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1 Introduction

Most formal analysis of economic decisions under uncertainty has relied on concepts of sub-

jective probability. Significant advances in the discussion of preferences in the absence of

well-defined subjective probabilities, and in understanding the relationship between pref-

erences and subjective probabilities, have been made by Schmeidler (1989), Machina and

Schmeidler (1992), Epstein (1999) and Ghiradato and Marinacci (1999). A particularly im-

portant contribution is that of Epstein and Zhang (2001), who set out a range of desiderata

for a definition of ambiguity, and provide a definition meeting most of these desiderata.

The analysis of economic decisions in the absence of well-defined subjective probabil-

ities has often been referred to in terms of Knight’s (1921) distinction between risk and

uncertainty. However, Knight’s discussion of the role of insurance companies and the Law

of Large Numbers make it clear that his conception of risk was confined to cases where

objective probabilities can be defined in frequentist terms, and where risk can effectively be

eliminated through pooling and spreading. All other cases, including those where individuals

possessed personal subjective probabilities, were effectively classed by Knight as involving

uncertainty. The distinction now commonly drawn between ‘risk’ and ‘uncertainty’ could not

be developed properly until the formulation of well-defined notions of subjective probability

by de Finetti (1937) and Savage (1954).

The first writer to clearly identify cases where preferences were inconsistent with first-

order stochastic dominance, relative to any possible probability distribution, was Ellsberg

(1961) who distinguished between risk (subjective probabilities satisfying the Savage axioms)

and ambiguity, leaving uncertainty as a comprehensive term. Therefore, consistent with the

usage of Savage and Ellsberg, and with usage in the general economics literature, we will

use the term uncertainty to encompass all decisions involving non-trivial state-contingent

outcome vectors, whether or not the preferences and beliefs associated with these decisions

can be characterized by well-defined subjective probabilities. Events for which subjective

probabilities are (or are not) well-defined will be referred to as ‘ambiguous’ (‘unambiguous’)

and problems involving acts measurable with respect to unambiguous events will be said to

involve ‘risk’. Our usage is consistent with Ghiradato and Marinacci (1999) and Epstein and

Zhang (2001).

Epstein and Zhang (2001) provide a rigorous definition of ambiguous and unambiguous

events, and lay the basis for an analysis of preferences under uncertainty, including both risk

and ambiguity.1 In light of this, the definition proposed by Epstein (1999) for a comparative

1 To the best of our knowledge, the definition proposed by Epstein and Zhang (2001) is the only one
that is based solely on preferences and hence model free. In other papers such as Gilboa and Schmeidler
(1994), Mukerji (1997), Sarin and Wakker (1998), Ghiradato and Marinacci (1999), Nehring (2001) and
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ambiguity aversion relation over preference relations can now be stated in a solely preference-

based and model-free manner. However, questions of when one act is more uncertain or more

ambiguous than another are not addressed in these analyses, except in the polar case where

one act is ambiguous and the other is unambiguous. Ghiradato and Marinacci (1999) propose

a model-free definition of comparative uncertainty aversion: one preference relation is more

uncertainty averse than another, if whenever the latter relation expresses a weak preference

for a constant act (that is, one that will yield the same outcome no matter what state of the

world will obtain) over another act, then so must the former relation. They do not, however,

consider the question of when one act is more uncertain than another except in the polar

case where one of the acts yields a certain outcome.

By contrast, the concept of an increase in risk, and the economic consequences of increases

in risk, have been analyzed extensively, beginning with the work of Hadar and Russell (1969),

Hanoch and Levy (1969) and Rothschild and Stiglitz (1970). These authors independently

derived and characterized the second-order stochastic dominance condition (in terms of

mean-preserving spreads), under which all risk-averse expected utility maximizers will prefer

one probability distribution to another. Quiggin (1992) introduced an alternative notion

of monotone (mean-preserving) increase in risk, defined in terms of co-monotonic random

variables instead of mean-preserving spreads. Landsberger and Meilijson (1994) pointed out

that this notion of increase in risk coincides with the Bickel and Lehmann (1976) notion of

dispersion of random variables with equal means. Yaari (1969) notes that since any lottery

is by definition a ‘mean-preserving spread’ of its mean, the weakest notion of risk aversion

simply requires that the mean of a lottery for sure is weakly preferred to the lottery itself.

Subsequent studies examined a wide range of generalizations of these stochastic dominance

conditions, typically associated with more restrictive conditions on utility functions. The

concept of increasing risk has also been analyzed extensively for generalized expected utility

models (Chew, Karni and Safra, 1987; Chateauneuf, Cohen and Meilijson, 1997; Quiggin,

1993; Safra and Zilcha, 1989).

Most concepts of increasing risk that have been considered in the literature are inherently

dependent on the existence of well-defined subjective probabilities. This is obviously true

of mean-preserving increases in risk, since the mean depends on probabilities. Even notions

such as that of a compensated increase in risk (Diamond and Stiglitz, 1974), which do

not depend on mean values, incorporate probabilities in their definitions. Yet the intuitive

concept of an increase in the uncertainty of a prospect does not seem to depend crucially

on probabilities. To take a simple example, doubling the stakes of a bet surely increases the

Ryan (2001), the analysis focuses on a class of preference relations that admit a specific functional form.
The criteria for what constitutes an ambiguous or unambiguous event is then defined in terms of a property
or properties of the specific functional form representation that these preference relations all admit.
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uncertainty associated with that bet, regardless of whether the parties have well-defined and

common subjective probabilities regarding the event that is the subject of the bet.2

The main object of this paper is to present a definition of increasing uncertainty, inde-

pendent of any notion of subjective probabilities, or of any particular model of preferences.

This definition naturally gives rise to a dual definition of comparative aversion to uncer-

tainty. We characterize this definition for a popular class of generalized models of choice

under uncertainty.

An important objective of this work is to extend the economic applicability of the con-

cepts developed by previous writers on this topic. Despite significant progress in character-

izing preferences under uncertainty, without reliance on probability concepts, there has been

relatively little analysis of the economic choices under uncertainty. One important problem

is that comparative static analysis requires the adoption of some notion of an increase in un-

certainty, and there is no generally agreed concept of an increase in uncertainty. We briefly

outline the implications of our work for comparative static analysis. Proofs of the results,

unless otherwise stated, appear in the appendix.

2 Preliminaries

Set-up and Notation. Denote by S = {. . . ,s,. . . } a set of states and E = {. . . ,A,B
. . . , E,. . . } the set of events which is a given σ-field on S. We take the set of outcomes to
be the set of non-negative real numbers, or ‘consumption levels’. An act is a (measurable)

real-valued and bounded function f : S → R+. Let f(S) ={f (s) | s ∈ S} be the outcome
set associated with the act f , that is, the range of f . Let F = {. . . ,f,g,h,. . . } denote the
set of acts on S; and let F0 denote the set of simple acts on S; that is, those with finite
outcome sets. We will abuse notation and use x to denote both the outcome x in R+ and

the constant act with f(S) = {x}.
The following notation to describe an act will be convenient. For an event E in E , and

any two acts f and g in F , let fEg be the act which gives, for each state s, the outcome
f (s) if s is in E and the outcome g (s) if s is in the complement of E (denoted S\E).
In general, for any finite partition P := {A1, . . . , An} of S and any list of n acts (h1, . . . ,

hn), let h1
A1h2

A2 . . . h
n−1
An−1hn be the act that yields hi (s) if s is in Ai.

Let % be a binary relation over ordered pairs of acts in F , representing the individual’s
preferences. Let Â and ∼ correspond to strict preference and indifference, respectively.

2 Indeed, assuming that parties are risk-averse, the acceptability of a bet to both parties depends on
the fact that subjective probabilities differ. In the case where one party is a bookmaker, a bet may be
acceptable because of other risks in the portfolios of the contracting parties. However, a bookmaker is
merely an intermediary, and bookmaking is only feasible if there are differences in probabilities.
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Given %, for any act f in F , we define the ‘at least as good as f ’ set as the set %f=

{g ∈ F : g % f}.
We say a sequence of acts fn converges point-wise in the limit to f , written fn → f , if,

for each s in S, the sequence of real numbers, fn (s) converges to f (s).
The only maintained assumptions we make on this preference relation is that it is a

(point-wise) continuous preference ordering and satisfies a weak form of monotonicity.

Axiom 1 The preference relation % is a continuous ordering: that is, it is transitive and

complete and, for any of sequences acts hfni and hgni, such that fn → f and gn → g, if

fn % gn for all n, then f % g.

Axiom 2 The preference relation % is monotonic. That is, if for any pair of acts, f and g

in F , f (s) > g (s) for all s in Ω, then f Â g.

We observe that any preference relation % satisfying the axioms above may be charac-

terized by a unique certainty equivalent of the form

m(f) = sup{x ∈ R : f % x}.

2.1 An elementary increase in uncertainty

Our notion of increasing the uncertainty of an act is based on the idea of adding an ‘ele-

mentary bet’ to that act which increases consumption by a fixed amount in the (relatively)

‘good’ states and decreases consumption by a fixed (and possibly different) amount in the

(relatively) ‘bad’ states. We refer to the addition of such a comonotonic elementary bet as

an elementary increase in uncertainty.

Definition 1 Fix a pair of acts f, g ∈ F . The act g represents an elementary increase in

uncertainty of the act f , denoted gUf if there exists a pair of positive numbers α and β, and

an event E+ ∈ E\ {S, ∅} such that: (i) for all s in E+, g (s) − f (s) = α; (ii) for all s in
S\E+, f (s)− g (s) = β; and (iii) sup {f (s) : s ∈ S\E+} ≤ inf {f (s) : s ∈ E+}.

Correspondingly, we define a notion of comparative uncertainty aversion:

Definition 2 Fix % and b%. The preference relation % is at least as uncertainty averse at

f as b% if for any gUf , f b% g implies f % g. The preference relation % is everywhere at

least as uncertainty averse as b% if for all f , % is as least as uncertainty averse at f as b%.
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Before we explore in more detail the implications of this definition, let us first evaluate

it against the desiderata set out in Epstein and Zhang (2001). They argue that a definition

should be:

D1. Behavioral or expressed in terms of preferences: that is, verifiable in principle given

suitable data on behavior.

D2. Model-free: since concepts of uncertainty and ambiguity are more basic than speci-

fications of preferences, a definition should not be tied to any particular model.

D3. Explicit and constructive: Given an event, it should be possible to check whether or

not it is ambiguous.

D4. Consistent with probabilistic sophistication on unambiguous events.

Since, wherever relevant, we employ the Epstein and Zhang characterization of ambigu-

ous and unambiguous events, our definition of increasing uncertainty automatically inherits

property D4. Also, as with Epstein and Zhang, the degree to which D1 is satisfied is lim-

ited by the assumption of an objectively given state-space over which acts are defined as

mappings from that state-space to an outcome space. Our main concern, therefore relates

to the properties D2 and D3, and particularly with D2, the requirement that the character-

ization of increasing uncertainty should be model-free. Subject only to the assumption of

an objectively given state-space, our definition of an elementary increase in uncertainty is

entirely model-free and this model-free status carries over to the definition of comparative

uncertainty aversion.

3 Increases in uncertainty and uncertainty aversion

Our first observation about the definition of an elementary increase in uncertainty is that,

no matter what assessment an individual attaches to any event (that may incorporate his

or her belief and/or decision weight), an elementary increase in uncertainty always reduces

consumption in the worst event and increases consumption in the best event. Furthermore,

if gUf then g, f and g − f are pairwise co-monotonic functions, that is, for every pair of
states s, t ∈ S,

(g (s)− g (t)) (f (s)− f (t)) ≥ 0

(g (s)− f (s)− g (t) + f (t)) (f (s)− f (t)) ≥ 0

(g (s)− g (t)) (g (s)− f (s)− g (t) + f (t)) ≥ 0
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which can be more succinctly expressed as

(g (s)− g (t))2 ≥ (g (s)− g (t)) (f (s)− f (t)) ≥ (f (s)− f (t))2 . (1)

It is straightforward to check that for any triple of acts f, g, and h, if hUg and gUf then

(h (s)− h (t))2 ≥ (h (s)− h (t)) (g (s)− g (t)) ≥ (g (s)− g (t))2

≥ (g (s)− g (t)) (f (s)− f (t)) ≥ (f (s)− f (t))2

and, hence,

(h (s)− h (t))2 ≥ (h (s)− h (t)) (f (s)− f (t)) ≥ (f (s)− f (t))2 .

That is, we have hUf . As nothing in the inequalities in (1) requires the acts in question to

be simple, we shall adopt these inequalities to define the more uncertain relation between

any pair of acts.

Definition 3 Fix a pair of acts f, g ∈ F . The act g is more uncertain than the act f ,
denoted gUf , if

inf
s∈S
g (s) < inf

s∈S
f (s) , sup

s∈S
g (s) > sup

s∈S
f (s) ,

and for every pair of states s, t ∈ S, if g (s) = g (t) then f (s) = f (t) else

1 ≥ (f (s)− f (t))
(g (s)− g (t)) ≥ 0. (2)

Our main result in this section is that the relation U is simply the transitive continuous

closure of the relation U .

Proposition 3 Fix a pair of acts f, g ∈ F . If gUf then there exist sequences of simple acts,
hfni and hgni, such that fn → f and gn → g, and for each n there exists a finite sequence of

simple acts hhnmiM
n

m=1, such that h
n
1 = fn, h

n
Mn = gn and h

n
m+1Uh

n
m, m = 1, . . .Mn − 1.

The following is an immediate corollary of Proposition (3).

Corollary 4 Fix % and b%. The preference relation % is everywhere at least as uncertainty

averse as b%, if and only if,
f b%g implies f % g for all gUf .
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Also, we obtain

Corollary 5 Any act f is more uncertain than its certainty equivalent m(f).

Corollary 6 If % is everywhere at least as uncertainty averse as b%, then for any f
m(f) ≤ m̂(f).

3.1 Special cases

The definitions of comparative uncertainty, and of comparative uncertainty-aversion pre-

sented above, are model-free. It is of interest, however, to consider the case when preferences

may be represented by some specific model, to characterize the relationship ‘% is everywhere

at least as uncertainty averse as b%’ in terms of the parameters of that model, and, where
appropriate, to compare that characterization to existing results on comparative risk aver-

sion. We beginning by demonstrating that the usual characterization of comparative risk

aversion for subjective expected utility is consistent with our definition. This reflects the

fact that our approach satisfied the Epstein and Zhang desideratum D4. More substantively,

we analyze the case of cumulative utility preferences, incorporating such important special

cases as Choquet Expected Utility (Schmeidler 1989), rank-dependent expected utility under

risk (Quiggin 1993) and the dual model of Yaari (1987).

3.1.1 Subjective Expected Utility

Let us consider the case when % and b% satisfy the assumptions of Savage’s theory of sub-

jective expected utility (SEU). That is, assume both preference relations can be represented

by certainty equivalent functionals m, bm of the form

m(f) = u−1

µZ
s

u(f(s))π (ds)

¶
and bm(f) = bu−1

µZ
s

bu(f(s))bπ (ds)¶ ,
where π and bπ are countably-additive and convex-ranged probability measures defined over E
(which in Savage’s theory is the power set of S), and u and bu are von Neumann-Morgenstern
utility functions defined over X .3
The same set of necessary and sufficient conditions that are required for one preference

relation to be at least as risk averse (in the sense of Rothschild and Stiglitz, 1970) as another

are also necessary and sufficient for one to be at least as uncertainty averse as another.

3 Strictly speaking Savage’s axiomatization only guarantees that π is finitely-additive, but since we have
already assumed that the set of events E is a σ−algebra set of subsets of S, we shall also impose the additional
continuity necessary to ensure that the probability measure representing beliefs is countably additive.
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Proposition 7 Suppose % and b% both admit SEU certainty equivalent representations m (.)

and bm (.), with associated probability measure and utility function pairs, (π, u) and (bπ, bu),
respectively. Then, % is everywhere at least as uncertainty averse as b% if and only if

π (A) = π̃ (A) for all A ∈ E, and u is a concave transform of bu.
If we identify an SEU-maximizer with a linear utility index as being risk neutral (with

respect to π), then an immediate corollary of Proposition (7) is that a necessary and suf-

ficient condition for an SEU-maximizer to be averse to monotone mean-preserving spreads

(with respect to π) is that his utility function is concave. And without requiring any other

restrictions, we also know that his preference relation would agree with the partial ordering

of second-order stochastic dominance (or equivalently, he is averse to all mean-preserving

spreads).4 These results are not surprising since it is well-known that under the expected

utility model for decision making under risk (with exogenously specified probabilities) a

decision maker is risk-averse in the weakest sense of always (weakly) preferring the mean

of a lottery for sure to the lottery itself if and only if his utility index is concave. Such a

coincidence of conditions necessary and sufficient for these three distinct notions of risk aver-

sion (and their uncertainty analogs) does not hold in general for non-EU models of decision

making under risk and non-SEU models of decision making under uncertainty. And it is to

one of the most widely studied classes of non-SEU models that we turn our focus in the next

subsection.

3.1.2 Cumulative Utility, Choquet Expected Utility and Aversions to Uncer-
tainty, Ambiguity and Risk

One of the main directions for generalizing subjective expected utility has been so-called

rank-dependent theories. As Chew and Wakker (1996) observe, all of these models may

be viewed as underpinned by a weakening of Savage’s sure-thing principle that they dub

comonotonic independence. Comonotonic independence essentially restricts Savage’s sure-

thing principle to comonotonic acts, that is, acts that induce the same ordering over the

states of nature according to their outcomes. They characterized comonotonic independence

by means of a functional form called cumulative utility (CU).

For ease of exposition let us restrict attention to preference relations defined over the

set of simple acts. The following notation draws heavily on Chew and Wakker. Let P =

(A1, . . . , An) denote a finite partition of the state space S. For each i = 1, . . . , n, let CiP
denote the cumulative set

Si
j=1A

j and set C0
P := ∅. FP is the set of acts of the form

4 Formal definitions in the Savage-act framework of monotone mean-preserving spreads and the partial
ordering of second-order stochastic dominance are provided in the next subsection.
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x1
A1x2

A2 . . . x
n−1
An−1xn. FP↓ is the subset of FP for which x1 ≥ . . . ≥ xn. Notice that the set of

simple acts, F0 is the union of FP over all partitions P.
Fixing a preference relation %, we say an event A is inessential if f ∼ g, for all simple

acts f and g that coincide on S\A. By convention we shall consider the empty set to be a
member of the set of inessential events. We refer to all other events as essential. We call %
jointly monotonic on F0 if, for all simple acts f and essential events A,

y > x implies yAf Â xAf .

In CU, joint monotonicity implies monotonicity with respect to outcome as well as with

respect to inclusion of essential events.

A preference relation admits a CU representation if there exists an outcome dependent

jointly monotonic capacity, that is, a function Ψ : R+ × E → R+ satisfying (i) for all A

in E : Ψ (0, A) = 0, (ii) for any essential event A, Ψ (y, A ∪B) − Ψ (x,A ∪B) > Ψ (y,B)

− Ψ (x,B), for any set B in E , and any y > x; (iii) for all x > 0, Ψ (x,S) > 0 and

Ψ (x, .) /Ψ (x,S) is a normalized capacity.5 And for all P = (A1, . . . , An), and for all acts

of the form x1
A1x2

A2 . . . x
n−1
An−1xn for which x1 ≥ . . . ≥ xn, the certainty equivalent function,

m (f) is implicitly defined by:

nX
i=1

¡
Ψ
¡
xi, CiP

¢−Ψ ¡xi, Ci−1
P
¢¢
= Ψ (m (f) ,S) . (3)

The Choquet Expected Utility model (CEU) is the special case of ‘multiplicative separa-

bility’ in which Ψ (x,A) = u (x) ν (A), where u is an increasing function and ν is a normalized

capacity. Furthermore, we shall only consider preferences that admit a Gateau-differentiable

CU representation, which entails that, for any outcome x ∈ X and event A ∈ E , the following
derivatives are always well defined:

∂+

∂x
Ψ (x,A) ≡ lim

ε→0
(Ψ (x+ ε, A)−Ψ (x,A)) /ε

∂−

∂x
Ψ (x,A) ≡ lim

ε→0
(Ψ (x,A)−Ψ (x− ε, A)) /ε

To provide some insight into the nature of the CU model, consider the following diagram

in which the value ϕ (x,A) may be viewed as the measure of the ‘rectangle’ [0, x]× A.6

5 A (normalized) capacity is a function ν : E → [0, 1], satisfying:

1. ν (∅) = 0 and ν (S) = 1
2. A ⊂ B ⇒ ν (A) ≤ ν (B).

6 The approach taken here is an adaptation of the measure representation of rank dependent models of
decision making under risk, first proposed and developed by Segal (1989).
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x

Ψ(x,A)

State space

outcomes

A S\A

Figure 1: Measure representation of Ψ (., .)

The implicit definition for the certainty equivalent of an act in (3) may be viewed as

determining a ‘generalized quasi-linear mean’ (Chew 1983). The mean value m (f), is that

for which the ‘area’ between the ‘graph’ of the act f that lies above the graph of the constant

actm (f) is equal to the area between the graph of f that lies below the graph of the constant

act m (f). For example, fix the partition P = (A1, . . . , A5) and suppose that for the act

f = x1
A1x2

A2x3
A3x4

A4x5 for which x1 > . . . > x5, m (f) the unique solution to (3) satisfies

x2 > m (f) > x3. Figure two illustrates the measure-theoretic representation of m (f),

where the ‘rectangle’ marked i ∈ {1, 2, 3, 4, 5} has a (signed) ‘measure’ of value

¡
Ψ
¡
xi, CiP

¢−Ψ ¡xi, Ci−1
P
¢¢− ¡Ψ ¡m (f) , CiP¢−Ψ ¡m (f) , Ci−1

P
¢¢

attached to it. From the properties of Ψ (., .) we know the signed measures of rectangles 1

and 2 are positive while the rest are negative.
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A1 A2 A5A4A3

x1

x5

x4

x3

x2 1
2

3

4
5

m(f)

Figure 2: A graphical illustration of the certainty equivalent of an act — m (f) is the

certainty equivalent outcome of f since the sum of the signed measures attached to the

‘rectangles’ labelled 1, 2, 3, 4 and 5 equals zero.

The next result gives the set of necessary and sufficient conditions for one CU preference

relation to be more risk averse than another CU preference relation.

Proposition 8 Suppose % and b% both admit CU certainty equivalent representations m (.)

and bm (.), with associated outcome dependent capacities, Ψ and bΨ, respectively. Furthermore
suppose both Ψ and bΨ are Gateau-differentiable. Then % is at least as uncertainty averse as b%
if and only if the following condition holds for all finite ordered partitions P = (A1, . . . , An)

and outcomes x1 ≥ . . . ≥ xn,

inf
hj∈{2,... ,n}i

Pj
i=1

∂+

∂x

hbΨ (xi, CiP)− bΨ ¡xi, Ci−1
P
¢i
/
Pn

i=j+1
∂−
∂x

hbΨ (xi, CiP)− bΨ ¡xi, Ci−1
P
¢i

Pj
i=1

∂+

∂x

£
Ψ (xi, CiP)−Ψ

¡
xi, Ci−1

P
¢¤
/
Pn

i=j+1
∂−
∂x

£
Ψ (xi, CiP)−Ψ

¡
xi, Ci−1

P
¢¤ ≥ 1

(4)

The essential idea behind (4) is illustrated in Figure 3 which depicts the changes in

the graph of the act f that featured in Figure 2, resulting from the addition of the ‘small’

elementary gamble (αε)A1∪A2∪A3
(−βε).
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A1 A2 A5A4A3

x1

x5

x4

x3

x2

αε

αε

αε

βε

βε

1
2

3

4
5

Figure 3: A graphical illustration of the increase in the uncertainty of f resulting from the

addition of the elementary bet (αε)A1∪A2∪A3
(−βε)

Sufficiency requires that if the addition of this gamble is favorably viewed by %, then it
should be favorably viewed by b%. Reading off the changes in the ‘area’ of the graph of the
act f from Figure 3, sufficiency requires, if

3X
i=1

¡
Ψ
¡
xi + αε, CiP

¢−Ψ ¡xi + αε, Ci−1
P
¢¢− ¡Ψ ¡xi, CiP¢−Ψ ¡xi, Ci−1

P
¢¢

>
5X
i=4

¡
Ψ
¡
xi, CiP

¢−Ψ ¡xi, Ci−1
P
¢¢− ¡Ψ ¡xi − βε, CiP¢−Ψ ¡xi − βε, Ci−1

P
¢¢

then

3X
i=1

³bΨ ¡xi + αε, CiP¢− bΨ ¡xi + αε, Ci−1
P
¢´− ³bΨ ¡xi, CiP¢− bΨ ¡xi, Ci−1

P
¢´

>
5X
i=4

³bΨ ¡xi, CiP¢− bΨ ¡xi, Ci−1
P
¢´− ³bΨ ¡xi − βε, CiP¢− bΨ ¡xi − βε, Ci−1

P
¢´
.

By letting ε → 0, we see that (4) is sufficient for % to be at least as uncertainty averse asb%, for any ‘elementary increase of uncertainty in the small’. It just remains to show, as we
do in the formal proof, that such a comparative ‘at least as uncertainty averse in the small’
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holding everywhere, ‘integrates’ to globally at least as uncertainty averse (that is, ‘in the

large’). Conversely, if (4) fails, then it is possible to construct an act f and a sufficiently

small elementary gamble b, that is acceptable to add to f for %, but is unacceptable to add
to f for b%. That is, we have f + b % f but f bÂ f + b.
Given the non-separability between the ‘evaluation’ of an outcome and the ‘rank-dependent

decision-weight’ attached to an event that is one of the distinctive features of the general

CU functional form, it is perhaps not surprising that (4) involves ‘partial sums’ over differ-

ences between cumulative events. More succinct and more readily interpretable conditions

can be obtained if we consider the case of Choquet Expected Utility. That is, let us now

restrict Ψ (x,A) and bΨ (x,A) to take the multiplicative forms u (x) ν (A) and bu (x)bν (A),
respectively, where u and bu are increasing functions and ν and bν are normalized capacities.
Moreover, let us for the moment also assume that u and bu are both concave. Then for any
partition P = (A1, . . . , An) and outcomes x1 ≥ . . . ≥ xn, and any given j ∈ {2, . . . , n− 1},
we have for the partial sums that feature in (4), the following inequalities:

jX
i=1

£bu0 ¡xi¢ bν ¡CiP¢− bu0 ¡xi¢ bν ¡Ci−1
P
¢¤ ≥ bu0 ¡x1

¢ bν ¡CjP¢
nX

i=j+1

£bu0 ¡xi¢ bν ¡CiP¢− bu0 ¡xi¢ bν ¡Ci−1
P
¢¤ ≤ bu0 (xn) £1− bν ¡CjP¢¤

jX
i=1

£
u0
¡
xi
¢
ν
¡
CiP
¢− u0 ¡xi¢ ν ¡Ci−1

P
¢¤ ≤ u0

¡
xj
¢
ν
¡
CjP
¢

nX
i=j+1

£
u0
¡
xi
¢
ν
¡
CiP
¢− u0 ¡xi¢ ν ¡Ci−1

P
¢¤ ≥ u0

¡
xj+1

¢ £
1− ν ¡CjP¢¤ .

Hence, applying (4), it follows that a sufficient condition for one CEU maximizer, (u, ν),

with concave u, to be at least as uncertainty averse as another CEU maximizer, (bu,bν), also
with concave bu, is that for any event E ∈ E and any four outcomes x1 ≥ x2 ≥ x3 ≥ x4

bu0 (x1)bν (E)bu0 (x4) (1− bν (E)) ≥ u0 (x2) ν (E)

u0 (x3) (1− ν (E)) (5)

or equivalently,

lim
by→∞

µbu0 (by)bu0 (0)
¶
≥ sup

hE∈Ei

µ
ν (E) / (1− ν (E))bν (E) / (1− bν (E))

¶
. (6)

This is similar to the condition that Chateauneuf, Cohen and Meilijson (1997) derive in the

context of decision making under risk for a RDEU expected utility maximizer to be averse to

every monotone increase in risk. Adapting their terminology, the left-hand side expression

13



in (6) may be viewed as a measure of the greediness of the utility function, bu. The ratio
ν (E) / (1− ν (E)) may be interpreted as a measure of the optimism of the capacity ν about

the event E obtaining. Hence the right-hand side expression measures the relative optimism

of the capacity ν over the capacity bν about the event E. Thus (6) states that a sufficient
condition for (u, ν) to be at least as uncertainty averse as (bu,bν) is that the latter’s greediness
is never less than the former’s relative optimism over any event.

Furthermore with both utility indexes concave, we can also derive the following sufficiency

result.

Corollary 9 Suppose % and b% both admit CEU certainty equivalent representations bm (.)
and m (.), with associated concave utility indexes and capacities, (u, ν) and (bu,bν), respec-
tively. Furthermore suppose both bu and u are differentiable. If u is a concave transformation
of bu and for all E, ν (E) ≤ bν (E), then % is at least as uncertainty averse as b%.
Now consider expanding the class of CEU maximizers in such a way that neither u norbu need be concave. By similar reasoning as was used to derive (5) above, we obtain the

following sufficient condition:

min* by > bx, y > x
min (by, y) ≥ max (bx, x)

+
µbu0 (y) /bu0 (x)
u0 (y) /u0 (x)

¶
≥ sup

hE∈Ei

µ
ν (E) / (1− ν (E))bν (E) / (1− bν (E))

¶
. (7)

Furthermore, if either u or bu is linear (that is, one of the individuals is a “Yaari-CEU
maximizer”) then it readily follows from Proposition (8) that (7) is both necessary and

sufficient. One implication of this result is that a CEU maximizer with a non-concave

utility index can be more uncertainty averse than a Yaari-CEU maximizer (or even CEU

maximizer with a strictly concave utility index) provided the degree of ‘pessimism’ embodied

in his capacity, as measured by the ratio (1− ν (E)) /ν (E), is sufficiently strong enough to
outweigh any region of non-diminishing marginal utility. Again, this accords with similar

results derived in the context of decision making under risk for RDEU maximizers.

A particularly interesting application of (4), is in the context of Epstein and Zhang’s

(2001) model of a CEU maximizer, (u, ν), for whom, just from the behavioral implications

of the preference relation, an outside analyst is able to classify each event as being either

‘ambiguous’ or ‘unambiguous’ for that preference relation.7 Let EUAν ⊂ E , denote the set
7 Among the many important contributions made by Epstein and Zhang (2001) is their preference-based

and model-free definition of an unambiguous event. An event T is unambiguous if (a) for all disjoint subevents
A,B ⊂ S\T , acts h, and outcomes x∗, x, z, z0, x∗AxBzTh % xAx

∗
BzTh implies x∗AxBz

0
Th % xAx

∗
Bz

0
Th and (b)

the condition obtained if T is everywhere replaced by S\T in (a) is also satisfied. Otherwise, T is ambiguous.
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of unambiguous events for (u, ν). The set of axioms that they impose on the preference

relation guarantees that the set of ‘unambiguous’ events is rich enough so that ‘beliefs’

over these events can be represented by a countably additive, convex-valued probability

measure π : EUA → [0, 1]. Moreover, for each A ∈ EUA, ν (A) = φ (π (A)), for some strictly
increasing and onto map φ : [0, 1] → [0, 1]. Hence for any (measurable) finite partition,

P = (A1, . . . , An), and for all acts of the form f = x1
A1x2

A2 . . . x
n−1
An−1xn for which x1 ≥ . . .

≥ xn, the certainty equivalent function, m (f) for the CEU maximizer, (u, ν), is defined by:

m (f) = u−1

Ã
nX
i=1

¡
u
¡
xi
¢
ν
¡
CiP
¢− u ¡xi¢ ν ¡Ci−1

P
¢¢!

.

Furthermore, if for each i = 1, . . . , n, Ai ∈ EUA, then f is an unambiguous act and

m (f) = u−1

Ã
nX
i=1

¡
u
¡
xi
¢
φ
¡
π
¡
CiP
¢¢− u ¡xi¢φ ¡π ¡Ci−1

P
¢¢¢!

.

If we take another such CEU maximizer (u,bν), for whom EUAbν = E (that is, every event is
unambiguous for this individual) and bν (A) = ν (A) for every A ∈ EUAν , then by construction

the two CEU maximizers, (u, ν) and (u,bν), agree over any pair of acts that are measurable
with respect to EUAν . Furthermore, since every event is unambiguous for (u, bν), this CEU-
maximizer is probabilistically sophisticated in the sense of Machina and Schmeidler (1992),

and so corresponds to Epstein’s (1999) notion of an ambiguity neutral preference relation.

Thus there exists a countably additive, convex-valued probability measure, bπ that extends
π to E . That is, for any E ∈ E , bν (E) = φ (bπ (E)), and for any (measurable) finite partition,
P = (A1, . . . , An), and for all acts of the form f = x1

A1x2
A2 . . . x

n−1
An−1x

n for which x1 ≥ . . .

≥ xn, the certainty equivalent function, bm (f) for the CEU maximizer, (u,bν), is defined by:
bm (f) = u−1

Ã
nX
i=1

¡
u
¡
xi
¢bν ¡CiP¢− u ¡xi¢ bν ¡Ci−1

P
¢¢!

= u−1

Ã
nX
i=1

¡
u
¡
xi
¢
φ
¡bπ ¡CiP¢¢− u ¡xi¢φ ¡bπ ¡Ci−1

P
¢¢¢!

.

According to Epstein’s (1999) definition, (u, ν) is ambiguity averse if for any pair of acts

f and h, such that h is measurable with respect to EUAν ,

bm (h) ≥ bm (f) implies m (h) ≥ m (f) .
Epstein and Zhang (2001) show that (u, ν) is ambiguity averse if and only if

bπ (E) ≥ φ−1 (ν (E)) for all E ∈ E .
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The following corollary to Proposition (8) establishes the connection of our definition of

more uncertainty averse to Epstein’s (1999) definition of ambiguity averse.

Corollary 10 Let % and b% be preference relations corresponding to the CEU-maximizers

(u, ν) and (u,bν) defined above. Then (u, ν) is ambiguity averse in the sense of Epstein
(1999), if and only if % is more uncertainty averse than b%.
From this corollary we can conclude that a CEU-maximizer is ambiguity averse in

the sense of Epstein (1999) if and only if there is an probabilistically sophisticated CEU-

maximizer, such that: (a) the two preference relations agree over the set of unambiguous

acts; and (b) the former is more uncertainty averse than the latter.

To explore what risk aversion may entail in this setting, consider a third CEU maximizer

(bu, bp), where bu (x) = x for all x ∈ R+. This individual is actually a subjective-expected-

value maximizer whose beliefs about the likelihood of events agrees with the CEU-maximizer

(u, v) for all events in EUAν . Using the probability measure p defined over the events in EUAν ,

we can form the partial ordering of second order stochastic dominance over the set of acts

measurable with respect to EUAν , as follows:

Definition 4 Fix a probability measure π defined over the events in EUAν . For any finite

partition P = (A1, . . . , An), such that Ai ∈ EUAν , for all i = 1, . . . , n, and any pair of acts

f = x1
A1 . . . x

n−1
Ax−1xn and g = y1

A1 . . . y
n−1
Am−1yn where x1 ≥ . . . ≥ xn and y1 ≥ . . . ≥ yn, we say

f second order stochastically dominates g (with respect to π) if

iX
j=1

¡
xj − yj¢π ¡Aj¢ ≥ 0, for all i = 1, . . . , n.

As is well-known, the CEU-maximizer (u, v) agrees with the partial ordering of second

order stochastic dominance over the set of acts that are measurable with respect to EUAν , if

and only if u is concave and φ is convex (see for example, Chew, Karni and Safra, 1987).

There are, however, a number of weaker notions of risk aversion. We shall consider two.8

The first is the weakest notion of risk aversion that requires that a (constant) act that gives

the ‘π—mean outcome’ of another act f in every state, is weakly preferred to f .

Definition 5 Fix a probability measure π defined over the events in EUAν . The preference

relation % defined over the set of acts that are measurable with respect to EUAν , is weakly risk

averse (with respect to the probability measure π) if for any finite partition P = (A1, . . . , An),

8 The interested reader is referred to the excellent overview by Chateauneuf, Cohen and Meilijson (2001)
that provides a taxonomy of five distinct characterizations of risk aversion for models of decision making
under risk.
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such that Ai ∈ EUAν , for all i = 1, . . . , n, and any act f = x1
A1 . . . x

n−1
Ax−1xn: (

Pn
i=1 π (A

i) xi)S
% f .

There is no known characterization of weak risk aversion for a probabilistically sophis-

ticated CEU-maximizer. Chateauneuf and Cohen (1994), do provide, however, sufficient

conditions that do not imply the concavity of u.9 The second alternative, aversion to mono-

tone mean-preserving spreads, in terms of its strength, lies between the weak definition and

the one based on the second-order stochastic dominance relation.

Definition 6 Fix a probability measure π defined over the events in EUAν . For any finite

partitions (A1, . . . , An) and (B1, . . . , Bn) such that Ai, Bi ∈ EUAν , and π (Ai) = π (Bi), for

all i = 1, . . . , n, and any pair of acts f = x1
A1 . . . x

n−1
Ax−1xn and g = y1

B1 . . . y
n−1
Bn−1yn where

x1 ≥ . . . ≥ xn and y1 ≥ . . . ≥ yn, we say g is a monotone mean-preserving increase in risk
(with respect to π) of f if£¡

xi − yi¢− ¡xj − yj¢¤ (i− j) ≥ 0 for all i, j ∈ {1, . . . , n}

and
nX
i=1

¡
xi − yi¢π ¡Ai¢ = 0.

A preference relation % defined over acts that are measurable with respect to EUAν is said to be

averse to monotone mean-preserving increases in risk, if for any such pair of (unambiguous)

acts g and f as defined above, f % g.

In the context of decision making under risk, where preferences are defined over lot-

teries, Chateauneuf, Cohen and Meilijson (1997) provide a complete characterization for a

Rank-Dependent Expected Utility maximizer to be averse to all monotone mean preserving

increases in risk. Adapting their result to the subjectively uncertain act-framework here, we

have that the CEU-maximizer (u, ν) is (weakly) averse to any monotone mean-preserving

increase in risk (with respect to π) if and only if

inf
E∈EUAν

·
(1− φ (π (E))) /φ (π (E))

(1− π (E)) /π (E)
¸
≥ sup

x≥y
u0 (x) /u0 (y) . (8)

They refer to the left-hand expression of (8) as the index of pessimism of φ. They dub the

right-hand expression as the index of greediness and note that if it equals one, then u is

concave. From (8), it follows that a necessary requirement for φ to satisfy is that

inf
E∈EUAν

·
(1− φ (π (E))) /φ (π (E))

(1− π (E)) /π (E)
¸
≥ 1

9 One implication of Chateauneuf and Cohen’s (1994) result is that the claim by Epstein and Zhang
(2001, p287) in Corollary 7.4 (a) that the concavity of u is necessary for a CEU-maximizer to be risk-averse
(in the weak sense) over acts that are measurable with respect to the set of unambiguous acts is incorrect.
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that is, φ (q) ≤ q, for all q ∈ [0, 1]. However, as they emphasize, the most significant feature
of (8) is that u need not be concave, for the CEU-maximizer (u, ν) to be monotone risk

averse.

A hint at the connection between this notion of risk aversion and our model-free definition

of increases in uncertainty, is suggested by the fact that if g is a monotone mean preserving

increase in risk (with respect to π) of f and Ai = Bi, for all i = 1, . . . , n, then g U f . And

indeed, the following corollary of Proposition 8 shows that the relationship is tight.

Corollary 11 Let % and b% be preference relations defined over acts that are measurable

with respect to EUAν , and that agree on this restricted domain, with the CEU-maximizers

(u, ν) and (bu, bp), respectively. Then % is at least as uncertainty averse as b% if and only if

(8) is satisfied.

4 Economic Implications

Choice sets in which all elements are ordered by U arise naturally in a range of economic

problems. In the one safe asset, one risky asset portfolio problem, analyzed by Pratt (1964)

and many others, gUf whenever g represents a portfolio with more of the risky asset. More

generally, standard capital market theory implies that idiosyncratic risk can be completely

traded away. Hence, net of such trades, all financial assets may be assumed to be comono-

tonic with the market portfolio. If the two fund separation property applies, and the dif-

ference between the state-contingent returns to the two funds are increasing and display a

single-crossing property, then any portfolio may be represented as a mixture of two acts f

and g with gUf , and where the (normalized) prices of both acts are 1. We may also allow

for fixed background risk h, representing, say, (normalized) returns to human capital, with

the assumption that (f + h)Uf. This will be true if and only if h is comonotonic with f and

takes both positive and negative values. Hence, we also have (g + h)Ug. Thus, the problem

of an individual deciding how to allocate her (normalized) initial wealth of 1, is to find the

optimal contingent income f∗, where

f ∗ ∈ B ≡
nef ∈ F : ef = h+ λf + (1− λ)g for some λ ∈ [0, 1]o

s.t f ∗ % ef , for all ef ∈ B.
The one safe asset, one risky asset portfolio problem arises when h(s) ≡ 0 and f is a constant
act.

We immediately obtain:
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Corollary 12 Let % be everywhere at least as uncertainty averse as b% and let f ∗ (respec-

tively, bf ∗) be the optimal contingent income for % (respectively, b%) and λ∗ (respectively, bλ∗)
the associated allocation to the less uncertain asset. Then bf∗ U f ∗, that is, λ∗ ≤ bλ∗.
5 Conclusion

Most economic analysis of choice under uncertainty, and particularly of increases in uncer-

tainty, has been based on the assumption that decision-makers have well-defined subjective

probabilities. On the other hand, the fundamental result of the literature, the proof of exis-

tence of equilibrium in state-contingent markets derived by Arrow and Debreu (1954), does

not require decision-makers to possess subjective probabilities or to satisfy the postulates of

any model specific to problems involving uncertainty. In this paper, definitions of increases

in uncertainty, and comparative degrees of aversion to such increases in uncertainty, inde-

pendent of subjective probabilities and of any particular model of choice under uncertainty

have been presented. Moreover, it has been shown that, for a number of widely-used models

of choice under risk and uncertainty, this definition is consistent with the definitions already

in use.

Appendix

Proof of Proposition 3.

We first establish the following lemmas.

Lemma 13 If for any pair of simple acts g and f , any pair of positive real numbers, α and

β, and any three element partition of S, (E−1, E0, E1), we have

g (s)− f (s) =
 α if s ∈ E1

0 if s ∈ E0

−β if s ∈ E−1
then there exists a simple act h for which gUh and hUf .

Proof. α > β/2 then define

h (s) =


f (s) + α− β/2 if s ∈ E1

f (s)− β/2 if s ∈ E0

f (s)− β/2 if s ∈ E−1.
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Notice that

g (s)− h (s) =


β/2 if s ∈ E1 ∪E0

−β/2 if s ∈ E−1

and h (s)− f (s) =


α− β/2 if s ∈ E1

−β/2 if s ∈ E0 ∪E−1

as required. If α ≤ β/2 then define

h (s) =


f (s) + α/2 if s ∈ E1

f (s) + α/2 if s ∈ E0

f (s)− β + α/2 if s ∈ E−1.

Now we have

g (s)− h (s) =


α/2 if s ∈ E1

−α/2 if s ∈ E0 ∪E−1

and h (s)− f (s) =


α/2 if s ∈ E1 ∪ E0

−β + α/2 if s ∈ E−1.

Lemma 14 If for any pair of simple acts f and g, gUf then there exists a finite sequence

of simple acts hhmiMm=1 such that h1 = f , hM = g and hm+1Uhm, m = 1, . . .M − 1.
Proof. From the definition of gUf it follows that g − f is pairwise co-monotonic with

both g and f . Let [E−J , . . . , E1, E0, E1, . . . , EI] be the coarsest partition of S for which
g− f is measurable and with the labelling monotonically ordered, that is for any i > j, and
any s ∈ Ei and s0 ∈ Ej, g (s)− f (s) > g (s0)− f (s0). Moreover, assume that for any i < 0,
and any s ∈ Ei, g (s)−f (s) < 0;. for any i > 0 and any s ∈ Ei, g (s)−f (s) > 0; and for any
s ∈ E0, g (s) = f (s) E0 may be empty, but since infs∈S g (s) < infs∈S f (s) and sups∈S g (s)

> sups∈S f (s) it follows that I ≥ 1 and J ≥ 1. For each i = −J, . . . , 0, . . . , I, and some
si ∈ Ei, set di := g (si)− f (si). By construction, we have

d−J < d−J+1 < . . . < d−1 < d0 = 0 < d1 < . . . < dI .

Let h1 := f . Define

h3 (s) =


f (s) + d1 if s ∈ E1 ∪E2 ∪ . . . ∪ EI

f (s) if s ∈ E0

f (s) + d−1 if s ∈ E−1 ∪ E−2 ∪ . . . ∪ E−J .
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For i = 2, . . . ,min{I, J}− 1, define

h2i+1 (s) =


h2i−1 (s) + di − di−1 if s ∈ Ei ∪ . . . ∪ EI

h2i−1 (s) if s ∈ E−i+1 ∪ . . . ∪ E0 ∪ . . . ∪ Ei−1

h2i−1 (s) + d−i − d−i+1 if s ∈ E−i ∪ . . . ∪ E−J .

Proof. I ≥ J , then for i = J, . . . , I, define

h2i+1 (s) =


h2i−1 (s) + di − di−1 if s ∈ Ei ∪ . . . ∪ EI

h2i−1 (s) if s ∈ E−J+1 ∪ . . . ∪ E0 ∪ . . . ∪ Ei−1

h2i−1 (s) + (d−J − d−J+1) / (I − J + 1) if s ∈ E−J .

Notice, in this case h2I+1 = g.

If, however, I < J , then for i = I, . . . , J , define

h2i+1 (s) =


h2i−1 (s) + (dI − dI−1) / (J − I + 1) if s ∈ EI

h2i−1 (s) if s ∈ E−i+1 ∪ . . . ∪ E0 ∪ . . . ∪ EI−1

h2i−1 (s) + d−i − d−i+1 if s ∈ E−i ∪ . . . ∪ E−J

and now h2J+1 = g.

For each i = 1, . . . ,max {I, J}, it follows from Lemma (13) that there exists a simple act
h2i for which h2i+1Uh2i and h2iUh2i−1. Hence we have

g = h2 max{I,J}+1Uh2 max{I,J}U . . . Uh1 = f

as required.

We are now in a position to prove the proposition. Set x := infs∈S f (s), x := sups∈S f (s),

y := infs∈S g (s) and y := sups∈S g (s). Set x0 := sups∈S {f (s) | f (s) % g (s)} and x0 :=

infs∈S {f (s) | g (s) % f (s)}. Since gUf it follows that y < x ≤ x < y which combined

with (2) implies that x0 and x0 are well defined. Set E
1
1 := {s ∈ S | f (s) Â x0}, E1

0 :=
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{s ∈ S | f (s) = g (s)} and E1
−1 := S\ (E1

1 ∪E0). Define

f1 (s) =


x if s ∈ E1

1

x0 if s ∈ E1
0

x if s ∈ E1
−1

g1 (s) =


y if s ∈ E1

1

x0 if s ∈ E1
0

y if s ∈ E1
−1.

From Lemma (13) it follows there exists a simple act h for which hUf1 and g1Uh, as re-

quired. For step n, divide each of the intervals [x, x0) [x0, x0]and (x0, x] into n equal length

subintervals: that is,

[x, x+ (x0 − x) /n) , [x+ (x0 − x) /n, x+ 2 (x0 − x) /n) , 2026, [x+ (n− 1) (x0 − x) /n, x0) ,

[x0, x0 + (x0 − x0) /n] , [x0 + (x0 − x0) /n, x0 + 2 (x0 − x0) /n] , 2026, [x0 + (n− 1) (x0 − x0) /n, x0]

and

[x0, x0 + (x− x0) /n] , (x0 + (x− x0) /n, x0 + 2 (x− x0) /n] , 2026, (x0 + (n− 1) (x− x0) /n, x] .

For each m = 1, . . . , n, set

Enm := {s ∈ S | f (s) ∈ (x0 + (m− 1) (x− x0) /n, x0 +m (x− x0) /n]}
En0m := {s ∈ S | f (s) ∈ (x0 + (m− 1) (x0 − x0) /n, x0 +m (x0 − x0) /n]}
En−m := {s ∈ S | f (s) ∈ [x0 −m (x0 − x) /n, x0 − (m− 1) (x0 − x) /n)} .
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Define

fn (s) =


x0 +m (x− x0) /n if s ∈ Enm
x0 +m (x0 − x0) /n if s ∈ En0m
x0 −m (x0 − x) /n if s ∈ En−m

gn (s) =


supt∈Enm g (t) if s ∈ Enm

x0 +m (x0 − x0) /n if s ∈ En0m
inft∈Dn

m
g (t) if s ∈ En−m.

Notice by construction all acts fn and gn are simple with fn → f and gn → g. Moreover:

fn (s)−gn (s) > 0 if s ∈ En−m, for some m = 1, . . . , n; fn (s) = gn (s), if s ∈ En0m, for some m
= 1, . . . , n; and gn (s)− fn (s) > 0 if s ∈ Enm for some m = 1, . . . , n. Finally, it also follows

from (2) that for any s ∈ Enm and any t ∈ Enm0 withm > m0, gn (s)−fn (s) > gn (t)−fn (t) > 0.
Similarly, for any s ∈ En−m and any t ∈ En−m0 with m > m0, fn (s)− gn (s) > fn (t)− gn (t).
Hence gnUfn and applying Lemma (14) we can transform fn into gn by a finite sequence of

elementary increases in uncertainty.

Proof of Proposition 7.

Sufficiency is obvious. For necessity of the equality of π and bπ, consider choices in a
neighborhood of a constant act x. For any real-valued function d : S → R and sufficiently

small ε > 0, the certainty equivalent of the act x + εd (in the neighborhood of x) under m

is approximately

x+ ε

Z
s

d(s)π (ds)

and, similarly for bm, the certainty equivalent is
x+ ε

Z
s

d(s)bπ (ds) .
If π (E) > π̃ (E) for some E ⊂ S then

π (E)

1− π (E) >
bπ (E)

1− bπ (E) − δ

(1− π (E)) (1− bπ (E))
for some δ > 0. Thus if we take

d (s) =


1− bπ (E)− δ if s ∈ E

−bπ (E)− δ if s /∈ E,
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then for any ε > 0 we have

ε

Z
s

d(s)π (ds) > 0 > ε

Z
s

d(s)bπ (ds)
and x+ εd U x. So for sufficiently small ε > 0, it follows from continuity and monotonicity

of % and b%, that x bÂ (x+ εd) but (x+ εd) Â x.
To demonstrate the necessity of u being a concave transformation of bu, suppose the

contrary, that is, u is not a concave transform of ũ. Then there must exist utility levels v1,

v2 and v3 in the range of bu, and λ in (0, 1), such that
λv1 + (1− λ) v3 = v2

λu ◦ bu−1 (v1) + (1− λ)u ◦ bu−1 (v3) > u ◦ bu−1 (v2) .

Since π is non-atomic, there exists an event E ⊂ S for which π (E) = λ. So consider the act
f := bu−1 (v1)E bu−1 (v3) and the constant act x := bu−1 (v2). By construction we have f U x,

x b% f and f Â x. ¥
Proof of Proposition 8.

Sufficiency : Consider any pair of comonotonic simple acts f and g, for which g − f =
αA (−β), for some A in E , and for some α, β > 0. Further suppose g Â f . We need to show
that g bÂ f . By the implicit function theorem and the fact the preference relation admits a

Gateau-differentiable CU representation, it follows that

d

dε
m (f + (g − f) ε) =

α
Pj

i=1

³
∂+

∂x

£
Ψ (xi + αε, CiP)−Ψ

¡
xi + αε, Ci−1

P
¢¤´

∂+

∂x
Ψ (m (f + (g − f) ε) ,S)

−
β
Pn

i=j+1

³
∂−
∂x

£
Ψ (xi − βε, CiP)−Ψ

¡
xi − βε, Ci−1

P
¢¤´

∂+

∂x
Ψ (m (f + (g − f) ε) ,S)

> 0 for all ε in [0, 1] .

From condition (4) it follows thatPj
i=1

∂+

∂x
bΨ (xi, Ai)Pn

i=j+1
∂−
∂x
bΨ (xi, Ai) ≥

Pj
i=1

∂+

∂x
Ψ (xi, Ai)Pn

i=j+1
∂−
∂x
Ψ (xi, Ai)

>
β

α
.

And since

sign

µ
d

dε
bm (f + (g − f) ε)¶

= sign

"
α

jX
i=1

µ
∂+

∂x

hbΨ ¡xi + αε, CiP¢− bΨ ¡xi + αε, Ci−1
P
¢i¶

−β
nX

i=j+1

µ
∂−

∂x

hbΨ ¡xi − βε, CiP¢− bΨ ¡xi − βε, Ci−1
P
¢i¶#
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it further follows that

d

dε
bm (f + (g − f) ε) > 0 for all ε in [0, 1]

and hence

(bm (g)− bm (f)) = Z 1

0

·
d

dε
bm (f + (g − f) ε)¸ dε > 0

as required.

Necessity : Suppose for the ordered partitions (A1, . . . , An) condition (4) does not hold

in an open set around the set of outcomes x1 ≥ . . . ≥ xn. That is, for some j ∈ {1, . . . , n}
and some γ > 0, we havePj

i=1
∂+

∂x

hbΨ (xi, CiP)− bΨ ¡xi, Ci−1
P
¢i

Pn
i=j+1

∂−
∂x

hbΨ (xi, CiP)− bΨ ¡xi, Ci−1
P
¢i < γ < Pj

i=1
∂+

∂x

£
Ψ (xi, CiP)−Ψ

¡
xi, Ci−1

P
¢¤Pn

i=j+1
∂−
∂x

£
Ψ (xi, CiP)−Ψ

¡
xi, Ci−1

P
¢¤ .

So consider f = x1
A1 . . . x

n−1
An−1xn and the act g (ε) = f+(ε)∪ji=1A

i (−γε). For sufficiently small
ε,

sign (m (g (ε))−m (f)) = sign

"
jX
i=1

∂+

∂x

£
Ψ
¡
xi, CiP

¢−Ψ ¡xi, Ci−1
P
¢¤

−γ
nX

i=j+1

∂−

∂x

£
Ψ
¡
xi, CiP

¢−Ψ ¡xi, Ci−1
P
¢¤#

and

sign (bm (g (ε))− bm (f)) = sign

"
jX
i=1

∂+

∂x

hbΨ ¡xi, CiP¢− bΨ ¡xi + ε, Ci−1
P
¢i

−γ
nX

i=j+1

∂−

∂x

hbΨ ¡xi, CiP¢− bΨ ¡xi, Ci−1
P
¢i#

Hence for sufficiently small ε, we have g (ε)Uf , but g (ε) Â f and f bÂ g (ε). ¥
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