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Abstract

A cooperative game with transferable utility {or simply a TU-game{ describes

a situation in which players can obtain certain payo�s by cooperation. A value

function for these games is a function which assigns to every such a game a

distribution of the payo�s over the players in the game. An alternative type of

solutions are share functions which assign to every player in a TU-game its share

in the payo�s to be distributed.

In this paper we consider cooperative games in which the players are organized

into an a priori coalition structure being a �nite partition of the set of players. We

introduce a general method for de�ning a class of share functions for such games

in coalition structure using a multiplication property that states that the share

of player i in the total payo� is equal to the share of player i in some internal

game within i's a priori coalition, multiplied by the share of this coalition in

an external game between the a priori given coalitions. We show that these

coalition structure share functions satisfy certain consistency properties. We

provide axiomatizations of this class of coalition structure share functions using

these consistency and multiplication properties.

JEL classi�cation number: C71

Keywords: TU-Game, coalition structure, share function, multiplication prop-

erty, consistency.

1 Introduction

A situation in which a �nite set of n players can obtain certain payo�s by cooperation

can be described by a cooperative game with transferable utility {or simply a TU-game{

being a pair (N; v), where N = f1; : : : ; ng is a �nite set of players and v: 2N ! IR is a

characteristic function on N such that v(;) = 0. In this paper we consider monotone

TU-games, i.e. games (N; v) satisfying v(E) � v(F ) if E � F � N . We denote the

collection of all monotone TU-games by G. A monotone game (N; v) is a null game if

v(E) = 0 for all E � N . We denote the null game on player set N by (N; v0), and we

denote the class of monotone games that are not null games by G+.

A value function on G is a function f that assigns to every (N; v) 2 G an jN j-

dimensional real vector f(N; v) 2 IRjN j representing a distribution of payo�s among the

players. A value function f is e�cient on G if for every game in G it exactly distributes

the worth v(N) of the `grand coalition' over all players, i.e. if
P

i2N fi(N; v) = v(N) for

every (N; v) 2 G. An example of an e�cient value function is the Shapley value (Shap-

ley (1953)). An example of a value function that is not e�cient is the Banzhaf value

(Banzhaf (1965), Owen (1975), Dubey and Shapley (1979)). Since the Banzhaf value is
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not e�cient it is not adequate in allocating the worth v(N). In order to allocate v(N)

according to the Banzhaf value, van den Brink and van der Laan (1998) characterized

the normalized Banzhaf value which distributes the worth v(N) proportional to the

Banzhaf values of the players.

An alternative approach to e�ciently allocating the worth v(N) is using share

functions as introduced in van der Laan and van den Brink (1998). A share vector for

game (N; v) 2 G is an jN j-dimensional real vector x 2 IRjN j such that
P

i2N xi = 1.

Here xi is player i's share in the total payo� that is to be distributed among the players.

A share function on G is a function that assigns to every (N; v) 2 G exactly one share

vector1 �(N; v) 2 fx 2 IRjN j j
P

i2N xi = 1g. The share function corresponding to

the Shapley value is the Shapley share function which is obtained by dividing the

Shapley value of each player by the sum of the Shapley values of all players (i.e. by

v(N)). Similarly, the Banzhaf share function is obtained by dividing the Banzhaf-

or normalized Banzhaf value by the corresponding sum of payo�s over all players.

Note that, although the Banzhaf- and normalized Banzhaf value are very di�erent (for

example, the Banzhaf value satis�es linearity and the dummy player property which are

not satis�ed by the normalized Banzhaf value), they correspond to the same Banzhaf

share function.

Share functions yield a distribution of the worth of the grand coalition reecting

the individual bargaining position of the players. In this paper we consider situations

in which the grand coalition forms in order to maximize the total payo�, but in which

the players are also organized into smaller coalitions. These coalitions form a coalition

structure being a �nite partition P = fP1; : : : ; Pmg of the player set N and are assumed

to be given exogenously. As motivated by Winter (1989), the coalitions can be seen as

pressure groups for the division of v(N). So, to divide the worth of the grand coalition

over all players, �rst this worth is distributed over the coalitions in the a priori given

coalition structure, and then the payo� assigned to a coalition is distributed over all

its players.

For games in a priori given coalition structure P = fP1; : : : ; Pmg of m coalitions

several value functions have been proposed in the literature. The Aumann-Dr�eze value

assigns to any player in a coalition Pk 2 P the Shapley value of the restriction of

the game (N; v) to coalition Pk, see Aumann and Dr�eze (1974). Under this value

1For set-valued solutions in terms of share vectors we refer to van den Brink and van der Laan
(1999b).
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concept, the total payo� of the players within a coalition Pk is equal to the worth of

this coalition and therefore the total payo� is equal to
Pm

k=1 v(Pk), which need not to be

equal to v(N). According to the Aumann-Dr�eze value, the payo� of a player i in some

coalition Pk does not depend upon its contribution to any coalition containing players

outside Pk. In fact, it is supposed that the grand coalition is not formed but that

the players agree to disagree and are satis�ed with cooperation within the coalitions

Pk, k = 1; : : : ;m. However, one can imagine many situations in which players form

coalitions within the grand coalition. As already argued by Aumann and Dr�eze (1974),

in many of such situations it is very reasonable that also the outside opportunities of

the members of a coalition have to be taken into account. According to e.g. Hart

and Kurz (1983) the existence of a coalition structure implies a two-level interaction

between the players. Firstly, the worth of the grand coalition is distributed amongst

the coalitions; secondly the payo� to each coalition is distributed amongst the players

within this coalition. The outcome of such a two-level interaction is reected by the

so-called coalition structure value introduced by Owen (1977). The Owen coalition

structure (CS-)value has the property that the total payo� of the players in a coalition

Pk is equal to the Shapley value of the coalition Pk, when this coalition is considered

to be a player in the �rst level game between the coalitions. As a consequence we have

that the Owen CS-value can be considered as a generalization of the Shapley value to

games in coalition structure.

The Owen CS-share function is obtained by dividing the Owen CS-value by the

worth v(N) of the grand coalition (being equal to the sum of the Owen CS-values

of all players). The Owen CS-share function alternatively can be de�ned using the

following multiplication property. The Owen CS-share of player i 2 Pk 2 P in the

worth to be distributed is equal to the product of the Shapley share of coalition Pk in

the �rst level external game between the coalitions and the Shapley share of player i

in an appropriately de�ned second level internal game between the players in Pk. In

the same way van der Laan and van den Brink (1999) de�ne the Banzhaf CS-share

function which assigns to player i 2 Pk the product of the Banzhaf share of coalition

Pk in the �rst level (external) game between coalitions and the Banzhaf share of player

i in an appropriately de�ned second level (internal) game.

In this paper we de�ne a general class of CS-share functions using this multiplication

property. All these CS-share functions satisfy the consistency property stating that

the share of a coalition in the external game between a priori coalitions is equal to
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the sum of the shares of the players in this coalition in the original game in coalition

structure. Moreover, we provide axiomatic characterizations of this class of CS-share

functions using the multiplication and consistency properties. This class of CS-share

functions generalizes the Owen CS-share function and the Banzhaf CS-share function.

This Banzhaf CS-share function is not the same as the Banzhaf type CS-share function

corresponding to the Banzhaf CS-value function introduced by Owen (1981) for games

in coalition structure. In particular the share function obtained from Owen's Banzhaf

CS-value function does neither satisfy the multiplication nor the consistency property.

The paper is organized as follows. In the next section we discuss some preliminaries

on share functions and games in coalition structure. In Section 3 we introduce a

class of share functions for games in coalition structure. In Section 4 we provide an

axiomatic characterization of this class using the multiplication property. In Section 5

we characterize this class using consistency. Finally, we make some concluding remarks

in Section 6.

2 Preliminaries

First, for player set N and set T � N , the game (N;uT ) denotes the unanimity game of

coalition T , i.e. for S � N we have that uT (S) = 1 if T � S and uT (S) = 0 otherwise.

Notice that (N;uT ) 2 G for all T � N . For a pair of games (N; v); (N;w) 2 G

and real numbers � � 0 and � � 0, the game (N; z) with z = �v + �w is given by

z(E) = �v(E)+�w(E) for all E � N . The set of monotone games is linear-closed, i.e.

if (N; v) 2 G and (N;w) 2 G, then also (N; z) 2 G for all �; � � 0. From Harsanyi

(1959, 1963) we know that for any game (N; v) it holds that

v =
X
T�N

�T (v)uT ;

where the so-called Harsanyi-dividends �T (v), T � N , follow recursively from the

systems of equations

v(S) =
X
T�S

�T (v); S � N:

It should be observed that a monotone game (N; v) 2 G may have negative dividends,

i.e. there may exist subsets T with �T (v) < 0. If so, for such a subset T the game
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(N;�T (v)uT) is not in G and thus v can not be written as a linear combination of

monotone unanimity games. However, denoting

v+ =
X

fT�N j�T (v)�0g

�T (v)uT and v� =
X

fT�N j�T (v)<0g

��T (v)uT

we have that v + v� = v+, showing that the monotone game (N; v+) is equal to the

sum of the two monotone games (N; v) and (N; v�). This expression will be used in

the proofs given in the Sections 4 and 5. Finally, for a game (N; v) and a set T � N ,

the restricted game (T; vT ) on player set T is given by vT (E) = v(E) for all E � T .

2.1 Share functions

Let mi
E(N; v) = v(E) � v(E n fig) be the marginal contribution of player i 2 N to

coalition E � N in game (N; v) 2 G. Then the well-known Shapley value 'S and

Banzhaf value 'B on the class G of monotone games are the functions de�ned by

'Si (N; v) =
X
E�N

E3i

e!jN j
jEjm

i
E(N; v); and '

B
i (N; v) =

X
E�N

E3i

b!jN j
jEjm

i
E(N; v); i 2 N;

where for n 2 IN and k 2 f1; : : : ; ng, e!nk = (k�1)!(n�k)!
n! and b!nk = 1

2n�1 . The Shapley value

(Shapley (1953)) is characterized by the well-known axioms of e�ciency, additivity, the

null player property and symmetry. Axiomatizations of the Banzhaf value2 have been

given by e.g. Lehrer (1988), Haller (1994), Nowak (1997) and Grabisch and Roubens

(1999). Since the Banzhaf value is not e�cient, this value is not adequate in allocating

the worth v(N) of the `grand coalition'. To divide the worth v(N) according to the

Banzhaf value on the class of monotone non-null games van den Brink and van der

Laan (1998) replace the Banzhaf value by the normalized Banzhaf value 'B which is

the e�cient value function that distributes the worth v(N) proportional to the Banzhaf

values of the players, i.e.

'Bi (N; v) =
'Bi (N; v)P
j2N '

B
j (N; v)

v(N); i 2 N; (N; v) 2 G+;

and 'Bi (N; v
0) = 0 for all i 2 N .

An alternative approach to e�ciently divide the worth of the grand coalition amongst

its players is given by the concept of share function introduced by van der Laan and

2The Banzhaf value is introduced is as a power index for voting games by Banzhaf (1965), and is
generalized to arbitrary games by, e.g. Owen (1975) and Dubey and Shapley (1979).
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van den Brink (1998). A share function assigns to each player in a game its share in

the worth to be distributed, i.e. a share function on a subclass C � G of monotone

games is a function � on C satisfying
P

i2N �i(N; v) = 1 for all (N; v) 2 C. The Shapley

share function �S on G+ is given by

�Si (N; v) =
'Si (N; v)

v(N)
for all i 2 N; (N; v) 2 G+:

The Banzhaf share function �B on G+ is given by

�Bi (N; v) =
'Bi (N; v)

v(N)
=

'Bi (N; v)P
j2N '

B
j (N; v)

for all i 2 N; (N; v) 2 G+:

We now state the following properties for share functions. First, a share function �

satis�es the null player property on C � G if for every (N; v) 2 C and every null

player3 i 2 (N; v) it holds that �i(N; v) = 0. Second, � satis�es symmetry on C � G

if for every (N; v) 2 C and every pair i; j of symmetric players4 in (N; v) it holds that

�i(N; v) = �j(N; v). Finally, let be given some some real-valued function �:G ! IR.

Then � satis�es �-additivity on C � G if for every pair of games (N; v); (N;w) 2 C

satisfying (N; v + w) 2 C, it holds that �(N; v + w)�(N; v + w) = �(N; v)�(N; v) +

�(N;w)�(N;w). The last property is a generalization of the familiar additivity property

which is obtained by taking �(N; v) = 1 for all (N; v) 2 G.

Next we state some properties for functions �:G ! IR. Let C � G. A function

�: C ! IR is called positive on C if �(N; v0) = 0 and �(N; v) > 0 for every (N; v) 2

C \G+. We call � additive on C if for every pair of games (N; v); (N;w) 2 C satisfying

(N; v + w) 2 C, it holds that �(N; v + w) = �(N; v) + �(N;w). Finally, we call �

symmetric on C if for every (N; v) 2 C, every pair of symmetric players i; j in (N; v),

and every E � N such that fi; jg � E and both restricted games (E n fig; vEnfig) and

(E n fjg; vEnfjg) are in C, it holds that �(E n fig; vEnfig) = �(E n fjg; vEnfjg). The

following two results follow from van der Laan and van den Brink (1998), see also van

den Brink and van der Laan (1999a).

Theorem 2.1 Let �:G+ ! IR be positive and symmetric on G+. Then there exists

a unique share function �� on G+ satisfying the null player property, symmetry and

�-additivity on G+ if and only if � is additive on G+.

3Player i 2 N is a null player in (N; v) if v(E) = v(E n fig) for all E � N .
4Players i; j 2 N are symmetric in (N; v) 2 G if v(E [ fig) = v(E [ fjg) for all E � N n fi; jg.
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In case the �-function is a weighted sum of the marginal contributions of the players

(with equal positive weights assigned to coalitions of equal size), then the corresponding

share function is given in the next theorem.

Theorem 2.2 For given positive vectors !n 2 IRn
+; n 2 IN, let the function �!:G+ !

IR be de�ned by �!(N; v) =
P

i2N

P
E3i !

n
jEjm

i
E(N; v). Then the unique share function

satisfying the null player property, symmetry, and �!-additivity on G+ is given by

�
�!

i (N; v) =

P
E�N

E3i
!njEjm

i
E(N; v)

�!(N; v)
for all i 2 N and (N; v) 2 G+:

Note that for any system of positive weights the corresponding function �! is positive,

symmetric and additive on G+ and thus satis�es the conditions of Theorem 2.1. In case

the weight system !n is given by !nt = e!nt = (n�t)!(t�1)!
n!

; t = 1; : : : ; n, n 2 IN, we denote

�S = �e! and we have that �S(N; v) = v(N). In case !nt = b!nt = 2�(n�1); t = 1; : : : ; n,

n 2 IN, we denote �B = �b! and it follows that �B(N; v) = 1
2n�1

P
E�N (2jEj � n)v(E).

In van der Laan and van den Brink (1998) it is shown that the unique share function

satisfying the properties stated in Theorem 2.2 with �! = �S is the Shapley share

function �S , and the unique share function satisfying these properties with �! = �B is

the Banzhaf share function �B.

2.2 Games in coalition structure

The share functions de�ned in the previous section yield a distribution of the worth

of the grand coalition reecting the individual bargaining position of the players. In

many situations however, it is reasonable to suppose that players form coalitions which

decide to act together against the other players in bargaining over v(N). In this section

we consider situations in which the players are organized in a priori given coalition

structure.

A coalition structure on a player set N is a �nite partition P = fP1; : : : ; Pmg

of m non-empty, disjoint subsets of N , i.e. [mk=1Pk = N and Pk \ P` = ; for all

k; ` 2 f1; : : : ;mg, k 6= `. In the following the set of coalitions in the coalition structure

P = fP1; : : : ; Pmg is denoted by M = f1; : : : ;mg with k 2 M representing coalition

Pk 2 P . Furthermore, a monotone game (N; v) 2 G in coalition structure P is denoted

by (N; v; P ). The collection of all coalition structures on N is denoted by PN . The

collection of all monotone games in coalition structure is denoted by GP. A coalition
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structure (CS-)value function � on the set GP assigns a payo� to any player in every

monotone game in coalition structure (N; v; P ). Hart and Kurz (1983) argue that the

existence of a coalition structure implies a two-level interaction between the players.

The outcome of such a two-level interaction is reected by theOwen Coalition Structure

value (Owen CS-value) �S introduced by Owen (1977), which is de�ned by

�Si (N; v; P ) =
X
L�M

L63k

X
E�Pk
E3i

jLj!(m� jLj � 1)!

m!
�
(jEj � 1)!(jPkj � jEj)!

jPkj!
�

(v(E [ P (L))� v((E n fig) [ P (L))) ; i 2 Pk 2 P; k 2M; (1)

where P (L) = [j2LPj . We remark that the Owen CS-value reduces to the Shapley

value when P = fNg or when P = ffigi2Ng. The weights of the marginal values are

a product of two `Shapley weights', reecting the fact that �rst coalitions enter subse-

quently in a random order and that within each coalition the players enter subsequently

in a random order.

For given (N; v; P ) 2 GP, with P = fP1; : : : ; Pmg, the m-player �rst-level or

external game between coalitions is the game (M;vP ) 2 G de�ned by M = f1; :::;mg

as the set of players and characteristic function vP given by

vP (L) = v(P (L)); L �M:

This game is already introduced by Owen (1977) who calles it the quotient game. For

all k 2M , it follows from equation (1) by summing up over all i 2 Pk thatX
i2Pk

�Si (N; v; P ) = �Sk (M;vP ; fMg) = 'Sk (M;vP ); (2)

showing that the sum of the payo�s to the players in Pk is equal to the Shapley value

of player k (representing coalition Pk) in the external game between the coalitions.

Since this property generalizes the fact that the Owen CS-value reduces to the Shap-

ley value when P = fNg or when P = ffigi2Ng, as mentioned already above, we

say that the Owen CS-value is consistent . Since by e�ciency of the Shapley valueP
k2M 'Sk (M;vP ) = vP (M) = v(N), it follows from equation (2) that also the Owen

CS-value is e�cient. For axiomatizations of the Owen CS-value we refer to Owen

(1977), Hart and Kurz (1983) and Winter (1989).

A CS-share function is a function  on GP satisfying
P

i2N  i(N; v; P ) = 1 for all

(N; v; P ) 2 GP and assigns to every player in a monotone game in coalition structure
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a share in the worth v(N) to be distributed. The Owen CS-share function assigns to

every player in a monotone game in coalition structure its share according to the Owen

CS-value, i.e. it is the function  S given by

 Si (N; v; P ) =
�Si (N; v; P )P
j2N �

S
j (N; v; P )

=
�Si (N; v; P )

v(N)
; i 2 N:

The Owen CS-share of player i 2 Pk 2 P can be reformulated as the product of

two Shapley shares. The �rst share is the share �Sk (M;vP ) of coalition k in the m-

player �rst-level external game (M;vP ) between coalitions that is discussed before.

The second share is the share �Si (Pk; v
Pk) of player i in the jPkj-player second-level or

internal game (Pk; vPk) given by

vPk(E) =
X
L�M

L63k

jLj!(m� jLj � 1)!

m!
vPk;L(E); E � Pk; (3)

where, for L �M and k 62 L,

vPk;L(E) = v(E [ P (L))� v(P (L)); (4)

is the marginal contribution of E � Pk to the union P (L) of the coalitions Pj ; j 2 L.

So, the internal game (Pk; vPk) is a weighted sum of the marginal contributions vPk;L,

L � M , where the weight of the marginal contribution vPk;L is equal to the Shapley

weight e!mjLj+1 = jLj!(m�jLj�1)!
m! assigned to coalition k 2 M if this coalition joins the

collection L � M of coalitions. For given (N; v; P ) 2 GP with P = fP1; : : : ; Pmg and

M = f1; :::;mg van der Laan and van den Brink (1999) show that5

 Si (N; v; P ) = �Si (Pk; v
Pk) � �Sk (M;vP ); i 2 Pk; k 2M: (5)

Van der Laan and van den Brink (1999) use this multiplication property to de�ne a

Banzhaf-type coalition structure share function. To do so they replace in equation (3)

the second-level Shapley weights by the corresponding second-level Banzhaf weightsb!mjLj+1 = 2�(m�1) to obtain the jPkj-player internal game (Pk; bvPk), k 2M , de�ned by

bvPk(E) = X
L�M

L63k

2�(m�1)vPk;L(E); E � Pk: (6)

Applying a similar multiplication property as (5) they de�ne the Banzhaf Coalition

Structure (CS-)share function as the function  B on GP given by

 Bi (N; v; P ) = �Bi (Pk; bvPk) � �Bk (M;vP ); i 2 Pk; k 2M:

5Owen (1977) shows a similar property without using the concept of share function.
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This Banzhaf CS-share function is di�erent from the CS-share function that is obtained

by normalizing the Banzhaf-type CS-value function that is introduced in Owen (1981)

(see also Section 6).

3 A class of CS-share functions for games in coali-

tion structure

In this section we generalize the share functions �� discussed in Section 2.1 to games

in coalition structure. The share functions �� are de�ned on the class G+ of monotone

non-null games. For null games the concept of share function is in itself not very

interesting, because in such a game it seems reasonable that any player gets a payo�

of zero irrespective of the shares. Moreover, in many applications we may restrict

ourselves to the class G+ of monotone non-null games. However, in this paper we

apply the concept of share functions to games in coalition structure. As argued before,

for such games the payo� of a player can be seen as the result of a �rst-level external

game between coalitions and a second-level internal game between the players within

a coalition. In such a set-up we have to deal with null games, which may appear on

the second (internal) level, even when the game itself is a non-null game. Therefore

we extend the concept of share functions to null games by giving all players an equal

share, i.e.

��(N; v0) =
1

jN j
for all i 2 N: (7)

We can generalize Theorem 2.1 to the class G of all monotone games in a straightforward

way by requiring symmetry and �-additivity to hold for all games in G, and requiring

the null player property only for the non-null games6 in G+.

We generalize the share functions �� to games in coalition structure using the

multiplication property that de�nes the share for player i 2 Pk in game (N; v) in

coalition structure P = fP1; : : : ; Pmg, as the product of the share of coalition k in the

external game (M;vP ) in which the coalitions in P act as individual players, and the

share of player i in some internal game among the players in Pk. To do so, for given

6Clearly, the null player property is not satis�ed by any share function on a class of games that
contains null games. Note that symmetry and the fact that CS-shares by de�nition add up to one,
imply the equal share distribution for null games.
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positive, additive and symmetric function �:G ! IR, game (N; v) 2 G and coalition

structure P 2 PN , we de�ne for Pk 2 P the �-internal game (Pk; vPk� ) by

vPk� (E) = ��k (M;vPPk jE) � v(P (M n fkg) [ E); E � Pk; (8)

where M = f1; : : : ;mg and the game (M;vPPk jE) on the player set M of coalitions is

given by the characteristic function vPPkjE; E � Pk 2 P , de�ned by

vPPkjE(L) =

8<: v(P (L n fkg) [ E) if k 2 L �M;

v(P (L)) if k 62 L �M:

So, the characteristic function vPPkjE assigns to every coalition L of coalitions in the

coalition structure the worth of the union of these coalitions where coalition Pk is

replaced by E � Pk, i.e. player l 2M n fkg represents a priori coalition Pl 6= Pk in the

coalition structure P , whereas player k represents the subcoalition E of Pk instead of

Pk as a whole. Notice that this game also appears in Owen (1977), reecting in some

sense coalition's E � Pk possibilities if it defects from Pk.

Given a positive, additive and symmetric function �:G ! IR, in the next theorem

we introduce a function  � on G using the multiplication property with respect to the

external game (M;vP ) and the internal game (Pk; vPk� ) and show that this function is

a share function satisfying a set of consistency properties.

Theorem 3.1 Let �:G ! IR be positive, additive and symmetric on G and let �� be

the share function as de�ned in Theorem 2.1 extended by (7). Then the function  �

on GP de�ned by

 
�
i (N; v; P ) = �

�
i (Pk; v

Pk
� ) � ��k(M;vP );

for i 2 Pk 2 P = fP1; : : : ; Pmg 2 PN ; k 2 M = f1; : : : ;mg, is a CS-share function

and satis�es for every (N; v; P ) 2 GP the following consistency properties:

1.
P

i2Pk
 �i (N; v; P ) = ��k (M;vP );

2.  �(N; v; P ) = ��(N; v) when P = fNg;

3.  �(N; v; P ) = ��(N; v) when P = ffigi2Ng.

11



Proof

Since �� satis�es
P

i2N �
�
i (N; v) = 1, it follows thatX

i2N

 
�
i (N; v; P ) =

X
k2M

X
i2Pk

 
�
i (N; v; P )

=
X
k2M

X
i2Pk

�
�
i (Pk; v

Pk
� ) � ��k (M;vP ) =

X
k2M

�
�
k(M;vP ) = 1;

and thus  � is indeed a CS-share function. It further follows that

1.
P

i2Pk
 
�
i (N; v; P ) =

P
i2Pk

�
�
i (Pk; v

Pk
� ) � ��k (M;vP ) = �

�
k(M;vP ).

2. For P = fP1g with P1 = N , and M = f1g it follows with equation (8) that

vN� (E) = �
�
1(f1g; v

P
P1jE

) � v(E) = v(E) for E � P1 = N . Since vN� = v and

�
�
1(f1g; v

P ) = 1, it follows that  �i (N; v; fNg) = �
�
i (N; v

N
� ) � �

�
1 (f1g; v

P ) =

�
�
i (N; v) for every i 2 N .

3. If P = ffigi2Ng then M = N and vP (L) = v(P (L)) = v(L) for all L �M = N .

Since ��i (fig; v
fig
� ) = 1 and (M;vP ) = (N; v), it follows that  �i (N; v; ffigi2Ng) =

��i (fig; v
fig
� ) � ��i (M;vP ) = ��i (N; v) for every i 2 N . 2

The consistency properties 2 and 3 in this theorem show that  � generalizes the share

functions �� of Theorem 2.1 extended by (7), i.e. for any game (N; v) 2 G we have

that ��(N; v) =  �(N; v; fNg) =  �(N; v; ffigi2Ng). These two consistency properties

also imply that property 1 can be written as
P

i2Pk  
�
i (N; v; P ) =  

�
k (M;vfMg; fMg) =

 �k (M;vffkgk2Mg; ffkgk2Mg).

The next proposition shows that the function  � is the Owen CS-share function  S,

when taking the Shapley �-function �S , while  � is the Banzhaf CS-share function  B,

when taking the Banzhaf �-function �B.

Proposition 3.2 The CS-share function  � is the Owen CS-share function  S when

� = �S = v(N) and it is the Banzhaf CS-share function  B when � = �B(N; v) =
1

2n�1
P

E�N (2jEj � n)v(E).

Proof

According to equation (5) we have that  Si (N; v; P ) = �Si (Pk; v
Pk) � �Sk (M;vP ), while

according to Theorem 3.1 the function  �
S

is given by  �
S

i (N; v; P ) = �
�S

i (Pk; v
Pk
�S
) �

�
�S

k (M;vP ), for i 2 Pk 2 P . Since �S = ��
S

(see van der Laan and van den Brink
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(1998)), it is su�cient to show that the internal game (Pk; vPk) as given in equation

(3) is equal to the internal game (Pk; v
Pk
�S
) as given in equation (8). Since vPPkjE(M) =

v(P (M n fkg) [ E), it follows that vPk
�S
(E) = �Sk (M;vPPk jE) � v(P (M n fkg) [ E) =

'Sk (M;vPPk jE) =
P

L�M

L63k

jLj!(m�jLj�1)!
m!

(vPPkjE(L[fkg)�v
P
PkjE

(L)) =
P

L�M

L63k

jLj!(m�jLj�1)!
m!

v(P (L)[

E)� v(P (L)) =
P

L�M

L63k

jLj!(m�jLj�1)!
m! vPk;L(E) = vPk(E) for all E � Pk.

Analogously, for the Banzhaf CS-share function we can show that the internal game

(Pk; bvPk) as given in equation (6) is equal to the internal game (Pk; v
Pk
�B
). 2

Other CS-share functions are obtained by taking other �-functions. For instance, con-

sider the non-e�cient Deegan-Packel value given by 'DPi (N; v) =
P

E�N

E3i

v(E)
jEj

for all i 2

N , see Deegan and Packel (1979), and let the corresponding share function �DP be

given by �DPi (N; v) =
'DPi (N;v)P
j2N

'DP
j

(N;v)
for all i 2 N . This share function satis�es the

axioms of symmetry and �DP -additivity with �DP (N; v) =
P

E�N v(E), but does not

satisfy the null player property and thus does not belong to the class of share func-

tions given in Theorem 2.1. However, since �DP is positive, additive and symmetric

on G, according to Theorem 2.1 there exists a unique share function on G+ satisfying

symmetry, �DP -additivity and the null player property. Van der Laan and van den

Brink (1998) show that this is the share function ��
DP

that is obtained as in Theorem

2.2 by taking positive weight vectors !n 2 IRn
+; n 2 IN, recursively given by !nn = 1

n

and !nt =
1+(n�t)!nt+1

t
, t = n � 1; : : : ; 1. Applying this solution to games in coalition

structure as de�ned in Theorem 3.1 gives the CS-share function  �
DP

given by

 �
DP

i (N; v; P ) = ��
DP

i (Pk; v
Pk
�DP

) � ��
DP

k (M;vP ):

In the next example we evaluate the Owen CS-share function, the Banzhaf CS-share

function and this �DP CS-share function for a four player game with a three coalition

structure.

Example 3.3 Consider the game (N; v) on N = f1; 2; 3; 4g given by v(S) = 1 if

1 2 S and jSj � 2, v(S) = 0 otherwise. The Shapley, Banzhaf and �DP -shares of the

players in this game are given by �S(N; v) = (3
4;

1
12;

1
12;

1
12)

>, �B(N; v) = ( 7
10;

1
10;

1
10;

1
10)

>

and ��
DP

(N; v) = (5184;
11
84;

11
84;

11
84)

>. They are obtained from applying Theorem 2.2 with

weight vector e!4 = (14 ;
1
12;

1
12;

1
4)
> for �S , b!4 = (18;

1
8 ;

1
8 ;

1
8)
> for �B, respectively !4 =

(4512;
11
12;

5
12;

1
4)

> for ��
DP

.
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E � P1 vP1;;(E) vP1;f2g(E) vP1;f3g(E) vP1;f2;3g(E)
; 0 0 0 0
f1g 0 1 1 1
f2g 0 0 0 0
f1; 2g 1 1 1 1

Table 1: Marginal contributions vP1;L(E); L � f2; 3g �M; E � P1 = f1; 2g

E = ; E = f1g E = f2g E = f1; 2g
� = �S 0 2

3
0 1

� = �B 0 3
4 0 1

� = �DP 0 5
3

0 4

Table 2: Characteristic functions of the internal games vP1�

For coalition structure P = fP1; P2; P3g with P1 = f1; 2g, P2 = f3g and P3 = f4g,

the external game (M;vP ) with M = f1; 2; 3g is given by vP (S) = 1 if 1 2 S and

vP (S) = 0 otherwise. Then �S(M;vP ) = �B(M;vP ) = ��
DP

(M;vP ) = (1; 0; 0)>. Since

the Shapley-, Banzhaf- and �DP -shares of the coalitions f3g and f4g in the external

game are zero, it follows that the Shapley-, Banzhaf-, and �DP -CS-shares of players 3

and 4 are equal to 0. So, we are left to determine the CS-shares for players 1 and 2.

Using for L � f2; 3g �M the marginal contributions vP1;L(E), E � P1, (see equation

(4)) as given in Table 1, and the weight vectors e!3 = (13 ;
1
6;

1
3)

>; b!3 = (14;
1
4 ;

1
4)
> and

!3 = (7
3;

2
3 ;

1
3)

>, this gives the internal games vP1� given in Table 2.

Finally, with e!2 = b!2 = (12;
1
2)

> and !2 = (3
4;

1
2)

> we obtain �S(P1; v
P1
�S
) = (56 ;

1
6)
>,

�B(P1; v
P1
�B
) = (78 ;

1
8)
> and ��

DP

(P1; v
P1
�DP

) = (2734;
7
34)

>. So, the Shapley-, Banzhaf- and

�DP -CS-shares are given by  S(N; v; P ) = (5
6
; 1
6
; 0; 0)>,  B(N; v; P ) = (7

8
; 1
8
; 0; 0)>,

respectively,  �
DP

(N; v; P ) = (2734;
7
34; 0; 0)

>. 2
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4 An axiomatization of CS-share functions using

the multiplication property

In this section we provide an axiomatization of the CS-share functions de�ned in Theo-

rem 3.1 using the multiplication property. So, for � a symmetric, additive and positive

function on G, we state several axioms for a share function  on GP. Since we want to

axiomatically characterize CS-share functions for games in coalition structure we state

all axioms in terms of CS-shares functions.

In the next axiom it is required that a share function satis�es the multiplication

property. Since in this property the internal game vPk� appears and this game depends

on the chosen �-function, the multiplication property also depends on this �-function.

Axiom 4.1 (�-Multiplication) For �:G ! IR, (N; v; P ) 2 GP and i 2 Pk 2 P =

fP1; : : : ; Pmg it holds that

 i(N; v; P ) =  i(Pk; v
Pk
� ; fPkg) �  k(M;vP ; fMg):

The null player property is a straightforward generalization of the null player property

for share functions.

Axiom 4.2 (Null player property) If i 2 N is a null player in (N; v) 2 G+ then

 i(N; v; P ) = 0 for every P 2 PN .

Note that the null player property only requires that null players in monotone non-null

games earn a zero payo�.

As done in Winter (1989, 1992) for CS-value functions, we distinguish two symme-

try axioms for CS-share functions: an individual and a coalitional symmetry axiom.

The individual symmetry axiom states that players who belong to the same a priori

coalition and are symmetric in the game earn the same share in the payo�. (Coalitional

symmetry is introduced after the next theorem.)

Axiom 4.3 (Individual symmetry) If i; j 2 Pk 2 P 2 PN are symmetric in

(N; v) 2 G then  i(N; v; P ) =  j(N; v; P ).

In property 2 of Theorem 3.1 we saw that the CS-share function  � generalizes the

share functions �� by taking coalition structure P = fNg. In Section 2 we already

mentioned that the share functions �� satisfy �-additivity. Next we restate �-additivity

for games in coalition structure in terms of CS-share functions.
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Axiom 4.4 (�-additivity for one-coalition structures) Let �:G ! IR be given.

For every (N; v); (N;w) 2 G it holds that

�(N; v + w) (N; v + w; fNg) = �(N; v) (N; v; fNg) + �(N;w) (N;w; fNg):

The next theorem proves that the CS-share function  � given in Theorem 3.1 is the

unique CS-share functions satisfying the four axioms stated above.

Theorem 4.5 Let �:G ! IR be positive, additive and symmetric on G. Then  � is the

unique CS-share function on G that satis�es �-multiplication, the null player property,

individual symmetry and �-additivity for one-coalition structures.

Proof

The property of �-multiplication of  � follows directly from the de�nition of  � and

consistency property 2 in Theorem 3.1. Next, let i 2 Pk 2 P 2 PN be a null player in

(N; v) 2 G+. Then v(P (M nfkg)[E) = v(P (M nfkg)[(Enfig)) for all E � Pk; E 3 i,

and vPPkjE(L) = vPPkjEnfig(L) for all L �M . This implies that vPk� (E)� vPk� (E n fig) =

�
�
k (M;vPPkjE) � v(P (M n fkg)[E)� �

�
k(M;vPPk jEnfig) � v(P (M n fkg) [ (E n fig)) = 0 for

all E � Pk, E 3 i. Thus, i is a null player in (Pk; v
Pk
� ). Since �� satis�es the null player

property we have that ��i (Pk; v
Pk
� ) = 0, and thus  �i (N; v; P ) = ��i (Pk; v

Pk
� )���k(M;vP ) =

0, if (Pk; vPk� ) 2 G+. If (Pk; vPk� ) is a null game then vPk� (Pk) = �
�
k(M;vPPk jPk) �v(N) = 0.

Since (N; v) 2 G+ we have that v(N) > 0, and thus ��k(M;vPPk jPk) must be equal

to 0. Since vPPkjPk = vP it then holds that ��k (M;vP ) = 0. Again  
�
i (N; v; P ) =

�
�
i (Pk; v

Pk
� ) � ��k(M;vP ) = 0. Hence,  � satis�es the null player property.

If i; j 2 Pk are symmetric in (N; v) then i; j 2 Pk are symmetric in (Pk; vPk� ).

Symmetry of �� then implies that  �i (N; v; P ) = ��i (Pk; v
Pk
� ) � ��k (M;vP ) = ��j (Pk; v

Pk
� ) �

�
�

k (M;vP ) =  
�
j (N; v; P ).

Finally, the consistency property 2 of Theorem 3.1 and �-additivity of �� imply

that �(N; v + w) �(N; v + w; fNg) = �(N; v + w)��(N; v + w) = �(N; v)��(N; v) +

�(N;w)��(N;w) = �(N; v) �(N; v; fNg) + �(N;w) �(N;w; fNg), which shows that

 � satis�es �-additivity for one-coalition structures.

To show that  � is uniquely determined by the axioms, suppose that  is a CS-

share function satisfying the four axioms. Then, individual symmetry implies that

 i(N; v0; fNg) =
1
jN j

for all i 2 N . Next, consider the game (N;wT ), T � N , with

wT = cTuT , cT > 0 and uT the unanimity game of coalition T . For i 2 N n T the
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null player property implies that  i(N;wT ; fNg) = 0. Individual symmetry implies

that there exists a c� 2 IR such that  i(N;wT ; fNg) = c� for all i 2 T . Since  is a

CS-share function it must hold that c� = 1
jT j
, and thus  (N;wT ; fNg) is determined.

For (N; v) 2 G, recall from the preliminaries that v + v� = v+, with both v� and

v+ a nonnegative linear combination of unanimity games. Hence,  (N; v+; fNg) and

 (N; v�; fNg) follow directly from �-additivity for one-coalition structures and the fact

that we determined  (N; cTuT ; fNg), cT � 0, above. Consequently the uniqueness of

 (N; v; fNg) follows directly from applying �-additivity for one-coalition structures to

v + v� = v+.

Finally, for arbitrary (N; v; P ) 2 GP, uniqueness of  (N; v; P ) then follows directly

from applying �-multiplication. 2

Instead of the coalition structure fNg in �-additivity for one-coalition structures we

could also require �-additivity just for coalition structures with jN j coalitions, i.e. the

coalition structures ffigi2Ng.

Axiom 4.6 (�-additivity for n-coalition structures) Let �:G ! IR be given. For

every (N; v); (N;w) 2 G it holds that

�(N; v + w) (N; v + w; ffigi2Ng) = �(N; v) (N; v; ffigi2Ng) + �(N;w) (N;w; ffigi2Ng):

In order to characterize the class of share functions  � using this �-additivity of jN j-

coalition structures we need to replace individual symmetry by coalitional symmetry

stating that the total payo�s for two coalitions that are symmetric in the external game

(M;vP ) are the same.

Axiom 4.7 (Coalitional symmetry) If Pk; Pl 2 P 2 PN are symmetric players

in the external game (M;vP ) induced by (N; v; P ) 2 GP, then
P

i2Pk  i(N; v; P ) =P
i2Pl  i(N; v; P ).

Theorem 4.8 Let �:G ! IR be positive, additive and symmetric on G. Then the

function  � is the unique CS-share function on G that satis�es �-multiplication, the

null player property, coalitional symmetry and �-additivity for jN j-coalition structures.

Proof

FromTheorem 4.5 it directly follows that  � satis�es �-multiplication and the null play-

er property. If Pk; Pl 2 P are symmetric players in (M;vP ) then symmetry of ��, and ��
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being a share function imply that
P

i2Pk
 
�
i (N; v; P ) =

P
i2Pk

�
�
i (Pk; v

Pk
� ) � ��k (M;vP ) =

�
�

k (M;vP ) = �
�

l (M;vP ) =
P

i2Pl �
�
i (Pl; v

Pl
� ) ��

�

l (M;vP ) =
P

i2Pl  
�
i (N; v; P ). This shows

that  � satis�es coalitional symmetry. Showing that  � satis�es �-additivity for n-

coalition structures follows in the same way as it is shown that  � satis�es �-additivity

for one-coalition structures in the proof of Theorem 4.5 but using consistency property

3 of Theorem 3.1 instead of property 2. Uniqueness of  � follows in a similar way as

in the proof of Theorem 4.5. 2

Finally we mention that �-multiplication also can be replaced by the similar axiom in

terms of shares �� and adding consistency property 2 (in Theorem 4.5) or consistency

property 3 (in Theorem 4.8) as stated in Theorem 3.1.

5 An axiomatization using consistency

In Section 3 we de�ned for given function � the CS-share function  � by using the

multiplication property and showed that this function satis�es three consistency prop-

erties. In the previous section we characterized this class of share functions using the

multiplication property as one of the axioms. Next we give an axiomatization of the

CS-share functions  � that uses consistency property 1. As in the previous section, we

state the axioms in terms of CS-shares functions. So, in the following axioms, let � be

a symmetric, additive and positive function on G and  a CS-share function on GP.

Axiom 5.1 (Consistency) If (N; v; P ) 2 GP and Pk 2 P then
P

i2Pk
 i(N; v; P ) =

 k(M;vP ; fMg).

Unlike �-multiplication this axiom does not depend on the �-function. Finally, we

generalize �-additivity for one-coalition structures (and �-additivity for n-coalition

structures).

Axiom 5.2 (�-additivity for coalition structures) For (N; v; P ); (N;w;P ) 2 GP

let the characteristic function z be given by z = v + w. For i 2 Pk 2 P it holds that

�(Pk; z
Pk
� )�(M;zP ) i(N; z; P ) =�

�(Pk ; v
Pk
� ) i(Pk; v

Pk
� ; fPkg) + �(Pk; w

Pk
� ) i(Pk; w

Pk
� ; fPkg)

�
��

�(M;vP ) Pk(M;vP ; fMg) + �(M;wP ) Pk(M;wP ; fMg)
�
:
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When in Theorem 4.5 the axiom of �-multiplication is replaced by consistency and the

axiom of �-additivity for one-coalition structures is strengthened to �-additivity for

coalition structures we again obtain a characterization for the CS-share functions  �

as de�ned in Theorem 3.1.

Theorem 5.3 Let �:G ! IR be positive, additive and symmetric on G. Then the

function  � is the unique CS-share function on G that satis�es consistency, the null

player property, individual symmetry and �-additivity for coalition structures.

Proof

Again, we �rst show that  � satis�es the four properties. From Theorem 3.1, properties

1 and 2, it follows that  � satis�es the consistency axiom. From Theorem 4.5 we

know that  � satis�es the null player property and individual symmetry. Further,

let (N; v; P ); (N;w;P ) 2 GP and let z = v + w. To prove �-additivity for coalition

structures we distinguish three cases.

First, suppose that (N; z) is a null game. Since z = v0 if and only if v = w = v0,

�-additivity for coalition structures follows since z = v0 also implies that zP and zPk�

are null games for all Pk 2 P .

Next, suppose that (N; z) 2 G+, and let i 2 Pk 2 P be a null player in (N; z). Then

i also is a null player in both (N; v) and (N;w), because both games are monotone

games. Using similar arguments as when proving the null player property in the proof

of Theorem 4.5 it follows that  �i (N; z; P ) = 0. Further, �(Pk; vPk� ) � ��i (Pk; v
Pk
� ) = 0

since i is a null player in (Pk; vPk� ) and either vPk� = v0 (in which case �(Pk; vPk� ) = 0)

or vPk� 6= v0 (in which case ��i (Pk; v
Pk
� ) = 0). Similarly �(Pk; wPk

� ) � ��i (Pk; w
Pk
� ) = 0. So,

also in this case �-additivity for coalition structures holds.

Finally, if i is not a null player in (N; z) 2 G+, then �(Pk; zPk� ) � �(M;zP ) > 0 and

using �-additivity of �� we can derive that

�(Pk; z
Pk
� )�(M;zP ) �i (N; z; P ) = �(Pk; z

Pk
� )�(M;zP )��i (Pk; z

Pk
� )��k (M;zP )

= �(Pk; z
Pk
� )�(M;zP )

 
�(Pk; vPk� )��i (Pk; v

Pk
� ) + �(Pk; wPk

� )��i (Pk; w
Pk
� )

�(Pk; z
Pk
� )

!
�

 
�(M;vP )��k (M;vP ) + �(M;wP )��k(M;wP )

�(M;zP )

!

=
�
�(Pk ; v

Pk
� )��i (Pk; v

Pk
� ) + �(Pk; w

Pk
� )��i (Pk; w

Pk
� )
�
�
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�
�(M;vP )��k (M;vP ) + �(M;wP )��k(M;wP )

�
:

Consistency property 2 of Theorem 3.1 then implies that  � also satis�es �-additivity

for coalition structures in this case.

To show uniqueness, suppose that  satis�es the four axioms. For a null game,

 (N; v0; P ) is uniquely determined by individual symmetry. Next, consider for T � N ,

the scaled unanimity game (N;wT ), with wT = cTuT , cT > 0, and let P = fP1; : : : ; Pmg

be a coalition structure in PN . For i 2 N n T the null player property implies that

 i(N;wT ; P ) = 0. To obtain  i(N;wT ; P ) for i 2 T , �rst de�ne K(T; P ) := fk 2

M j Pk \ T 6= ;g. Then, all coalitions Pk 2 P such that k 2 K(T; P ) are symmetric

in the external game (M; (wT )P ). Individual symmetry then implies that there exist-

s a c� 2 IR such that  k(M; (wT )P ; fMg) = c� for all k 2 K(T; P ). By  being a

CS-share function and
P

i2Pk  i(N;w
T ; P ) = 0 for all k 2 M nK(T; P ), we have that

 k(M; (wT )P ; fMg) = c� = 1
jK(T;P )j for all k 2 K(T; P ). Consistency then implies thatP

i2Pk
 i(N;wT ; P ) = 1

jK(T;P )j
for k 2 K(T; P ). Since all i 2 Pk \ T are symmetric

players in (N;wT ), and  i(N;wT ; P ) = 0 for i 2 N n T , individual symmetry implies

that  i(N;wT ; P ) = 1
jPk\T j�jK(T;P )j for i 2 Pk \ T and thus  (N;wT ; P ) is uniquely

determined for any wT and coalition structure P . Finally for arbitrary (N; v) 2 G and

coalition structure P ,  (N; v+; P ) and  (N; v�; P ) follow directly from �-additivity

for coalition structures and consequently the uniqueness of  (N; v; P ) follows directly

from applying �-additivity for coalition structures to v + v� = v+. 2

We can restate �-additivity for coalition structures using coalition structures ffigi2Pkg

and ffkgk2Mg instead of coalition structures fPkg, respectively, fMg. To characterize

the share functions  � we then also have to replace individual symmetry by coalitional

symmetry as done in going from Theorem 4.5 to Theorem 4.8. Finally, we can replace

consistency in Theorem 5.3 by coalitional symmetry. That gives a characterization

using both individual and coalitional symmetry.

6 Conclusion

In this paper we discussed a general approach to de�ning CS-share functions for games

in coalition structure using a multiplication property. We showed that all these CS-

share functions are consistent in the sense that the total payo� of all players in an a
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priori coalition is equal to the payo� of this coalition in the external game between

the coalitions. We gave axiomatic characterizations using these multiplication and

consistency properties.

Two special cases are the Shapley- and Banzhaf CS-share functions. The Shapley

CS-share function is obtained by normalizing the Owen CS-value function to one.

However, the Banzhaf CS-share function discussed in this paper is di�erent from the

Banzhaf type CS-share function that is obtained a la Owen (1981)'s Banzhaf CS-

value function. In the Banzhaf value each marginal contribution has an equal weight.

Generalizing this to games in coalition structure, Owen (1981) assigns equal weights to

each marginal contribution of a coalition within the coalition structure and within such

a coalition to each marginal contribution of the players within that coalition. Replacing

in equation (1) the Shapley weights by Banzhaf weights yields the value function � on

GP de�ned by

�i(N; v; P ) =
X
L�M

L63k

X
E�Pk
E3i

2�(m�1) � 2�(jPk j�1) (v(E [ P (L)) � v((E n fig) [ P (L))) ;

for all i 2 Pk; k 2 M . The corresponding share function  which, for every i 2 N

and (N; v) 2 G+, is given by  i(N; v; P ) = �i(N;v;P )P
j2N

�j(N;v;P )
, is not the same as the

Banzhaf CS-share function discussed in this paper. In particular, it does not satisfy

the multiplication property nor consistency.
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