ 1)a+
mX

k 6=i;k=1
zCkd)

#
1

N ¡ 1 :

For illustration, we now …rst consider the stochastically stable states in populations

where the type set is restricted to two types, i.e. the dynamics operates on a face of the

state space allowing all player types in X.

To …nd the state with the minimal minimum cost tree under the imitation dynamics

when only two types are considered we have to identify which of the two monomorphic

states can be easier reached via mutations from the other monomorphic state.

For any two states x; y 2 X; let cxy be the number of mutations needed to reach state

y from state x under the perturbed imitation dynamics: cxy can be easily calculated as

the minimal k for 0 < k < N; such that ¼y(z(k)) ¸ ¼x(z(k)) where z(k) is a state such

that zy(k) = k and zx(k) = N ¡ k: It is the minimal number of individuals needed to

change type x to type y in a population originally composed only of type x player types

so that the type y is imitated by all players in the next period.

Two ”noncommunicating” types A and B : Kandori, Mailath and Rob [13] show

for the best response dynamics and uniform matching that if the population con-

sists only of noncommunicating player types A and B. The monomorphic state in

which all players play the risk dominant equilibrium strategy is the only stochasti-

cally stable state. For the class of games considered here, the same obtains under
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the imitation dynamics. We …nd that cAB = dN a¡c
a¡c+d¡be and cBA = dN d¡b

a¡c+d¡be;
so that cAB > cBA i¤ a¡ c > d¡ b: If a¡ c < d¡ b; (A;A) is the payo¤ dominant

equilibrium but it is dominated in risk by the equilibrium (B;B): In this case,

cAB < cBA. It follows that state B is the stochastically stable state rather than

state A when the payo¤ dominant equilibrium (A;A) is not risk dominant.

Two ”communicating” types M and M 0 : In a population consisting of two com-

municating types, individuals always arrive at equilibrium outcomes. When two

individuals of the same type are matched, they coordinate on the payo¤ domi-

nant equilibrium, and earn payo¤ a: When two types using di¤erent messages are

matched, they earn payo¤ d < a. As soon as one communicating type is more likely

to be matched with an individual of his own type than with the other type, this

type earns a higher payo¤. So, cMM 0 = cM 0M = dN
2
e , and both communicating

types are stochastically stable.

The ”noncommunicating” type A and a ”communicating” type M : The tran-

sition costs between the states A and M are cAM = dN a¡c
a¡c+a¡be and cMA =

dN a¡b
a¡c+a¡be, so that cAM > cMA i¤ c < b: The message set size does not play

a role here. Individuals of type A and M earn the same payo¤, a; always when

matched their own type, and 1
m

times when matched with the other type. The

payo¤s of type A and M di¤er in matches where they are matched together when

the noncommunicating type A sends a message that is not the message used by

the communicating type, what happens with probability 1¡ 1
m
: Then they arrive

at a disequilibrium outcome. The stochastic stability of the noncommunicating

versus communicating type depends on who is punished at this disequilibrium

outcome. If c < b; then out of equilibrium choosing action B is relatively worse

than choosing action A: In this case, it is harder to disrupt the monomorphic state

A than the monomorphic state M: The communicating types are not stochasti-

cally stable, and their responsiveness to the messages exchanged in the presence

of types unconditionally choosing the action of the e¢cient equilibrium is harming

their survival chances. On the other hand, if c > b; choosing B is rewarded at the

disequilibrium outcome relatively to choosing A, and it is harder to disrupt the

monomorphic state M than the monomorphic state A:

The ”noncommunicating” type B and ”a communicating” type M : This leads

to a handshake model in the spirit of Robson’s model [20]. There is one type

who ignores the message sent and received in the communication stage, and al-
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ways plays the ine¢cient strategy. The other type conditions own behavior on

the messages, and plays the e¢cient strategy if receiving a proper message, the

one he sends. Robson assumes that the communicating types can recognize the

player type they are matched to by the message received, and hence play an ef-

…cient strategy only if matched to own type. Unlike in Robson’s model, in our

model the communicating player cannot distinguish the type of the individual

he is matched to with probability 1: Type B matched to his own type earns a

payo¤ d; while the communicating type matched to his own type earns a payo¤

a > d. When an individual of a communicating type is matched to an individual

of type B; m¡1
m

times they receive the same payo¤ d and 1
m

times the disequi-

librium payo¤s b and c, respectively: Hence, both the equilibrium premium of

choosing A; a ¡ d; and the disequilibrium premium of choosing A; b ¡ c; which

may be negative; will play a role at determining which type will be more successful

in the population. We calculate cMB = dN m(a¡d)+d¡c
m(a¡d)+d¡c+d¡b ¡ m(a¡d)

m(a¡d)+2d¡b¡ce and

cBM = dN d¡b
m(a¡d)+2d¡b¡c +

m(a¡d)
m(a¡d)+2d¡b¡ce; where m(a ¡ d) + 2d ¡ b ¡ c > 0 for

any m > 1 as m > 1 > b+c¡2d
a¡d due to the assumption that (A;A) and (B;B) are

both Nash equilibria, i.e. b ¡ d < 0 < a ¡ c: Adding and substracting the term
m(a¡d)

m(a¡d)+2d¡b¡c in transition costs between state B and M does not a¤ect the set of

stochastically stable states if N is large enough. The role of the size of the message

set is evident from the dependence of transition costs between states M and B on

m: As the number of available messages increases, the mutation cost of transition

from the communicating state M to the state B converges to N ¡1 and vice versa

the cost of leaving the state B to state M can be made very ”cheap” in terms of

mutations, cMB > cBM , m > c¡b
a¡d : So, the communicating state will be stochas-

tically stable and the e¢cient equilibrium will be the outcome of the perturbed

imitation dynamics in the long run, when the mutation probability converges to

zero, if there are su¢ciently many messages in the message set. Moreover when

c < b; there are always su¢ciently many messages. The condition on the message

set size can be binding only if c > b:

As we have shown, some transition costs between the monomorphic states depend on

the number of messages. Hence, we may expect that also the minimum cost trees for

states on the set of all states will depend on m: Intuitively, increasing the message space

size makes the type B less successful in the presence of communicating player types.

The more messages has the type B to randomize from, the lower is the probability that

he ”hits” the message interpreted by the communicating player type as a signal to play
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R R R
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Figure 2: All R-trees on the set of nodes P,Q,R.

strategy A; i.e. the lower is the noise.

To …nd the minimum cost tree for each state, we can use the symmetry of the problem

with respect to the communicating states. The transition from or to any of the com-

municating states to or from any of the noncommunicating states does not depend on

the index of the communicating state. Thus we will …nd the minimum cost trees for

the state space consisting of three monomorphic states A, B, M where M is one of the

communicating monomorphic states and extend the resulting minimum cost trees by the

m ¡ 1 edges such that each edge starts in one (yet unconnected) communicating state

and ends either in another communicating state (in a way so that cycles do no arise),

or in the state A; or in the state B; depending whether cMM 0 ; cMA or cMB; respectively,

is the smallest among these three transition costs. Due to the fact that the transition

costs involving the communicating states are independent of the name of the commu-

nicating state, we may construct many trees with the same cost that di¤er only in the

permutation of the order in which the communicating states are connected to the tree.

All such trees will have the same cost.

The extension procedure preserves the tree structure of the tree built on the state space

fA;B;Mg; and creates a tree at the state space withm communicating states connecting

them at minimal cost an existing tree. Consequently, it is a minimum cost tree.

There are three directed rooted trees on the state space consisting of three states, see

Figure 2. In this …gure, R is the state which is at the root of the tree, and P and Q;

are the remaining states.

From the payo¤ function ¼x(z) in the evolutionary game, we can calculate explicitly the

mutation costs of transition between any two monomorphic states:

² cAB = dN a¡c
a¡c+d¡b ¡ a¡d

a¡c+d¡be, cBA = dN d¡b
a¡c+d¡b +

a¡d
a¡c+d¡be

² cMM 0 = dN
2
e
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² cMA = dN a¡b
2a¡b¡ce and cAM = dN a¡c

2a¡b¡ce, where 2a ¡ b ¡ c > 0 as a ¡ c > 0 >

b¡a: The last inequality follows from the assumption that (A;A) payo¤ dominates

(B;B); i.e. a > d > b hence a > b:

² cMB = dN m(a¡d)+d¡c
m(a¡d)+d¡c+d¡b¡

m(a¡d)
m(a¡d)+2d¡b¡ce and cBM = dN d¡b

m(a¡d)+2d¡b¡c+
m(a¡d)

m(a¡d)+2d¡b¡ce
where m(a ¡ d) + 2d ¡ b ¡ c > 0 for any m > 1 as m > 1 > b+c¡2d

a¡d due to the

assumption that (A;A) and (B;B) are both Nash equilibria, i.e. b¡d < 0 < a¡c:

Let c(x) be the cost of the minimum cost tree of a monomorphic state x 2 X; i.e. the

total number of mutations needed for transition along the minimum cost tree of the

state x: The comparisons of the transition costs between monomorphic states in terms

of mutations can be found in lemmas A1:1 to A1:7 in Appendix 1. We refer to these

lemmas in the proofs of Propositions 10, 11 and 12.

We concentrate here on the results that are not driven by a small population size and

asymmetries resulting in the matching protocol: in a population consisting of types x

and y; type y is more likely to meet type x than types x himself, but this di¤erence is of

order 1
N¡1 so that as N increases, the matching asymmetry resulting payo¤s diminish.

More precisely, we assume, N > maxf2d¡b¡c
d¡b ;

2a¡b¡c
a¡c ;

2m(a¡d)
m(a¡d)¡(c¡b) ;

m(2a¡b¡c)
m(a¡b)+b¡cg ´ N̂: For

any population size N ¸ N̂ , we consider two cases: c > b and c < b:

The …rst proposition uncovers the subclass of games where the result of KMR holds

even in the presence of the communication stage. In these games, communication is not

e¤ective in selecting the e¢cient outcome.

Proposition 10 Consider the class of games G where c > b: If the message set is

”small”, i.e. M consists of 2 6 m < c¡b
a¡d messages, and the noncommunicating players

babble uniformly, then the limit distribution ¸¤ = (0; 1; 0; :::; 0) where ¸¤z = 1 for z

such that zB = N: Hence, the state B is the unique state in the set of stochastically

stable states and the ine¢cient equilibrium play is the long run outcome of the perturbed

imitation dynamics.

Proof. The restriction on the message set size 2 6 m < c¡b
a¡d implies that the equilibrium

(A;A) is the payo¤ dominant equilibrium, but not the risk dominant equilibrium. For

c > b and m < c¡b
a¡d ; the minimum cost trees of the monomorphic states have the

following costs, see Appendix 1: c(A) = cBA + mcMB; c(B) = cAM + mcMB; c(M) =

cAM + cBM + (m ¡ 1)mcMB: Now cMB < cBM ; see (A1.1) in Appendix 1, therefore

c(B) < c(M): From m(a ¡ d) < c ¡ b and m ¸ 2 it follows that a ¡ c < d ¡ b: In
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this case, cAM < cBA because (a ¡ c)2 ¡ (d ¡ b)(a ¡ b) < 0; see (A1.5) in Appendix 1,

therefore c(B) < c(A):

The second proposition states when communication via cheap talk leads to the e¢cient

outcome in games for which the payo¤ dominant equilibrium is not risk dominant.

Proposition 11 Consider the class of games G where c > b: If the message set is

”large”, i.e. M consists of m > c¡b
a¡d messages, and the noncommunicating players babble

uniformly, then the limit distribution ¸¤ = (0; :::; 0; 1
m
; :::; 1

m
; :::; 0) where ¸¤z =

1
m

for all

z 2 Z such that zx = N for x 2 fC1; :::; Cmg: Hence, all monomorphic communicating

states Ci; i = 1; 2; :::;m; are in the set of stochastically stable states and the e¢cient

equilibrium play is the long run outcome of the perturbed imitation dynamics. Any of

the messages attains the meaning of signalling the e¢cient equilibrium with the same

probability 1
m
:

Proof. The restriction on the message set size m > c¡b
a¡d allows games where (A;A) is a

payo¤ dominant and a risk dominant Nash equilibrium, or games where (A;A) is payo¤

dominant, but not risk dominant equilibrium. For c > b and m > c¡b
a¡d ; the minimum

cost trees of the monomorphic states have the following costs, see Appendix 1: c(A) =

cBM+cMA+(m¡1)cMM ; c(B) = minfcAB+cMA+(m¡1)cMM ; cAM+cMB+(m¡1)cMMg;
c(M) = cAM+cBM+(m¡1)cMM : Now, cAM < cMA; see (A1.2) in Appendix 1, therefore

c(M) < c(A): Moreover cAM + cBM < cAB + cMA because cAM < cAB; see (A1.6) in

Appendix 1, cBM < cMA; see (A1.7) in Appendix 1, and cBM < cMB, see (A1.1) in

Appendix 1, therefore c(M) < c(B) .

Finally, the noisy environment drives out the communicating player types in games

where (A;A) is the payo¤ and risk dominant equilibrium and choosing action A is not

punished at the disequilibrium outcomes, i.e. b > c.

Proposition 12 Consider the class of games G where c < b: If the noncommunicating

players babble uniformly; then the limit distribution ¸¤ = (1; 0; :::; 0) where ¸¤z = 1 for

z 2 Z such that zA = N . Hence, the state A is the unique state in the set of stochastically

stable states and the e¢cient equilibrium play is the long run outcome of the perturbed

imitation dynamics.

Proof. The restriction on the payo¤ structure of the game G; c < b; implies that (A;A)

is a payo¤ and risk dominant Nash equilibrium of the underlying game. For c < b; the

minimum cost trees of the monomorphic states have the following costs, see Appendix

1: c(A) = cBM + mcMA; c(B) = cAB + mcMA; c(M) = cAM + cBM + (m ¡ 1)cMA:
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It holds, cMA < cAM ; see (A1.2) in Appendix 1, therefore c(A) < c(M): Moreover,

cAM + cBM < cAB + cMA as cAM < cAB; see (A1.6) in Appendix 1, and cBM < cMA, see

(A1.7) in Appendix 1, therefore c(M) < c(B):

We …nd that if c < b; any message set with m ¸ 2 is ”large enough” so that e¢cient

outcomes are connected to the stochastically stable states. If c > b , the outcome of

the stochastically stable states depends on the size of message space m. The relevant

bound on the message set depends on how does the coordination premium of the e¢-

cient equilibrium, a¡ d; compare to the payo¤s the players achieve at a disequilibrium

outcome, c¡ b. The more messages there are, the lower the coordination premium has

to be so that the e¢cient equilibrium is the long run outcome of the dynamics.

4 Nonuniform babbling with two messages

Now, there are two messages in the message set and the noncommunicating types are

not babbling ”uniformly”. They are more likely to send one of the available messages

than the other. This introduces some exogenous di¤erentiation into the message set.

The message that is sent less often by the noncommunicating types serves as a better

signal for a communicating player type to identify when he is matched to his own player

type. A limit case has been previously studies in the literature by Robson [20] who con-

siders that there is one message that is not sent by the noncommunicating types at all.

The communicating players can then use this message as a ”secret handshake” to recog-

nize each other, and coordinate always on the e¢cient equilibrium when playing to own

type. Robson …nds that the ”communicating” types fare always weakly better than any

noncommunicating type, and the e¢cient equilibrium is observed. Does this result ob-

tain even when communicating players are not sending an exclusive message, but rather

a message that is used with a low, but positive probability by the noncommunicating

type?

A message is more reliable if the probability with which it is sent by noncommunicating

types is lower. At one side of the modelling spectrum is Robson’s model where the

reliability of the mutant’s message is one.

We might expect that the presence of messages with high reliability leads to the e¢cient

outcome (A;A) in stochastically stable states - and this is indeed the case. Nevertheless,

we will show that it is not always the case that only the communicating types using

the more reliable message are stochastically stable. There is no selection for communi-

cating types when the payo¤ dominant equilibrium is risk dominant. And, when risk
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P Q P Q
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(a) one possible tree (b) three possible trees

R R
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S S
(c) six possible trees (d) six possible trees

Figure 3: All R-trees on the set of nodes P,Q,R,S.

dominance selects a di¤erent equilibrium than payo¤ dominance, the reliability of one

of the messages has to be high enough, so that the set of stochastically stable states no

longer contains all the communicating player types and only the type using the more

reliable message is stochastically stable. These observations are stated below in three

propositions.

Let us now denote the communicating player type using the more reliable message sent

by the noncommunicating types with probability p 2 [0; 1
2
) by L; and the communicating

player type using the other message by H:

We will look for minimum cost trees for each monomorphic state x 2 X = fA;B; L;Hg:
There are sixteen directed rooted trees on the state space consisting of four states, see

Figure 3. In this …gure, R is the state which is at the root of the tree, and P;Q; and S

are the remaining three states in any order. We consider all combinations in trees (b)

and (c) and all permutations in tree (d); to generate all the trees.
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When the population state is z; the payo¤ to the player type x 2 X is equal to:

¼A(z) = [a(zA ¡ 1) + bzB + (ap+ b(1¡ p))zL + (bp+ a(1¡ p))zH ]
1

N ¡ 1
¼B(z) = [czA + d(zB ¡ 1) + (cp+ d(1¡ p))zL + (dp+ c(1¡ p))zH ]

1

N ¡ 1
¼L(z) = [(ap+ c(1¡ p))zA + (bp+ d(1¡ p))zB + a(zL ¡ 1) + dzH ]

1

N ¡ 1
¼H(z) = [(cp+ a(1¡ p))zA + (dp+ b(1¡ p))zB + dzL + a(zH ¡ 1)] 1

N ¡ 1 :

From the payo¤ function ¼x(z) in the evolutionary game, we can calculate explicitly the

mutation costs of transition between any two monomorphic states:

² cAB = dN a¡c
a¡c+d¡b ¡ a¡d

a¡c+d¡be, cBA = dN d¡b
a¡c+d¡b +

a¡d
a¡c+d¡be

² cLH = cHL = dN
2
e

² cLA = cHA = dN a¡b
2a¡b¡ce and cAL = cAH = dN a¡c

2a¡b¡ce, where 2a ¡ b ¡ c > 0 as

a ¡ c > 0 > b ¡ a: The last inequality follows from the assumption that (A;A)

payo¤ dominates (B;B); i.e. a > d > b hence a > b:

² cLB = dN a¡d+p(d¡c)
a¡d+p(2d¡b¡c)¡ a¡d

a¡d+p(2d¡b¡c)e and cBL = dN p(d¡b)
a¡d+p(2d¡b¡c)+

a¡d
a¡d+p(2d¡b¡c)e.

As the reliability of the message L increases to 1; i.e. p decreases to 0; cBL converges

to 0; i.e. it becomes very ”cheap” in terms of mutations to leave state B for state

L:

² cHB = dN a¡c¡p(d¡c)
a¡c+d¡b¡p(2d¡b¡c) ¡ a¡d

a¡c+d¡b¡p(2d¡b¡c)e and cBH = dN (1¡p)(d¡b)
a¡c+d¡b¡p(2d¡b¡c) +

a¡d
a¡c+d¡b¡p(2d¡b¡c)e. As the reliability of the message L increases to 1; i.e. p de-

creases to 0; cBH converges to cBA and cHB converges to cAB.

c(x) is the cost of the minimum cost tree of a monomorphic state x 2 X; which it is

the total number of mutations needed for transition along the minimum cost tree of the

state x: The comparisons of the transition costs between monomorphic states in terms

of mutations can be found in Lemmas (A2:1) to (A1:10) in Appendix 2. We refer to

them in the Propositions 13, 14 and 15.

We concentrate here on the results that are not driven by a small population size and

asymmetries resulting in the matching protocol and assume in the remainder of this

subsection N > maxf2d¡b¡c
d¡b ;

2a¡b¡c
a¡c ;

2(a¡d)
a¡c¡(d¡b)+p(c¡b) ;

(a¡d)(2a¡b¡c)
(a¡c)(a¡d)¡p(c¡b)(a¡c+d¡b)g ´ ~N:
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Proposition 13 Assume that the message set consists of two messages and the non-

communicating player types send one of the messages with probability p < 1
2
: Consider

the class of games G where c > b: If (i) (A;A) is both risk and payo¤ dominant Nash

equilibrium of the underlying game G, or if (ii) (A;A) is payo¤ dominant and (B;B) is

a risk dominant Nash equilibrium of the underlying game G; and the reliability of the

message sent with probability p < 1
2

by the noncommunicating player types is low, i.e.

p > d¡b¡(a¡c)
c¡b ; then the limit distribution ¸¤ = (0; :::; ¸¤z; ¸

¤
w; :::; 0) where ¸¤z > 0; ¸

¤
w > 0;

¸¤z + ¸
¤
w = 1; for z; w 2 Z such that zL = N and wH = N: Hence, both states L and H

are in the set of stochastically stable states and the e¢cient equilibrium play is the long

run outcome of the perturbed imitation dynamics;

Proof. The minimum cost trees for states A;B; L;H have the following costs, see

Appendix 2 : c(L) = c(H) = cAL+ cBL+ cLH ; c(A) = minfcLA+ cBL+ cHB; cBA+ cLH +
cHBg; c(B) = minfcAB + cHA + cLH ; cAH + cHB + cLHg:
Neither of the two candidates for minimum cost B-trees has the minimal cost. On one

hand, cAH+cHB+cLH > cAL+cBL+cLH because cHB > cLH ; see (A2.2), and cLH > cBL;

see (A2.3); and on the other hand, cAB+cHA+cLH > cAL+cBL+cLH because cAB > cAL;

see (A2.5), cLH > cBL; see (A2.3), and cHA > cLH ; see (A2.4). Hence, c(B) > c(L):

Also, neither of the two candidates for minimum cost A-tree has minimal cost. On one

hand, cBA+cLH+cHB > cAL+cBL+cLH because cBA > cBL; see (A2.6) and cLH > cAL;

see (A2.4) and cHB > cLH ; see (A2.2); and on the other hand, cLA + cBL + cHB >

cAL + cBL + cLH because cLA > cAL see (A2.4) and cHB > cLH see (A2.2). Hence,

c(A) > c(L): The states with the minimal cost tree among all states are in this case the

states H and L:

Proposition 14 Assume that the message set consists of two messages and the non-

communicating player types send one of the messages with probability p < 1
2
: Consider

the class of games G where c > b: If (A;A) is payo¤ dominant equilibrium and (B;B) is

risk dominant Nash equilibrium of the underlying game G; and the reliability of the

message sent with probability p < 1
2

by the noncommunicating player types is high, i.e.

p < d¡b¡(a¡c)
c¡b ; then the limit distribution ¸¤ = (0; :::; ¸¤z; :::; 0) where ¸¤z = 1 for z 2 Z

such that zL = N: Hence, then the state L is the unique state in the set of stochastically

stable states and the e¢cient equilibrium play is the long run outcome of the perturbed

imitation dynamics.

Proof. The minimum cost trees for states A;B; L;H have the following costs, see
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Appendix 2: c(L) = cHB+ cAH + cBL; c(H) = cAL+ cBL+ cLH ; c(A) = minfcLA+ cBL+
cHB; cBA + cLH + cHBg; c(B) = minfcAB + cHA + cLH ; cAH + cHB + cLHg:
Neither of the two candidates for minimum cost B-trees has minimal cost. On one hand,

cLA + cBL + cHB > cHB + cAH + cBL because cLA > cAH ; see (A2.4); on other hand,

cBA+ cLH + cHB > cHB + cAH + cBL because cBA > cBL; see (A2.6), and cLH > cAH ; see

(A2.4).

Also, neither of the two candidates for minimum cost A-trees has the minimal cost. On

one hand, cAB+cHA+cLH > cAL+cBL+cLH because cAB > cAL; see (A2.5), cHA > cLH ;

see (A2.4), and cLH > cBL; see (A2.3); and cAH + cHB+ cLH > cHB+ cAH + cBL because

cLH > cBL; see (A2.3).

Finally, c(L) < c(H) because cHB < cLH ; see (A2.2). State L has the minimal cost tree

among all states.

Proposition 15 Assume that the message set consists of two messages and the non-

communicating player types send one of the messages with probability p < 1
2
: Consider

the class of games G where b > c; then the limit distribution ¸¤ = (1; 0; :::; 0) where

¸¤z = 1 for z 2 Z such that zA = N . Hence, the state A is the unique state in the set of

stochastically stable states and the e¢cient equilibrium play is the long run outcome of

the perturbed imitation dynamics.

Proof. The condition b > c implies that (A;A) is payo¤ and risk dominant Nash

equilibrium of the underlying game G: The minimum cost trees of the monomorphic

states have the following costs, see Appendix 2 : c(L) = c(H) = cAH + cBL + cLA;

c(A) = cLA + cBL + cHA; c(B) = cLA + cAB + cHA:

Now, cBL < cBA; see (A2.6) in Appendix 2; and cBA < cAB when (A;A) is a payo¤ and

risk dominant Nash equilibrium, hence c(A) < c(B). Also, cLA < cAL for b > c; hence

c(L) = c(H) > c(A): The minimal cost A-tree has the minimum cost of minimum trees

of all states.

We …nd that with two exogenously di¤erentiated messages , communication always leads

to e¢cient outcomes. If one of the messages is su¢ciently reliable, then in the long run,

we will observe with probability one that only individuals who use this message survive

the evolutionary pressures. A unique message is selected by the dynamics as a signal of

intention to play the e¢cient equilibrium.
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5 Conclusion

In this paper, we study the evolution of communication in a model where messages

have no exogenous meaning. The underlying game is a symmetric 2 £ 2 coordination

game and we assume that individuals of one population are anonymously and randomly

matched in a round robin fashion to play the game. Most of the models considering

evolution of communication via cheap talk avoid the own-population e¤ects by assuming

the roles to the players are assigned exogenously. Our assumption of single population

complements the information on the role of the message set size and riskiness of the

e¢cient equilibrium outcome to achieve e¢ciency via cheap talk communication.

We assume that there is a …nite message set and the communication is noisy. Before

the game playing stage, both players send simultaneously a message from a …nite set

of available messages. The noise is endogenously generated by allowing the presence

of individuals who randomize among all messages in the message set. All individuals

update their strategies simultaneously according to an imitation dynamics, imitating

the player type with the highest average payo¤.

We show that with uniform babbling, if risk dominance is not in con‡ict with payo¤

dominance, the e¢cient outcomes will be observed in the long run. When risk dominance

selects a di¤erent equilibrium than payo¤ dominance, and the noncommunicating players

are babbling uniformly sending any of the available messages with equal probability, then

the e¢cient outcome depends on the number of messages available in the message set,

i.e. on the level of noise generated by the noncommunicating player types. The higher

is the number of messages, the lower is the noise. If the message set is large enough,

m > a¡d
c¡b ; the e¢cient equilibrium will be played in the long run, and any of the messages

may attain the meaning of signalling the e¢cient equilibrium in the long run. Here, a¡d
is the coordination premium of the e¢cient equilibrium, and c¡ b is the disequilibrium

premium from choosing the action corresponding to the risk dominant equilibrium. If

the message set is small, m < a¡d
c¡b ; the risk dominant equilibrium will be observed in

the long run, and messages do not attain meaning.

In the …rst case, the e¢cient equilibrium is the outcome of the dynamics in the long run,

as suggested by Robson’s model without noise, and in the second case, the ine¢cient

equilibrium is the outcome of the dynamics in the long run, as suggested KMR’s model

without communication. We connect these two results by assigning to them a level of

noise in the population, given by the number of messages available to the noncommu-

nicating players. The more messages, the lower is the noise in the population.
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Also in the experimental literature, there is evidence collected that e¤ectivity of commu-

nication in coordination games depends on the payo¤ structure of the game. For example

Battalio, Samuelson and van Huyck [1] …nd that subjects are more likely to coordinate

on the e¢cient equilibrium in a 2x2 game if the coordination premium, compared to the

other equilibrium, is higher4.

Then we consider a message set containing only two messages and introduce exogenously

asymmetry into the message set. We assume that one of the messages is sent by the

noncommunicating player types with a lower probability than the other message. If the

messages are di¤erentiated in this way, e¢ciency is always achieved. If payo¤ domi-

nance does not con‡ict with risk dominance in selecting the e¢cient equilibrium in the

underlying game, the noncommunicating player type playing this equilibrium survives.

In case of a con‡ict between these equilibrium selection criteria, the e¢cient equilibrium

will be played in any case. If the probability with which one of the messages is sent

by the noncommunicating player types is small enough, then the asymmetry introduced

into the message set selects a unique communicating player type in the long run - the

player type using the message set infrequently by the noncommunicating types. In this

case, there is a unique message that attains meaning in the long run, and it is the

message assigned to the more reliable message. Otherwise, both communicating player

types will be observed in the long run, and any message can attain meaning in the long

run.

Robson and Vega-Redondo [21] show that the results of KMR are also sensitive to the

matching protocol. If the uniform random matching is replaced by a true random match-

ing, the payo¤ function of every strategy becomes a function of the realized matching.

They show that this dynamics converges relatively fast to a Pareto e¢cient equilibrium

rather than selecting the risk dominant equilibrium. They moreover extend this result,

the selection of e¢cient equilibrium, to the common interest games. The nature of in-

teraction in the population matters as well for the outcomes of the dynamic process.

Ellison [9] shows that with local interaction, the speed of convergence can be consid-

erably higher. These observations could be relevant for a model with cheap talk for

example when considering the spreading of ”di¤erent languages” in a population, i.e.

the assignment of meanings to messages in a game when interactions take place locally,

and may be considered to extend the present model.

4For more experimental studies on communication via cheap talk in coordination games, see e.g.

Burton, Loomes and Sefton [5], Charness [6], Clark, Kay and Sefton [7], Cooper et. al.[8], Rankin, van

Huyck and Battalio [19].
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6 Appendix 1: m messages and uniform babbling

The mutation costs of transition between any two monomorphic states, A;B;M and

M 0; where M and M 0 are two distinct communicating states, are as follows:

² cAB = dN a¡c
a¡c+d¡b ¡ a¡d

a¡c+d¡be, cBA = dN d¡b
a¡c+d¡b +

a¡d
a¡c+d¡be:

² cMM 0 = dN
2
e:

² cMA = dN a¡b
2a¡b¡ce, cAM = dN a¡c

2a¡b¡ce:

² cMB = dN m(a¡d)+d¡c
m(a¡d)+d¡c+d¡b¡

m(a¡d)
m(a¡d)+2d¡b¡ce, cBM = dN d¡b

m(a¡d)+2d¡b¡c+
m(a¡d)

m(a¡d)+2d¡b¡ce.

These transition costs are compared in the following lemmas.

Lemma A1.1: Suppose N > 2m(a¡d)
m(a¡d)¡(c¡b) : If c < b; or c > b and m > c¡b

a¡d ; then

cBM < cMM 0 < cMB: If c > b and m < c¡b
a¡d ; then cMB < cMM 0 < cBM :

Proof. cBM < cMM 0 , N d¡b
m(a¡d)+2d¡b¡c +

m(a¡d)
m(a¡d)+2d¡b¡c <

N
2
:

This reduces to N (c¡ b¡m(a¡ d)) < ¡2m(a¡ d): Hence c > b and c¡b
a¡d > m implies

cMM 0 < cBM ; while c¡b
a¡d < m; and N > 2m(a¡d)

m(a¡d)¡(c¡b) implies cBM < cMM 0 : Moreover,

cBM = N ¡ cMB; hence cBM < cMM 0 ) cMB > cMM 0 :

Lemma A1.2: cAM < cMM < cMA , c > b:

Proof. cAM < cMM , N a¡c
2a¡b¡c <

N
2
: This reduces to 2(a¡ c) < 2a¡ b¡ c: Moreover,

cMA = N ¡ cAM ; i.e. cAM < cMM , cMM < cMA:

Lemma A1.3: Suppose N > 2d¡b¡c
d¡b : Then cAB < cMB and cBM < cBA:

Proof. cAB < cMB , N( a¡c
a¡c+d¡b ¡ m(a¡d)+d¡c

m(a¡d)+d¡c+d¡b) <
a¡d

a¡c+d¡b ¡ m(a¡d)
m(a¡d)+2d¡b¡c :

This reduces to N (d¡ b) (a¡ d)(1¡m) < (a¡ d) (2d¡ b¡ c)(1¡m); where a¡ d > 0
and 1¡m < 0:

Lemma A1.4: If b > c then cMA < cMB:

Proof. If b > c then cMA < cMM 0 by Lemma (A1.2) and cMM 0 < cMB by Lemma (A1.1).

Lemma A1.5: Suppose (a¡ c)2 ¡ (d¡ b)(a¡ b) < 0: Then cAM < cBA:
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Proof. cBA < cAM , N((a¡ c)2 ¡ (d¡ b)(a¡ b)) > (d¡ b)(a¡ b):

Lemma A1.6: Suppose N > 2a¡b¡c
a¡c : Then cAM < cAB and cBA < cMA:

Proof. cAM < cAB , N(a¡ c)
¡

1
2a¡b¡c ¡ 1

a¡c+d¡b
¢
< ¡ a¡d

a¡c+d¡b
This reduces to N(a¡ c) (d¡ a) < (d¡ a) (2a¡ b¡ c) where d¡ a < 0:

Lemma A1.7: Suppose N > m(2a¡b¡c)
m(a¡b)+b¡c : Then cBM < cMA and cAM < cMB:

Proof. cBM < cMA , N d¡b
m(a¡d)+2d¡b¡c +

m(a¡d)
m(a¡d)+2d¡b¡c < N

a¡b
2a¡b¡c :

This reduces toN ((d¡ b) (a¡ c)¡ (a¡ b)(d¡ c)¡ (a¡ b)m(a¡ d)) < ¡m(a¡d) (2a¡ b¡ c) ;
i.e. to

N ((a¡ d)(c¡ b)¡ (a¡ b)m(a¡ d)) < ¡m(a ¡ d) (2a¡ b¡ c) where a ¡ d > 0; so

that the condition is equivalent to N ((a¡ b)m¡ (c¡ b)) > m (2a¡ b¡ c) : Similarly

to prove cAM < cMB:

We identify now minimum cost trees on the set of states A;B; and m replicas of the

communicating state M . First, we …nd the way to connect m ¡ 1 communicating

states at a minimum cost to a state A; B; or a communicating state M: Then we …nd

minimum cost tree on the set of three remaining states fA;B;Mg; whereM is one of the

communicating states. This then forms a tree on the set of states A;B; and m replicas

of the communicating state M: Let c(x) denote the cost of such minimum cost x¡tree:

Lemma A1.8: Suppose that for anym; N > m(a¡d)(2d¡b¡c)
m(a¡d)¡(c¡b) . (a) For c > b andm < c¡b

a¡d ;

cMB < cMM < cMA; hence a minimum cost tree for any state x on the set of states

A; B andm replicas of the communicating stateM will containm¡1 arcs starting

in one of the m ¡ 1 communicating states other than M and ending in state B:

(b) For c > b and m > c¡b
a¡d ; cMM < cMB; hence a minimum cost tree for any

state x on the set of states A; B and m replicas of the communicating state M

will contain m¡ 1 arcs starting in a one of the m¡ 1 communicating states other

than M and ending in another communicating state in such a way that cycles are

not created: (c) For c < b; cMA < cMM , and cMA < cMB; a minimum cost tree for

any state x on the set of states A; B and m replicas of the communicating state

M will contain m¡1 arcs starting in one of the m¡1 communicating states other

than M and ending in state A:

Proof. (a) If c > b then cMM 0 < cMA; see (A1.2). Moreover, if m < c¡b
a¡d ; cMB < cMM 0;

see (A1.1), therefore cMB < cMM 0 < cMA. (b) If c > b and m > c¡b
a¡d ; cMM 0 < cMA;
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see (A1.2), and cMM 0 < cMB; see (A1.1). (c) For c < b; cMA < cMM 0 ; see (A1.2), and

cMA < cMB; see (A1.4).

Denote byM a generic element of the set of monomorphic communicating states fC1; :::; Cmg:
In the previous lemma, we determined the way m¡ 1 of these states will be connected

to a minimum cost tree of any state as a root. Now we combine this information with

information in which way the remaining three states will form a tree to …nd a minimum

cost tree for each state on the set of monomorphic states A;B; and C1; :::; Cm:

6.1 Minimum cost A-tree on the set of monomorphic states

A;B; and C1; :::; Cm

There are three A¡trees on the set fA;B;Mg with costs cA1 = cMA + cBA; c
A
2 = cMA +

cBM ; c
A
3 = cBA + cMB:

Lemma A1.A: The cost of a minimum cost A-tree c(A) is as follows: (a) for c > b

and m < c¡b
a¡d ; c(A) = mcMB + cBA; (b) for c > b and m > c¡b

a¡d ; c(A) = cMA +

cBM + (m¡ 1)cMM 0 ; (c) for c < b; c(A) = mcMA + cBM :

Proof. (a) cA1 > cA3 because cMA > cMB; see A1.8, and cA2 > c
A
3 because cMA > cBA; see

A1.6, and cBM > cMB; see A1.x. Additional m ¡ 1 arcs each with cost cMB are added

by Lemma A1.8. (b) cA3 > cA1 because cMB > cMA; see A1.8, and cA1 > cA2 because

cBA > cBM ; see A1.3. Additional m¡ 1 arcs with cost cMM 0 are added by Lemma A1.8.

(c) cA3 > cA1 because cMB > cMA; see A1.8, and cA1 > c
A
2 because cBA > cBM see A1.3.

Additional m¡ 1 arcs with cost cMA are added by Lemma A1.8.

6.2 Minimum cost B-tree on the set of monomorphic states

A;B; and C1; :::; Cm

There are three B¡trees on the set fA;B;Mg with costs cB1 = cAB + cMA; c
B
2 =

cAB + cMB; c
B
3 = cAM + cMB:

Lemma A1.B: The cost of a minimum cost B-tree c(B) is as follows: (a) for c > b

and m < c¡b
a¡d ; c(B) = cAM + mcMB; (b) for c > b and m > c¡b

a¡d ; c(B) =

minfcB1 + (m¡ 1)cMM 0; cB3 + (m¡ 1)cMM 0g; (c) for c < b; c(B) = mcMA + cAB:

Proof. (a) cB1 > c
B
2 because cMA > cMB; see A1.8, and cB2 > c

B
3 because cAB > cAM ;

see A1.6. Additional m ¡ 1 arcs each with cost cMB are added by Lemma A1.8. (b)
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cB2 > c
B
1 because cMB > cMA, see A1.8. Additional m¡ 1 arcs with cost cMM 0 are added

by Lemma A1.8. (c) cB2 > cB1 because cMB > cMA; see A1.8, and cB3 > cB1 because

cMB > cAB; see A1.3, and cAM > cMA; see A1.2. Additional m ¡ 1 arcs with cost cMA
are added by Lemma A1.8.

6.3 Minimum cost M-tree on the set of monomorphic states

A;B; and C1; :::; Cm

There are three M¡trees on the set fA;B;Mg with costs cM1 = cAM + cBA; c
M
2 =

cAM + cBM ; c
M
3 = cAB + cBM :

Lemma A1.M: The cost of a minimum cost M -tree c(M) is as follows: (a) for c > b

and m < c¡b
a¡d ; c(M) = cAM + cBM + (m ¡ 1)cMB; (b) for c > b and m > c¡b

a¡d ;

c(M) = cAM+cBM+(m¡1)cMA; (c) for c < b; c(M) = cAM+cBM+(m¡1)cMM 0:

Proof. cM3 > cM2 because cAB > cAM ; see A1.6, and cM1 > cM2 because cBA > cBM ; see

A1.3. The minimum cost trees then obtain by referring to Lemma A1.8.

7 Appendix 2: Two messages and nonuniform bab-

bling

The mutation costs of transition between any two monomorphic states A;B;L and H

are as follows:

² cAB = dN a¡c
a¡c+d¡b ¡ a¡d

a¡c+d¡be, cBA = dN d¡b
a¡c+d¡b +

a¡d
a¡c+d¡be:

² cLH = cHL = dN
2
e:

² cLA = cHA = dN a¡b
2a¡b¡ce, cAL = cAH = dN a¡c

2a¡b¡ce.

² cLB = dN(a¡d+p(d¡c))¡(a¡d)
a¡d+p(2d¡b¡c) e, cBL = d Np(d¡b)+a¡d

a¡d+p(2d¡b¡c)e.

² cHB = dN(a¡c¡p(d¡c))¡(a¡d)
a¡c+d¡b¡p(2d¡b¡c) e, cBH = d N(1¡p)(d¡b)+a¡d

a¡c+d¡b¡p(2d¡b¡c)e.

For each monomorphic state x 2 X there are sixteen trees on the set of monomorphic

states fA;B; L;Hg; with state x as a root. Some of these trees have the same cost due

to the symmetries cLH = cHL, cLA = cHA; and cAL = cAH : We denote by ~T (z) the set of

minimum cost trees of state z:

Transition costs between monomorphic states A; B; L and H are compared in the

following lemmas.
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Lemma A2.1: Suppose N > 2d¡b¡c
d¡b and p 2 [0; 1=2): Then cBL < cBH < cBA and

cAB < cHB < cLB:

Proof. cBL < cBH , Np(d¡b)+a¡d
a¡d+p(2d¡b¡c) <

N(1¡p)(d¡b)+a¡d
a¡c+d¡b¡p(2d¡b¡c) :

This reduces to (1¡ 2p)(a¡ d)(c+ b¡ 2d+N(d¡ b)) > 0:
cBH < cBA , N(1¡p)(d¡b)+a¡d

a¡c+d¡b¡p(2d¡b¡c) < N
d¡b

a¡c+d¡b +
a¡d

a¡c+d¡b :

This reduces to (2d¡ b¡ c)(a¡ d) < N(a¡ d)(d¡ b):

Lemma A2.2: Suppose for any p 2 [0; 1=2); N > 2(a¡d)
a¡c¡(d¡b)+p(c¡b) : If a ¡ c > d¡ b, or

a¡ c < d¡ b and p > d¡b¡(a¡c)
c¡b ; then cBH < cHL < cHB, otherwise cHB < cHL <

cBH :

Proof. cBH < cHB , N(1¡p)(d¡b)+a¡d
a¡c+d¡b¡p(2d¡b¡c) <

N(a¡c¡p(d¡c))¡(a¡d)
a¡c+d¡b¡p(2d¡b¡c) :

This reduces to 2(a¡ d) < N(a¡ c¡ (d¡ b) + p(c¡ b)):

Lemma A2.3: Suppose N > 2(a¡d)
a¡d¡p(c¡b) : If c > b; or c < b and p > a¡d

b¡c , then cBL <

cHL < cLB; otherwise cLB < cHL < cBL:

Proof. cLB < cBL , N(a¡d+p(d¡c))¡(a¡d)
a¡d+p(2d¡b¡c) < Np(d¡b)+a¡d

a¡d+p(2d¡b¡c) :

This reduces to N(a ¡ d ¡ p(c ¡ b)) < 2(a ¡ d): The comparison for cHL = N
2

follows

from cLB = N ¡ cBL:

Lemma A2.4: cAL < cHL < cLA , c > b:

Proof. cAL < cHL , N a¡c
2a¡b¡c <

N
2
:

Lemma A2.5: Suppose N > 2a¡b¡c
a¡c : Then cAL < cAB and cBA < cLA:

Proof. cAL < cAB , N a¡c
2a¡b¡c < N

a¡c
a¡c+d¡b ¡ a¡d

a¡c+d¡b :

This reduces to N(a¡ c)(a¡ d) > (a¡ d)(2a¡ b¡ c); where a > d:

Lemma A2.6: Suppose N > (a¡d)(2a¡b¡c)
((a¡c)(a¡d)¡p(c¡b)(a¡c+d¡b)) : If b > c; then cAL < cBL and

cLB < cLA:

Proof. cAL < cBL , N a¡c
2a¡b¡c <

Np(d¡b)+a¡d
a¡d+p(2d¡b¡c) :

This reduces to N((a¡ c)(a¡ d)¡ p(c¡ b)(a¡ c+ d¡ b)) > (a¡ d)(2a¡ b¡ c):

Lemma A2.7: Suppose N > maxf2d¡b¡c
d¡b ;

2d¡b¡c
d¡b g: If b > c, then cHB > cLA:

Proof. By Lemma (A2.1) cHB > cAB, and by Lemma (A2.5), cAB > cAL. By Lemma

(A2.4), if b > c then cAL > cLA, hence cHB > cLA:



31

7.1 Minimum cost A-tree on fA;B; L;Hg
There are sixteen A¡trees tAi with the following costs cAi ; i = 1; :::; 16:

² cA1 = cLA+cBA+cHL : cA1 = cA2 > cA3 = cA4 because cBL < cBA see (A2.6), therefore

tA1 =2 ~T (A):

² cA2 = cHA+cBA+cLH : cA2 = cA1 > cA3 = cA4 because cBL < cBA see (A2.6), therefore

tA2 =2 ~T (A).

² cA3 = cHA + cLH + cBL : cA3 = cA4 :

² cA4 = cLA + cHL + cBL : cA4 = cA3 :

² cA5 = cHA + cLH + cBH : cA5 = cA6 > cA3 = cA4 because cBH > cBL see (A2.1),

therefore tA5 =2 ~T (A):

² cA6 = cLA+cHL+cBH : cA6 = cA5 > cA3 = cA4 because cBH > cBL see (A2.1), therefore

tA6 =2 ~T (A):

² cA7 = cLA+cBA+cHB : cA7 > cA9 because cBA > cBL see (A2.6), therefore tA7 =2 ~T (A):

² cA8 = cHA+cBA+cLB : cA8 > cA7 because cLB > cHB see (A2.1), therefore tA8 =2 ~T (A):

² cA9 = cLA + cBL + cHB:

² cA10 = cBA + cLH + cHB:

² cA11 = cBA + cLB + cHL : c
A
11 > cA10 because cLB > cHB see (A2.1), therefore

tA11 =2 ~T (A):

² cA12 = cHA + cBH + cLB : cA12 > cA9 because cBH > cBL and cLB > cHB see (A2.1),

therefore tA12 =2 ~T (A):

² cA13 = cBA + cHB + cLB:

² cA14 = cBL + cLA + cHA:

² cA15 = cBH + cLA + cHA : cA15 > cA14 because cBH > cBL see (A2.1), therefore

tA15 =2 ~T (A):

² cA16 = cBA + cLA + cHA : c
A
16 > cA15 because cBA > cBH see (A2.1), therefore tA16

=2 ~T (A):
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Now, for b > c, we …nd that cA10 > c
A
13 because cLH > cLB see (A2.3), therefore tA10 =2 ~T (A);

cA3 = c
A
4 > c

A
14 because cLA < cLH see (A2.4), therefore tA3 =2 ~T (A) and tA4 =2 ~T (A) ; and

cA13 > c
A
11 because cHB > cHL see (A2.2), therefore tA13 =2 ~T (A): Finally, cA9 > c

A
14 because

cHA < cHB see (A2.7), therefore tA9 =2 ~T (A). We conclude that for b > c; c(A) = cA14:

For c > b; cA3 = cA4 > cA10 because cHA > cBA see (A2.5) and cBL > cHB as cLB >

cBL > cBH see (A2.3) and (A2.1), therefore tA3 =2 ~T (A) and tA4 =2 ~T (A): The two

remaining candidate A-trees for a minimum cost tree of state A are tA10 and tA9 : Finally,

c(A) = minftA9 ; tA10g:

7.2 Minimum cost B-tree on fA;B;L;Hg
There are sixteen B¡trees tBi with the following costs cBi ; i = 1; :::; 16:

² cB1 = cAB + cHA + cLA : if b < c; cB1 > cB3 because cLA > cLH see (A2.4), therefore

if b < c; tB1 =2 ~T (B):

² cB2 = cAB + cHA + cLB:

² cB3 = cAB + cHA + cLH : cB3 = cB4 ; if b > c; cB3 > cB1 because cLA < cLH see (A2.4),

therefore if b > c; tB3 =2 ~T (B):

² cB4 = cAB + cHL + cLA : cB3 = cB4 ; if b > c, tB4 =2 ~T (B):

² cB5 = cAH + cHB+ cLH : cB5 = cB6 ; cB5 > cB11 because cLA < cLH see (A2.4), therefore

if b > c; tB5 =2 ~T (B).

² cB6 = cAL + cHB + cLH : cB6 = cB5 ; if b > c, tB6 =2 ~T (B):

² cB7 = cAL+ cHL+ cLB : cB7 = cB8 ; cB7 > cB6 because cLB > cHB see (A2.1), therefore

tB7 =2 ~T (B):

² cB8 = cAH + cHL + cLB : cB8 = cB7 ; tB8 =2 ~T (B):

² cB9 = cAL + cHB + cLB : cB9 = cB10:

² cB10 = cAH + cHB + cLB : cB10 = cB9 :

² cB11 = cAH + cHB + cLA : cB11 > cB5 because cLA > cLH see (A2.4), therefore if b < c,

tB11 =2 ~T (B):

² cB12 = cAL + cHA + cLB : c
B
12 > cB11 because cLB > cHB see (A2.1), therefore tB12

=2 ~T (B).
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² cB13 = cAB + cHL + cLB : c
B
13 > cB8 because cAB > cAH see (A2.5), therefore tB13

=2 ~T (B):

² cB14 = cAB + cHB + cLH : cB14 > cB5 because cAB > cAH see (A2.5), therefore tB14
=2 ~T (B):

² cB15 = cAB + cHB + cLB : c
B
15 > cB10 because cAB > cAH see (A2.5), therefore tB15

=2 ~T (B):

² cB16 = cAB + cHB + cLA : c
B
16 > cB11 because cAB > cAH see (A2.5), therefore tB16

=2 ~T (B).

For b > c; cLA < cHL < cAL see (A2.4), hence cLA < cLB for b > c; now cB9 > c
B
2 and

cB10 > c
B
2 because cLA < cAL see (A2.4) and cAB < cHB see (A2.1), therefore tB9 =2 ~T (B)

and tB10 =2 ~T (B); and similarly cB1 > cB11 therefore tB11 =2 ~T (B); and cB2 > cB1 because

cLB > cLA therefore tB2 =2 ~T (B): Consequently, if b > c; ~T (B) = ftB1 g:
For b < c; the remaining candidate B-trees for a minimum cost tree of state B are either

trees tB3 and tB4 , or trees tB5 and tB6 : Finally, c(B) = minftB3 ; tB5 g

7.3 Minimum cost L-tree on fA;B; L;Hg
There are sixteen L¡trees tLi with the following costs cLi ; i = 1; :::; 16:

² cL1 = cBL + cAH + cHB : cL1 = cL2 :

² cL2 = cBL + cAL + cHB : cL1 = cL2 :

² cL3 = cHL + cAH + cBL : cL3 = cL4 ; if b > c; cL3 > c
L
6 because cHL > cHA see (A2.4),

therefore if b > c; tL3 =2 ~T (L).

² cL4 = cHL + cAL + cBL : cL4 = cL3 , if b > c; tL4 =2 ~T (L).

² cL5 = cAL+cHA+cBH : cL5 > cL6 because cBL < cBH see (A2.1), therefore tL5 =2 ~T (L):

² cL6 = cBL + cAL + cHA : if b < c; cL6 > c
L
4 because cHA > cHL see (A2.4), therefore

if b < c; tL6 =2 ~T (L):

² cL7 = cAL+cBA+cHB : cL7 > cL2 because cBL < cBA see (A2.6), therefore tL7 =2 ~T (L):

² cL8 = cHL + cAH + cBA : cL8 = cL9 ; cL8 > cL4 because cBL < cBA see (A2.6), therefore

tL8 =2 ~T (L):
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² cL9 = cHL + cAL + cBA : cL9 = cL8 , therefore tL9 =2 ~T (L):

² cL10 = cHL+cAL+cBH : cL10 = cL11; cL10 > cL4 because cBH > cBL see (A2.1), therefore

tL10 =2 ~T (L):

² cL11 = cHL + cAH + cBH : cL11 = cL10, therefore tL11 =2 ~T (L).

² cL12 = cHL + cAB + cBH : cL12 > cL13 because cBH > cBL see (A2.1), therefore tL12
=2 ~T (L).

² cL13 = cHL + cAB + cBL : c
L
13 > cL3 because cAB > cAL see (A2.5), therefore tL13

=2 ~T (L)

² cL14 = cBL + cAB + cHB : c
L
14 > cL2 because cAB > cAL see (A2.5), therefore tL14

=2 ~T (L):

² cL15 = cBL + cAB + cHA : c
L
15 > cL6 because cAB > cAL see (A2.5), therefore tL15

=2 ~T (L):

² cL16 = cAL + cHA + cBA : c
L
16 > cL5 because cBA > cBH see (A2.1), therefore tL16

=2 ~T (L):

For b > c; cL6 > c
L
1 because cHB > cHA see (A2.7), therefore tL1 =2 ~T (L) and tL2 =2 ~T (L):

~T (L) = ftL6 g.

For b < c; the minimum cost trees candidates are tL1 and tL2 or tL3 and tL4 : c
L
1 < c if

cHB < cHL see (A2.2). For a ¡ c > d ¡ b; and for a ¡ c < d ¡ b and p < d¡b¡(a¡c)
c¡b ,

~T (L) = ftL1 ; tL2 g: For a¡ c < d¡ b and p > d¡b¡(a¡c)
c¡b ; ~T (L) = ftL3 ; tL4 g:

7.4 Minimum cost H ¡ tree :
There are sixteen H¡trees tHi with the following costs cHi ; i = 1; :::; 16:

² cH1 = cAH + cBH + cLB : cH1 = cH2 :

² cH2 = cAL + cBH + cLB : cH2 = cH1 :

² cH3 = cAH + cBL + cLA:

² cH4 = cAH + cBL + cLH : cH4 = cH5 :

² cH5 = cAL + cBL + cLH : cH5 = cH4 :
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² cH6 = cAL+ cBA+ cLH : cH6 = cH7 ; cH6 > cH9 because cBA > cBH see (A2.1), therefore

tH6 =2 ~T (H):

² cH7 = cAH + cBA + cLH : cH7 = cH6 , cH7 > c
H
9 , therefore tH7 =2 ~T (H)

² cH8 = cAL+cBH+ cLH : cH8 = cH9 ; cH8 > cH5 because cBH > cBL see (A2.1), therefore

tH8 =2 ~T (H):

² cH9 = cAH + cBH + cLH : cH9 = cH8 ; cH9 > cH5 , therefore cH9 =2 ~T (H):

² cH10 = cAH + cBH + cLA : c
H
10 > cH3 because cBH > cBL see (A2.1), therefore tH10

=2 ~T (H):

² cH11 = cBH + cAB + cLH : cH11 > cH12 because cBH > cBL see (A2.1), therefore tH11
=2 ~T (H):

² cH12 = cBL + cAB + cLH : cH12 > cH5 because cAB > cAL see (A2.5), therefore tH12
=2 ~T (H):

² cH13 = cBH + cAB + cLB : c
H
13 > cH1 because cAB > cAL see (A2.5), therefore tH13

=2 ~T (H):

² cH14 = cBH + cAB + cLA : c
H
14 > cH10 because cAB > cAL see (A2.5), therefore tH14

=2 ~T (H):

² cH15 = cAH + cBA + cLB : c
H
15 > cH1 because cBA > cBH see (A2.1), therefore tH15

=2 ~T (H):

² cH16 = cAH + cBA+ cLA : cH16 > cH3 because cBA > cBL (A2.6), therefore tH16 =2 ~T (H):

For b > c; cH4 = cH5 > cH3 because cLA < cLH see (A2.4), therefore tH4 =2 ~T (H) and

tH5 =2 ~T (H). Also, cH1 = cH2 > cH3 , because cBH > cBL see (A2.1) and cLB > cLA see

(A2.6), therefore tH1 =2 ~T (H); tH2 =2 ~T (H). Finally, ~T (H) = ftH3 g if b > c:

For b < c; cH1 = cH2 > cH3 because cLH < cLA see (A2.5), therefore tH1 =2 ~T (H) and

tH2 =2 ~T (H). And cH3 > c
H
4 because cLH < cLA see (A2.4), therefore tH3 =2 ~T (H). Finally,

~T (H) = ftH4 ; tH5 g if b < c:

8 Appendix 3

Lemma 8: We …rst need some notation and a way how to decompose mutation cost

of a tree. We work with a tree which is oriented to the root, i.e. every state di¤erent
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from the root has a unique successor and possibly several predecessors. For a tree T

on A; denote by LT ½ Z states that are only a start to an arc but not an end of an

arc in T: This is the set of leaves of the tree T: For a state z0; denote by succT (z0) the

unique state such that (z0; succT (z0)) 2 T and by predT (z0) a set of states that satisfy

predT (z
0) = fy 2 Zjy = succk(x); k = 1; 2:::; for x 2 LT such that there is ¹k < 1

satisfying succ¹k(x) = z0g; where succk(x) is the successor function applied k-times in

sequence. If z0 2 LT ; predT (z0) = ;:
If T is z-tree; for any z0 2 Z; z0 6= z; it can be written as T = TpredT (z0) [ TZjpredT (z0) [
f(z0; succT (z0)g; where TpredT (z0) is a z0-tree constrained to nodes being states in the set

predT (z
0) such that for any (y; y0) 2 TpredT (z0) it holds (y; y0) 2 T , and TZjpredT (z0) is a

z-tree constrained to the nodes being states in the set Z but not in the set predT (z0)

such that for any (y; y0) 2 TZjpredT (z0) it holds (y; y0) 2 T:
Denote by c(T 0) the cost of some tree T 0; i.e. the sum of mutations needed to achieve

transitions from the leaves to the root between the state pairs forming the arcs of the

tree T 0: Then for any z0 2 Z; the cost of tree T; denoted by c(T ); can be decomposed as

c(T ) = c(TpredT (z0))+ c(TZjpredT (z0))+ cz0succT (z0), where cz0succT (z0) is the cost of transition

from state z0 to its successor. We use this decomposition to prove Lemma 8.

Proof. Suppose z 2 SSS but z is not stationary under P . Then, there is a monomorphic

state z0 2 Z such that pzz0 > 0: This follows from the properties of the imitation

dynamics: if z is not stationary, then it is composed of at least two types x; y 2 X, zx > 0

and zy > 0; such that ¼x(z) ¸ ¼x0(z) for all x0 2 X with zx0 > 0; and ¼x(z) > ¼y(z):

The state z0 with z0x = N is trivially a stationary state, and pzz0 > 0 by assumption

that any individual updates his own type to any currently best performing type with

positive probability. The cost of the minimum cost z¡tree T can be decomposed as

c(T ) = c(TpredT (z0)) + c(TZjpredT (z0)) + cz0succT (z0) with cz0succT (z0) ¸ 1 because z0 is a

monomorphic state, hence any other state can be reached from it only via mutations:

Now consider a z0-tree T 0 constructed on the state space Z such that T 0 = TpredT (z0) [
TZjpredT (z0)[f(z; z0)g: Now, c(T 0) = c(TpredT (z0))+ c(TZjpredT (z0))+ czz0 with czz0 = 0 since

z is not stationary under the imitation dynamics and z0 is the state reached without

mutations from state z: So, we have shown that there is another state z0 such that

cz0 < cz; and a state that is not stationary cannot be in SSS:

Proposition 9:

Proof. Suppose z 2 SSS but z is not monomorphic. Then, there is some monomorphic

state z0 6= z; z0 2 Z such that pzz0 = 0. Hence czz0 = 0, and there are no mutations

needed to reach the state z0 from the state z: Let T be a minimum cost tree of state z:
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Then c(T ) = c(TpredT (z0)) + c(TZjpredT (z0)) + cz0succT (z0): Since z0 is a monomorphic state,

cz0succT (z0) ¸ 1:

Now consider a z0-tree T 0 constructed on the state space Z such that T 0 = TpredT (z0) [
TZjpredT (z0)[f(z; z0)g: Now, c(T 0) = c(TpredT (z0))+ c(TZjpredT (z0))+ czz0 with czz0 = 0 since

z0 is reached with positive probability from z via imitation dynamics. So, we have shown

that there is another state z0 such that cz0 < cz; and a state that is not monomorphic

cannot be in SSS:
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