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Summary: This paper proposes a standard for notation in economet-

rics. It presents a fully integrated and internally consistent framework

for notation and abbreviations, which is as close as possible to existing

common practice and also obeys ISO regulations. The symbols used are

instantly recognizable and interpretable, thus minimizing ambiguity and

enhancing reading e�ciency. The standard is designed in a 
exible man-

ner, thus allowing for future extensions.
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1 Introduction

Few things are as boring as questions of notation. Serious researchers

should do serious research and not waste their time thinking about no-

tation. The mathematician J.E. Littlewood said about Jordan that if he

(Jordan) had four things on the same footing (such as a, b, c, d) they

would appear as

a; M
0

3; "2; �001;2;

see Bollob�as (1986, p. 60).

On the other hand, many serious researchers did worry about nota-

tion. Jan Tinbergen propagated that `when you have an index to a certain

variable you should use the capital letter as its upper limit.' For example,

i = 1; : : : ; I and j = 1; : : : ; J , because this `was just a little detail that

could help you a lot to see through things' (Magnus and Morgan, 1987,

p. 127).

In physics, engineering, and chemistry a serious attempt has been

made to standardize symbols. The International Organization for Stan-

dardization (ISO) has published international regulations (ISO Standards

Handbook, 1982) and the International Union of Pure and Applied Physics

(IPU) has issued recommendations (CRC Handbook of Chemistry and

Physics, 1988). These regulations are generally followed by the profes-

sion, with one major exception: the treatment of lowercase single-letter

constants (such as the base of natural logarithms e and the imaginary

unit i|very often written as e and i, contrary to ISO regulations) or

operators (such as the derivative operator d|often written as d).1 It ap-

pears that the profession �nds that single-letter lowercase mathematical

symbols look odd. There are examples of this phenomenon in economet-

rics too: one often sees det(A) for determinant, E(x) for expectation, but

r(A) for rank.

Notation matters. A good and consistent notation helps in the un-

derstanding, communication and development of our profession. In the

Renaissance, mathematics was written in a verbal style with p for plus,

1See Beccari (1997) for further discussion and some LATEX tricks for physicists and

engineers.
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m for minus and R for square root. So, when Cardano (1501{1576) writes

5p : Rm : 15

5m : Rm : 15

25m : m : 15 qd est 40;

he means (5 +
p
�15)(5�

p
�15) = 25� (�15) = 40, see Kline (1972, p.

260). There is no doubt that the development of good notation has been

of great importance in the history of mathematics.

In this paper we attempt to harmonize the various practices in econo-

metrics notation. It proposes a fully integrated and internally consistent

framework for notation and abbreviations, which is as close as possible to

existing common practice and also obeys ISO regulations. The symbols

used are instantly recognizable and interpretable, thus minimizing am-

biguity and enhancing reading e�ciency. Using a common notation will

save authors the e�ort to de�ne their notation in every paper. Only spe-

cial notation needs to be de�ned. We have tried to design our standard

in a 
exible manner, allowing for future extensions in specialized �elds.

There are many problems in designing a consistent notation. Our

hope is to provide a useful benchmark and starting point for an evolving

process. The notation is LATEX oriented. Many LATEX de�nitions are

provided, and the complete list of de�nitions can be downloaded from

http://cwis.kub.nl/�few5/center/sta�/magnus.

2 Vectors and matrices

Vectors are lowercase and matrices are uppercase symbols. Moreover,

both vectors and matrices are written in bold-italic. The vectors a, b,

: : : , z are produced by nva, nvb, : : : , nvz, and the matrices A, B, : : : ,

Z by nmA, nmB, : : : , nmZ.
Vectors can also be denoted by Greek lowercase letters: �, : : : , !

(nvalpha, : : : , nvomega), and matrices by Greek uppercase letters, such

as � (nmGamma) or � (nmTheta).
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We write

a =

0
BBBB@

a1

a2

...

a
n

1
CCCCA ; A =

0
BBBB@

a11 a12 : : : a1n

a21 a22 : : : a2n

...
...

...

a
m1 a

m2 : : : a
mn

1
CCCCA

for an n � 1 vector a and an m � n matrix A. If one has a choice, we

recommend that m � n.

We denote the n columns of A by a.1, a.2, : : : , a.n
, and the m rows

by a01., a
0

2., : : : , a
0

m.
, where transpose is denoted by a prime. The symbol

. is produced by nbcdot since ncdot (�) is too small and nbullet (�) is
too large. Hence,

A = (a.1;a.2; : : : ;a.n
) ; A

0 = (a1.;a2.; : : : ;am.) :

A vector a denotes a column and a0 denotes a row. Special vectors are:

0, 0
n

null vector (0; 0; : : : ; 0)0 nvzeros
{, {

n
sum vector (1; 1; : : : ; 1)0 nvones

e
i

i-th column of I
n

nve i

Special matrices are:

O, O
mn

null matrix of order m� n nmzeros
I, I

n
identity matrix of order n� n nmI

Note that the null vector 0 is smaller than the null matrixO. We say that

two or more matrices (vectors) are conformable if their sum or product

is de�ned. For example, the equation Ax = b only makes sense if the

dimension of x equals the number of columns of A and the dimension of

b equals the number of its rows. If this is the case then A, x and b are

conformable.

Two vectors a and b for which a0b = 0 are orthogonal . We also

write a?b (nbot). The column space of A is denoted col(A) (ncol) and
denotes the set fx : x = Ac for some c 6= 0g. The null space of A is the
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set fx : Ax = 0g. The null space of A0 is denoted col?(A) and is called

the orthogonal complement of col(A). It de�nes the set fx : A0
x = 0g,

which can also be written as fx : x?Ag.

3 Operations on matrix A and vector a

The following standard operations are proposed.

A
0 transpose

A
�1 inverse

A
+ Moore-Penrose inverse

A
� generalized inverse

dgA, dg(A) diagonal matrix containing the diagonal elements

of A ndg
diag(a1; : : : ; an) diagonal matrix containing a1; : : : ; an

on the diagonal ndiag
diag(A1; : : : ;An

) block-diagonal matrix with A1; : : : ;An
on the diagonal

A
2

AA

A
1=2 (unique) square root of positive semide�nite matrix

A
p

p-th power

A
# adjoint (matrix)

A
� complex conjugate

(If A := U + iV then A� = U
0 � iV 0)

A
k

principal submatrix of order k � k

(A;B), (A : B) partitioned matrix

vecA, vec(A) vec operator nvec
vechA, vech(A) vector containing a

ij
(i � j) nvech

rk(A) rank nrk
�
i
, �

i
(A) i-th eigenvalue (of A)

trA, tr(A) trace ntr
etrA, etr(A) exp(trA) netr
jAj, detA, det(A) determinant ndet
kAk norm of matrix (

p
(trA�A)) n|

kak norm of vector (
p
(a�a))

A � B, B � A A�B positive semide�nite ngeq, nleqnle
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A > B, B < A A�B positive de�nite >, <

A
B Kronecker product notimes
A�B Hadamard product nodot
K

mn
commutation matrix

K
n

K
nn

N
n

1
2
(I

n
2 +K

n
)

D
n

duplication matrix

J
k
(�) Jordan block of order k � k

Ambiguity can arise between the symbol j � j for determinant and the

same symbol for absolute value, for example in the multivariate transfor-

mation theorem. This ambiguity can be avoided by writing jdetAj for
the absolute value of a determinant.

If we have a symmetric matrix A of order n�n, then the eigenvalues

are real and can be ordered. We recommend the ordering

�1 � �2 � � � � � �
n
;

since there are many cases where it is desirable that �1 denotes the largest

eigenvalue.

4 The linear regression model

We write the linear regression model y =X� + " as

y =

kX
h=1

�
h
x.h

+ "

or as

y
i
= x

0

i.
� + "

i
(i = 1; 2; : : : ; n)

or as

y
i
= �1xi1 + �2xi2 + � � �+ �

k
x
ik
+ "

i
(i = 1; 2; : : : ; n):

If there is a constant term this specializes to

y
i
= �1 + �2xi2 + � � �+ �

k
x
ik
+ "

i
(i = 1; 2; : : : ; n):
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In the two-variable case one can write

y
i
= �1 + �2xi + "

i
or y

i
= �+ �x

i
+ "

i
;

but not y
i
= �0 + �1xi + "

i
, since �0 is often used for other purposes, in

particular as the value of the parameter � under the null hypothesis.

The observations are typically indexed i = 1; : : : ; n (in cross sections)

or t = 1; : : : ; T (in time series). If there are two cross sections one can

use i and j; if there are two time series one uses t and s. There are

k regressors (not K) indexed by h = 1; : : : ; k. Acronyms and special

symbols take precedence over index labels. For example, in de�ning the

t-statistic one should not use t as a summation index, and in formulae

involving the imaginary unit i confusion can be avoided by not using i as

an index.

This formulation is not without controversy. Some authors write X
ht

instead of x
ih
, which is unsatisfactory, since X is an n � k matrix and

hence in their formulation X
ht

is the th-th element of X. Some write

�0 for the �rst element of �, if the regression contains a constant term,

and then let k denote the number of `real' regressors (so that X has

k+1 columns). We prefer to avoid this formulation for many reasons. It

is convenient to always have k regressors independent of whether there

is a constant term or not. Also, the inclusion of a constant does make

an important di�erence, for example in potentially non-stationary time

series, and it can translate into a `real' variable such as a drift, which

alters distributions and time paths.

Another issue is the disturbance term. We denote this by " (nepsi for
a scalar, nvepsi for a vector) if the disturbances (or errors) are spherically
distributed.2 If the errors are not spherical, we denote them by u.

Estimators are random variables which say something about a �xed

but unknown quantity, called a parameter. They are denoted by `hats',

such as b�. (nwidehatfnvbetag).3 If we have a second estimator of � this

is denoted by a `tilde': e�. The realization of an estimator is an estimate.

2The vector " is spherically distributed if " and H" have identical distributions for

every orthogonal matrix H.
3In general, we recommend to use nwidehat and nwidetilde as the default. Typing

nhat produces �̂, while nwidehat produces b�.
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Predictors are like estimators, except that they say something about

a random variable. They are also denoted by `hats' (by, b") or tildes (ey,
e"). The realization of a predictor is the `predicted value'.

The symbols R2 and R
2
denote the coe�cient of determination and

the adjusted coe�cient of determination, respectively.

In the case of OLS (ordinary least squares), it is tradition to write b

instead of b� for the OLS estimator (X 0
X)�1X 0

y, e instead of b" for the
residuals, and s2 instead of b�2 for the OLS estimator of �2.4 We prefer

not to do so, in order to stress the randomness of the estimators (one

often thinks of b as a vector of constants).

If a is a vector, say of order n, then a (nwidebar) denotes the average
of its components: a = {

0
a={

0
{.

It is customary to write

PX =X(X 0
X)+X 0

; MX = I
n
� PX

where X has n rows. If there is no possibility of confusion, we can write

M and P instead of MX and PX . The matrix which puts a vector in

deviation form is thus

M{ = I
n
� (1=n){{0;

and the vector M{a denotes the vector a in deviation from its mean.

We denote a null hypothesis as H0 (nrH) and an alternative as HA
(not

H
a
since a may be a scalar or may refer to `asymptotic'). The statement

of H0: R
0
� = c is preferred over R� = r. In the latter formulation, the

single-hypothesis case is usually written as w0
� = r or r0� = r, neither

of which is ideal. However, if one writes R0
� = c, this specializes to

r
0
� = c in the one-dimensional case. This has the additional advantage

that we can use r to denote the number of restrictions (dimension of c).

In the special case where R = I
r
(or where R is square and invertible),

we usually write � = �0 rather than � = c.

4In line with current practice, we write the estimator for �
2 as b�

2

(nwidehatfnsigmag) and not as c�2, although strictly speaking the latter is the cor-

rect notation.
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The GLS model is written

y =X� + u; u � N(0;
):

We prefer the use of
 over�, which can be confused with the summation

symbol.

For the simultaneous equations model our starting point is the (uni-

variate) linear regression model

y
i
= x

0

i.
� + u

i
(i = 1; 2; : : : ; n):

This can be generalized to the multivariate linear regression model:

y
0

i.
= x

0

i.
B + u0

i.
(i = 1; 2; : : : ; n);

where y
i.
and u

i.
are random m � 1 vectors and B is a k �m matrix.

The univariate case is obtained as a special case when m = 1. The

simultaneous equations model provides a further generalization:

y
0

i.
� = x

0

i.
B + u0

i.
(i = 1; 2; : : : ; n);

where � is an m�m matrix. This is the structural form of the simultane-

ous equations model. In matrix notation this becomes Y � = XB +U .

If � is invertible, we obtain the reduced form Y = X� + V , where

� = B�
�1 and V = U�

�1.

5 Greek symbols

Some Greek lowercase letters have variant forms and these can be used

to mean di�erent things than the usual letter. We have:

� nepsilon, neps " nvarepsilon, nepsi
� ntheta # nvartheta
� npi $ nvarpi
� nrho % nvarrho
� nsigma & nvarsigma
� nphi ' nvarphi

9



We shall use " (nepsi for a scalar, nvepsi for a vector) for a disturbance
term and � (neps) for an arbitrarily small positive number. Also, we use

� (ntheta) to denote a variable and # (nvartheta) for a function.

6 Mathematical symbols, functions and opera-

tors

De�nitions, implications, convergence, and transformations are denoted

by

� identity, equivalence nequiv
a := b de�nes a in terms of b

=) implies nimplies
() if and only if niff
!, �! converges to nto, nlongto
x 7! y transformation from x to y nmapsto

We write f(x) � g(x) (napprox) if the two functions are approximately

equal in some sense depending on the context. If f(x) is proportional to

g(x) we write f(x) / g(x) (npropto). We say that `f(x) is at most of

order g(x)' and write f(x) = O(g(x)), if jf(x)=g(x)j is bounded above in

some neighborhood of c (possibly �1), and we say that `f(x) is of order

less than g(x)' and write f(x) = o(g(x)), if f(x)=g(x) ! 0 when x ! c.

Finally, we write f(x) � g(x) (nsim) if f(x)=g(x) ! 1 when x! c. The

two functions are then said to be `asymptotically equal'.5 Notice that

when f(x) and g(x) are asymptotically equal, then f(x) � g(x) and also

f(x) = O(g(x)), but not vice versa.

For example, when � and � denote the p.d.f. and c.d.f. of the

standard-normal distribution, respectively, we write the leading term

(�rst term) of the asymptotic expansion

�(x)

�(x)
�

1

jxj
as x! �1:

5The ISO prescribes the symbol ' (nsimeq) for asymptotic equality, but � is com-

mon practice in econometrics and statistics, even though the same symbol is also used

for `is distributed as'.
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However, there are many good local approximations of this ratio which

are not necessarily asymptotically equal to it.

The usual sets are denoted as follows:

N natural numbers 1; 2; : : : nSN
Z integers : : : ;�2;�1; 0; 1; 2; : : : nSZ
Q rational numbers nSQ
R real numbers nSR
C complex numbers nSC

Superscripts denote the dimension and subscripts the relevant subset.

For example, R2 = R �R denotes the real plane, Rn the set of real n� 1

vectors, and Rm�n the set of real m � n matrices. The set Rn+ denotes

the positive orthant of Rn , while Z+ denotes the set of positive integers

(hence, Z+ = N) and Z0;+ denotes the non-negative integers. Finally,

C n�n denotes the set of complex n� n matrices.

Set di�erences are denoted by a backslash (nbackslash). For exam-
ple, N = Z0;+nf0g. Real-line intervals de�ned by x in a � x < b are

denoted by [a; b). Occasionally it might be unclear whether (a; b) in-

dicates a real-line interval or a point in R2 . In that case the interval

a < x < b can alternatively be written as ]a; b[.

Sequences are special ordered sets. They are delimited, as usual, by

braces (curly brackets). It is often convenient to write fZ
j
gn
m
(or simply

fZ
j
g) for the sequence of matrices Z

m
, Z

m+1, : : : ,Zn
.

Other symbols used are:

2 belongs to nin
=2 does not belong to nnotin
fx : x 2 S; x satis�es Pg set of all elements of S with property P

� is a subset of nsubseteq
� is a proper subset of nsubset
[ union ncup
\ intersection ncap
; empty set nemptyset
A
c complement of A

11



BnA B \Ac

�

S interior of S ninteriorfSg
S
0 derived set of S

S closure of S nwidebarfSg
@S boundary of S npartial S

We denote functions by

f : S ! T function de�ned on S with values in T

f , g, ',  , # scalar-valued function

f , g vector-valued function

F , G matrix-valued function

g � f , G � F composite function (ncirc)
g � f convolution (g � f)(x) =

R
1

�1
g(y)f(x� y) dy

For their di�erentials, derivatives and di�erences, we write

d di�erential (nrd)
dn n-th order di�erential

D
j
'(x) partial derivative (nrD), @'(x)=@x

j

D
j
f
i
(x) partial derivative, @f

i
(x)=@x

j

D2
kj
'(x) second-order partial derivative, @D

j
'(x)=@x

k

D2
kj
f
i
(x) second-order partial derivative, @D

j
f
i
(x)=@x

k

'
(n)(x) n-th order derivative of '(x)

D'(x), @'(x)=@x0 derivative of '(x)

Df(x), @f(x)=@x0 derivative (Jacobian matrix) of f(x)

DF (X) derivative (Jacobian matrix) of F (X)

@ vecF (X)=@(vecX)0 derivative of F (X), alternative notation

r', rf , rF gradient (transpose of derivative) (nnabla)
H'(x), @2'(x)=@x@x0 second derivative (Hessian matrix) of '(x) (nrH)
L, B backward shift operator: Lx

t
= x

t�1 (nrL,nrB)
5 (backward) di�erence operator:

5x
t
= x

t
� x

t�1 (ndiff)
4 forward di�erence operator:

12



4x
t
= x

t+1 � x
t
(nfordiff)

[f(x)]b
a
, f(x)jb

a
f(b)� f(a)

Instead of '(1)(x) and '(2)(x), one can write the more common '0(x) and

'
00(x), but otherwise we prefer to reserve the prime for matrix transposes

rather than derivatives. Notice the di�erence between the di�erencing

operator ndiff (5) and the gradient nnabla (r).
We use L (or B) rather than L for the lag operator in order to avoid

confusion with the Laplace transform. This and other useful transforms

are de�ned by

Ff�g Fourier transform ncalF
F�1f�g inverse Fourier transform

Lf�g Laplace transform ncalL
L�1f�g inverse Laplace transform

Mf�g Mellin transform ncalM
M�1f�g inverse Mellin transform

Finally, various other symbols in common use are

i imaginary unit (niu)
e, exp exponential (neu, nexp)
log natural logarithm (nlog)
log

a
logarithm to the base a

! factorial

�
ij

Kronecker delta

sgn(x) sign of x (nsgn)
bxc, int(x) integer part of x, that is, largest integer � x

(nlfloor, nrfloor, nip)
jxj absolute value (modulus) of scalar x 2 C

x
� complex conjugate of scalar x 2 C

Re(x) real part of x (nRe)
Im(x) imaginary part of x (nIm)
� (x) gamma (generalized factorial) function,

13



satisfying � (x+ 1) = x� (x)

B(x; y) beta function, � (x)� (y)=� (x+ y)

1K indicator function (use 1, not I):

equals 1 if condition K is satis�ed, 0 otherwise

B(c), B(c; r), B(C; r) neighborhood (ball) with center c (C) and radius r

Vn�k Stiefel manifold: set of real n� k matrices X

such that X 0
X = I

k
(k � n) (ncalV)

On Vn�n, orthogonal group of dimension n (ncalO)
On

+ proper orthogonal group of dimension n

(orthogonal n� n matrices with determinant +1)

Sn Vn�1, unit sphere in Rn (ncalS)

The Stiefel manifold Vn�k is also denoted as Vk�n in the literature. We

recommend the former notation which is in line with Rn�k .

7 Statistical symbols, functions and operators

The following symbols are commonly used.

� is distributed as ndistr
a� is asymptotically distributed as nadistr
Pr(�) probability nPr
E(�) expectation nE
E(�j�) conditional expectation

var(�) variance (matrix) nvar
cov(�; �) covariance (matrix) ncov
corr(�; �) correlation (matrix) ncorr
L(�) likelihood function

`(�) log-likelihood function nell
& score vector nscore
H Hessian matrix nHesmat
I (Fisher) information matrix nInfmat
F
t

�ltration at time t ncalF
t t-statistic, t-value

14



!, �! converges a.s. nto, nlongto
p�! converges in probability npto
d�! converges in distribution ndto
w�! converges weakly nwto
plim probability limit nplim
O
p
(g(x)) at most of probabilistic order g(x)

o
p
(g(x)) of probabilistic order less than g(x)

Notice that the symbol! (�!) indicates both convergence and a.s. con-

vergence. The symbol
w�! for weak convergence is preferred to =), which

denotes logical implication. The matrix �H is also called the observed

information matrix, while its expectation I := �E(H) is the expected

information matrix.

The main distributions in statistics are denoted as follows.

bin(n; p) binomial distribution (nbin)
Po(�) Poisson distribution (nPo)
U(a; b) uniform distribution (nrU)
N
m
(�;
) m-dimensional normal distribution (nrN)

LN(�; �2) lognormal distribution (nLN)
�(�) standard-normal p.d.f. (nphi)
�(�) standard-normal c.d.f.

IN
m
(�

i
;


i
) sequence i = 1; 2; : : : of independent

m-dimensional normal distributions

�
2
n
(�) chi-squared distribution with n d.f.

and non-centrality parameter �.

�
2
n

central chi-squared (� = 0)

t
n
(�) Student distribution with n d.f. and noncentrality � (nrt)

t
n

central t (� = 0)

C(a; b) Cauchy distribution (nrC)
F
m;n

(�) Fisher distribution with m (numerator)

and n (denominator) d.f. and non-centrality � (nrF)
F
m;n

central F (� = 0)

�(�; �) gamma distribution

15



B(a; b) beta distribution (nrB)
W (�), B(�) standard Wiener process (Brownian motion) on � 2 [0; 1]

We use the word `expectation' to denote mathematical expectation of a

random vector x, denoted E(x). The word `average' refers to taking the

average of some numbers: x = (1=n)
P

n

i=1 xi. The word `mean' which

could indicate either is best avoided. Like `expectation', the words `vari-

ance' (var), `covariance' (cov), and `correlation' (corr) indicate population

parameters. The corresponding sample parameters are called `sample

variance', `sample covariance' and `sample correlation'.

The `standard deviation' is the positive square root of the variance. If

� is a parameter which we estimate by b�, then this estimator is a random

variable with a variance var(b�) and a standard deviation

q
var(b�). In

general, this standard deviation depends on unknown parameters. Both

the estimator of the standard deviation and its realization are called the

`standard error'. The t-statistic is a random variable (not necessarily

Student distributed); its realization is the t-value.

8 Abbreviations and acronyms

2SLS two-stage least squares

3SLS three-stage least squares

AR(p) autoregressive process of order p

ARCH autoregressive conditional heteroskedasticity

ARIMA(p; d; q) autoregressive integrated moving-average process

ARMA(p; q) autoregressive moving-average process

a.s. almost surely

BAN best asymptotically normal

c.d.f. cumulative distribution function

c.f. characteristic function

c.g.f. cumulant-generating function

CLT central limit theorem

CUAN consistent uniformly asymptotically normal

d.f. degrees of freedom
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FCLT functional CLT (invariance principle)

FGLS feasible generalized least squares

FIML full-information maximum likelihood

f.m.g.f. factorial moment-generating function

GLS generalized least squares

GMM generalized method of moments

i.i.d. independent and identically distributed

ILS indirect least squares

I(d) (fractionally) integrated process of order d

IV instrumental variable

LAD least absolute deviations

LIL law of iterated logarithm

LIML limited-information maximum likelihood

LLN law of large numbers

LM Lagrange multiplier

LR likelihood ratio

LS[E] least squares [estimator]; see also 2SLS, 3SLS,

FGLS, GLS, ILS, NLS, OLS, RLS

MA(q) moving-average process of order q

m.g.f. moment-generating function

ML[E] maximum likelihood [estimator];

see also FIML, LIML, QML

MSE mean squared error

NLS nonlinear least squares

OLS ordinary least squares

p.d.f. probability density function

QML[E] quasi-maximum likelihood [estimator]

RLS restricted least squares

r.v. random variable

s.e. standard error

SUR seemingly unrelated regression

UMP uniformly most powerful

W Wald
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9 Hopes, fears and expectations

Our hope is that this paper may contribute towards the establishment of a

common notation in econometrics. Our fear is that it will not. We realize

that it will be di�cult to get consensus. The = sign for equality was �rst

proposed in the middle of the 16th century, but 150 years later Bernoulli

still used / (stylized �, short for aequalis) in his Ars Conjectandi . Thus,

our expectation is that it could take 150 years before a common notation

is adopted.
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