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Abstract

We propose a method to forecast the winner of a tennis match, not

only at the beginning of the match, but also (and in particular) during

the match. The method is based on a fast and exible computer

program TENNISPROB, and on a statistical analysis of a large data

set from Wimbledon, both at match and at point level.
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1 Introduction

The use of statistics has become increasingly popular in sports. TV broad-

casts inform us about the percentage of ball possession in football, the num-

ber of home runs in baseball, the percentage of aces and double faults in

tennis, to mention just a few. All these statistics provide some insight in the

question which player or team performs particularly well in a match, and is

therefore more likely to win. However, a direct estimate of the probability

that a player (team) wins the match is seldom shown. This is remarkable,

because this statistic is the one that viewers want to know above all.

In this paper we discuss how to estimate the probability of winning a

tennis match, not only at the beginning of a match, but in particular while

the match is in progress. This leads to a pro�le of probabilities, which unfolds

during the match and can be plotted in a graph while the match is in progress.

The basis of the approach is our computer program TENNISPROB, to be

discussed in Section 2. For a match between two players A and B, TENNIS-
PROB calculates the probability �a that A wins the match. Let pa denote

the probability that A wins a point on service, and pb the probability that B
wins a point on service. Then, under the assumption that points are inde-

pendent and identically distributed (i.i.d.), the match probability �a depends

on the point probabilities pa and pb, the type of tournament (best-of-3-sets

or best-of-5-sets, tiebreak in �nal set or not), the current score, and the

current server. TENNISPROB calculates the probabilities exactly (not by

simulation) and very fast.

The i.i.d. assumption needs some justi�cation, because a priori there is

no reason why this assumption should hold. If true, it would imply for ex-

ample that a player is not inuenced by the fact whether the previous point

was won or lost (independence), and also that a player is not inuenced by

whether the current point is of particular importance, such as a breakpoint

(identical distribution). The question whether points in tennis are i.i.d. was

investigated in Klaassen and Magnus (2001). They concluded that | al-

though points are not i.i.d. | the deviations from i.i.d are small and hence

the i.i.d. assumption is justi�ed in many applications, such as forecasting.

The computation of the match pro�les has two aspects, both of which

will be addressed. First, we need the starting point of the pro�le, that is

�a at the beginning of the match. Secondly, we need the development of �a
while the match is in progress.

In Section 3 we estimate �a at the start of a match, using Wimbledon

singles match data, 1992{1995. Estimation is based on a simple logit model,

where �a is determined by the di�erence between the world rankings of the
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two players.1

The user of the program (say, the commentator) very likely has his/her

own view on �a (or, equivalently, on �b = 1 � �a), based on information

which is not available to us, such as an injury problem or fear against this

speci�c opponent. The commentator will be able to adjust our estimate of

�a (of which we provide bounds) to suit his/her own views. In the end, there

is one starting point �̂a for the pro�le.

To estimate �a during the match, TENNISPROB requires estimates of the

two unknown probabilities pa and pb. These estimates can not be obtained

from match data. Thus, in Section 4, we use point-to-point data of a subset

of the 1992{1995 singles matches to estimate pa + pb. Noting that �a at the

start of the match is a function of pa and pb and hence of pa� pb and pa+ pb,

and that we now have estimates of �a (from match data) and of pa + pb, we

obtain an estimate of pa�pb by inverting TENNISPROB. This gives us both

p̂a and p̂b.

In Section 5 we demonstrate the use of the theory and the program TEN-

NISPROB by drawing pro�les of two famous Wimbledon �nals, Sampras-

Becker (1995) and Graf-Novotna (1993). Such pro�les can be drawn for any

match, not only when the match is completed, but also while the match is

in progress.

Some conclusions are provided in Section 6, where we also point out a

few issues for further investigation.

2 The program TENNISPROB and some ap-

plications

Consider one match between two players A and B. As motivated in the In-

troduction, we assume that points are i.i.d. (depending only on who serves).

Then, modeling a tennis match between A and B depends on only two param-

eters: the probability pa that A wins a point on service, and the probability

pb that B wins a point on service.

Given these two (�xed) probabilities, given the rules of the tournament,

given the score and who serves the current point, one can calculate exactly

the probability of winning the current game (or tiebreak), the current set,

and the match. For example, at the beginning of a game, the probability

1See Boulier and Stekler (1999), Clarke and Dyte (2000), and Lebovic and Sigelman

(2001) on the forecasting accuracy of rankings and related issues.
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that A wins a game on service is

ga =
p
4

a
(�8p3

a
+ 28p2

a
� 34pa + 15)

p2
a
+ (1� pa)2

: (1)

The program TENNISPROB is an e�cient (and very fast) computer pro-

gram which calculates these probabilities. The probabilities are calculated

exactly; they are not simulated. The program is exible, because it allows

the user to specify the score and to adjust to the particularities of the tour-

nament, but also because it allows for rule changes. For example, if the

traditional scoring rule at deuce is replaced by the alternative of playing one

deciding point at deuce (`sudden death')2, then the probability that server

A wins the game changes from (1) to

g
�

a
= p

4

a
(�20p3

a
+ 70p2

a
� 84pa + 35): (2)

A simple calculation shows that for every pa > 0:5 (the most common case),

we have g
�

a
< ga, so that more service breaks will occur. The largest dis-

crepancy occurs at pa = 0:65, where ga = 0:830 and g
�

a
= 0:800, and the

probability of a break thus increases from 17% to 20%.

As another example of the exibility of the program, we can analyze what

would happen if the tournament requires 4 games rather than 6 to be won in

order to win a set (not currently allowed by the o�cial rules). As expected,

we �nd that the advantage for the `better' player is somewhat reduced under

this rule change.

The program TENNISPROB can also be used to calculate the importance

of a point, de�ned by Morris (1977) as the probability that A wins the match

if he/she wins the current point minus the probability that A wins the match

if he/she loses the current point. The de�nition implies that the importance

of a point is the same for A and B. TENNISPROB can tell us what the

important points of a match are, and we will plot these in the pro�les of

Figures 6 and 7.

TENNISPROB needs both pa and pb, or, equivalently, pa� pb (the di�er-

ence in strength between the two players) and pa+pb (the overall quality of a

match). One would expect that pa�pb is much more important than pa+pb.

This is indeed the case, as we now demonstrate. Recall that �a denotes the

probability that player A wins the match. Then, given the tournament and

an equal score, �a is a function of pa� pb, pa+ pb and the score, but does not

2Rule 26b of the \Rules of Tennis 2000", approved by the International Tennis Fed-

eration, allows for this optional scoring system. At deuce, one deciding point is played,

whereby the receiver may choose whether to receive the service from the right-half or the

left-half of the court.
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depend on who serves at this point. In Figure 1 we analyze the dependence

of �a on pa � pb for di�erent values of pa + pb.

FIGURE 1

Panel 1A gives the probability �a at the start of a best-of-5-sets match, as

played by the men in grand slam tournaments such as Wimbledon. For given

pa+pb, �a is a monotonically increasing function of pa�pb, and this functional
dependence is given by an S-shaped curve. The collection of all curves for

0:8 < pa + pb < 1:6 (the empirically relevant interval at Wimbledon), gives

the fuzzy S-shaped curve of Figure 1A. The message from Figure 1A is that

�a depends almost entirely on pa�pb and only very slightly on pa+pb, a fact

also reported in Alefeld (1984).

In Panel 1B we present �a at 1-1 in sets of a best-of-5-sets match, (or

equivalently at the start of a best-of-3-sets match, as played by the women),

and in panels 1C and 1D at the beginning of the �nal set and at 5-5 in the

�nal set. We conclude that at the beginning of a match, both for men and

women, the probability �a is explained almost exclusively by pa�pb (Figures

1A and 1B), but that the dependence on pa + pb increases towards the end

of a match.

The situation is di�erent when the score is not equal.

FIGURE 2

Figure 2 gives the probabilities when A is serving in the �nal set at 5-4 (Panel

2A) and 4-5 (Panel 2B), respectively. The dependence on pa + pb is much

larger now, emphasizing that at unequal scores a good estimate of pa + pb is

required to forecast the winner, especially at the later stages of a match.

In this paper we shall use TENNISPROB both directly and indirectly.

At the end of Section 4 we calculate pa � pb from estimates of �a and pa +

pb. This requires the inverse of TENNISPROB. Then, in Section 5, we use

TENNISPROB directly to calculate �a during the match, yielding the pro�les

of Figures 6 and 7.

3 Estimation of �a at the start of a match,

based on match data

In this section we estimate the probability �a that A wins the match, at the

start of the match. This will be the �rst point of the match pro�le.

We have data on all singles matches played at Wimbledon 1992{1995.

In each year 128 men and 128 women compete for the singles titles. Thus,
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for both men and women, 127 matches are played annually, leading to 508

matches over four years. Some matches are broken o� due to injury or

default, and these matches have been removed from our sample. This leaves

495 matches in the men's singles and 504 matches in the women's singles.

For each match we know the two players, their rankings, and the winner.

The rankings of the players are determined by the lists published just

before Wimbledon by the Association of Tennis Professionals (ATP) for the

men, and the Women's Tennis Association (WTA) for the women. These

two lists contain the o�cial rankings based on performances over the last 52

weeks, including last year's Wimbledon. The ranking of player A is denoted

RANKa.

Direct use of the rankings is not satisfactory, because quality in tennis

is a pyramid: the di�erence between the top two players (ranked 1 and 2)

is generally larger than between two players ranked 101 and 102; see also

Lebovic and Sigelman (2001). The pyramid is based on `round in which we

expect the player to lose'. For example, 3 for a player who is expected to

lose in round 3, 7 for a player who is expected to reach the �nal (round 7)

and lose, and 8 for the player who is expected to win the �nal.

A problem with `expected round' is that it does not distinguish, for ex-

ample, between players ranked 9{16 since all of them are expected to lose

in round 4. Thus we propose a smoother measure of `expected round' by

transforming the ranking of each player into a variable R as follows:

Ra = 8� log
2
(RANKa): (3)

For example, if RANK = 3 then R = 6:42, while if RANK = 4 then R =

6:00.3

We shall always assume, obviously without loss of generality, thatA is the

`better' player in the sense that Ra > Rb. The better player does not always

win. At Wimbledon 1992{1995 the better player won 68% of the matches in

the men's singles and 75% of the matches in the women's singles. So, upsets

occur regularly, especially in the men's singles.

Now, let �j be the probability that the `better' player (that is, player A)
wins the j-th match (j = 1; : : : ; N), where N = 495 in the men's singles and

N = 504 in the women's singles. We assume a simple logit model,

�j =
exp(Fj)

1 + exp(Fj)
;

3Klaassen and Magnus (2001) provide further discussion and justi�cation of this mea-

sure. Instead of using the rankings RANKa and their transformations Ra, Clarke and

Dyte (2000) suggest to use the actual ATP and WTA ratings.
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where Fj is a function of the (transformed) rankings Ra and Rb.
4 Let Dj �

Ra � Rb. If Dj = 0, then Ra = Rb and both players are equally strong. We

would expect in that case that �j = 0:5 and hence that Fj = 0. This implies

that Fj = �Dj, where � can be a constant or a function of other variables.

After testing various speci�cations for � = �(Ra; Rb), we conclude that the

simplest speci�cation is the best.5 Thus we take � to be a constant, so that

�j =
exp(�Dj)

1 + exp(�Dj)
: (4)

Let zj = 1 if player A wins the j-th match, and 0 otherwise. Then the

likelihood of the sample is given by

L =

NY
j=1

�
zj

j
(1� �j)

1�zj :

Estimating � by maximum likelihood gives �̂ = 0:3986 (0:0461) in the men's

singles, and �̂ = 0:7150 (0:0683) in the women's singles, with the standard

errors given in parentheses.6

In Figure 3 we plot �̂a as a function of Ra�Rb for both men and women.

FIGURE 3

For Ra�Rb = 0 we have �a = 0:5, but when Ra �Rb increases, �̂a increases

to 1. The increase is faster for the women than for the men, illustrating again

that upsets are less likely in the women's singles than in the men's singles.

Also plotted are the 95% con�dence bounds, based on the uncertainty about

�.

Of course, the user of the pro�le (say the commentator) may be unhappy

with our pre-match estimate that A will win. Very likely, the commentator

will have information about the players in addition to their rankings, for

example special ability on grass, fear against this speci�c opponent, and

health/injury problems. The commentator should adjust our estimate of

�a taking his or her own knowledge into account. We recommend that the

adjusted estimate of �a lies within our 95% con�dence bounds, unless there

are good reasons to the contrary.

4We have chosen for the logit speci�cation, but other speci�cations (probit, exponential)

lead to essentially the same results, as does a nonparametric model.
5We �tted � = �0 + �1(Ra � Rb) + �2(Ra + Rb), but the estimates of �1 and �2 were

not signi�cant.
6The standard errors have been calculated using the second derivative of the loglikeli-

hood. Calculating the standard errors via the gradient or via quasi maximum likelihood

leads to essentially the same estimates.
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4 Estimation of pa + pb, based on point data

We now have an estimate �̂a of the probability that A wins the match, at the

start of the match. This gives the �rst point of the match pro�le. In order to

calculate the other points of the pro�le we need an estimate of pa+ pb. From

�̂a and p̂a+ p̂b we then obtain p̂a� p̂b by inverting TENNISPROB. This gives

us both p̂a and p̂b needed to calculate further points of the match pro�le.

To estimate pa + pb, match data are not enough; we need point-to-point

data. Of the 999 (495 + 504) matches completed during the Wimbledon

championships 1992{1995, we have point-to-point data on 481 matches: 258

matches in the men's singles and 223 matches in the women's singles. In

each match we know the two players and the complete sequence of points.

Since men play for three won sets and women for two, we have about twice

as many points for the men (57,319) as for the women (28,979).7 The data

are fully described in Magnus and Klaassen (1999a).

The reason that we have detailed data on only a subset of all matches is

that only matches played on one of the �ve `show courts' have been recorded.

Typically, matches involving the most important players are scheduled on

the show courts, and this causes an under-representation in the data set

of matches involving weaker players. All results of the point-to-point data

set have been corrected for this selection problem by weighting the matches

by the inverses of the sampling percentages. The weighting procedure is

discussed in detail in Magnus and Klaassen (1999b).

We regard our data as a panel consisting of N matches (258 in the men's

singles, 223 in the women's singles), and we assume again that matches

are independent. We also assume that points within one match are i.i.d.,

depending only on who serves.

We briey summarize the estimation procedure, which follows Klaassen

and Magnus (2001), specialized to the situation where all points are i.i.d.

We begin by considering one match. Let yat be 1 if player A wins his/her

t-th service point (against player B) and 0 otherwise. Similarly, let ybt be

1 if B wins his/her t-th service point (against A) and 0 otherwise. Within

each match of T points we have data on Ta service points of player A and Tb

service points of player B.
The two players A and B in each match are modeled symmetrically. Con-

centrating on player A, our starting point is the linear probability model

yat = Qa + �at; (5)

which consists of two components: quality Qa and random errors �at. Equa-

tion (5) says that the probability that A wins the t-th service point is equal

7In the calculations of this section, points played in tiebreaks are excluded.
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to the expectation of Qa, assuming that �at has expectation zero. We shall

discuss each of the two components Qa and �at in equation (5) in turn.

The proposed quality variable Qa contains some components that we ob-

serve (most notably the ranking of the two players) and many that we do

not observe (such as `form of the day', fear against a speci�c opponent, and

special ability, if any, on grass). We assume that observed quality is linear

and denote it by x
0

a
�, where xa is a nonrandom vector of explanatory vari-

ables to be discussed momentarily and � is a vector of unknown coe�cients.

Unobserved quality is denoted by �a and we model it as a random individual

e�ect. Thus,

Qa = x
0

a
� + �a: (6)

The `quality' variables xa should reect the observed quality of player A
versus player B. Since Ra and Rb (discussed in the previous section) are the

only observed quality variables available, we write

x
0

a
= (1; (Ra � Rb); (Ra +Rb)) ; (7)

since both Ra�Rb (relative quality, gap between the two players) and Ra+Rb

(absolute quality, overall quality of the match) are potentially important, and

we let � = (�0; �1; �2)
0 denote the corresponding vector of three unknown

parameters.

Because the observed part contains a constant term, there is no loss in

generality in assuming E(�a) = E(�b) = 0. In addition, we impose

var(�a) = var(�b) = �
2
; cov(�a; �b) = ; (8)

where jj < �
2. The covariance  captures the idea that if A performs

better on service than the rankings suggest, then one would expect that the

probability that B will win a point on service is lower.

The second component in (5) is the error term �at. The error is a�ected

by the binary structure of yat, because it can only take the values 0 � Qa

and 1�Qa. We assume that E(�at) = 0. Regarding the second moments we

make the standard assumptions

cov(�at; �a) = cov(�at; �b) = 0; (9)

cov(�at; �as) = 0 (s 6= t); cov(�at; �bs) = 0:

However, the usual assumption that the variance of �at is homoskedastic is not

reasonable in our case, because of the binary character of the observations.

Since E(yat) = E(y2
at
), we obtain

var(�at) = (x0
a
�)(1� x

0

a
�)� �

2
; (10)
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so that var(�at) depends on a. Hence we must take proper account of het-

eroskedasticity.

Assumptions (5) to (10) imply the following binary panel model with

random e�ects:

yat = x
0

a
� + uat; uat = �a + �at; (11)

and similarly for player B. Stacking the fuatg into Ta � 1 vectors ua, and

de�ning {a as the Ta�1 vector of ones and ITa as the Ta�Ta identity matrix,

the T � T variance matrix of the error vector (u0
a
; u

0

b
)
0

of the whole match is

given by


 = var

�
ua

ub

�
=

�
�
2

a
ITa + �

2
{a{

0

a
{a{

0

b

{b{
0

a
�
2

b
ITb + �

2
{b{

0

b

�
: (12)

In order to estimate the �ve unknown parameters (three �'s, � 2 and ), we

take averages and obtain

�
�ya
�yb

�
�

��
x
0

a
�

xb�

�
;

�
!
2

a


 !
2

b

��
; (13)

where

!
2

a
=

Ta � 1

Ta

�
2 +

(x0
a
�)(1� x

0

a
�)

Ta

; !
2

b
=

Tb � 1

Tb

�
2 +

(x0
b
�)(1� x

0

b
�)

Tb

:

Assuming normality for the averages and taking full account of the vari-

ance restrictions, we estimate the parameters by maximum likelihood. The

estimates are presented in Table 1.

Table 1. Estimation results for pa

Men's singles Women's singles

constant (�0) 0.6276 (0.0044) 0.5486 (0.0051)

ranking di�erence (�1) 0.0112 (0.0013) 0.0212 (0.0015)

ranking sum (�2) 0.0036 (0.0009) 0.0022 (0.0010)

random e�ects

variance (� 2) 0.0026 (0.0002) 0.0016 (0.0003)

correlation (=� 2) �0.4480 (0.0852) �0.6348 (0.2019)

Comparing men's and women's singles, equality of the �-parameters is obvi-

ously rejected (mainly because �0 is very di�erent for men and women). We

also see that the e�ect of Ra � Rb on pa (measured by �1) is larger for the

women than for the men, which corresponds to the fact that the di�erence
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in strength between top players and lesser players is larger in the women's

singles than in the men's singles. This is consistent with our �ndings in the

previous section that Ra�Rb has a larger e�ect on �a (measured by �) for the

women than for the men. The fact that �̂2 > 0 implies that at a high-quality

match (large value of Ra +Rb), more points are won on service. This is not

a priori obvious: good players have a better service and a better return of

service. Apparently, a better player is characterized more by a better service

than by a better return of service. The e�ect, however, is small.

We now estimate the probabilities pa and pb by x
0

a
�̂ and x

0

b
�̂, respectively.

This gives

p̂a + p̂b = 2
�
�̂0 + (Ra +Rb)�̂2

�
:

In Figure 4 we present the estimated line representing the dependence of

p̂a + p̂b on Ra +Rb together with the 95% con�dence bands.

FIGURE 4

We see that p̂a + p̂b increases with Ra + Rb, since �̂2 > 0, but only slightly.

This means that the e�ect of Ra + Rb on pa + pb is small. We know from

Section 2 that the e�ect of pa + pb on �a at the start of a match is small.

Hence, the e�ect of Ra +Rb on �a is small as well.

We now have an estimate of �a from the previous section and an estimate

of pa + pb from the current section. By inverting TENNISPROB we then

obtain an estimate of pa�pb, and hence of pa and pb. These are the estimates

used in computing the pro�les.

Of course, we could have estimated pa � pb directly from the point data,

because the analysis in the current section yields estimates of both pa + pb

and pa � pb. In fact,

p̂a � p̂b = 2(Ra � Rb)�̂1:

Given the estimates p̂a and p̂b obtained from point data, we obtain an alter-

native estimator of �a at the start of a match, besides the one presented in

Section 3. This estimate is graphed in Figure 5 as a function of Ra�Rb, for

all feasible values of Ra +Rb.

FIGURE 5

The estimated line and the 95% con�dence bands are fuzzy curves, because

at each value of Ra � Rb we calculate �̂a for all feasible values of Ra + Rb.

We already know that the impact of Ra + Rb is very small at the start of a

match. This is reected in Figure 5.

We now have two estimates of �a: Figures 3 and 5. They are similar, but

not the same. The main di�erence is that the �̂a-curve based on point data

converges much faster to 1 than the curve based on match data.
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This is the result of a `magni�cation e�ect'. Although the model at point

level is almost linear, this is no longer the case at match level, because a small

di�erence at point level is greatly magni�ed at match level, see also Figure

1. As a consequence, there is no penalty for the fact that large di�erences

in Ra � Rb lead to match probabilities which are too close to one. We thus

prefer the estimate of pa � pb (via �a) from match data over the estimate

from point data.

A di�erent story, however, applies to the estimates of pa+pb. First, this is

a much more stable number (see Figure 4), and hence much less distorted by

the magni�cation e�ect. Secondly, even if pa�pb is poorly estimated at point

level, the same is not necessarily true for pa + pb, because the two estimates

are almost uncorrelated. This follows because the correlation between p̂a+ p̂b

and p̂a � p̂b is given by

corr(p̂a + p̂b; p̂a � p̂b) =
�01 + �12(s2Sj=s0)p

1 + 2�02(s2Sj=s0) + (s2Sj=s0)2
;

where si denotes the standard error of �̂i, �ij denotes the estimated correla-

tion between �̂i and �̂j, and Sj = Ra+Rb in the j-th match.8 The estimated

correlation is very small: smaller than 0:10 for the men and smaller than

0:08 for the women (in absolute value). Hence, p̂a+ p̂b and p̂a� p̂b are almost

independent.

5 Forecasts and pro�les

Based on the previous discussion, our forecast strategy is as follows. Before

the start of a given match, we know Ra and Rb. This gives us an estimate of

�a based on match data (Figure 3), possibly adjusted by the commentator.

We also have an estimate of pa+pb based on point data (Figure 4). For given

pa+ pb, �a at the start of a match is a monotonic function of pa� pb. Hence,

by inverting TENNISPROB, we obtain an estimate of pa � pb as well. We

thus �nd estimates of pa+ pb and pa� pb and hence of pa and pb. With these

estimates we can calculate the probability that A wins the match at each

point in the match, using TENNISPROB.

To illustrate the theory developed in this paper we shall draw pro�les

of two important Wimbledon �nals. The �rst match is the 1995 men's �nal

Sampras-Becker. Here Sampras (playerA) was the favorite, having RANK=2
and hence Ra = 7, while Becker (player B) had RANK=4 and Rb = 6. Our

8The estimated correlations for the men (women) are �01 = 0:0052 (0:0865), �02 =

�0:8568 (�0:8898), and �12 = 0:0353 (�0:0533).



13

pre-match estimates are that Sampras has a 59.8% chance of winning the

championship (�̂a = 0:5983), and that p̂a + p̂b = 1:3487. As a consequence,

we calculate that p̂a � p̂b = 0:0161, and hence that the estimates of pa and

pb are p̂a = 0:6824 and p̂b = 0:6663.

FIGURE 6

There are many lines in Figure 6. We �rst discuss the central pro�le which

starts at �̂a = 0:5983. The �rst set goes to a tiebreak, and this is the most

important game of the match. Becker's setpoint at 6-5 (Sampras serving) is

the most important point of the tiebreak, and the most important point of

the match. After winning the tiebreak in the �rst set, Sampras' probability of

winning has decreased to 39.6%. In the second set, Sampras breaks Becker's

service at 1-1 and again at 3-1, and wins the set. In the third and fourth sets,

Becker's service is broken again three times. The last break (at 4-2 in the

fourth set) increases Sampras's chances only marginally, since he is already

almost certain to win. Eventually Sampras wins 6-7, 6-2, 6-4, 6-2 after 246

points.

The pro�le of Figure 6 also shows the importance of each point (at the

bottom of the �gure), as de�ned in Section 2. One can clearly see the im-

portance of the tiebreak at the end of the �rst set, and in particular the last

point of the tiebreak. Also important are the four breakpoints at 1-1 in the

third set.

Figure 6 plots not one pro�le but several. The central curve (starting at

�̂a = 0:5983) is the actual estimated pro�le. The two curves just above and

below it provide the 95% uncertainty region based on the uncertainty about

�. In fact, each of these two bounds is made up of two curves, reecting the

uncertainty about pa+ pb. The latter uncertainty is clearly negligible. What

we see is that the level of the pro�le can shift a bit, but that the movement of

the pro�le is not a�ected when the initial estimates of pa and pb are somewhat

biased. Even when we simply take �̂a = 0:5 at the start of the match (also

plotted), the movement of the pro�le is the same. We conclude that the level

of the pro�le depends on the correct estimation of pa and pb, but that the

movement of the pro�le is robust.

In the second plot we only show the central pro�le (and the 50% line: at

points above the 50% line we expect A to win, at points below the line we

expect B to win). This is the plot that one may want to show to a television

audience, updated after every few games. This pro�le concerns the famous

1993 women's singles �nal Graf-Novotna. Graf (player A) was the favorite,
having RANK=1 and hence Ra = 8, while Novotna had RANK=9 and hence

Rb = 4:83. Our pre-match estimates are that Graf has a 90.6% chance of

winning (�̂a = 0:9060), and that p̂a + p̂b = 1:1538. As a consequence, we
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calculate that p̂a � p̂b = 0:0992, and hence that the estimates of pa and pb

are p̂a = 0:6265 and p̂b = 0:5273.

FIGURE 7

The �rst set goes to a tiebreak. At the beginning of the tiebreak (point 93),

Graf's probability of winning has decreased a little to 85.9%. After winning

the tiebreak, the probability jumps to 96.5% (point 107). Novotna wins the

second set easily. At the beginning of the third set, Graf's probability of

winning is still 81.7% (point 149). At 1-1 in the third set Graf's service is

broken, and at 3-1 again. When Novotna serves at 4-1, 40-30 (point 183),

Graf's probability of winning has dropped to 14.9%. Then Graf breaks back,

and holds service (after two breakpoints). When Novotna serves at 4-3, 40-

40, the match is in the balance. This is the most important game of the

match and the two breakpoints in this game are the most important points

of the match. Novotna loses the second breakpoint, the next two games, and

the match. Graf wins 7-6, 1-6, 6-4 after 210 points.

6 Conclusion

In this paper we have described a method of forecasting the outcome of a

tennis match. More precisely, we have estimated the probability that one

of the two players wins the match, not only at the beginning of the match

but also as the match unfolds. The calculations are based on a exible

computer program TENNISPROB and on estimates usingWimbledon singles

data 1992{1995, both at match level and at point level.

The methodology described in the paper rests on two basic assumptions.

First, we assume that points are i.i.d., so that pa and pb stay �xed during the

match. As we have demonstrated in Klaassen and Magnus (2001), points are

not i.i.d., but the deviations from i.i.d. are small, so that in particular appli-

cations (such as forecasting) the i.i.d. assumption will provide a su�ciently

good approximation.

In addition, we also assume that the estimates p̂a and p̂b, obtained before

the match starts, are not updated during the match. That is, we don't use

information of the points played up to the current point. One could think of

a Bayesian updating rule, where the prior estimates are p̂a and p̂b, obtained

before the match starts, and the likelihood comprises the match information

up to the current point. This would lead to posterior estimates of pa and pb.

Whether the forecast error is actually reduced by such a re�nement is still

an open question.
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Figure 1. Probability �a that A wins match as a function of quality

di�erence, four equal scores, best-of-5-sets match.
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Figure 2. Probability �a that A wins match as a function of quality

di�erence, two unequal scores, �nal set.
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Figure 3. Estimated probability �̂a that A wins match as a function of

ranking di�erence, match data.
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Figure 4. Estimated quality sum p̂a + p̂b as a function of ranking sum, point

data.
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Figure 5. Estimated probability �̂a that A wins match as a function of

ranking di�erence, point data.
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Figure 6. Pro�le of Sampras-Becker 1995 �nal.
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Figure 7. Pro�le of Graf-Novotna 1993 �nal.


