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Transboundary …shery management:
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Abstract. A basic issue in transboundary …shery management is the new
member problem. In this paper we address the problem of allocating the pro…ts
between the charter members and the entrants, once the nations concerned have
expressed an interest in achieving an agreement. Using game theory we argue
that in the case of independent countries adjustment from the Nash equilibrium
can be achieved by means of the proportional rule. Furthermore, we propose
the population monotonic allocation scheme as management rule for division of
pro…ts within a coalition. Finally, we show that the equal division of the net
gain value can be used to expand a coalition.
Key words: Transboundary …shery management, game theory, Nash-Cournot

equilibrium, proportion rule, equal division, Shapley value.

1 Introduction
The transboundary …shery problem addressed by the U.N. intergovernmental
conference from 1992 to 1995 was the escalation of high seas …sheries harvesting
(OECD, 1997). The conference resulted in the 1993 U.N. Transboundary Fish-
ery Stock Agreement3. This Agreement grants the rights of all states to utilize
the …shery resource on the high seas and speci…es that harvesting should be
coordinated by a coalition of the traditional harvesting states4 , acting through
a regional or sub-regional organization, i.e. a Regional Fisheries Management

1We thank Stef Tijs and Pierre von Mouche for valuable comments.
2Corresponding author. Email address: k.h.phamdo@kub.nl
3A transboundary …sh stock, also called straddling or highly migratory …sh stock, is a

species that can simultaneously occupy a coastal state’s 200-mile Exclusive Economic Zone
(EEZ) and its adjacent high seas.

4The key Article 308 of the Law of the Sea Convention (16 November 1996) states that,
the Coastal states have sovereign rights over the continental shelf (the national area of the
seabed) for exploring and exploiting it; the shelf can extend at least 200 miles from the shore,
and more under speci…ed circumstances.
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Organization (RFMO).5 The Agreement calls for those nations who wish to
participate in the harvesting of the …sh resource in the high seas, but are not
currently members of the RFMO, to declare a willingness to join and to en-
ter into negotiations over mutually acceptable terms of entry. However, the
Agreement provides to the RFMO ”no coercive enforcement powers to exclude
non-member harvest or set the terms of entry into membership” (McKelvey et
al., 2000).
According to Munro (2000), there are two problems causing to doubt the e¤ec-
tiveness of RFMOs.
First, there is the so-called ”interloper problem”. It concerns the di¢culty

of controlling harvesting by non-member vessels, including individually oper-
ated vessels, but also coordinated multi-vessel ”distant water ‡eets”. Both seek
targets-of-opportunity, and skim o¤ bountiful harvests wherever they occur, but
with little interest in the long term conservation of the stocks.
Second, the so-called ”new member problem”, which concerns the inherent

di¢culties of negotiating, in a timely manner6, mutually acceptable terms of
entry, which will specify the petitioning nation’s membership rights and obliga-
tions. Indeed, the interests of current members and of the applicants are often
strongly opposed: the current members face the likelihood of having to give up a
portion of their present quotas to the newcomer, and the applicant believes that
it may be better o¤ by staying outside of the coalition and continuing harvesting
pro…tably while facing fewer constraints. Both problems arise as major issues
in …nding a resolution of a ”just and reasonable” share of the Total Allowable
Catch (TAC) under RFMO management.
Kaitala and Munro (1997) argue that the resolution of the new member problem
may call for the creation of de facto property rights for the ”charter members”
(also called incumbent ‡eets or nations) of a RFMO. They raise the question of
whether a possible solution might be one in which new members are required to
”buy their way in” through the purchase of quota shares. The quotas allocated
to ”charter member” states would take the form of individual transferable quota
(Munro, 2000). Thus, the charter members should become the sole bene…ciaries
of the …shery resource. Moreover, a potential new entrant could only access the
…sh stock in question by buying the …shing right and quota of an incumbent ‡eet.
However, it is not evident that such a system based on assumptions of economic
e¢ciency and resource sustainability is viable. It would vest substantial interests
with the incumbent ‡eets which is likely to be strongly opposed by potential
entrants.
In this paper we shall examine how a RFMO might successfully achieve e¤ective
control of a high seas …shery. We consider the transboundary …shery stock as
common property and assume that all interested nations are allowed to exploit
it. We also assume that all nations abide by a legally binding international con-

5A given RFMO would be expected to have all relevant coastal states and distant water
…shing nations as members.

6By ” in a timely manner” the following is meant: Permit a new entrant access to a RFMO
after a period over which charter members would not have to share the bene…t of cooperation
with new members (for further details see Kaitala and Munro, 1997).
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vention under which harvesting must be sustainable and economically e¢cient.
The potential …shing e¤orts and …shing costs of all nations as well as the size of
the …sh stock are assumed to be known. The question that we deal with in this
paper is how to allocate the pro…ts among charter members and entrants once
the nations concerned have expressed an interest in achieving an agreement on
sustainable and e¢cient exploitation of the resource. The approach taken in
this paper is cooperative game theory rather than non-cooperative game which
is common in environmental and resource economics (see among others, Folmer
et al., 1998 and the references therein). Whereas in non-cooperative game theory
the emphasis is on self-interested behaviour within a given set of rules, coop-
erative game theory starts from the assumption that players have committed
themselves to a binding agreement. The emphasis is on the allocation of payo¤s
to achieve stable coalitions (see, for example, Moulin, 1995).
As described above, the main objective of a RFMO is the management of a
resource for a set or coalition of countries that have expressed an interest in
sustainable and e¢cient harvesting. This implies that cooperative game theory
is more appropriate to analyse the research question of this paper than non-
cooperative game approach. We will show that both charter members and
potential entrants can gain from management rules regardless waiting time and
transferable membership rights.7

In section 2 the …shery resource management problem is set up as an oligopoly
game. Section 3 introduces notations and de…nitions needed for the game the-
oretic analysis of the noncooperative and cooperative solutions in section 4.
Section 5 focuses on various allocation schemes under entrance. Conclusions
follow in section 6.

2 The …shery problem
Assume that the demand for …sh and the supply of ”…shing e¤ort” (combined
services of labor and capital devoted to harvesting) are both perfectly elastic.
The exploitation of a …shery resource can then be described by the following
di¤erential equation

¢
x = F (x)¡H(E; x) (2.1)

where x is a non-negative state variable representing the …shery resource or
biomass at time t; F (x) is a growth function of biomass satisfying F (0) =
F (b) = 0; and F

00
(x) 6 0 for x 2 (0; b). Here b denotes the carrying capacity

of the resource (i.e., natural capacity); E is …shing e¤ort and H(E;x) is the
harvesting or production function8.

7We shall not address the interloper problem in this paper.
8The harvesting function is often assumed to be bilinear in the stock, x, and the …shing

e¤ort, E; such that H(x,E)=qEx or H(t)=qE(t)x(t), where q is the catchability coe¢cient (see
for example Clark, 1990).
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Resource growth is a¤ected by the stock and harvesting. Hence, if E is constant,
then the stock evolves towards the natural equilibrium x = xb(E) de…ned by

F (xb(E))¡H(E;xb(E)) = 0; i.e. ¢
x = 0:

We assume for simplicity that F (x) = x(b¡x) and H(E; x) = Ex. In that case
the natural equilibrium is xb(E) = b ¡ E, if b ¸ E: If E > b the stock decays
rapidly (Clark, 1990). Therefore, to avoid depletion of a …sh resource, E should
be less than b. Under these circumstances, we can assume that the …sh stock
remains in equilibrium, xb(E). The production function is now determined by

Y := H(E; x) = E(b¡E); for 0 6 E 6 b (2.2)

and called the yield-to-e¤ort equation. The economic payo¤ to harvesting e¤ort
(or economic rent) is

¼(E) = pY ¡ cE = pE(b¡E)¡ cE = pE[(b¡ c=p)¡E] (2.3)

where p is the unit price of harvest landed and c is the unit cost of e¤ort. If we
normalize so that p = 1, then the payo¤ function is

¼(E) = Y ¡ cE = E(b¡ c¡E); for 0 6 E 6 b (2.4)

and harvest is pro…table only when 0 < E < b¡ c.

Under centralized (i.e. monopolistic) management by the RFMO, the e¤ort
level E which determines the harvest or total allowable catch can be derived
from the equation (2.4).9

Now suppose that, instead of centralized management, there are N countries
(players), N={1,2,...n}, independently harvesting the …sh stock simultaneously
and each country has a …shing e¤ort level (or …shing ‡eet of size) Ei. The
yield-to-e¤ort equation is unchanged (given b) but the total e¤ort now is the
sum E =

Pn
i=1Ei; and the equilibrium of …sh stock is xb(E) = b ¡Pn

i=1Ei.
Under these circumstances, the natural equilibrium can be considered as the
value of the …sh resource under exploitation of N countries.10 If the individual
country payo¤s are proportional to the corresponding …shing e¤ort levels and
if each country has its own cost function (i.e. harvest depends on the unit of
…shing cost ck), then country k’s payo¤ can be written as

¼k(E1; :::; EN) = p(E)Ek ¡ ckEk (2.5)

where p(E) = b¡Pn
i=1Ei is the (natural) price.

Equation (2.5) shows that each country’s payo¤ depends on the aggregate e¤ort
and on the country’s own e¤ort. It captures the fact that for a country to

9maxE¼(E) = maxEfE(b¡ c¡E)g = (b¡c)2
4

at E= b¡c
2

10The linear function p(E)=b-
Pn
i=1 Ei can be seen as the linear inverted supply curve in

the Cournot situation with n producers and
Pn
i=1Ei is total (competitive) quantity.
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maximize its payo¤, it will calculate its optimal e¤ort level taking into account
the anticipated e¤ort level by its opponents. As a consequence, given a …shing
unit cost, the …sh stock declines or increases, depending on whether the marginal
product increases or declines. In the remainder of the paper, we will use X k =
[0; lk] to denote the strategy set, i.e. e¤ort levels, of country k, where lk is the
maximum e¤ort level of country k:

The …shery situation can now be formulated as = = (N;X;C;¼; b) where
(i) N is the …nite set of countries (players);
(ii) X = ¦nk=1Xk , where Xk denotes the set of (harvesting) e¤ort levels
(strategy set) of country k;
(iii) C = (ck)k2N , where ck is the (constant) marginal cost of country k;
(iv) ¼ = (¼k)k2N , where ¼k is the pro…t (payo¤ ) function of country k; and
(v) b is the natural capacity of the resource.

The tuple = = (N;X;C; ¼; b) described above is called a …shery problem.

3 Preliminaries
For each k 2 N and for every non-empty subset S µ N; we de…ne

X = ¦nk=1Xk; XS = ¦j2SXj ; and X¡S = XNnS = ¦j =2SXj :

Occasionally, notations like (xi; x¡i) or (xS; xNnS) are used if the strategy of
player i or coalition S needs stressing, where, as usual, x¡i denotes the vector x
with the ith component deleted. The sum

P
i2S xi is denoted by x(S) for every

S µ N: In addition, for every real number a 2 <; we de…ne a+ = max{a; 0}.
De…nition 3.1 A …shery game (FG) is an n-person game

¡ =< X1; :::;Xn;¼1; :::; ¼n >; where

(i) Xk =[0, lk] is the strategy set of player k, and 0<lk < 1 .
(ii) ¼k(x)= p(x)xk ¡ ckxk is the payo¤ function of player k , where
p(x)=(b¡Pn

j=1 xj)+ and ck > 0:

The payo¤ for the kth player depends on the strategies of all the other players as
well as on his own strategy. It is easy to see that for x 2 X, ¼k(x) is continuous
in x.

De…nition 3.2 A vector x¤ = (x¤k)k2N 2 X is a (Nash) equilibrium if for
every k 2 N and yk 2 Xk, ¼k(x¤) ¸ ¼k(yk; x¤¡k); i:e: player k has no incentive
to deviate from x¤k when all other players play x

¤
¡k:

To design behavioral patterns, where explicit communication can take place, we
assume that the countries form coalitions. The objective of each country in the
coalition is to maximize total pro…t for the coalition that the countries of S can
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bring about by their cooperation. The structural ine¢ciency of the competitive
(non-cooperative) equilibrium is then interpreted as an incentive to cooperate.

De…nition 3.3 For an n-player FG and a coalition structure11 · of N; we
de…ne the strategy set XS of each coalition S 2 · as the Cartesian product of
the strategy sets of the players belonging to S: The coalition’s payo¤ function
equals the sum of payo¤ functions of players belonging to S. That is, with
(xS ; x¡S) 2 X;

¼S(x) =
X
j2S

¼j(x) =
X
j2S
[p(xS; x¡S)xj ¡ cjxj ]: (3.2)

De…nition 3.4 A cooperative (pro…t) game is an ordered pair (N,v) where N
is the set of players, and v: 2N ! < is the characteristic function relating each
coalition S µ N to a real number v(S), representing the total payo¤ (pro…t)
which S is able to generate through internal cooperation, with the convention
that v(Á) = 0:

For every cooperative game (N; v) and all T µ N the subgame (T; vjT ) is de…ned
by vjT (R) = v(R) for all R µ T . A payo¤ vector (x1; :::; xn) of a cooperative
game (N; v) is an n-dimension vector describing the payo¤s to the players, where
player i 2 N receives xi.
The central stability concept in cooperative game theory is the core, C(N;v);
de…ned as follows.

De…nition 3.5 For a cooperative game (N,v), a payo¤ vector (xi)i2N is in the
core, C(N; v); ifX

i2N
xi = v(N) and

X
i2S

xi ¸ v(S) for all S ½ N:

The …rst part of this de…nition ensures that the payo¤ vector is feasible (the
so-called e¢ciency condition) for the grand coalition N . The second part in-
troduces a stability requirement which states that no subcoalition S by acting
on its own can achieve an aggregate payo¤ which is higher than the share that
it receives under payo¤ vector x. If we take for S the singleton sets we get the
individual rationality requirement, stating that every player should receive at
least this stand alone value.
Therefore, once an allocation from the core has been selected, no coalition on
its own can improve the payo¤ of all its members. However, the core of a
cooperative game may be empty. A standard procedure to check whether a
game (N,v) has a non-empty core arises from the Bondareva-Shapley theorem
(cf. Bondareva, 1963 and Shapley, 1967). This theorem indicates that the
necessary and su¢cient conditions for a game to have a non-empty core are the
balancedness conditions.
11A coalition structure · is a partition of the set N of players, i.e. · = fS1; S2; :::Skg; it

describes which coalitions are formed and coexist.

6



De…nition 3.6 A cooperative game (N; v) is balanced if for every non-negative
vector of weights (¸S)S½N;S 6=N , which satis…es

P
S:i2S ¸S = 1 for every i 2 N ,

we have v(N) ¸PS½N;S 6=N ¸Sv(S).

The balancedness condition states that there is no feasible pattern of coalition
formation that yields a higher aggregate payo¤ than the grand coalition can
achieve.

De…nition 3.7 A cooperative game (N; v) is called convex if it satis…es in-
creasing returns with respect to the coalition size, i.e. if for every S; T ½ N and
every i 2 N such that S ½ T µ Nnfig, it follows that

v(T [ fig)¡ v(T ) ¸ v(S [ fig)¡ v(S) (3.3)

The term v(S [ fig)¡ v(S) is interpreted as the marginal worth of player i to
the coalition S. Hence, convexity implies that the larger a coalition becomes,
the greater is the marginal contribution of new members.

4 Analysis
To analyze the competitive and cooperative outcome of a …shery game, we
…rst present some general results and properties. We begin with the following
de…nition.

De…nition 4.1 For every …shery game (FG), the conservation strategy space,
X¤; is

X¤ = fx = (x1; :::; xn) 2 Xj
nX
k=1

xk 6 bg

Proposition 4.1 For every FG, there is no equilibrium in XnX*. That is, an
equilibrium belongs to X* only.

Proof. Suppose that there exists an equilibrium x¤ =2 X¤; then p(x¤) =
(b ¡Pn

k=1 x
¤
k)+ = 0: Since

Pn
k=1 x

¤
k = x¤(N) > b, the vector x¤ has at least

one positive element, which we denote x¤m. Hence, ¼m(x¤m; x¤¡m)=¡cmx¤m < 0;
and the best strategy of player m should be y¤m = 0 . This contradicts the
assumption that x¤ is an equilibrium point.

4.1 Competitive or noncooperative outcome

In order to discuss the competitive outcome of a …shery game we will …rst
examine the reaction set of each player in greater detail.

De…nition 4.2 For every x¡k 2 X¡k; player k’s rational reaction set is de…ned
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as Rk
(x¡k) = fyk 2 Xkj¼k(yk; x¡k) = maxzk2Xk

¼k(zk; x¡k)g.

For every FG each strategy set is a compact subset of the real line < and the
payo¤ function of each player is continuous in the action of all players as well
as in its own action. Those are su¢cient conditions to ensure that the rational
reaction sets Rk(x¡k) are not empty, for all k 2 N and x¡k 2 X¡k: In order
to determine the reaction set Rk(x¡k) player k has to maximize the function
tk ! ¼k(tk; x¡k) = (b ¡ x¡k ¡ tk)+tk ¡ cktk on his strategy set Xk = [0; lk]:
Here x¡k denotes the sum

P
j 6=k xj . The graph of this function is depicted in

Figure 1.

profit

                  F*              fishing levels

Figure 1. The payo¤ function of player k, where F*=b¡x¡k¡ck
2 :

From this graph it is easy to get the following observations:
(1) If b¡ x¡k ¡ ck 6 0 then player k will decide to take yk = 0;
(2) If 0 < b¡x¡k¡ck

2 6 lk; then the optimal strategy of player k is
yk =

1
2(b¡ x¡k ¡ ck) 2 (0; lk);

(3) If b¡x¡k¡ck2 > lk then the optimal strategy of player k is yk = lk:

The following lemma and corollary are obtained.

Lemma 4.1 For every k 2 N and x¡k 2 X¡k; the reaction of player k is a
singleton set. That is

Rk(x¡k) =

8<:
f0g if b-x¡k 6 ck

f b¡x¡k¡ck2 g if ck < b-x¡k 6 ck + 2lk
flkg if b- x¡k > ck + 2lk

Figure 2 depicts the reaction set of player k as function of x¡k, i.e., the total
e¤ort of the other players. Note that this function is non increasing.

Corollary 4.1 The best response of player k, Rk : X ! <; is a non increasing
function of x.12

12We say x 6 y if xi 6 yi; 8 i 2 N ; and x < y if xi < yi; 8i 2 N:
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player k's strategy

M*               m*        efforts of others

Figure 2. The reaction function of player k, where M*=b ¡ck ¡ 2lk and m*= b -ck:
For all k 2 N and x¡k 2 X¡k the reaction set Rk(x¡k) is a singleton set.
Following a quadratic programming approach (see Maµnas, 1972) one can prove
that a …shery game has a unique Nash equilibrium.

Theorem 1 A …shery game FG has a unique Nash-Cournot equilibrium

Remark 4.1 The outcome of the non-cooperative game is virtually identical to
that of the unregulated open access …shery, particularly when combined harvest-
ing e¤orts in the Nash equilibrium is larger than b/2.13

4.2 Cooperative outcome

For each …shery problem a related cooperative game (N; v) can be de…ned by
means of the ®- and ¯- conversions introduced by Aumann (1959).
The ®-characteristic function of a …shery game ¡ is the function v® de…ned by

v®(S) =MaxxS2XSMinx¡S2X¡S¼S(xS; x¡S) (4.1)

whereas the ¯-characteristic function of the …shery game ¡ is the function v¯
de…ned by

v¯(S) =Minx¡S2X¡SMaxxS2XS¼S(xS; x¡S) (4.2)

The ®¡characteristic function represents a prudent perception by the members
of the coalition S about their capability to guarantee themselves the payo¤
v®(S) if they choose the joint strategy xS before the joint strategy x¡S of the
opposition NnS has been chosen, i:e: coalition S can ensure to its members the
maximum (total) payo¤ while choosing the strategy combination xS regardless
of what the opposition NnS does.
The ¯¡characteristic function represents an optimistic perception by the mem-
bers of the coalition S in the sense that the opposition NnS can prevent that the
players in S get more than v¯(S). Therefore, in the ®- framework, a coalition

13This is due to the fact that at b/2 the yield of the …sh resource is maximally sustainable.
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S obtains the payo¤ it can guarantee itself, irrespective of the strategy choice
of the players in NnS, whereas in the ¯- framework, the coalition S obtains the
maximum payo¤ from which it can not be prevented by the players in NnS.
It is, of course, easy to see that

v®(S) 6 v¯(S) for all S µ N and v®(N) = v¯(N):

Moreover, the payo¤s de…ned by (4.1) and (4.2) coincide for every given …shery
problem, i.e. v®(S) = v¯(S) for all S µ N (see Norde et al., 2000). This implies
that for every coalition the amount which this coalition can guarantee itself, and
the maximum amount from which they can not be prevented by the opposition
are the same.

Example 4.1 Consider the FG with N = f1; 2; 3g, l1 = 14, l2 = 8, l3 = 12,
c1 = 2, c2 = 4, c3 = 16, and b = 60. Norde et al. (2000) provided a formula for
calculation of the value v®(S) (= v¯(S)): For the sake of completeness, it has
been included in the Appendix. Applying this formula, we obtain
v®(123) = 776; v®(12) = 512; v®(13) = 520; v®(23) = 321;
v®(1) = 336; v®(2) = 176; v®(3) = 121:

We now turn to some important characteristics of cooperative …shery games
(CFGs). First of all, the convexity of a CFG follows directly from Theorem 1
in Norde et al. (2000).14

Proposition 4.2 Every cooperative …shery game (CFG) is a convex game.

As a CFG is convex, the following corollaries hold.

Corollary 4.2 A CFG has a non empty core, i.e. a CFG is a balanced game.

Corollary 4.3 A CFG is zero-monotonic, i.e. for every S; T such that S µ T ,
v(S)¡Pk2S v(fkg) 6 v(T )-

P
k2T v(fkg).

De…nition 4.3 Let (N,v) be a CFG. We say that an agreement can be achieved
if there exists an allocation x such that x is individually rational and e¢cient,
i.e. xi ¸ v(fig) for all i 2 N and

PN
i=1 xi = v(N):

Theorem 2 The Shapley value15 of a CFG is a solution that is both individually
rational and e¢cient. Moreover, the Shapley value is in the midpoint of the core
of the CFG.

Proof. Follows from Shapley’s theorem (cf. Shapley, 1953) and convexity
of (N; v).

In the next section we will adopt the Shapley value to develop management
rules for a RFMO.
14The analysis in this section is based on oligopoly games without transferable technologies,

as modeled by Norde et al. (2000).
15The Shapley value, ©(v) = (©k(v))k2N , of a cooperative game (N; v), is de…ned by
©k(v) =

P
SµNnfkg

jSj!(n¡1¡jSj)!
n!

(v(S[fkg)¡v(S)): Roughly speaking, the Shapley value
means that each player should be paid according to how valuable his/her cooperation is for
the other players (for example, see Friedman, 1990).
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5 Implications for RMFO management
In this section we are applying the theoretical results of section 4 to three typical
management problems that RFMOs encounter. The …rst problem relates to the
allocation of the payo¤ for a set of countries that have agreed on the reduction
of the …shing e¤ort from the competitive equilibrium so as to prevent the stock
from extinction or to increase the pro…t level. However, the countries have not
formed a coalition that operates collectively to achieve sustainable and e¢cient
harvesting. Hence, the individual countries act independently. The second
problem concerns the allocation of the payo¤ within a coalition. We do not only
consider the grand coalition but coalitions of all possible sizes, the individual
country or single country coalition being the smallest. The third problem relates
to the expansion of a coalition. In this regard we consider the direct expansion of
single country coalitions to the grand coalition as well as the stepwise expansion
of original country coalitions to the grand coalition as examples. Before going
into detail we make the following observations.
(i) We consider charter members as a coalition S; whereas the set of outsiders
of S, i.e NnS; consists of all potential entrants.
(ii) We adopt the following related conditions for an agreement to be self-
enforcing (Botteon and Carraro, 1997). First, the coalition must be pro…table,
that is, each player gains from joining the coalition relative to its position when
there is no cooperation. Second, the coalition must be stable, that is, no player
should have an incentive to deviate from its coalition.
(iii) Consider n players (n ¸ 2) that interact in a transboundary …sh stock.
Let (Pj(S))SµN; j2S be an allocation scheme16 , where Pj(S) is the payo¤ of
player j in a coalition S, and Pj(S[fkg) is the payo¤ of player j when coalition
S is expanded by adding player k =2 S to the coalition. We assume that a
coalition can be expanded if (a) there exists an allocation scheme such that
Pj(S [ fkg) ¡ Pj(S) ¸ 0 for all j 2 S and (b) countries belonging to the
coalition are committed to cooperation.
(iv) We assume that all countries are interested in the preservation of the stock.
(v) Let ci denote the …shing unit cost of country i. We assume that all costs
are ordered in the following way: c1 6 c2 6 ::: 6 cn:

We now consider the three management cases for the RFMO dishinguished
above.

5.1 Independent players: The proportional rule

As described in section 2, a …sh stock will be depleted if total (…shing) e¤ort
exceeds the carrying capacity of the stock b. In a similar vein, if total (…sh-
ing) e¤ort exceeds b=2, total pro…t is smaller than the maximum pro…t. The
management problem comes down to the reduction of the harvesting level. For

16An allocation scheme is a payo¤ scheme that does not only provide a payo¤ vector for a
speci…c game but also for all its subgames.
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that purpose we make use of bankruptcy analysis 17(for example, see Thomson,
1995).
Let (x¤i )i2N be a competitive equilibrium. De…ne the proportional rule, PROP(i),
applied to every player i such that

PROP(i) = x¤i (
M

x¤(N)
); (5.1)

where M = b=2:

Proposition 5.1 The payo¤ under the proportional rule is larger than the com-
petitive payo¤ for every player18.

Proof. Let x¤ be the competitive equilibrium, i.e. the NE; for which b
2

< x¤(N) 6 b. Let xA = (xAi )i2N be the adjustment strategy from x¤ by the
PROP rule. That is xAi = x

¤
i (

b=2
x¤(N)) 6 x¤i ; and xA(N) =

b
2 :

Denote ¼i(x¤) and ¼i(xA) as the competitive and PROP payo¤s for each player
i 2 N; respectively: De…ne ­i = ¼i(x¤)¡ ¼i(xA):
It is su¢cient to prove that ­i 6 0: If x¤i = 0 then xAi = 0 and clearly ­i = 0:
Now assume that x¤i > 0:We have ­i = [b¡x¤(N)¡ci]x¤i ¡[b¡xA(N)¡ci]xAi =
(b¡ ci)(x¤i ¡ xAi )¡ [x¤(N)x¤i ¡ xA(N)xAi ]; and x¤(N) = b

2
x¤i
xAi
. Therefore

­i = (x
¤
i ¡ xAi )(b¡ ci)¡ b

2xAi
[(x¤i )

2 ¡ (xAi )2] =
(x¤i ¡ xAi )[(b¡ ci)¡ b

2xAi
(x¤i + x

A
i )] 6 ¡ci(x¤i ¡ xAi ) < 0

Example 5.1. Consider the 2-person FG in which b = 30, y1 = 18; y2 =
16; c1 = 4; and c2 = 5:

0

2

4

6

8

10

12

14

16

18

Player 1

2 4 6 8 10 12 14 16Player 2

Figure 3. Best replies (solid lines) and adjusted e¤ort levels (dotted lines).

17A bankruptcy problem is a triple (N;E; d), where N is the …nite set of players, E 2 (0;1)
is the state which has to be divided and d = (d1; :::; dN ) is the vector of player claims such
that d(N) =

PN
i=1 di ¸ E:

18One can prove Proposition 5.1 in the case M is reduced as long as the following condition
holds: b¡ci

2
< M; for all i 2 N:
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The competitive equilibrium x¤ =(9,8) which is the intersection point of the
two solid lines in Figure 3. Since x¤ = 17 > b

2 = 15 we have a suboptimal pro…t
¼(x¤). The adjustment of the NE according to the propotional rule leads to
xA=(9,8 )*1517 = (7:94; 7:06); which is intersection point of the two dotted lines
in Figure 3. The payo¤, ¼(xA) = (87:35; 70:59) is larger than ¼(x¤) = (81; 64):

5.2 Management within a coalition: The population mono-
tonic allocation scheme

We start by analysing which conditions upon an allocation scheme, (Pj(S))SµN;j2S,
have to be satis…ed in order to induce an additional country to enter a sta-
ble coalition. If a coalition S is stable and if its members are committed
to cooperation, the additional bene…t of player j when country k enters S is
Pj(S [ fkg) ¡ Pj(S): A new entrant k can be accepted to join the coalition S
if it does not harm any members of S, that is, Pj(S [ fkg) ¡ Pj(S) ¸ 0 for
all j 2 S: Therefore, in order to deal with entrants, one should have an allo-
cation scheme, (Pj(S))SµN;j2S, satisfying this monotonicity property. Such an
allocation scheme can be considered acceptable for every player.
Sprumont (1990) introduced a concept that exhibits this monotonicity property.
It guarantees that once a coalition is formed, no player in this coalition has an
incentive to form a smaller coalition, since the payo¤ of any player increases
as the coalition he belongs to grows larger. An allocation scheme that satis…es
this property as well as the property of e¢ciency for all subgames is called a
population monotonic allocation scheme.

De…nition 5.1 A vector (xi;S)SµN;i2S is a population monotonic allocation
scheme (PMAS) for the cooperative game (N,v) if it satis…es the following con-
ditions:

(i)
P
i2S xi;S = v(S) for all S µ N

(ii) xi;S 6 xi;T for all S; T µ N with S µ T and all i 2 S:
Sprumont (1990) also showed that convex games have a PMAS. In fact, he
proved that the Shapley value for the at large game and each subgame provides
a PMAS. The following theorem is a direct consequence of Sprumont’s ob-
servation and Proposition 4.2 which states that every …shery game is a convex
game.

Theorem 3 Fishery games have a PMAS. Furthermore, the Shapley values
calculated for each subgame give the PMAS.

Example 5.2 Consider the FG in example 4.1.
The marginal contributions of the players for a given order, say 1-2-3, are ob-
tained in the following way. Player 1 is given his stand alone value v(f1g) = 336,
player 2 is given his marginal contribution to coalition f1; 2g, i.e. v(f1; 2g) ¡
v(f1g) = 176, and player 3 is given his marginal contribution to coalition
f1; 2; 3g, i.e. v(f1; 2; 3g)¡ v(f1; 2g) = 264. The payo¤s for the various orders of
joining are
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order
marginal contrib-
ution of player 1

marginal contrib-
ution of player 2

marginal contrib-
ution of player 3

1-2-3 336 176 265
1-3-2 336 256 184
2-1-3 455 176 145
2-3-1 336 176 264
3-2-1 455 200 121
3-1-2 399 256 121

Shapley value 38616 20646 18316

For any of the six orders we can compute a marginal vector and the average
of these vectors is the Shapley value. Computing the Shapley value for every
subgame we get the following PMAS :

1 2 3
123 38616 20646 18316
12 336 176 ¤
13 36712 ¤ 15212
23 ¤ 188 133
1 336 ¤ ¤
2 ¤ 176 ¤
3 ¤ ¤ 121

5.3 Expansion of coalitions: Equal division of the net gain
value

Consider coalitions S and K that decide to merge. A merger is stable if neither
S nor K is harmed, in the sense that neither receives a lower payo¤ after the
merger than before. We de…ne the net gain value of S and K, ngv(S;K) =
v(S [K) ¡ (v(S) + v(K)): Neither S nor K will be harmed by the merger if
ngv(S;K) is nonnegative, and divided equally among the members in S [K.
Below the net gain value is used to analyse the direct expansion of single country
coalitions to the grand coalition as well as the stepwise expansion from formed
coalitions to the grand coalition.

5.3.1 1-country (single) coalitions19 vs the grand coalition

Let v(fig) be the value of the singleton coalition fig and let the net returns
to the grand coalition, nrs(N), be de…ned by nrs(N) = v(N) ¡Pi2N v(fig):
The equally gain payo¤ is obtained by adding nrs(N)

N to the value v(fjg) of
each player such that Pj(N)=

nrs(N)
N + v(fjg): By convexity of the CFG, the

net return is non negative. Therefore, the payo¤ of country j, Pj(N) ¸ v(fjg):
Hence, the following proposition applies.
19Note that under the preservation assumption, v({i}) now can be considered as an indi-

vidual (rational) coalition.
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Proposition 5.2 The payo¤ for each player increases under the equally gain
payo¤.

Example 5.3 Consider the FG in example 4.1.
The unique competitive equilibrium for this FG is (14,8,11) with associated pay-
o¤s (350, 184, 121). The equilibrium is adjusted to (14,8,11)

¡
30
33

¢
= (12:73; 7:27; 10),

and the payo¤s are (356 411 , 189
1
11 ,140) under the proportional rule. However,

the payo¤s under the equally gain payo¤ are (38323 ,223
2
3 ,168

2
3):

5.3.2 Stepwise expansion from singular coalitions to the grand coali-
tion

In the preceding section singular coalitions merged to the grand coalition in one
step. A generalization of this idea is stepwise merging of coalitions. In every step
two coalitions merge until eventually the grand coalition N has be formed. If
two coalitions, say S and K; merge then under the equal division of the net gain
value of S and K, ngv(S;K), every player in S[K receives ngv(S;K)jKj+jSj ; and every
player outside receives nothing. A merge is stable if for the disjoint coalitions
S and K; ngv(S;K) = v(S [K)¡ (v(S) + v(K)) ¸ 0, i.e. if the game (N; v) is
superadditive. Since convexity implies superadditivity, we conclude that such a
merge is stable. The Proposition 5.3, therefore, is obtained.

Proposition 5.3 Under the equal division of the net gain value, each player is
better o¤ than in the orginal coalition.

Example 5.4 Consider the FG in example 4.1. The following table shows the
payo¤ vectors for the various coalitions under the equally gain payo¤.

Starting coalition 1 2 3 Sum Loss1) Gain2)
1)Without expanding (single) 336 176 121 633 143 -
{1,2} 336 176 121 633 143 -
{1,3} 367 12 176 152 12 696 80 -
{2,3} 336 188 133 657 119 -
2)With expanding (grand coalition) 383 23 223 23 168 23 776 0 143
{1,2}-3 383 23 223 23 168 23 776 0 143
{1,3}-2 394 16 202 23 179 16 776 0 80
{2,3}-1 375 23 227 23 172 23 776 0 119

1)Relative to the grand coalition.
2)Relative to the standing situation.

The upper panels shows the payo¤ for each country (single) coalition (…rst row)
and for two-country coalitions20. The lower panel depicts the payo¤ under 2-
step expansion. Consider for instance the second row {1,3}-2. In the …rst step

20Note that the Shapley value and the equally gain payo¤ coincide for every one and two-
country coalition. However, for more-country coalitions this observation is no longer valid.
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countries 1 and 3 merge, and the second step, coalition {1,3} and {2} merge.
Initially, every country i receives its stand alone value v(fig): Players 1 and
3 divide ngv(f1g; f3g) = v(f1; 3g) ¡ v(f1g) ¡ v(f3g) = 63: In the second step
coalition {1,3} and player 2 divide ngv(f1; 3g; f2g) = v(f1; 2; 3g)¡ v(f1; 3g)¡
v(f2g) = 80: This yields the following payo¤ scheme

coalitions payo¤ of player 1 payo¤ of player 2 payo¤ of player 3
1-2-3 336 176 121
13-2 36712 176 15212
123 39416 20223 17916

Hence, if a coalition S = f1; 3g does not accept player 2 to enter, coalition S
will lose 5313 .

6 Concluding remarks
A basic issue in transboundary …shery management is the new entrant problem.
It concerns the di¢culty of negotiating mutually acceptable terms of entry that
specify the petitioning nation’s membership rights and obligations. The incum-
bent members face the likelihood of having to give up a portion of their present
quotas to the newcomer. The applicant on the other hand believes that it may
be better o¤ to stay outside of the coalition.
In this paper we examined how a Regional Fishery Management Organization
(RFMO) might achieve e¤ective control of a high seas …shery. Starting point
is that the countries who are charter members or potential entrants, have ex-
pressed an intention to exploit the stock in an e¢cient and sustainable way. We
showed that the outcome of the non-cooperative solution is virtually identical
to that of the unregulated open access …shery. When the combined harvesting
e¤orts in the Nash equilibrium are larger than the carrying capacity the species
will be depleted. Next we considered adjustment from the Nash equilibrium. In
this regard we made use of the basic results that a …shery game has a unique
Nash equilibrium under the competitive situation, and that it is convex under
the cooperative situation. On the basic of these results we developed pro…t
allocation schemes such that both the potential entrants and the charter mem-
bers are better o¤ than by staying out of the agreement. We proposed the
proportional rule to achieve reduction of the harvesting level when countries act
independently but have expressed an interest in reaching a sustainable or more
pro…table exploitation of the stock; the population monotonic allocation scheme
as management rule for coalitions of various sizes, and the equal division of the
net gain value to expand coalitions.
The above mentioned solutions are individually rational and e¢cient which are
prerequisites for an agreement. This implies that application of the above men-
tioned management rules can lead to an arrangement that can be achieved
without waiting time and transferable membership.
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Appendix: Calculation of the coalition value v®(S)

Let (N;v) be a CFG. Assume that all …shing costs can be ordered in the
following way: c1 6 c2 6 ::: 6 cn: Following Proposition 4 in Norde et al.
(2000) we have v(S) =

P
j2S flj (b¡ cj ¡ l(NnS)¡ 2lS;j) for every S µ N: Here

flj is the C
1¡function, flj : < ! <; de…ned by

flj (x) =

8<: 0 x 6 0;
1
4x

2 0 < x 6 2lj ;
lj(x¡ lj) x > 2lj :

and lS;j =
P
k2S;k<j lk.

For example, the values of coalitions {1,3} and {1,2,3} in Example 4.1 are
calculated by v(13) = f14(50)+f12(8) = 504+16 = 520; and v(123) = f14(58)+
f8(28) + f12(0) = 776:
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