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Abstract. Potential games and supermodular games are attractive games, espe-
cially because under certain conditions they possess pure Nash equilibria. Subclasses
of games with a potential are considered which are also strategically equivalent to
supermodular games. The focus is on two-person zero-sum games and two-person
Cournot games.
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1. Introduction

The aim of this paper is to investigate two interesting classes of games for which
the existence of pure Nash equilibria is obtained under certain conditions, namely:

i) the class of potential games (Monderer and Shapley, 1996);
ii) the class of supermodular games (Topkis, 1998).

The question tackled here is whether there are games belonging to both classes.
It turns out that two-person zero-sum supermodular games are potential games and

* Supported by the Gruppo Nazionale per I’Analisi Matematica, la Probabilita e
loro Applicazioni (G.N.A.M.P.A.) and by the University of Naples Federico II.
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conversely that two-person zero-sum potential games can be transformed in a canoni-
cal way into supermodular games. Also Cournot games are, under special conditions,

members of both classes of games.

A connection between ordinal potential games (Monderer and Shapley, 1996)
and supermodular games is also established for certain Cournot games.

In Section 2 the definitions of potential games and of supermodular games are
recalled together with some of their properties. In Section 3 the case of two-person
zero-sum games is discussed and an example illustrating the connection between the
two classes of games is given. Section 4 deals with Cournot duopoly competition and

Cournot games. Section 5 contains some concluding remarks.

2. Preliminaries

Let < A, B,K,L > be a two-person game with strategy space A for player 1,
strategy space B for player 2, and K: Ax B — IR, L: A x B — IR the payoff function
of player 1, 2 respectively. If the players 1 and 2 choose a € A and b € B respectively,
then player 1 obtains a payoff K(a,b) and player 2 obtains L(a,b).

A Nash equilibrium for such a game is a point (a,b) € A x B such that K (a,b) <
K (a,b) for each a € A and L(a,b) < L(a,b) for each b € B.

Such a game is called a potential game (Monderer and Shapley, 1996) if there is
a (potential) function P: A x B — IR such that

K(a2,b)—K(ay,b) = P(ag,b)—P(a1,b), forall a;,ay € A and for each b € B,
L(a,by)— L(a,b2) = P(a,by) — P(a,bs), for each a € A and for all by,bs € B.
Clearly, elements of argmax(P) are Nash equilibria of the game.

The next lemma will be useful. It states that for a two-person potential game
the payoff function of player 1 (player 2) can be written as the sum of a potential
and a function on the Cartesian product of the strategy spaces, which only depends
on the strategy choice of player 2 (player 1). This is a known result (Slade, 1994;
Facchini et al., 1997); an alternative proof is given here.

Lemma 1. Let < A, B, K, L > be a potential game with potential P. Then there
exist functions f: A — IR and g: B — IR such that

K(a,b) = P(a,b) — 2g(b),
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L(CL, b) = P(CL, b) - 2f(CL)
for each a € A and b € B.

Proof. Take a* € A, b* € B and define f and g as follows. For each a € A and
be B, let

fla) = 1/2(P(a, b*) — L(a,b*)),
g(b) =1/2(P(a*,b) — K(a*,b)).

Since P is a potential for the game < A, B, K, L >, we have
K(a,b) — K(a*,b) = P(a,b) — P(a*,b) or K(a,b) — P(a,b) = —2g(b),
and also
L(a,b) — L(a,b*) = P(a,b) — P(a,b*) or L(a,b) — P(a,b) = —2f(a)

for alla € A and b € B. O

The game < A, B, K, L > is called an ordinal potential game (Monderer and
Shapley, 1996) if there is a ( potential) function P: A x B — IR such that

K(as,b)-K(ay,b) >0<= P(az,b)—P(a1,b) >0, for all a;,as€ A and for each be B

L(a,b1)—L(a,bs)>0<=P(a,by)—P(a,bs) >0, for each ac A and for all by, bs € B.
We will use the following

Proposition 1 (Monderer and Shapley, 1996). Let < A, B, K, L > be a two-person

game. Let A, B be intervals of real numbers and K, L be twice continuously differen-
tiable functions. Then < A, B, K, L > is a potential game if and only if

K 9L
dadb ~ Dadb

For more information on potential games see Voorneveld (1999) and Mallozzi,
Tijs and Voorneveld (2000).

Let us now recall some definitions related to supermodular games. A partially
ordered set is a set X on which there is a binary relation < that is reflexive, anti-
symmetric and transitive. Let us consider a partially ordered set X and a subset X’
of X. If 2/ € X and 2’ < x for each x € X', then 2’ is a lower bound for X'; if
2’ € X and x < 2" for each x € X', then 2" is an upper bound for X’. When the set

3



of upper bounds of X’ has a least element, then this least upper bound of X’ is the
supremum of X’ in X; when the set of lower bounds of X’ has a greatest element,
then this greatest lower bound of X’ is the infimum of X’ in X.

If two elements x; and x5 of a partially ordered set X have a supremum in X, it
is called the meet of 1 and x5 and is denoted by x1 Axo; if 1 and x2 have an infimum
in X, it is called the join of x1 and x5 and is denoted by z1 V x5. A partially ordered
set that contains the join and the meet of each pair of its elements is a lattice. If a
subset X’ of a lattice X contains the join and the meet (with respect to X) of each
pair of elements of X', then X’ is a sublattice of X. The real line IR with the natural
ordering denoted by < is a lattice with  Vy = maz{z,y} and = Ay = min{z,y} for
z,y € IR, and R" (n > 1) with the natural partial ordering denoted by < is a lattice
with zVy = (21 Vy1, .0, Vyp) and 2 Ay = (1 A Y1, ooy T A yp) for z,y € R™.
Any subset of IR is a sublattice of IR, and a subset X of IR" is a sublattice of IR"
if it has the property that z,y € X imply that (max{z1,y1}, ..., max{z,,y,}) and
(min{x1,y1}, ..., min{x,,y,}) are in X.

The game < A, B, K, L > is called a supermodular game (Topkis, 1998) if the
following three properties are satisfied:

1) A is a sublattice of R™* and B is a sublattice of IR™? for some m; € IN, mo € IN;

2) K, L have increasing differences on A x B, i.e. for all (a1,as) € A% and for all
(bl, bg) c B2 such that a1 > as and by > bQ,

K(a1,b1) — K(a1,b2) > K(ag,b1) — K(ag,bs),

L(alabl) - L(a27b1) Z L(alabQ) - L(CLQ:bQ);

3) K is supermodular in the first coordinate and L is supermodular in the second
coordinate, i.e. for each b € B, for all a;,as € A we have

K(ay,b) + K(as,b) < K(ay V az,b) + K(ay A az,b)
and for each a € A, for all by,bs € B we have
L(CL, bl) + L(a, bg) S L(CL, b1 V bg) + L(a, bl A bg)

We recall the following propositions:

Proposition 2 (Topkis, 1998). Let f be a differentiable function on IR", then f has

increasing differences on IR"™ if and only if

is increasing in x; for all distinct i
i
and j and all x.



Proposition 3 (Topkis, 1998). Let f be a twice differentiable function on IR", then
2

&vi(%j

The following two examples show that the classes of potential games and super-

f has increasing differences on IR" if and only if > 0, for all distinct ¢ and j.

modular games do not coincide. So the study of special subclasses becomes intere-
sting.

Example 1. Let A = B = [0,1] and K(a,b) = 2ab, L(a,b) = a + b for all

a,b € [0,1]. Then the game < A, B,K,L > is a supermodular game because A

and B are sublattices of IR, K, L have increasing differences on [0, 1] x [0, 1], and K

is supermodular in the first coordinate and L in the second coordinate. This game

is not an exact potential game because the condition in Proposition 1 is not satisfied
02K 0%L

=2 S
0adb 7 0adb
game with potential function P given by P(a,b) = a + b for all a,b € [0, 1].

since = 0. Let us remark that the game is an ordinal potential

On the other hand there are games that are exact potential games and not

supermodular games:

Example 2. Let A = B = [0,1] and K(a,b) = a® — 2a(b — 3)* + b, L(a,b) =
—2a(b—3)? for all a,b € [0,1]. Then the game < A, B, K, L > is a potential game with
potential function P given by P(a, b) = a*—2a(b—3)? for all a, b € [0, 1] but it is not a
2 1 1
supermodular game in view of Proposition 3 because oK _ —4(b— 5) <0if b> —.

0adb 2

3. Zero-sum potential games and supermodular games

A two-person game of the form < A, B, K,—K > is called a zero-sum game.
Such a game will be denoted by < A, B, K >. In a zero-sum game one player pays
the other. A saddle point for such a game is a point (a, l;) € A x B such that
K(a,b) < K(a,b) < K(a,b) for ecach a € A and b € B. We denote by S(A, B, K) the
set of all saddle points of < A, B, K >. Note that < A, B, K > is a potential game
if there is a (potential) function P: A x B+ IR such that

K(ag9,b) — K(a1,b) = P(ag,b) — P(ay,b), for all aj,as € A and for each b € B,
—K(a,b1) + K(a,by) = P(a,by) — P(a,bs), foreacha€ A and for all by,bs € B.

Clearly, elements of argmax(P) are saddle-points of the game. Also the converse
turns out to hold as we see in Remark 2.

Useful will be the following



Theorem 1. Let < A, B, K > be a two-person zero-sum game. Then the following

assertions are equivalent:
(1;) < A, B, K > is a potential game;

(1;;) there exists a pair of functions (f,g) with f: A — IR and ¢g: B — IR such that
K(a,b) = f(a) — g(b) for all a € A, b € B (separation property).

Proof. That (1;;) implies (1;) follows by taking the potential P defined by
P(a,b) = f(a) + g(b) for all a € A and b € B.

Conversely, suppose (1;). Then by Lemma 1, there are functions f: A — IR and
g: B — IR such that for eacha € Aand b € B

K(a,b) = P(a,b) —29(b), —K(a,b) = P(a,b) —2f(a).

So K(a,b) = f(a) — g(b) for all (a,b) € A x B. O

Remark 1. This theorem is also proved in Potters, Raghavan and Tijs (1999), in
an alternative way. In that paper it was also observed that for 2x2-subgames of a
two-person zero-sum potential game the “diagonal property” holds. This is

K(al,bl) -+ K(ag,bg) = K(al,bg) -+ K(ag,bl)

for all aj,as € A and by, by € B. This property follows easily from (1;;) in Theorem
1. Conversely, it was proved in Potters, Raghavan and Tijs (1999) that the diagonal
property for two-person zero-sum games implies also that the game is a potential

game.

Remark 2. A pair (f,g) as in (1;;) of Theorem 1 is called a separating pair for
the potential game < A, B, K >. For a potential P of this game we have P(a,b) =
¢+ f(a) + g(b) for cach a € A, b € B and some ¢ € IR. Clearly, (,b) is a saddle

point of < A, B, K > if and only if & € argmax f(a), b € argmax g(b) if and only if
acA bcB

(a,b) € argmax(P).

Theorem 1 gives us the possibility to connect a two-person zero-sum potential
game with a related game where the strategy spaces are ordered subsets of IR and
the payoff function satisfies monotonicity conditions.

Given < A, B, K > with potential function P and separating pair (f,g) such
that P(a,b) = f(a) + g(b) for all a € A, b € B, define < A, B, K > as follows. Take
A= f(A), B=g(B) and for (a,b) € A x B let K(a,b) =a — b.
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So we use the real valued functions f: A — IR and ¢: B — IR to find a game <

A, B, K > with strategy spaces in IR, which is strategically equivalent to < A, B, K >
because

K(a,b) = K(f(a),g(b)) for all (a,b) € A x B,
K(c,d) = K(a,b) forallac f~1(c), b€ g~(d).

From this follows
(a,0) € S(A, B, K) = (f(a), (b)) € S(4, B, K),

(c,d) € S(A,B,K) = (a,b) € S(A,B,K) for all a € f~*(c), b€ g~*(d).
The strategy space A can be smaller than A because two strategies a; and as in
A which are equivalent in the sense that

K(ay,b) = K(ag,b) forallbe B

are mapped into the same point f(a;) = f(az) € A.

Relations between < A, B, K > and < A, B, K > are described in

Theorem 2. Let < A, B, K > a game with potential P and let < A, B, K > be as
above. Then

2;) < A,B,K > is a potential game with potential P: A x B + IR such that
P(a,b) =a+bforallac A, be B;

—~

(2ii) max(A) x max(B) = argmax(P) = S(4, B, K);
(2iii) (a,b) € S(A, B, K) <= f(a) = max(4), g(b) = max(B).
Note that S(A, B, K) has cardinality 0 or 1.

Example 3. Consider the matrix game

L R E

T 8 13 13

M 5 10 10

F 10 15 15

corresponding to the two-person zero-sum game < A, B, K > where A={T, M, F'},
B={L,R,E} and K(T,L)=8, K(T,R)=K(T,FE) =13, K(M,L)=5, K(M,R) =



K(M,E) = K(F,L) =10, K(F,R) = K(F,E) = 15. If we take f:{T,M,F} — R
and ¢g:{L, R, E} — R as follows: f(T)=5, f(M)=2, f(F)=7, g(L)=-3, g(R) =
g(E)=—-8, then K(a,b)=f(a) — g(b) for all a € A, b € B and P: A x B — IR with
P(a,b) = f(a) + g(b) for all a € A, b € B is a potential for this matrix game.

Transforming this game to < A, B, K > with the aid of (f,g) results in A =
{2,5,7}, B={-8,-3} and K(a,b) = @ — b or the “monotonic” matrix game

-8 -3
2 10 5
5 13 8
7 15 10

with the unique saddle point in (7, —3) corresponding to maximum 4 of the potential
P which can be written in matrix form as follows

-8 -3
2 —6 -1
) -3 -2
7 -1 4

Note that 7 = max(A), —3 = max(B).
Remark 3. If max(A) (or max(B)) does not exists, then there are no saddle points.

If K is bounded, then there are e-saddle points for each € > 0 corresponding to points
(a',b") with P(a’,b") > supP(a,b) — «.

Theorem 3. The game < A, B, K > with K(a,b) = a—b for each a € A and b € B
is a supermodular game.

Proof. The subsets A and B are sublattices of IR. For each b € B the function
a — K(a,b) is supermodular on A and also b — — K (a,b) is supermodular on B for
each a € A. We have finished the proof if we show that for each aq,a2 € A, b1,b5 € B
the functions

a— K(a,by) — K(a,bs) (a€ A)

b— —K(ay,b) + K(az,b) (b€ B)
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are monotonic. This is true because these functions are in fact constant:

[_((a,bl) — I_((a, bg) = _bl + bg,

—K(al,b) + K(ag,b) = —aj + as.

We have seen in Theorem 3 that two-person zero-sum potential games can be
embedded in the family of supermodular games. The converse is treated in

Theorem 4. Let < A, B, K > be a two-person zero-sum game with A C IR, B C IR,
which is supermodular. Then < A, B, K > is a potential game.

Proof. The supermodularity implies that for all a;, a2 € A and by1,by € B with
a1 < as, by < by we have

K(ag,b2) — K(ag,b1) > K(a1,b2) — K(a1,b1)

—K(az,bz) + K(al,bz) > —K(GQ, bl) + K(al, bl)

From these two inequalities follows the diagonal property. Then, according to
Remark 1, < A, B, K > is a potential game. O

Example 4. Let < A,B,K,L > be the non-zero sum game with A = {1,2},
B ={1,2}; K(i,j) =i+ jforalli € Aand j € B, and L(1,1) = 4, L(1,2) = 7,
L(2,1) = 5 and L(2,2) = 9. Then this game is a supermodular game but not a
potential game.

Example 5. Let < A, B, K, L > be the non-zero sum game with A=1{1,2}, B=
(1,2}; K(1,1) =3, K(1,2) =1, K(2,1) =5, K(2,2) =2 and L(1,1) = 3, L(1,2) =
8, L(2,1)=6, L(2,2)=10. Then the game is a potential game but not a supermodular

game.

Remark 4. A subclass of general two-person potential games can be embedded into
the class of supermodular games in a similar way as we embedded two-person zero-
sum potential games. These are games of the form < A, B, K, L > with separable
payoff functions i. e. K and L can be written in the form

K(a,b) = f(a) + g(b), L(a,b) = h(a) + k(b)

for all @ € A, b € B, and where f,h are real valued functions on A such that
f is injective, and g, k are real valued functions on B such that k is injective. A
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potential is then P given by P(a,b) = f(a) + k(b) for each a € A and b € B.
A strategically equivalent supermodular game is the game < A, B, K,L > where
A= f(A), B=Fk(B) and where for all c€ A, d € B:

K(Ca d) = K(fil(c)a kil(d))a

L(c,d) = L(f~(c), k™ (a)).

4. Cournot games

Consider Cournot’s model of duopoly where the demand arises from a competi-
tive market of a single homogeneous commodity.

Suppose that firm ¢, ¢ = 1, 2, can supply the single homogeneous product in any
non negative bounded quantity ¢; € [0, ¢?] with production cost c¢;(g;). The price of
the single homogeneous commodity is given by the inverse demand function Q(q1, ¢2)
which is assumed to be twice continuously differentiable function. We suppose that
firm 4’s cost ¢;(q;), ¢ = 1,2, is differentiable.

Given the output level selected by the other firm, the objective of firm 7 is to
maximize its profit

(g1, 92) = ¢:Q(q1,92) — ci(q:)

by the choice of its output g;, where ¢;Q(q1, ¢2) expresses the revenue (return) of firm
0
9qi

i. We assume that the marginal revenue of firm i (i.e. Q(q1,¢2) + ¢

decreasing with respect to g; (j # ).
A Cournot game is a game of the form < A, B,K,L > where A = [0,¢}],
B =[0,¢3] and
K(a,b) = aQ(a,b) — c1(a),
L(aa b) = bQ(av b) —C2 (b)

for all a € A and b € B. If the inverse demand function () is linear in a + b, then the
corresponding Cournot duopoly game is also called a quasi Cournot game.

Now we put @ = a and b= —b for each a € A and b € B and consider the game
<A,B,K,L>where A=A, B=—-B=[-¢%,0] and

K(a,b) = K(a,—b), L(a,b) = L(a, —b)

10



foralla e A, b€ B. So

K(a,b) = aQ(a,—b) — ci(a), L(a,b) = —bQ(a, —b) — co(—b).

The game < A, B, K, L > is strategically equivalent to < A, B, K, L > because
K(a,b) = K(a,b) and L(a,b) = L(a,b) for all a € A,b € B. We will denote by
NE(A,B, K, L) the set of all Nash equilibria of the game < A, B, K,L >. Note
that (a,b) € NE(A, B, K, L) if and only if (a,—b) € NE(A, B, K, L). Moreover if
< A,B,K,L > is a Cournot potential game with potential function P, then the
game < A, B, K,L > as above is also a potential game with potential P given by
P(a,b) = P(a,—b) forallac A, bc B.

Theorem 5. Let < A, B, K, L > be a Cournot game and consider < A, B, K,L >
as above. Then

(5;) if the cost functions ¢; are of the form c¢;(¢;) = cq;, for i = 1,2, then
< A, B,K,L > is an ordinal potential game and also a supermodular game;

(5;;) if the inverse demand function @ is linear in the aggregate output level, given
by Q(a,b) = a — (B(a+0b), o, >0 (i.e. < A, B,K,L > is a quasi Cournot game),
then < A, B, K,L > is a potential game and also a supermodular game.

Proof.

(5;) The Cournot duopoly with cost functions ¢;, ¢ = 1,2 is an ordinal potential
game with potential function P given by P(a,b) = ab[Q(a,b) — c] for all a € [0, ¢}]
and b € [0,¢8] (Monderer and Shapley, 1996), so the game < A, B, K, L > is also
an ordinal potential game with the potential P given by P(a,b) = P(a,b) for all
a € A, b € B. Moreover K(a,b) = alQ(a,—b) — c¢] and L(a,b) = —b[Q(a,—b) — |

2K
satisfy the increasing differences property because by Proposition 3 we have g 5% =
a
-
L
_%[Q + az—f} > 0 and % = —%[Q + b%—%} > 0, since we assumed that the

marginal revenue is decreasing. Moreover the transformed strategy spaces A and B
are sublattices of IR, K is supermodular in the first coordinate and L is supermodular
in the second coordinate. Then the Cournot game is a supermodular game.

(5:;;) The quasi Cournot competition is a potential game with potential function P
given by P(a,b) = a(a + b) — B(a® + b?) — Bab — c1(a) — ca(b) for all a € [0,¢)]
and b € [0,¢3] (Monderer and Shapley, 1996), so the game < A, B, K, L > is also a
potential game with the potential P given by P(a,b) = P(a,b) for alla € A, b € B.
Moreover K (a,b) = a[a — 3(a — b)] — ¢1(a) and L(a,b) = —bla — B(a@ — b)] — co(—b)
PK
daob

satisfy the increasing differences property because by Proposition 3 we have

11
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supermodular in the first coordinate, L is supermodular in the second coordinate

= B > 0. As in the previous case, A and B are sublattices of IR, K is

and the quasi Cournot game is a supermodular game. O

5. Concluding remarks

Let us first summarize the main results we obtained:

i) a supermodular two-person zero-sum game is a potential game (Theorem 4). Con-
versely, if a two-person zero-sum game is a potential game then it is strategically
equivalent to a supermodular game (Theorems 2 and 3), which is monotonic and has
at most one saddle point; the set of pure saddle points of a two-person zero-sum
potential game turns out to coincide with the potential maximizers (Remark 2);

ii) two subclasses of Cournot games are described, which are strategically equivalent
to supermodular games and which are simultaneously (ordinal or exact) potential
games (Theorem 5).

In Remark 4 we discussed a subclass of general two-person potential games which
can be embedded in the class of supermodular games. This result holds for a similar
subclass of general n-person strategic games with separable payoff functions.

A game of the form < Ay,...,A,, K1,..., K, > where K;(a;,a_;) = fi(a;) +
gi(a ;) for all a; € A; and a; € [ljenw—g;3A; is a potential game and it is stra-
tegically equivalent to a supermodular game if fy, ..., f, are injective functions. A
potential is given by

P(a) = Zfi(ai)

and the (strategically equivalent) supermodular game is defined as follows:
e for each i € N = {1,....n}, 4; = fi(A;);
eforallb; € Ay,....,b, € A, and alli € N

Ki(by,...,bn) = Ki(f{ 1(b1), ooy £ 2 (00)).

Also duopoly results in Section 4 can be extended to multimarket oligopoly
(Topkis, 1998). It is interesting to find other economic situations leading to strategic
games which are potential games and also supermodular games.
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