l_‘._l
TILBURG 0‘5%?@ ¢ UNIVERSITY
lf:fl

Tilburg University

The Hermitian Two-Graph and its Code
Haemers, W.H.; Kuijken, E.

Publication date:
2001

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Haemers, W. H., & Kuijken, E. (2001). The Hermitian Two-Graph and its Code. (CentER Discussion Paper; Vol.
2001-83). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022


https://research.tilburguniversity.edu/en/publications/5e66b41d-9ec5-4c5c-9b9d-4af3a43c4f9d

No. 2001-83

THE HERMITIAN TWO-GRAPH AND ITS CODE

By Willem H. Haemers and Elisabeth Kuijken

November 2001

ISSN 0924-7815




The Hermitian two-graph and its code

Willem H. Haemers
Department of Econometrics and Operations Research
Tilburg University
5000 LE Tilburg, The Netherlands
Haemers@kub.nl

Elisabeth Kuijken*
Department of Pure Mathematics and Computer Algebra
Ghent University
Galglaan 2, B-9000 Ghent, Belgium
ekuijken@Qcage.rug.ac.be

Abstract

The two-graph code of the Hermitian two-graph H(q) is investigated. By use of
this code we show that if ¢ = 3 (mod 8) there exists no strongly regular graph with
valency ¢%(q — 1)/2 in the switching class corresponding to H(q). For ¢ = 5 the code
is worked out in detail. We generate the weight enumerator and give an account for
the code words of several weights. Here it follows that there is a unique regular graph
with valency 50 in the switching class.

Keywords: discrete mathematics, finite geometry, strongly regular graph, error correct-
ing code. Mathematics Subject Classification: 05E30, 51E20, 94B05. JELcode: C0.

*The second author is a Research Assistant of the Fund for Scientific Research - Flanders (Belgium)
(F.W.0.). Most of this research was done during a visit to Tilburg University (The Netherlands) and was
supported by a Marie Curie Fellowship of the European Community programme MARIE CURIE TRAINING
SITES: ENTER under contract number HPMT-CT-00-00134, reference number of the fellow HPMT-GH-

00-00134-17.



1 Introduction

A two-graph can be seen as a class of graphs on a common vertex set that are equivalent
under an operation called switching (see section 2). In case of a regular two-graph one
wonders whether there exists a regular graph in such a class. If so, that graph is
necessarily strongly regular. There are only two candidates ky and k4 (say) for the
valency of such a graph. For the Hermitian two-graph H(q) (¢ is an odd prime power)
such graphs were known to exist for one of the valencies k; = q(q? 4 1)/2 for all ¢, but
not for k; = ¢*(g — 1)/2, ¢ > 5. For ¢ = 3 there is no graph with valency ky = 9,
but for ¢ = 5 there is one with ky = 50. We prove that for the valency k; there is
no such graph in H(q) if ¢ = 3 (mod 8), and that the one for ¢ = 5 is unique up to
isomorphism. For the Ree two-graph R(q) (g is an odd power of 3) we show a similar
result. To do so we use a binary code related to the two-graph, called the two-graph
code (the name is introduced in [9], but the concept was used earlier in [8] and [2]).
An important tool is Theorem 4.1 cited from [9], which relates the code to graphs in
the switching class.

Much attention is given to the case ¢ = 5. For that case we give an explicit descrip-
tion of the mentioned graph in H(5) with valency ky = 50. We compute the weight
enumerator of the two-graph code, and give a description of the words of several of the
occuring weights. Some of these words are explained by using a different construction
of H(5), based on the Hoffman-Singleton graph.

2 Two-graphs

This section gives a brief introduction to two-graphs; we recommend [15] and [18] for
more information. The reader is assumed to be familiar with (strongly reqular) graphs,
their (0,1) adjacency matrices and their eigenvalues. A strongly regular graph with
parameters v, k, A and p will be abbreviated to srg (v, k, A, p).

Consider a graph I' with vertex set 2 and let {21, } be a partition of 2. Inter-
change edges and non-edges between vertices of )1 and vertices of (22, while (non-)edges
inside €7 and inside y are left unchanged. A new graph I" arises; the construction
of I from T is called (Seidel) switching with respect to the partition {€,Qs} of Q,
and T' and T are said to be switching equivalent. Switching equivalence is indeed an
equivalence relation; the classes are called switching classes.

A two-graph is a pair (2, A) of a finite verter set Q2 and a set A of unordered triples
from  called coherent triples, such that every set of four vertices contains an even
number of coherent triples. Let T" be a graph with vertex set €2 and define A as the
set of unordered triples of vertices containing an odd number of edges. Then (2, A) is
a two-graph, and we say that I" is a graph in (Q, A). It easily follows that a graph I
is switching equivalent to I' if and only if I” and I' are in the same two-graph. Let V



denote the set of non-coherent unordered triples from Q. Then (2,V) is also a two-
graph, called the complement of (€2, A) (sometimes denoted by (€2, A)). If the graph
I'is in (€2, A), then clearly T, the complement of T, is in (€2, V). For a fixed vertex
u € ) there is a unique graph T'y, in (2, A) where u is an isolated vertex.

A two-graph (Q,A) is reqular if every pair of vertices is contained in a constant
number a of coherent triples. The numbers n := || and a are called the parameters
of the regular two-graph (2, A). Regular two-graphs are closely related to strongly
regular graphs. Let (€2, A) be a regular two-graph with parameters n and a, and let
Iy, be the graph in (2, A) for which u is an isolated vertex. The graph I' obtained
from T, by deleting u is called the descendant of (2, A) with respect to u. It follows
that I' is an srg (n — 1,a, (3a —n)/2,a/2). And conversely, the switching class of any
srg (v, k, A\, i) with k = 2u extended with an isolated vertex is a regular two-graph with
parameters v + 1 and k.

Let (22,A) be a regular two-graph whose descendants have eigenvalues k, r and
s with multiplicity 1, f and g, respectively. Then k = —2rs. Suppose there exists
a regular graph IV in (Q,A). Then I" is strongly regular with the same restricted
eigenvalues r and s as the descendants. For the valency of I” just two values are
possible: kf := —(2s + 1)r and kg := —(2r 4 1)s.

Automorphisms of two-graphs are defined in the usual way. One easily sees that
a two-graph admitting an automorphism group which acts doubly transitively on the
vertex set must be regular.

3 Regular partitions

Let A be a symmetric real n xn matrix and let { X1, ..., X4} be a partition of the index
set {1,...,n} of the rows and columns of A. Then, after an appropriate permutation
of the rows and the corresponding columns, A can be written as

A=

where A;; is the submatrix of A obtained by restricting the index set of the rows to
X; and the index set of the columns to X;. Let b;; denote the average of the row sums
in Ajj, i, € {1,...,d}. The matrix B := (b;j)1<i j<a is called the quotient matriz of
A with respect to the partition. If for all ¢ and j in {1,...,d} all row sums in A;; are
equal to b;;, the partition is said to be regular (or equitable).

Lemma 3.1 Let A be the adjacency matriz of a strongly reqular graph with eigenvalues
k (the valency), r and s (r > s). Let {X1,X3} be a partition of the vertex set with
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quotient matriz
bi1 D12
B = .
[ bar  b2o
1. b1 + big = bay + bog = k, b12|X1| = b Xo| .
2. §<bip+bp—k<r.

3. Equality holds on the left or the right hand side of 2 if and only if the partition
s reqular.

Proof. Statement 1 is obvious. The eigenvalues of B are k (the row sum) and
bi1 + ba2 — k. Now eigenvalue interlacing ([7], Theorem 3.5) gives 2 and the ‘only
if” part of 3. The ‘if” part follows from the fact that in case of a regular partition the
eigenvalues of B are also eigenvalues of A. But in A there are just two candidates r
and s for the eigenvalue b1 + boo — k. 0

Lemma 3.2 Let I" be a descendant of a regular two-graph (Q,A). Let A be the ad-
jacency matriz of I' and let k, r and s be its eigenvalues, where k is the valency of
.

1. There exists a reqular graph in (2, A) with valency ky = —(2s + 1)r if and only
if A admits a regqular partition {X1, Xo} with | X1| = ky for which the left hand
inequality in 2 of Lemma 3.1 is tight.

2. There exists a regular graph in (2, A) with valency kg = —(2r + 1)s if and only
if A admits a reqular partition {X1, Xs} with | X1| = kg for which the right hand
inequality in 2 of Lemma 3.1 is tight.

In both cases the regular graph in (2, A) is obtained by adding an isolated vertex to T’
and switching with respect to Xi.

The proof of Lemma 3.2 is straigtforward. The partitions occurring in this lemma
are called switch partitions. Lemmas 3.1 and 3.2 can be of help in checking whether
a partition is a switch partition. Suppose a descendant I' of a regular two-graph has
a subgraph I'y of size ky and average valency at most s(1 —r). Then by 1 and 2 of
Lemma 3.1 the average valency equals s(1 — ), by 3 of Lemma 3.1 the partition into
the vertices of I'y and the remaining vertices of I' is regular, and by Lemma 3.2 the
partition is a switch partition. An analogous remark holds for a subgraph I'y of I' of
size kq and average valency at least r(1 — s).

4 Two-graph codes

Suppose A is a (0,1) matrix of size m x n. The (binary) code Cy4 of A is defined as the
subspace of F4 generated by the rows of A. The dimension of C4 is the 2-rank of A.
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The code of a graph T is the code C4 of its adjacency matrix A. It can be proved (see
for example [9]) that the 2-rank of a symmetric integral matrix with zero diagonal, and
hence the dimension of the code of a graph, is always even.

Suppose that the adjacency matrix A of a graph has a regular partition {X;, X2}

with quotient matrix
bi1 b2
bor boo |

By taking the sum of the rows (mod 2) of one part of the partition we see that the
characteristic vector of X; (i € {1,2}) is in the code Cy if b;1 is odd and b3_; 1 is even,
or if b; 2 is odd and b3_; 2 is even.

Let (2,A) be a two-graph, let u € Q and and let A, be the adjacency matrix of
I'y. Then the (two-graph) code of (2, A) is the code C := Cy,+5 = Ca, + (1), that is,
the code generated by the rows of A, and the all-one vector 1. In [9] it is shown that
the two-graph code does not depend on the choice of u and that an automorphism of
the two-graph is also an automorphism of the code. The following theorem from [9]
gives the relation between the codes of a regular two-graph, a descendant and a regular
graph in the two-graph.

Theorem 4.1 Let (2, A) be a regular two-graph with two-graph code C'. Assume that
T is a regular graph with valency k in (2,A). So T is strongly reqular; let k, r and
s be its eigenvalues. Take u € ) and let Ay and A be the adjacency matrices of T,
and T, respectively. Assume that {Q1,Qa} with u € Qg is the partition of Q by which
Iy is switched to T, and let x denote the characteristic vector of 1. Then one of the
following holds.

1. CA+<l>:CAu+<l>:C7 lgCA7 XECAu7
dimCy =dimCy, =dimC — 1.

2. CA:CAu+<l>+<X>:C+<X>7 leCA; X&chu;
dimCy =dimCy, +2=dimC + 1.

If k is even and r + s is odd, then 1 holds. If k =2 (mod 4) and r + s is even, or k is
odd, then 2 holds.

5 The Hermitian two-graph H(q)

Taylor’s description [17] of the Hermitian two-graph (also known as the wunitary two-
graph) reads as follows. Let ¢ be an odd prime power, H a non-degenerate Hermitian
form in PG(2,¢%) and U the corresponding Hermitian curve. Define A to be the
set of triples {z,y, 2} from U for which H(x,y)H(y,z)H(z,x) is a square in Fp if
g = —1 (mod 4), a non-square if ¢ = 1 (mod 4). Then H(q) := (U,A) is a regular



two-graph with parameters n = ¢ + 1 and a = (¢ — 1)(¢® + 1)/2. Its automorphism
group PT'U3(¢?) acts doubly transitively on ¢. The descendant H'(q) of H(q) with
respect to any vertex w is called the Hermitian graph (also known as Taylor’s graph),
and is an

srg (¢, (g — 1)(¢* +1)/2,(q— 1)*/4 — 1, (g — 1)(¢* + 1) /4)

with eigenvalues k = (¢ — 1)(¢* +1)/2, » = (¢ — 1)/2 and s = —(¢® + 1)/2 and
multiplicities 1, (¢ — 1)(¢*> + 1) and g(q — 1), respectively.

The two possibilities for the valency of a regular graph in H(q) are kf = ¢*(q—1)/2
and k, = q(¢* + 1)/2. By switching of T', := H(q) U {u} with respect to the set of
points different from « on the union of (¢® 4+ 1)/2 lines of the Hermitian unital through
u, an

srg (¢° +1,q(¢" +1)/2,(¢* + 3)(q — 1) /4, (¢* + 1) (g + 1) /4)

is obtained; in fact there are many mutually non-isomorphic strongly regular graphs
with these parameters in H(q), see [10]. It is known that k; = ¢*(q — 1)/2 does not
occur for ¢ = 3, but it does for ¢ = 5 (see section 6). One of the purposes of this paper
is to settle the existence question for bigger ¢, hoping for a positive answer for some q.
Unfortunately we only have non-existence results. First we need a result from [2].

Proposition 5.1 If ¢ = 1 (mod 4), the two-graph code of H(q) has dimension ¢* —
q+1. If ¢ =3 (mod 4), the two-graph code of H(q) has dimension ¢* — q+ 1.

The proposition has a direct proof if ¢ = 1 (mod 4), but if ¢ = 3 (mod 4) the
proof is based on a result from Landazuri and Seitz [12] which states that a non-trivial
representation of PT'Us(¢?) over Fy has degree at least ¢* — q.

Theorem 5.2 For ¢ = 3 (mod 8) the Hermitian two-graph H(q) contains no reqular
graph with valency kr = ¢*(q — 1) /2.

Proof. Assume that I with adjacency matrix A is a regular graph of valency ks in H(q).
Then the complement T of T is a regular graph with valency ks := ¢*(¢+1)/2 in H(q).
The eigenvalues of T are k¢, 7 = (¢>—1)/2 and 5 = —(¢+1)/2. If ¢ = 3 (mod 8), then T
and 5 are even and ky = 2 (mod 4). By Theorem 4.1 it follows that dim C; = dim C'+-1,
where C denotes the two-graph code of H(q). By proposition 5.1 dim g = P —q+2.
It can be calculated that the eigenvalue 3 has multiplicity q(¢? — ¢ + 1), and hence

dim C = 2-rank(A) = 2-rank(A — 31) < rank(A —3I) = ¢* — ¢ + 1,

a contradiction. Therefore I" cannot exist. 0



The Ree two-graph R(q), ¢ = 3%¢*1, e € N (see Taylor [17]), is defined on the points
of the Ree unital and has the same parameters as the Hermitian two-graph H(q); its
automorphism group is the Ree group R(gq). In [12] it is also proved that a non-trivial
representation of the Ree group R(q) over Fy has degree at least ¢* — q. Therefore the
argument above also applies for the Ree two-graph. Since ¢ = 3%*! = 3 (mod 8) we
have:

Theorem 5.3 The Ree two-graph R(q) contains no reqular graph with valency ky =
2
¢ (q—1)/2.

Note that the Ree two-graph contains a regular graph with valency kg, = q(g>+1)/2.
It is constructed by a similar method as in the Hermitian case, namely by switching
the descendant of R(q) extended with an isolated vertex w with respect to the set of
points different from w on the union of (¢? + 1)/2 lines of the Ree unital through w.

6 Regular graphs in H(5)

For ¢ = 5 there exists a description of H(5) in terms of the Hoffman-Singleton graph
(see section 8). It was J.-M. Goethals who observed that this approach gives an
srg (126,50, 13,24) in the switching class of H(5). So for ¢ = 5 there exists a graph in
H(q) with degree ks = ¢?(q — 1)/2. In this section we give an explicit description of a
switching set S in the descendant of H(5) that leads to Goethals’ graph.

Let the Hermitian form defining H(5) be given by H(X,Y) = XoY5 +X1Yy +XoYP.
If 7 is an element of Fa5 such that % is equal to 2, which is a non-square in Fs, then
any element of Fa5 can be written as a + bi for some a,b € F5. This implies that the
corresponding Hermitian curve is the set

U=1{(0,1,0)} U{(a+bi,(2a* +b*) +di,1) | a,b,d € F5}.

Suppose that H'(5) is the descendant of H(5) with respect to u := (0,1,0). Then each
vertex of H'(5) can be represented by a triple (a,b,d) from F3. It follows straightfor-
wardly (see [16]) that two triples (a,b,d) and (a/,V/,d’) are adjacent whenever

((a—a)?=2(b—1))* +2(ab—ba+d—d)?=+2.

The mentioned switching set S can be described in terms of triples from Fg by § =
S1 U S2, where

Si = {(a,0,£1) |a € Fs),
Sy = {(a,b,£2—ab)|acFs, beFs\ {0},



The elements of the automorphism group PI'Us(25) of H(5) can be written as M oo,
where M is an element of PGUj3(25) and can be represented by a 3 x 3 unitary matrix,
and o is an automorphism of Fao5 and hence is either the identity or the involution
T:x + 25, A general element of the stabilizer PT'U3(25),, of the vertex u in PT'U3(25),
and hence of the automorphism group of H’(5), is of the form

0 —zad

Yy |°0,
26

S8 N

1
0
where z € Fo5 \ {0}, (z,y,1) € U\ {u} and o is an automorphism of Fy5. Consider the
subgroup H of PI'U3(25), generated by

1 0 4 4 0 0 300
p=1112(|,6:={0 1 0 |o7andy:=|0 1 0 |or.
0 01 0 01 0 0 4

The elements ¢, 8 and ¥ have order 5, 2 and 4, respectively, and preserve S; and
Ss. One easily verifies that f oo = ¢* 00, Yoy = 201 and oy = 1o 4.
Therefore the order of H equals 40. It follows by straightforward calculations that any
element of PT'U3(25),, stabilizing S must stabilize S1. Moreover, exactly four elements
of PI'U3(25),, stabilize S and the vertex (0,0,1) € Si. As a consequence the stabilizer
of S in PT'U3(25),, has order at most 40, and hence is equal to H.

Proposition 6.1 Switching of H'(5) U {u} with respect to the set S described above
produces an srg (126, 50,13, 24) in H(5).

Proof. By Lemma 3.1 it suffices to show that S induces a regular subgraph of degree
13 in H'(5). One easily checks that H acts transitively on S and Sp; this means that
we only have to calculate the degree for (0,0,1) and (0,1,2). For the first vertex we
need to count the number of solutions of

(a? = 20%)2 + 2(d — 1)* = £2 with (a,b,d) € S.

We find one solution in S7 and twelve in Ss. For the second vertex we count solutions
in S of
(a® —=2(b —1)%)? +2(d — a — 2)? = +2 with (a,b,d) € S,

and find three solutions in 57 and ten in Ss. So both vertices have degree 13. 0

We tried to generalize S to larger ¢ = 1 mod 4 but failed. The obvious generalization
would be to replace +1 by ‘a non-zero square’ and £2 by ‘a non-square’ in the above
definition of S. This indeed gives a subset with the right number of vertices, but with
too many edges (at least for ¢ = 9 and ¢ = 13). We also tried many variations without
luck. We now have the feeling that the case ¢ = 5 is special.
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weight Cy C weight Cy C
0 1 1 64 | 115290 | 236250
36 259 525 66 | 146412 | 286650
42 1380 2250 68 | 93240 | 189000
48 3675 7875 70 | 90720 | 189000
50 8568 | 18900 72 | 57890 | 110250
52 4725 7875 74 3150 7875
54 | 52360 | 110250 76 | 10332 | 18900
56 | 98280 | 189000 78 4200 7875
58 | 95760 | 189000 84 870 2250
60 | 140238 | 286650 90 266 525
62 | 120960 | 236250 126 0 1

Table 1: Weight distributions of the codes C'4 of H'(5) and C of H(5).

7 The code of H(5)

The weight enumerator of the code Cy of the Hermitian graph H'(5) with adjacency
matrix A has been generated by computer using the software from [9]. From this the
weight enumerator of the two-graph code C of H(5) immediately follows, since the
number of words of weight w in C equals the number of words of weight w or 126 — w
in Cy.

Both weight enumerators are given in Table 1. Using MacWilliams’ Theorem, we
also computed the weight enumerator of the dual code C+ of C, which we give in
Table 7. In [2] it is proved that C* is the binary code of the corresponding Hermitian
unital. More precisely, if NV is the block-point incidence matrix of the Hermitian unital
in PG(2,25), then C+ = Cy. From Table 7 we see that the number of words of weight
6 in O equals 21525. Now take a coherent 6-set in H(5) (that is a set of six vertices
of which all unordered triples are coherent). Suppose H'(5) is the descendant of H(5)
with respect to a vertex u of this coherent 6-set. Then the remaining five vertices form
a clique in ‘H'(5). The size of the clique meets the bound of Delsarte, which implies
that every vertex outside the clique is adjacent to exactly two vertices of the clique (see
for example [1], Proposition 1.3.2). Let A, be the adjacency matrix of H'(5) U {u};
then the rows of A, + J corresponding to w and the vertices of the 5-clique in H'(5)
sum up to 0. This implies that the coherent 6-set in H(5) corresponds to a code word
in C of weight 6. But the number of coherent 6-sets in H(5) equals 21525 (see [16]).
So the coherent 6-sets yield all code words of weight 6 in C*.

Also for some weights occurring in C' the corresponding code words can be accounted
for in a more theoretic way.



weight number of code words weight number of code words

0,126 1 34,92 6160512966566502512146500

6,120 21525 36,90 40933186152747536692851800

8,118 1228500 38,88 233196885552052675471341375
10,116 184552200 40,86 1144458561403784200188758850
12,114 18552581250 42,84 4858299700266647804047008000
14,112 1314242167500 44,82 17902783039228562237737038750
16,110 68079082765050 46,80 57444582099852105080832400050
18,108 2667514596045250 48,78 | 160926311556224375790588057000
20,106 81120550319953200 50,76 | 394499358043598096283245023710
22,104 1954268046055820250 52,74 | 847905860048538708672443181000
24,102 37924129974003107625 54,72 | 1600414904256326262263020974000
26,100 601068274770626079480 56,70 | 2656273048882773962828716181475
28, 98 7871132213541952114500 58,68 | 3880761895373175524889157806000
30, 96 | 86003428522692699669525 60,66 | 4994562484553575572315539465400
32, 94 | 790676681158633859233875 62,64 | 5665434441759763029730883712375

Table 2: the weight distribution of the dual code C* of H(5).

7.1 Words of weight 50 and 76

The characteristic vector x of the switching set S constructed in section 6 satisfies
Ax = x (mod 2). So x is a code word of weight 50 in C'4 and (if extended by one
coordinate) also in C. Note that this means that we are in case 1 of Theorem 4.1.
We saw that the stabilizer of S has order 40 and index 150 in the automorphism
group PT'U3(25),, of H'(5). This holds for each of the 126 descendants of H(5), leading
to 18900 code words of weight 50. We claim that all these code words are distinct.
Suppose that they are not; then it is possible to switch H'(5) extended by an isolated
vertex such that another vertex becomes isolated while the subgraph induced by S
remains regular of valency 13. Let {S’,5"}, with |S’| < |S”|, be the corresponding
partition of S. If switching does not change the degree, every vertex of S’ is adjacent
to precisely |S”|/2 vertices of S”. But the degree is 13 and therefore |S”| = 26 and S’
induces a coclique of size 24 in H(5). Such a coclique cannot exist because of Cvetkovi¢’
bound (see [7], Theorem 3.1). Thus we obtained all code words of weight 50. In other
words, starting with S, the action of the full automorphism group of H(5) produces all
18900 code words of weight 50 in C. And of course the words of weight 76 are their
complements.

It also follows that there are no other sets in H'(5) inducing a graph on 50 vertices
of degree 13. Hence:

Theorem 7.1 Up to isomorphism, there is only one srg (126,50, 13,24) in H(5).
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7.2 Words of weight 52 and 74

Let A, be the adjacency matrix of H'(5) U {u}. Each non-zero row of A, has weight
52, and so has the sum of any two rows of A,, corresponding to mutually non-adjacent
vertices of H'(5). On the other hand the sum of any two rows of A, corresponding
to mutually adjacent vertices of H'(5) yields a code word of weight 74 in C, so its
complement (which is also contained in C') has weight 52. Since H'(5) has 125 vertices
and 7750 pairs of vertices, we obtain 7875 words of weight 52 in C'. These words are all
distinct. Indeed, if two such words would coincide, one would find a linear combination
of four or less rows of A, giving 0, contradicting the fact that C- has minimum weight
six (see Table 7). Consequently a word of weight 52 in C'is either a row of A,, or the
sum of two rows of A, corresponding to mutually non-adjacent vertices of H'(5), or the
complement of the sum of two rows of A, corresponding to mutually adjacent vertices
of H'(5). As the words of weight 74 are the complements of the words of weight 52,
they can be deduced from this construction as well.

8 The Hoffman-Singleton graph

By use of the already mentioned description of H(5) in terms of the Hoffman-Singleton
graph (for short HoSi), we can explain more about the two-graph code C of H(5). We
recall a construction of HoSi based on the following well-known result.

Lemma 8.1 There exists a bijective correspondence between the 35 lines of PG(3,2)
and the 35 unordered triples in o T-set such that lines intersect if and only if the
corresponding triples have exactly one element in common.

The vertex set of HoSi consists of the 15 points and the 35 lines of PG(3,2). Points
are mutually non-adjacent; lines are mutually adjacent if and only if the corresponding
triples are disjoint. A point is adjacent to a line if and only if they are incident in
PG(3,2). It is easily proved that HoSi is an srg (50, 7,0,1). Several constructions and
a proof of uniqueness can be found in [1].

Define a graph @ as follows: its vertices are the edges of HoSi, and two vertices are
adjacent if and only if the corresponding edges of HoSi are at mutual distance two, i.e.
are disjoint edges in a pentagon. It is easily proved that @' is an srg (175,72, 20, 36).
Now fix a vertex u of HoSi and let F' be the set of vertices at distance two from w.
Then the subgraph T'(u) of ® induced by restriction of the vertex set to the set of
edges of HoSi inside F' is an srg (126,50,13,24). This is the mentioned construction
of Goethals. It is known (see [17]) that the two-graph in which I'(u) is contained is
H(5). We saw that the dimension of the code C of H(5) is 21, so by Theorem 4.1
the dimension of the code Cr(,) of I'(u) is 20. Let ® be the two-graph of which &’
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weight CF C¢.

0,176 1 1
50,126 176 0
56,120 1100 1100
64,112 4125 4125

66,110 5600 0
70,106 | 17600 0
72,104 | 15400 | 15400
78, 98 | 193600 0
80, 96 | 604450 | 604450
82, 94 | 462000 0
86, 90 | 369600 0

88 | 847000 | 847000

Table 3: Weight distribution of C and Cs.

is a descendant. Since I'(u) is a subgraph of &', the Hermitian two-graph H(5) is a
sub-two-graph of ®.

Recall that the vertices of HoSi can be seen as the points and lines of PG(3,2);
consequently the edges of HoSi, which correspond to the vertices of ®', can be par-
titioned into a set of 105 edges between a point and a line and a set K of 70 edges
between lines. Add an isolated point to ® and switch with respect to K. This yields
an srg (176,70,18,34) T in ®. The code Cr of T is the 22-dimensional code discovered
by Calderbank and Wales [3] (see also [8] and [13]). In this section we will construct
the code C of H(5) from Cp. For this purpose we quote the weight enumerator of Cp
from [3] in Table 8. We shall also need the fact that the 176 words of weight 50 in Cp
make up the symmetric 2-(176, 50, 14) design of G. Higman [11].

By Theorem 4.1 the two-graph code Cg of ® is contained in Cr and has dimension
21. Since n = 176 and the parameters k = 72, A = 20 and pu = 36 of &’ are divisible
by 4, the codes Cgs of ®" and Cg of ® are self-orthogonal doubly even codes. A simple
counting learns that the words of Cp are exactly the words of Cr which have a weight
divisible by four (see Table 8). In fact, the code Cg’ can also be described as the code
generated the residual of Higman’s design, see [13].

Lemma 8.2 There exists a code word w of weight 50 in Cr such that the complement
of w is the characteristic vector of the vertex set of T'(u).

Proof. Consider a partition of the vertex set of HoSi into points and lines of PG(3,2)
and the corresponding partition of the vertex set of @ into a set of 105 edges of HoSi
between a point and a line and a set K of 70 edges of HoSi between lines. Fix a vertex
u of HoSi which corresponds to a point of PG(3,2). Then the set F of 42 vertices of
HoSi at distance two from u can be partitioned into a set of 14 points and a set of 28
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lines. The 126 edges inside F' induce the subgraph I'(u) of ®'. The vertex set of I'(u)
can be partitioned into a set L of 84 edges of HoSi between a point and a line and a
set of 42 edges of HoSi between lines. Add an isolated point oo to ® and switch with
respect to K. Then one obtains the graph I'. It is straightforward to check that the
rows of the adjacency matrix of I' corresponding to L and co add up to a code word w
of weight 126 which is the characteristic vector of the vertex set of I'(w). Since 1 € Cr,
the complement w of w is also a code word of Cr. 0

Consider any two distinct code words x and y of Cg and suppose that after deleting
the 50 coordinate positions corresponding to the ones in the word w from Lemma 8.2
they would be the same. Then x 4+ y would be a non-zero code word of Cp of weight
at most 50, contradicting the fact that Cg has minimum weight 56. So distinct code
words of Cp remain distinct after deleting the 50 coordinate positions corresponding
to the ones in w. As C and Cg have the same dimension, it follows that C' can be
obtained from Cg by deleting the 50 coordinate positions supported by w.

Thanks to this description of C' we can understand better some facts about the
weight enumerator.

Proposition 8.3 The code C' of the Hermitian two-graph H(5) has minimum weight
at least 36.

Proof. Let w be the word of weight 50 constructed in Lemma 8.2 and let & be a non-
zero code word of Cg of weight a 4 b, where a denotes the number of common ones of
w and x. Then z yields a word of weight b in C. We must show that b > 36. We know
that a 4+ b is at least 56 and divisible by 4. The word y = w + = is a word of weight
50 — a 4+ b in Ct which is not in Cg. Therefore the weight of y is at least 50 and not
divisible by four, hence b — a is non-negative and divisible by 4. Suppose the weight
of y is 50. We saw that the words of weight 50 in Cr form a symmetric 2-(176, 50, 14)
design. Any two blocks of such a design meet in 14 points, so a = 36 and b = 36.
Otherwise the weight of y is at least 66, which implies that b > 36. 0

8.1 Words of weight 36 and 90

Fix a vertex u in HoSi, let F' be the set of 42 vertices at distance two from wu, and let D
be the set of 7 vertices adjacent to u. Pick a vertex v in D. Then F' can be partitioned
into a set Y of 6 vertices adjacent to v and a set Z of 36 vertices at distance two from
v. The 126 edges inside F' can be partitioned into 36 edges from Y to Z and 90 edges
inside Z (note that Y is a coclique). So a partition of the vertex set of I'(u) into a
36-set and a 90-set arises. With the help of Lemma 3.1, the corresponding partition of
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the adjacency matrix of I'(u) is easily seen to be regular with quotient matrix
5 45
18 32 |°
By summing the rows corresponding to one set of the partition a code word of weight
36 in C' is obtained. Using the computer package GAP [5] and the share package
Projective Geometries [4] for GAP written by J. De Beule, P. Govaerts and L. Storme,
we checked that the action of the automorphism group of H(5) produces all 525 code

words of weight 36. The code words of weight 90 are the complements of those of
weight 36.

8.2 Words of weight 42 and 84

Consider the partition of the vertex set of HoSi into the 15 points and 35 lines of
PG(3,2), respectively, and let u be a point of PG(3,2). Then the set F' of 42 vertices
at distance two from u consists of 14 points and 28 lines. The edges inside F' can be
partitioned into 84 edges between a point and a line and 42 edges between lines (note
that points are mutually non-adjacent), so a partition of the vertex set of I'(u) into a
42-set and an 84-set is obtained. The corresponding partition is easily proved to be
regular with quotient matrix
8 42
[ 21 29 ] ’

Summing of the rows corresponding to one set of the partition yields a code word of
weight 84 in C. Again we used GAP [5] and Projective Geometries [4] to check that
all 2250 code words of weight 84 can be obtained from this one by the action of the
automorphism group of H(5). The words of weight 42 are the complements of those of
weight 84.

Acknowledgements. We thank Ted Spence for generating by computer all possi-
ble switching sets S in H'(5). This enabled us to find the explicit description of S
given in Section 6, and it confirmed the result of Theorem 7.1. We also thank Jan De
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