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Abstract

The matrix variables in a primal-dual pair of semide�nite programs are getting increasingly

ill-conditioned as they approach a complementary solution. Multiplying the primal matrix

variable with a vector from the eigenspace of the non-basic part will therefore result in heavy

numerical cancellation. This e�ect is ampli�ed by the scaling operation in interior point meth-

ods. In order to avoid numerical problems in interior point methods, we therefore propose to

maintain the matrix variables in a product form. We discuss how the factors of this product

form can be updated after a main iteration of the interior point method with Nesterov-Todd

scaling.

Keywords: Semide�nite Programming.

AMS subject classi�cation: 90C22, 90C20.

JEL codes: C61, C63.

1 Introduction

This paper addresses numerical issues in interior point methods for semide�nite programming,
particularly focusing on the �nal iterates. The numerical issues that we encounter belong to the
category of numerical cancellation. In general, the phenomenon of numerical cancellation refers to
the following situation: the computer adds two numbers, say � and �, and the result is much smaller
in magnitude, i.e. j� + �j=(j�j + j�j) << 1. For instance, in a 
oating point system with 4 digits
of accuracy, the computation `-0.1350 + 0.1357 = 0.7E-3' su�ers from numerical cancellation,
since the result has merely one signifant digit: we do not know whether it is say 0.65E-3 or
0.74E-3, because `-0.1350' and `0.1357' are merely 4-digit 
oating point representations of real
values.

In linear programming, we know that some of the nonnegative decision variables will have
to approach zero in order to obtain optimality; these are the so-called non-basic variables. In
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semide�nite programming, the eigenvalues of a symmetric matrix variable X are restricted to be
nonnegative, and some of these nonnegative eigenvalues approach zero for near optimal solutions.
In fact, associated with a semide�nite programming problem is a matrix QN of full column rank
such that X(k)QN ! 0 for any solution sequence X(1);X(2); : : : that approaches optimality [7,
11]. However, the entries in the matrix X(k) itself will in general not approach zero. Therefore,
the computation `X(k)QN ' will increasingly su�er from numerical cancellation when optimality
is approached. This is also true for the computation `XZ', where Z is a nearly optimal dual
slack variable associated with a nearly optimal matrix variable X. Particularly dangerous are
computations involving X�1, since X is getting nearly singular, and the small eigenvalues cannot
be reliably computed from X. However, these type of computations typically appear in interior
point methods, as part of the so-called scaling operation. The loss of accuracy due to numerical
cancellation will be even more pronounced if the sequence X(1);X(2); : : : is unbounded (i.e. the
entries become arbitrarily large), as is true for problems in which the optimal value cannot be
attained.

We remark that the problems of numerical cancellation as discussed so far do not occur in linear
programming, because there the quantities that approach zero are stored as separate entries, viz.
the non-basic variables. Therefore, we propose to store the primal and dual iterates (X and Z) in a
product form that allows us to maintain the contributions from all eigenvalues with high accuracy.
The technique has been implemented as Version 1.04 of the popular semide�nite programming
solver SeDuMi [18].

Numerical issues in semide�nite programming have been addressed in several research pa-
pers [1, 10, 23]. Todd, Toh and T�ut�unc�u [23] investigated the so-called AHO, HRVW/KSH/M, and
NT search directions in a numerical experiment, using their SDPT3 software [25]. By and large,
they obtained the highest accuracy with the AHO direction. Alizadeh, Haeberly and Overton [1]
provided a possible explanation why the AHO direction may have better numerical performance
in the �nal stage of the interior point method than the HRVW/KSH/M and NT search directions.
Very recently, Kruk [10] observed that the Gauss-Newton method may su�er less from numeri-
cal problems than the interior point method, and he also provides a possible explanation. But,
unlike the interior point approach, the Gauss-Newton method is not known to have polynomial
convergence, and the computational experience on practical semide�nite programming models is
still relatively limited.

The organization of the paper is as follows. In Section 2, we discuss the de�nitions and notational
conventions which are used in the remaining sections. We also state some well known facts from the
interior point method for semide�nite programming, especially concerning the predictor direction
with Nesterov-Todd scaling. In Section 3 we propose to maintain the iterates of the interior point
method in the so-called V-space product form of Sturm and Zhang [20] with the special requirement
that the Ud-factor is the Cholesky factor of the Nesterov-Todd scaling point [15, 16]. In Section 4,
we provide a compuational method to update the V-space factors between two successive main
iterations of the interior point method. In Section 5, we discuss how the V-space factors can be
used to compute in a more accurate fashion the AP (d)AT-matrix that appears in the scaled normal
equations system which de�nes the interior point search directions. The actual accuracy that can
be obtained by the interior point solver depends on the weakest chain in the link: the improved
accuracy that we obtain in one part of the computations can be lost elsewhere in the process.
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Therefore, we identify miscellaneous sources of numerical problems in Section 6, and we provide
possible remedies. Numerical results are reported in Section 7. The paper in concluded in Section 8.

2 Preliminaries

We consider semide�nite programming problems in the following standard form:

minimize tr CX
such that tr AiX = bi for i = 1; 2; : : : ;m

X is symmetric and positive semide�nite;
(1)

where A1; A2; : : : ; Am and C are given � � � matrices, b is a vector with components b1; b2; : : : ; bm,
and the decision variable is an � � � matrix X.

The standard vec (�) operator [9] stacks the columns of a matrix into a long vector, i.e.

vec (X) = vec (
h
x1 � � � x�

i
) =

2
64
x1
...
x�

3
75 ;

where xi 2 <� , i = 1; : : : ; �, are the columns of X.

Letting ai = vec (Ai), i = 1; : : : ;m, A :=
h
a1; � � � ; am

iT
, and c := vec (C), we can

reformulate the standard semide�nite programming problem as a conic linear program in <n with
n = �2 as follows:

inffcTx j Ax = b; x 2 PSD(�)g: (2)

The decision variable is now x = vec (X) 2 <n. The convex cone PSD(�) is de�ned as follows:

PSD(�) := f vec (X) j X 2 <��� is symmetric and positive semide�niteg:

The dual cone of PSD(�) in <n is then

PSD(�)� = f vec (Z) j Z 2 <��� ; Z + ZT is positive semide�niteg:

Associated with (2) is a dual problem, viz.

supfbTy j c�ATy 2 PSD(�)�g: (3)

The vector of dual decision variables is y 2 <m.

We may replace `C' by (C +CT)=2 and similarly `Ai' by (Ai +AT
i )=2, i = 1; 2; : : : ;m, without

a�ecting problems (2) and (3). Therefore, we will assume without loss of generality that the
matrices Ai, i = 1; : : : ;m and C are symmetric. Under this assumption, we have

c�ATy 2 PSD(�)� () c�ATy 2 PSD(�):
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Given a dual solution y we de�ne the dual slack as Z = C �Pm
i=1 yiAi, or z = vec (Z) = c�ATy

in vectorized form.

Given matrices that are identi�ed by upper-case symbols X, Z and C, we implicitly de�ne the
lower case symbols x, z and c as x := vec (X), z := vec (Z), and c := vec (C), We will use the
matrix form (1) and vector form (2) of a semide�nite program interchangeably, depending on the
context.

2.1 Path-Following Direction

In each iteration of the (feasible) primal-dual interior point method, a primal feasible solution X
and a dual feasible solution Z are computed, such that X and Z are positive de�nite. Whenever
such solutions exist, it holds that positive semi-de�nite feasible solutions X and Z are optimal
if and only if XZ = 0. We refer to Vandenberghe and Boyd [26] and Todd [21, 22] for general
introductions to semide�nite programming. The distance to optimality for a feasible solution is
measured by the duality gap, which is cTx� bTy = xTz = tr XZ.

We let �min(XZ) denote the smallest eigenvalue of XZ, which is real since XZ � X1=2ZX1=2.
If (X; y; Z) is a given iterate in the interior point method, then X and Z are positive de�nite,
and �min(XZ)=(xTz) is bounded from below by a positive constant which is independent of the
duality gap; this is the so-called centrality condition. In fact, on the central path we have XZ =
(xTz=�)I, where I denotes the identity matrix. The centrality property is important for our
numerical investigation.

A main iteration of the interior point method consists of computing a search direction that is
added to the current iterate with a certain step length t > 0, yielding the next iterate:

(Xnew; ynew; Znew) = (X; y; Z) + t(�X;�y;�Z): (4)

The search direction (�x;�y;�z) is implicitly de�ned by a system of equations, as follows:8>><
>>:

�x+ P (d)�z = r

A�x = 0

AT�y +�z = 0;

(5)

The system depends on an invertible n� n matrix `P (d)' and a vector r 2 <n, which depend not
only on the iterate, but also on the speci�c algorithmic choices of the interior point method. E.g.
setting r = �x corresponds to the so-called predictor (or: primal-dual aÆne scaling) direction.
Various approaches in semide�nite programming have led to di�erent possible choices for `P (d)',
see the surveys by Todd [21, 22], where this matrix is denoted as `E�1F '. On the central path, we
have in most approaches that P (d) is a multiple of X 
X or, equivalently, Z�1 
 Z�1. Here, `
'
denotes the standard Kronecker product [9], i.e.

(D 
D) vec (X) = vec (DXDT):

We remark from (5) that

0 = AP (d)(AT�y +�z) = AP (d)AT�y +A(r ��x) = AP (d)AT�y +Ar;
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yielding
AP (d)AT�y = �Ar: (6)

Notice that for the predictor direction with r = �x we have �Ar = b, and (6) can be further
simpli�ed to

AP (d)AT�y = b: (7)

Once the �y direction is known, the �z and �x directions then follow easily as

1. �z = �AT�y, and

2. �x = r � P (d)�z.

The main computational e�ort in the interior point method lies therefore in solving a system of the
form (7). From a numerical point of view, evaluating `r � P (d)�z' is also a challenge (even in the
case of linear programming). Namely, if the iterates converge then �x (= r�P (d)�z) approaches
zero, whereas r does not; hence the accuracy in �x su�ers from numerical cancellation. However,
the other sources of numerical problems that we discuss in this paper are much more severe.

In actual implementations of the interior point method, the right hand side in (7) may not be
exactly the b vector, because

� an infeasible interior point method is used, i.e. Ax is not necessarily equal to b, see Lustig,
Marsten and Shanno [12], or

� a self-dual embedding is used, see Ye, Todd and Mizuno [27], and

� the direction is not simply a predictor direction, but includes e.g. a second order correction,
see Mehrotra [13].

Nevertheless, for the purpose of this paper it suÆces to focus on the system (7). This systems
stays the same throughout the interior point process, except for the parameter d. Thus, if d is not
suÆciently accurate then solving (7) becomes pointless due to the `garbage in, garbage out' e�ect.
We will now �nally address the following issue: What are P (�) and d ?

2.2 Nesterov{Todd Scaling

We use the notation from Euclidean Jordan algebra [5] to let the n � n matrix P (d) denote the
quadratic representation of d 2 <n. This means for d = vec (D) with D = DT that

P (d) = P ( vec (D)) = D 
D:

By construction, P (d)PSD(�) = PSD(�) for any d 2 <n. Furthermore, if D is positive de�nite then
P ( vec (D)) is positive de�nite and P ( vec (D))�1 = P ( vec (D�1)), see [9].

For the vector d = vec (D), D = DT, we will use the Nesterov-Todd scaling [15, 16], also known
as NT-scaling, which is de�ned as the unique positive de�nite solution to

X = DZD; (8)
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for given positive de�nite iterates X and Z. In fact, D is the metric geometric mean [2, 23] of X
and Z�1. Vectorizing (8) yields the equivalent characterization x = P (d)z.

3 V-Space Product Form

In the �nal stage of the interior point method, accurate information on the small(est) eigenvalues
of X and Z can usually not be obtained from the 
oating point representations of X and Z as these
matrices become increasingly ill conditioned. Therefore, we propose to maintain these iterates in a
speci�c product form, which we call the V-space product form. The V-space product form consists
of an upper triangular factor Ud and a symmetric positive de�nite matrix V such that

D = UT
d Ud (Cholesky factor)

X = UT
d V Ud; V = UdZU

T
d :

In fact, the idea to consider (Ud; V ) as the iterates in a primal-dual method was proposed for other
reasons already in 1995 by Sturm and Zhang [20]; this paper extended the V-space framework from
linear to semide�nite programming, thereby obtaining a new interpretation for the Nesterov-Todd
direction [15, 16]. We will now explain with an example why the V-space factors convey more
information than the (X;Z) iterates in 
oating point representation.

Consider a simple 2� 2 example, with quantities that are typical for an iteration approaching
the �nal stage:

Ud =

"
9000 1000
0 0:002

#
; V = 10�5 �

"
4 1
1 3

#
:

The matrix V is well conditioned and positive de�nite. The upper-triangular matrix Ud satis�es
the property of a stable U -factor, de�ned as follows:

De�nition 1 A � � � upper triangular matrix U is called a stable U -factor if for all rows i =
1; 2; : : : ; � it holds that

uii � maxfuij j j = i+ 1; i+ 2; : : : ; �g: (9)

See Lemma 8.6 in Higham [8] for a motivation of the above de�nition.

We computed in MATLAB 5.3, using IEEE double precision 
oating point arithmetic (we
obtained the identical results on a Sun Sparcstation 4 and a Cyrix 686 based PC), the following
matrices:

X = UT
d V Ud; Z = U�1d V U�Td ; D = UT

d Ud:

In this particular example, the computed X is completely accurate. Furthermore, all entries of the
computed Z must be highly accurate as well, because Ud is a stable U -factor and all entries of Z
are of the same order of magnitude; see Theorem 8.7 in Higham [8]. The computed entries in D
are the 
oating point representations of the exact D matrix, which is easily calculated from Ud.
Nevertheless, we will see that important information has been lost.
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In exact arithmetic, we should have X = DZD, but if we numerically evaluate kX�DZDk2 we
�nd an error of more than 0:1. The error is due to heavy numerical cancellation in evaluating the
matrix product DZD. Evaluating kX �UT

d (UdZU
T
d )Udk yields and error of more than 0:06, which

is hardly any better. The error must be explained from heavy cancellation in evaluating UdZU
T
d ;

we claim that the entries in X;Z and D are accurate, relative to their magnitude. The argument
below will further illustrate this.

De�ning uij's and zij 's by

Ud =

"
u11 u12
0 u22

#
; Z =

"
z11 z12
z12 z22

#
; V =

"
v11 v12
v12 v22

#
;

we have from V = UdZU
T
d that

v22 = z22u
2
22; v12 = u22(u11z12 + u12z22); (10)

and

v11 = z11

�
u11 +

z12u12
z11

�2
+
det(Z)u212

z11
: (11)

In our numerical example, we have(
z11z22 = 0:69444351852222;

p
z11z22 = :83333277777981

z212 = 0:69444351851883; z12 = �:83333277777778
so that z11z22� z212 = 3:395� 10�12 su�ers from numerical cancellation. However, we can compute
det(Z) accurately from the Ud and V factors, viz.

det(Z) =
det(V )

det(Ud)2
= 3:395061728395063 � 10�12: (12)

Let V̂ denote the V -matrix that is computed in 
oating point arithmetic from (10){(12). Then the
error measure kX � UT

d V̂ Udk evaluates to less than 2� 10�7.

The above example illustrates some important points. First, the NT-scaling D cannot be
accurately computed from (8) when Z gets ill-conditioned. In fact (8) fails to hold even for an
accurate 
oating point representation of the actual D. The error kX �DZDk is large because the
contribution of the large eigenvalue in D, and therefore the majority of the signi�cant digits in D,
is almost canceled out when multiplying with Z. Second, the contributions of small eigenvalues
in X, Z and D have low accuracy if X, Z and D are stored as matrices of 
oating point entries.
Therefore, we should store and update X, Z and D in product form. Accurate results can be
obtained from the V-space product form, provided that the iterates stay reasonably well centered
so that V is well conditioned, and Ud is a stable U -factor. The latter can always be achieved by
using pivoting [8].

4 Maintaining the V -Space Product Form

It is clear that the Nesterov-Todd scaling point D can easily be computed from the V-space factor
Ud, viz.D = UT

d Ud. Now suppose that we can solve system (7) accurately. It is then straightforward
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to compute the primal and dual directions �X and �Z, and the new iterate (Xnew; ynew; Znew) as
in (4). However, we will then face numerical problems in the next iterate, since the new NT-scaling
Dnew cannot be accurately computed from the 
oating point representations of the entries in ill-
conditioned matrices Xnew and Znew, as discussed before. Therefore, we propose to take the step
in a scaled space, in which the primal and dual solutions remain (locally) well conditioned. The
scaled search direction, denoted (�X;�Z), is implicitly de�ned as

UT
d �XUd = �X; �Z = Ud�ZU

T
d :

In fact, since we use only the scaled search directions, it is not necessary to compute �X. Namely,
once �y and �Z have been computed we let �Z = Ud�ZU

T
d . Then, instead of solving �x from

�x+ P (d)�z = �x;
we solve �X from

�X +�Z = �V:

Given the scaled search direction, we arrive at the new iterate under the current scaling,

�Xnew = V + t�X; �Znew = V + t�Z:

Since V is well conditioned, we can in principle control the step length t in such a way that �Xnew

and �Znew are also well conditioned. However, in practice we will give priority to fast convergence,
so that the conditioning of �Xnew and �Znew can be poor on those iterates where the rate of linear
convergence is close to zero. The procedure for updating Ud will then be less accurate. Such
inaccuracy can possibly lead to larger residual vectors that are included in a self-dual or infeasible
interior point formulation; however, the increase will usually be o�set by a reduction in the same
residuals that is caused by the small (hence fast) rate of linear convergence.

The procedure to update the Ud and V factors is as follows:

Procedure 1 (Update of V -factors)

Input: �Xnew, �Znew, Ud.

Output: Upper triangular matrix Unew
d and positive de�nite matrix V new such that for

Xnew := UTd �XnewUd; Znew := U�1d
�ZnewU�Td ;

we have

Xnew = (Unew
d )TV newUnew

d ; V new = Unew
d Znew(Unew

d )T:

1. Compute an upper triangular matrix �Unew
x as the Cholesky factorization of Xnew, i.e.

�Xnew = ( �Unew
x )T �Unew

x :

2. Let W := �Unew
x

�Znew( �Unew
x )T; compute an orthogonal matrix Qw and a diagonal matrix �new

v

as the symmetric eigenvalue decomposition of W 1=2, i.e.

W = Qw(�
new
v )2QTw:
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3. Let T := (�new
v )�1=2QTw; compute an orthogonal matrix Qnew

v and an upper triangular matrix

R as the QR-factorization of T , i.e.

T = (Qnew
v )TR:

4. OUTPUT:

Unew
d = R �Unew

x Ud;

V new = Qnew
v �new

v (Qnew
v )T:

The above procedure does not guarantee in itself that Unew
d is a stable upper triangular factor;

hence a re-ordering of rows and columns may be necessary. A few Givens rotations will make the
Unew
d -matrix upper-triangular in the new pivot ordering; see e.g. Dennis and Schnabel [4] for this

technique.

Theorem 1 Procedure 1 is correct.

Proof. The proof is straightforward. We have

RTV newR = TT�new
v T = QwQ

T
w = I;

so that
(Unew

d )TV newUnew
d = UT

d ( �U
new
x )T �Unew

x Ud = Xnew:

Furthermore, we have
W = Qw(�

new
v )2QT

w = T�1�new
v T�T;

so that

Unew
d Znew(Unew

d )T = R �Unew
x

�Znew( �Unew
x )TRT = RWRT = RT�1�new

v T�TRT = V new;

where we used that RT�1 = R((Qnew
v )�1R)�1 = Qnew

v . Q.E.D.

5 Building the Scaled Normal Equations System

In order to compute �y from (7), we need to obtain the Cholesky factorization of AP (d)AT. It
is well known that this can be achieved by a QR-factorization of the matrix P (d)1=2AT, without
building the matrix AP (d)AT itself. However, in most practical models we see that A is a very
sparse matrix whereas P (d)1=2AT is dense. Furthermore, the number of rows in A is typically much
larger than the number of columns. Due to these properties, it is often computationally cheaper to
compute AP (d)AT than P (d)1=2AT, both in terms of storage and number of operations. Therefore,
the matrix AP (d)AT is explicitly formed in all implementations of the interior point method that
the author is aware of.
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The (i; j)th-entry in the matrix AP (d)AT is

aTi P (d)aj = tr AiDAjD: (13)

Sparsity in the A matrix can be exploited throughout the computation of the entries in AP (d)AT.
For instance, one may apply the following scheme:

1. Let T := DAj .

2. Compute (TD)p;q for those (p; q) where the (p; q)th entry in Ai is nonzero for some i 2
f1; 2; : : : ; jg.

3. Compute tr Ai(TD) for i = 1; 2; : : : ; j.

Unfortunately, some entries in the AP (d)AT matrix that results from the above sparsity ex-
ploiting scheme may be inaccurate due to numerical cancellation. Cancellation happens on the ith
diagonal when

aTi P (d)aiPn
j=1 jaij(P (d)ai)j j

<< 1: (14)

For example, on the instance gpp100 in the SDPLIB set [3] of semide�nite programming instances,
we �nd an iterate where 8>>>><

>>>>:

kA1kF = 1:00 � 102

kDA1DkF = 3:65 � 100

tr A1DA1D = kUdA1U
T
d k2F = 1:76 � 10�10

In fact, in this example it holds that A1 is the all-one matrix of size 100 � 100. Evaluating
tr A1(DA1D) therefore amounts to adding 10,000 
oating point entries, yielding a number whose
magnitude is merely a 10�10 fraction of the original entries; hence there is massive cancellation. In
this particular case where A1 = eeT, e denoting the all-one vector, we have

tr A1DA1D = (eTDe)2 = kUdek42;

providing a cheap formula to compute tr A1DA1D accurately. However, if A1 is not given as a
rank-1 matrix, we can accurately compute tr A1DA1D using the general formula

tr A1DA1D = kUdA1U
T
d k2F : (15)

The disadvantage of the formula in (15) is that it will hardly bene�t from possible sparsity in the
A1 matrix. Therefore, we should use (15) only if the ratio in (14) indicates massive cancellation.

6 Other Sources of Numerical Problems

Consider again the system (7), i.e.
AP (d)AT�y = b:
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In order to numerically determine �y, we will �rst build the AP (d)AT matrix, and then decompose
it into its Cholesky factors. In fact, we will decompose the matrix as

AP (d)AT = L�LT;

where � is a positive de�nite diagonal matrix, and L is a lower triangular matrix for which lii = 1,
i = 1; 2; : : : ;m.

De�ne �~y := LT�y and ~r := L�1b. Pre-multiplying both sides in (7) with L�1, we obtain the
system

��~y = ~r; (16)

where � is the diagonal matrix in the L�LT factorization. The solution to (16) is of course

�~yi =
~ri
�i

for i = 1; 2; : : : ;m:

The computations involving the unit-diagonal lower triangular matrix L and the diagonal matrix
� can usually be carried out with reasonable accuracy. However, we should be careful on how
numerical errors in � are promoted into errors in �~y and consequently �y. We will illustrate this
issue with an example.

On the semide�nite programming instance hinf5, which is in a problem library maintained at
New York University [17] and in SDPLIB [3], we �nd in one of the �nal iterations of SeDuMi [18]
that

� =

2
64

5:99 � 107
...

1:11 � 10�8

3
75 ; ~r =

2
64
�1:10 � 100

...
�1:41 � 10�5

3
75 :

so

�~y =

2
64
�1:84 � 10�8

...
�1:27 � 103

3
75 :

It turns out that the last entry in �~y is much larger than the other entries. This means that all
entries in the vector �y become relatively large, and that the dual solution has not converged yet.
In fact, this behavior indicates that the supremum cannot be attained in the dual. This situation
is interesting from a numerical point of view. Namely, the �y search direction is to a large extent
determined by the contribution from the �~ym entry, which depends critically on �m � 1:11 � 10�8.
However, we can see from the �1 entry that the original entries in the AP (d)AT matrix were of size
107. Hence, the �m entry su�ers from heavy numerical cancellation and is in fact totally inaccurate.
Therefore, the search direction as a whole becomes totally unreliable.

The phenomenon that some entries in � su�er massive cancellation as AP (d)AT becomes ill-
conditioned, is already known from the interior point method for solving (degenerate) linear pro-
grams. In the setting of linear programming, the issue is resolved by setting the corresponding
entry in �~y to zero, i.e. setting �~ym = 0 in the above example. The error that we make in solving
(16) is then of size j~rmj. If the iterates converge, then the real �y is small in the �nal stages, and
so is �~y = LT�y. The fact that �m is small then implies that ~rm is tiny, and hence the approach
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problem b*y relerr problem b*y relerr

hinf1 -2.032606992E+000 4E-011 hinf14 -1.299015801E+001 2E-008
hinf2 -1.096707467E+001 7E-010 hinf15 -2.483769673E+001 1E-005
hinf3 -5.694110666E+001 4E-009 ladder1 -2.353439750E+001 1E-014
hinf4 -2.747639132E+002 3E-010 ladder2 -2.346762362E+001 3E-012
hinf5 -3.622325357E+002 2E-007 truss1 8.999996315E+000 6E-012
hinf6 -4.489306798E+002 5E-009 truss2 1.233803564E+002 3E-013
hinf7 -3.908146948E+002 2E-006 truss3 9.109996208E+000 4E-011
hinf8 -1.161468835E+002 2E-008 truss4 9.009996291E+000 2E-011
hinf9 -2.362492581E+002 2E-010 truss5 1.326356780E+002 7E-012
hinf10 -1.088046491E+002 2E-007 truss6 9.010014047E+002 5E-011
hinf11 -6.591291881E+001 1E-007 truss7 9.000014036E+002 8E-011
hinf12 -2.040510749E-002 1E-010 truss8 1.331145892E+002 1E-012
hinf13 -4.436602472E+001 6E-008

Table 1: Results using SeDuMi 1.04Beta on NYU test set

of setting �~ym = 0 is accurate. However, in the hinf5 instance we see that ~rm is not tiny, and
hence we cannot simply discard it.

A possible solution in this situation is to precondition the A-matrix to say ~A :=MA, ~b = Mb,
whereM is an invertible matrix, such that ~aTmP (d)~am is suÆciently small, thus avoiding cancellation
during the Cholesky process. The preconditioner can be based on the L-factor from the previous
iteration in the interior point method: simply set M = I + em(e

T
mL

�1 � eTm), where em denotes
the mth column of the identity matrix. The quantity ~aTmP (d)~am can be computed with suÆcient
accuracy using the technique described in Section 5.

7 Experimental Results

The techniques as discussed in this paper have been implemented in SeDuMi [18], version 1.04. We
evaluated our approach on the set of semide�nite programs collected at New York University [17].
As a measure of performance, we used the following quantity:

relerr = maxfc
Tx� bTy

1 + jbTyj ;
[�min(c�ATy)]�

1 + kck1 ;
kAx� bk1
1 + kbk1 g;

where [�]� := max(��; 0) denotes the negative part. The results are listed in Table 1.

We can see from Table 1 that there are still a few instances for which the attained accuracy is
poor. This can possibly be explained from the ordering strategy in the Cholesky decomposition of
AP (d)AT. SeDuMi uses a minimum degree ordering, and the same ordering is used throughout the
process. For the instances in [17], the matrix AP (d)AjT is in fact fully dense. The Cholesky factors
that are obtained using this ordering may not be stable. In fact, since the diagonal of L is all-one,
the factor L is stable if and only if maxi;j jlij j � 1. However, in the last step before termination in
SeDuMi, we obtain the following results:
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problem relerr maxi;j jlij j
hinf12 1E-010 6E+001
hinf13 6E-008 6E+009
hinf14 2E-008 1E+009
hinf15 1E-005 6E+006

We see that the use of a �xed pivot ordering may result in highly unstable L-factors, thus
leading to substantial numerical errors in the �y computation. Therefore, it may be necessary to
reorder the pivots. Such a reordering is certainly not attractive if the AP (d)AT matrix is sparse.
We leave this issue for future research.

Some of the problem instances that we discussed are also in the DIMACS set of semide�nite
and second order cone programs, viz. hinf12, hinf13, truss5, and truss8. On all hinf problems
except 7,9 and 15, SeDuMi found a strictly feasible dual solution y, i.e. C �Pm

i=1 yiAi is positive
de�nite. This implies that bTy is an exact lower bound on the optimal value of (2). Surprisingly, the
computed primal solution x has a better objective value, i.e. cTx < bTy, for all hinf-problems. The
computed x solutions are positive semide�nite, so the negative duality gap can only be explained
from the constraint violation kAx� bk. The following table displays the exact lower bound bTy as
computed by SeDuMi, together with the �nal primal objective values as computed by SeDuMi [18],
SDPT3 [25] and SDPA [6]. The results on SDPT3 and SDPA are cited from Mittelmann [14].

hinf12 hinf13

bTy -0.020405 -44.366
SeDuMi cTx -0.023141 -44.368
SDPT3 cTx -0.786 -46.64
SDPA cTx -0.298 -47.28

For hinf12, the x-solution computed by SeDuMi has a constraint violation of kAx�bk2 =4E-10.
One may be surprised that a substantial negative duality gap can be obtained with such a small
constraint violation. In fact, it was shown in [24, 19] that given a solution x with a constraint
violation kAx � bk, and a quantity Æ > 0, there cannot exist a dual solution y with an objective
value bTy � cTx + Æ, unless kyk2 � Æ=kAx � bk2. This implies for the y solution computed by
SeDuMi that

kyk2 � bTy � cTx

kAx� bk � 0:02736

4E� 10
> 6E7:

Indeed, the actual size of the computed y solution is kyk2 = 1E9.

8 Conclusions

We have identi�ed various sources of numerical problems in the interior point method, that are
speci�c to semide�nite programming. Since these speci�c issues have not been dealt with before, we
faced a heavy numerical challenge in our e�ort to develop a reliable implementation of the interior
point method for semide�nite programming.

An important technique to avoid numerical cancellation in computing the Nesterov-Todd scaling
has been proposed in this paper: the V-space product form. The V-space product form was already
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used as an elegant approach to derive the Nesterov-Todd direction in Sturm and Zhang [20], but
the importance of this product form for numerical computing has not been recognized before.
Moreover, we have proposed an e�ective algorithm to update the V-space factors in an interior
point framework.

We have seen that heavy numerical cancellation is possible while building the AP (d)AT ma-
trix, and how such cancellation can be detected and avoided. It was shown that unlike in linear
programming, the ill-conditioning of the AP (d)AT matrix can be harmful, and a possible remedy
has been proposed. The amount of extra work and storage depends on the number of constraints
in which harmful cancellation occurs during the Cholesky factorization. Finally, we have shown
evidence that pivoting may sometimes be necessary in the Cholesky factorization of the AP (d)AT

matrix. However, more research needs to be done on this issue.
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