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Cooperative games on antimatroids

E. Algaba¤ J. M. Bilbao¤ R. van den Brinky A. Jiménez-Losada¤
¤University of Seville, Spain
yTilburg University, The Netherlands

Abstract

The aim of this paper is to introduce cooperative games with a feasible
coalition system which is called antimatroid. These combinatorial structures
generalize the permission structures, which have nice economical applications.
With this goal, we …rst characterize the approaches from a permission structure
with special classes of antimatroids. Next, we use the concept of interior oper-
ator in an antimatroid and we de…ne the restricted game taking into account
the limited possibilities of cooperation determined by the antimatroid. These
games extend the restricted games obtained by permission structures. Finally,
we provide a computational method to obtain the Shapley and Banzhaf values
of the players in the restricted game, by using the worths of the original game.

AMS 1991 subject classi…cation: 90D12

Key words: Permission structures, antimatroids, Shapley and Banzhaf values

1 Introduction

A TU-game or transferable utility game describes a situation in which a …nite set of
players N can generate certain payo¤s by cooperation. We will denote by ¡N the set
of all TU-games on N . In a TU-game the players are assumed to be socially identical
in the sense that every player can cooperate with every other player. However, in
practice there exist social asymmetries among the players. For this reason, the game
theoretic analysis of decision processes in which one imposes asymmetric constraints
on the behavior of the players has been and continue being an important subject to
make a study. So, important consequences have been obtained of adopting this type of
restrictions on economic behavior. Some models, in which have been analyzed social
asymmetries among players in a TU-game, are described in e.g. Myerson (1977),
Owen (1986) and Borm, Owen and Tijs (1992). In these models the possibilities of
coalition formation are determined by the positions of the players in a communication
graph.
Another type of asymmetry among the players in a TU-game is introduced in

Gilles, Owen and van den Brink (1992), Gilles and Owen (1999) and van den Brink
and Gilles (1996). In these models, the possibilities of coalition formation are deter-
mined by the positions of the players in the so-called permission structure. Other
related models can be found in Faigle and Kern (1992) and Derks and Peters (1993).
In the present paper, we use the restricted cooperation model derived from an

antimatroid. Section 2 introduces permission structures and antimatroids and we
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show that given a permission structure, the approaches from it are an antimatroid
but not every antimatroid is an approach from a permission structure. Moreover,
we identify the approaches from an acyclic permission structure with antimatroids
satisfying speci…c properties. This study gives rise to a new class of antimatroids
obtained through permission structures. Two new concepts in these structures are
essential, on one hand the path property and on the other hand the feasible hull which
are both based in the path characterization of antimatroids. Section 3 introduces the
restricted games on antimatroids which generalize the ones studied on permission
structures. Next, we study in detail some properties of these games, above all those
properties that are transmitted from the original game to the restricted game, and
we give a description of the dividends in such games. Using the structural properties
from the antimatroid we will be able to express the dividends in terms of the original
game. This result will be essential in the last section to provide some formulas to
compute the Shapley and Banzhaf values for restricted games on antimatroids. In
these formulas these values are computed by means of the original game without
having to calculate the restricted game and taking into account only the coalitions
in the antimatroid.

2 Permission structures and antimatroids

Permission structures were de…ned by Gilles et al. (1992). They assume that players
who participate in a TU-game are part of a hierarchical organization in which there
are players that need permission from certain other players before they are allowed
to cooperate.
For a …nite set of players N = f1; 2; : : : ; ng such a hierarchical organization is

given by a mapping S : N ! 2N which is called a permission structure on N . The
players in S (i) are called the successors of player i in the permission structure S
and the players in S¡1 (i) = fj 2 N : i 2 S (j)g are named the predecessors of i in
S. A chain of players is an ordered list (h1; : : : ; ht) where hk+1 2 S (hk), for all
k = 1; : : : ; t¡ 1. The transitive closure of a player i in S is the set

Ŝ (i) = fj : there exists a chain (h1; : : : ; ht) with h1 = i, ht = jg ;
whose players are called the subordinates of player i in S. The players in the set
Ŝ¡1 (i) =

n
j 2 N : i 2 Ŝ (j)

o
are named the superiors of i in S. A permission

structure S on N is acyclic if i =2 Ŝ (i), for all i 2 N .
In Gilles et al. (1992) the conjunctive approach to games with a permission

structure is de…ned. In this approach it is assumed that each player needs permis-
sion from all his predecessors before it is allowed to cooperate with other players.
Alternatively, in the disjunctive approach as discussed in van den Brink (1997) and
Gilles and Owen (1999) it is assumed that each player needs permission from at least
one of his predecessors before he is allowed to cooperate with others players. Thus,
the feasible coalitions in the conjunctive and disjunctive approaches respectively are
given by the sets

©cS =
©
E µ N : for every i 2 E it holds that S¡1 (i) µ Eª ;

©dS =
©
E µ N : for every i 2 E; S¡1 (i) 6= ; it holds that S¡1 (i) \E 6= ;ª :

We will show that the feasible coalitions in the conjunctive and disjunctive ap-
proaches of permission structures are identi…ed with special classes of set systems
called antimatroids. Antimatroids were introduced by Dilworth (1940) as particular
examples of semimodular lattices. Several authors have obtained the same concept
by abstracting various combinatorial situations. A systematic study of these struc-
tures was started by Edelman and Jamison (1985) emphasizing the combinatorial
abstraction of convexity. The latter was then shown by Edelman (1980) to be a cru-
cial property of closures induced by what he called convex geometries, a dual concept
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of antimatroids (see Bilbao, 2000). Jiménez-Losada (1998) introduced antimatroids
in games, de…ning games on the coalitions of the set system given by the antimatroid.

De…nition 1 An antimatroid A on N is a family of subsets of 2N , satisfying

A1. ; 2 A.
A2. (Accessibility) If E 2 A, E 6= ;, then there exists i 2 E such that E n fig 2 A.
A3. (Closed under union) If E;F 2 A then E [ F 2 A.

Now, we need to introduce some well-known concepts about antimatroids, which
can be found in Korte, Lovász and Schrader (1991).
The de…nition of antimatroid implies the following augmentation property, i.e., if

E;F 2 A with jEj > jF j then there exists i 2 E n F such that F [ fig 2 A. From
now on we assume that the antimatroid A is normal, i.e.,
A4. For every i 2 N there exists an E 2 A such that i 2 E.

In particular, this last property implies that N 2 A and therefore this means that
the whole group of players decide to cooperate.
Let A be an antimatroid on N . This set family allows to de…ne the interior

operator int : 2N ! A; given by int (E) = SfFµE;F2Ag F 2 A, for all E µ N: This
operator is the dual one of the closure operator in a convex geometry and satis…es
the following properties which characterize it:

I1. int (;) = ;;
I2. int (E) µ E;
I3. if E µ F then int (E) µ int (F ) ;
I4. int (int (E)) = int (E) ;

I5. if i; j 2 int (E) and j 2 int (E n fig) then i =2 int (E n fjg).
Let A be an antimatroid on N . A feasible continuation or augmentation point

(Jiménez-Losada, 1998) of E 2 A is a player i 2 N n E such that E [ fig 2 A,
i.e., those players that can be joined to a feasible coalition keeping feasibility. This
elements are denoted as au (E). In a dual way, a player that can leave a feasible
coalition E keeping feasibility is called endpoint or extreme point (Edelman and
Jamison, 1985). The endpoints of E are denoted by ex (E). By the condition A2 the
sets ex (E) 6= ;, for all E 2 A, E 6= ;. In the same way, using antimatroid de…nition
and A4, the sets au (E) 6= ;, for all E 2 A, E 6= N .
A set E in A is a path if it has a single endpoint. So, the set E in A is called

a i-path if it has i as unique endpoint. A i-path can be considered as a rooted set
denoted by (E; i), i.e., E is a minimal set in A containing i. In particular, a set is in A
or is feasible in A if and only if it is a union of paths. This leads to a characterization
of antimatroids in terms of paths (see Korte et al., 1991).
As a generalization of a rooted path in a player, we can give the following concept

about coalitions.

De…nition 2 Let A be an antimatroid on N and E µ N. A set F µ N is a feasible
hull of E if F 2 A, E µ F and there exists no H 2 A with E µ H ½ F , i.e., it is a
feasible minimal set in A and contains the set E.

We denote by A (E) the family of feasible hulls of E µ N . Notice that A (E) 6= ;.
We show in the following result that this de…nition generalizes the path de…nition.
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Proposition 1 Let A be an antimatroid on N . The feasible hulls of fig, with i 2 N
are the family of the i-paths of A.

Proof. If E is a feasible hull of fig, then i 2 E and there exists no F 2 A with
i 2 F ½ E. We have to prove that E is a i-path, by condition A2 there exists some
endpoint of E, suppose that the possible endpoints j of E are di¤erent from i. In
this case, it holds that i 2 E n fjg ½ E and as j is an endpoint E n fjg 2 A, what
led us to contradiction. So, the unique endpoint of E is i:
If E is a i-path and it is not a feasible hull of fig then there exists F 2 A with

i 2 F and F ½ E. Applying the augmentation property, there exists j 2 E nfig such
that E n fjg 2 A. This contradicts the fact that E is a i-path. ¤
Now we consider the relations between acyclic permission structures and antima-

troids.

Proposition 2 If the feasible coalition system A is derived from an disjunctive or
conjunctive approach of an acyclic permission structure then A is an antimatroid.

Proof. Gilles et al. (1992), Gilles and Owen (1999) showed that the feasible coali-
tions system A derived from the conjunctive or disjunctive approach contains the
empty set and that it is closed under union. Therefore, it su¢ces to prove that the
system A is accessible. Let S be an acyclic permission structure on N . As N is a
…nite set, given a feasible coalition E; E 6= ;, there exists a player i 2 E such that
S(i)\E = ; by acyclicity of S. Then, the coalition Enfig is also feasible, and hence
we obtain the condition A2. ¤
The reverse of Proposition 2 is not true (see Example 1). This result will later be

useful to generalize the restricted games on permission structures and introduce in the
next section the restricted games on antimatroids. Next, some speci…c antimatroids
are de…ned to characterize the feasible coalition systems derived from the conjunctive
approach of an acyclic permission structure.
The so-called poset antimatroids are a particular case of antimatroid, which are

formed by the ideals of a poset (partially ordered set) P or, in an equivalent way,
by the …lters. Given N consider a poset P = (N;¹) de…ned on N , a player i covers
another player j in P, if j Á i and there is not another player h with j Á h Á i.
The set I µ 2N is an ideal of P, if for all i 2 I and j Á i implies that j 2 I; and
F is a …lter if for all i 2 F and j Â i then j 2 F . The poset antimatroids can be
characterized as the unique antimatroids which are closed under intersection, i.e., if
E;F 2 A then E \ F 2 A.
Lemma 1 Let A be an antimatroid. A is a poset antimatroid if and only if every
i 2 N has a unique i-path in A.

Proof. Suppose that A is a poset antimatroid. Let E;F , E 6= F , be two distinct
i-paths for i 2 N . Then E\F 2 A with i 2 E\F . Assume without loss of generality
that E n F 6= ;. By the augmentation property there exists a j 2 E n (E \ F ) =
E n F µ E n fig such that E n fjg 2 A. This is in contradiction with E being a
i-path.
Suppose that every i 2 N has a unique i-path in A. Take E;F 2 A. If E\F = ;

then E \ F 2 A by A1. If E \ F 6= ; then by Proposition 1, for every i 2 E \ F
there exists a i-path Hi

1 µ E and there exists a i-path Hi
2 µ F . By assumption

Hi
1 = Hi

2 = Hi is the unique i-path in A. So, Hi 2 A and Hi µ E \ F , for all
i 2 E \F . Therefore, E\F = Si2E\F Hi and by A3 E\F 2 A. Thus, A is a poset
antimatroid. ¤
In the following result we identify the feasible coalition system derived from the

conjunctive approach on an acyclic permission structure with a poset antimatroid.
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Theorem 1 A is a poset antimatroid if and only if there is an acyclic permission
structure S such that A = ©cS.

Proof. Let A be a poset antimatroid. For i 2 N; denote the unique i-path in A
by PAi . Now, de…ne permission structure S : N ! 2N by S¡1(i) = PAi nfig, for
all i 2 N . We have to prove that S is acyclic. Suppose i 2 bS(i) then there exists
(h1; : : : ; ht) with h1 = i, ht = i and such that hk+1 2 S (hk), for all k = 1; : : : t¡ 1,
i.e., hk 2 PAk+1. Moreover, PAk µ PAk+1, for all k. Since PAk+1 2 A by Proposition 1
we have that the unique hk-path is contained in PAk+1. But P

A
k = PAk+1 is impossible

and hence, we get PAi ( PAi . So, S is acyclic. We are left to show that A = ©cS.
Let E 2 ©cS then S¡1(i) µ E, for all i 2 E, i.e., PAi µ E, for all i 2 E, thereforeS

i2E P
A
i µ E. Since i 2 PAi , for all i 2 N we also have E µ S

i2E P
A
i . Thus,

E =
S
i2E P

A
i 2 A since a union of paths is feasible by A3.

Clearly, if E 2 A with i 2 E then S¡1(i) = PAi nfig µ E, and thus E 2 ©cS.
By Proposition 2, the feasible coalition system from a conjunctive approach of an

acyclic permission structure is an antimatroid. Gilles et al. (1992) showed that the
feasible coalition system from the conjunctive approach is closed under intersection,
therefore this approach is a poset antimatroid. ¤
Now we are interested in characterizing the antimatroids that can be the set of

disjunctive feasible coalitions of some acyclic permission structure. With this goal
we introduce the following de…nition.

De…nition 3 An antimatroid A satis…es the path property if it is veri…ed

P1. If E is a i-path then Enfig is a path.
P2. Let E be a i-path such that Enfig is a j-path. If F is another j-path in A then

F [ fig 2 A and i =2 F .

A graphic interpretation of the path property can be given by the order de…ned
for the feasible coalitions of an antimatroid. Let A an antimatroid and E 2 A, we
have i ·E j when j =2 int (En fig), for all i; j 2 E. An antimatroid veri…es the
path property if and only if the order de…ned for each path is a total order and
moreover if two any players have a established order then they have the same order
for every feasible coalition. Next, we identify those antimatroids that satisfy the path
property in relation to the feasible coalition systems derived from acyclic permission
structures.

Theorem 2 A is an antimatroid satisfying the path property if and only if there is
an acyclic permission structure S such that A = ©dS.

Proof. Let A be an antimatroid satisfying the path property. De…ne S : N ! 2N

by S¡1(i) = fj 2 N : there exists an E 2 A(fig) such that E n fig 2 A(fjg)g: Since
A satis…es the path property, S is acyclic. Now we prove that A = ©dS.
If E 2 A we have that for every i 2 E there exists a i-path F µ E in A. Thus,

for every i 2 E, fig 2 A or there exists a i-path F µ E and a j 2 Fnfig such that F
is a j-path in A. Therefore, for every i 2 E, as fig is the unique i-path, S¡1(i) = ;
or S¡1(i) \E 6= ; and hence E 2 ©dS.
Suppose that E 2 ©dS. We prove that E 2 A by induction on jEj. If jEj = 1, i.e.,

E = fig, then S¡1(i) = ;. Thus, the unique path is E = fig 2 A. Proceeding by
induction, assume that E0 2 A if jE0j < jEj. Acyclicity of S implies that there exists
a i 2 E with S(i) \ E = ;. Then E n fig 2 ©dS, and by the induction hypothesis
E n fig 2 A.
Take a j 2 S¡1(i) \ E 6= ; (otherwise, S¡1(i) = ;, for all i 2 E, but then it is

obvious that E 2 A). Since E n fig 2 A there exists a j-path F µ E n fig. By A
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satisfying the path property it holds that F [ fig 2 A. But then A3 implies that
F [ fig [E n fig = E 2 A.
Let S be an acyclic permission structure. By Proposition 2, A = ©dS is an

antimatroid. We have to prove that A satis…es the path property.
We …rst prove that if E is a i-path in ©dS then S(i) \ E = ; and S¡1(j) = ; or

jS¡1(j) \Ej = 1, for all j 2 E. Indeed, let E be a i-path in ©dS.
Suppose that S(i) \ E 6= ;. By acyclicity of S there exists a j 2 bS(i) \ E such

that S(j) \ E = ;. But then Enfjg 2 ©dS. Since j 6= i this is in contradiction with
Enfig being a i-path in ©dS .
Suppose there exists a j 2 E with jS¡1(j)\Ej ¸ 2. We distinguish the following

two cases:

1. Suppose there exists an h 2 E n fig with S(h) \ E = ;. Then E n fhg 2 ©dS,
which is in contradiction with E being a i-path.

2. Suppose that S(h) \ E 6= ;, for all h 2 E n fig. Then, there exists a g 2 E
with jS¡1(g) \ Ej ¸ 2 and jS¡1(h) \ Ej = 1 for all h 2 bS(g) \ E. Since
S(i) \E = ;, i =2 S¡1(g) \E. By acyclicity of S it holds that S(k) \E = fgg,
for all k 2 S¡1(g) \ E. But then E n fkg 2 ©dS, for all k 2 S¡1(g) \ E. This
gives a contradiction with E being a i-path.

Therefore, we have that if E is a i-path in ©dS then E n fig is a path in ©dS.
To be more speci…c, assume that E n fig is a j-path in ©dS with fjg = S¡1(i) \ E.
But then, F being a j-path in ©dS implies S

¡1(h) = ; or jS¡1(h) \ F j = 1, for all
h 2 F and S(j) \ F = ;. Hence, S¡1(h) = ; or jS¡1(h) \ F j = 1, for all h 2 F
and S¡1(i) \ F = fjg 6= ;. Thus, F [ fig 2 A. On the other hand, as i 2 S(j) and
S(j) \ F = ; we have that i =2 F . So, ©dS satis…es the path property. ¤

Ø
{1} {4}

{1,2} {1,4} {3,4}

{1,2,3}

{1,2,4} {1,3,4}

{2,3,4}

{1,2,3,4}

Antimatroid
Figure 1

Ø Ø

{1}

{1,2} {1,3}

{1,2,3} {1,3,4}{1,2,4}

{1,2,3,4} {1,2,3,4}

{1,2,3}

{1,2} {1,3}

{1}

Antimatroid with
the path property

Figure 2
Poset Antimatroid

Figure 3

These examples show that not every antimatroid satis…es the path property.

Example 1 Let N = f1; 2; 3; 4g and the following family of subsets of Figure 1,
A = f;; f1g ; f4g ; f1; 2g ; f1; 4g ; f3; 4g ; f1; 2; 3g ; f1; 2; 4g ; f1; 3; 4g ; f2; 3; 4g ; Ng ;
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then it is easy to see that A is an antimatroid and it does not satisfy the path property,
since E = f2; 3; 4g is a 2-path such that Enf2g = f3; 4g is a 3-path. However,
F = f1; 2; 3g is another 3-path and 2 2 F .
Example 2 Consider the antimatroid A on N = f1; 2; 3; 4g of Figure 2,

A = f;; f1g; f1; 2g; f1; 3g; f1; 2; 3g; f1; 2; 4g; f1; 3; 4g; f1; 2; 3; 4gg:
It can be checked that A satis…es the path property.

Example 3 Consider the poset antimatroid B on N = f1; 2; 3; 4g of Figure 3,
B = f;; f1g; f1; 2g; f1; 3g; f1; 2; 3g; f1; 2; 3; 4gg:

Note that B does not satis…es the path property since the unique 4-path E = f1; 2; 3; 4g
is such that E n f4g = f1; 2; 3g is not a path.
As we have seen in Example 3, posets antimatroids do not satisfy the path prop-

erty in general. Thus, a logical question is that if it is required this property to this
speci…c antimatroids if it is possible to obtain some known subclass of the feasible
coalition system derived from conjunctive approach of some acyclic permission struc-
ture To establish this relation, we …rst provide a result on games with permission
structures. This result states that the permission structures for which the sets of
conjunctive and disjunctive feasible coalitions coincide are exactly the permission
forest structures.

De…nition 4 An acyclic permission structure S is a permission forest structure if
jS¡1(i)j · 1, for all i 2 N .
Lemma 2 Let S be an acyclic permission structure. Then S is a permission forest
structure if and only if ©cS = ©

d
S.

Proof. Let S be an acyclic permission structure. If S is a permission forest structure
then for every i 2 N we have that S¡1(i) = ; or S¡1(i) \ E 6= ; if and only if
S¡1(i) µ E. But then ©cS = ©dS.
If S is not a permission forest structure then there exists j 2 N with jS¡1(j)j ¸ 2.

If h 2 S¡1(j) then bS¡1(j) n fhg 2 ©dS n©cS, implying that ©cS 6= ©dS. ¤
The next theorem states that the poset antimatroids satisfying the path property,

are exactly those antimatroids that can be obtained as the set of conjunctive or
disjunctive feasible coalitions of some permission forest structure. Note that given A
a poset antimatroid, A satis…es the path property if and only if it is veri…ed P1.
Theorem 3 A is a poset antimatroid satisfying the path property if and only if there
exists a permission forest structure S such that A = ©cS = ©dS.
Proof. Suppose that A is a poset antimatroid satisfying the path property. De…ne
the permission structure S : N ! 2N by

S¡1(i) = fj 2 N : there exists a i-path E with j 2 E and E n fig is a j-pathg:
Since A is a poset antimatroid, Lemma 1 implies that there is a unique i-path for
every i 2 N . But then S is a permission forest structure. We are left to show that
©cS = A. For every i 2 N , let Hi be the unique i-path in A. Then E 2 ©cS if and
only if S¡1(i) µ E, for all i 2 E if and only if Hi µ E, for all i 2 E if and only ifS
i2EH

i = E if and only if E 2 A. By Lema 2 we conclude that A = ©cS = ©dS.
Assume that A = ©cS = ©dS for some acyclic permission structure S. By Theorem

1, ©cS is a poset antimatroid. By Theorem 2 it is satis…ed the path property. So, A
is a poset antimatroid satisfying the path property. ¤
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3 Restricted games on antimatroids

A cooperative game on a …nite set of players N is a function v : 2N ! R such
that v(;) = 0. According to the previous section, the interior of a coalition in
an antimatroid is the largest part of E that is active or feasible. In other words
and taking into account that the antimatroid structure limits the possibilities of
coalitional formation in a TU-game, the interior of E are those players of E that are
allowed to cooperate. Therefore, the interior is what Gilles et al. (1992) and Gilles
and Owen (1999) called (conjunctive or disjunctive) sovereign part in a permission
structure. So, we de…ne a restricted game on an antimatroid for a coalition E as the
value obtained on the interior of E.

De…nition 5 Let A be an antimatroid on N . If v is a cooperative game then the
restricted game on A is de…ned by vA (E) = v (int (E)) :

Next, we state some properties of restricted games on antimatroids.

Proposition 3 Let A be an antimatroid on N and let v be a monotone game. The
following sentences hold

1. The restricted game vA is monotone, moreover given E;F µ N such that
int (E) µ int (F ) then vA (E) · vA (F ) :

2. If v is superadditive then vA is superadditive, moreover for E;F µ N with
int (E) \ int (F ) = ; it is satis…ed that vA (E [ F ) ¸ vA (E) + vA (F ) :

3. If v is balanced then vA is balanced, satisfying that C (v) µ C (vA). Moreover,
if x 2 C (vA) then x (int (E)) ¸ vA (E), for all E µ N:

4. If v is totally balanced then vA is totally balanced.

Proof. Notice that to prove the two …rst parts it is only necessary to assume that
v is monotone on A, but it is not su¢cient in 3 and 4.
1. Let E;F µ N such that int (E) µ int (F ) ; then

vA (E) = v (int (E)) · v (int (F )) = vA (F ) :
Applying the property I3, we get that the restricted game vA is monotone.
2. Let E;F µ N with int (E) \ int (F ) = ;, then

vA (E [ F ) = v (int (E [ F )) ¸ v (int (E) [ int (F ))
¸ v (int (E)) + v (int (F )) ;

the …rst inequality is obtained because int (E) [ int (F ) µ int (E [ F ) since the set
int (E) [ int (F ) µ E [ F is a feasible coalition in A.
3. If v is a balanced game then C (v) 6= ;, i.e., there exists an x 2 C (v). We have

to prove that x 2 C (vA) : First, x (N) = v (N) = vA (N) ; because int (N) = N .
Next, since v is monotone, x 2 C (v) we have x (E) ¸ v (E) ¸ v (int (E)) = vA (E),
for all E µ N:
4. Let E µ N , E 6= ;. As v is totally balanced it is satis…ed that C (vE) 6= ;,

there exists x 2 RE such that x (F ) ¸ v (F ), for all F µ E and x (E) = v (E) :
If E 2 A then A jE is also an antimatroid on E whose interior operator is the

restriction of A to E; therefore (vE)AjE = (vA)E . Using sentence 3 we have that

x 2 C
³
(vE)AjE

´
, i.e., x 2 C ((vA)E).

Consider now that E =2 A. In that case vint(E) is also balanced, therefore there
exists x 2 C ¡vint(E)¢ in Rint(E) such that x (F ) ¸ v (F ), for all F µ int (E) and
x (int (E)) = v (int (E)) : Let y 2 RE be the vector given by

yi =

½
xi; if i 2 int (E)
0; if i 2 Enint (E) :

8



We have to prove that y 2 C ((vA)E) : First, note that if F µ E then we obtain
y (F ) ¸ v (int (F )) = vA (F ). Since int (F ) µ F \ int (E), we have that

y (F ) = x (F \ int (E)) ¸ v (F \ int (E)) ¸ v (int (F )) = vA(F ):

Finally, it remains to show that y (E) = vA (E) = v (int (E)) : It is immediate since
y (E) = x (int (E)) = v (int (E)) : ¤

Proposition 4 If A is an antimatroid on N with a unique atom (i.e., there exists a
unique i 2 N with fig 2 A) and v is monotone then vA is monotone, superadditive,
balanced and totally balanced. Moreover, if A is atomic then A = 2N and v = vA.

Proof. Let A be an antimatroid on N with a unique atom i0, and let v be monotone.
Monotonicity of vA follows from Proposition 3. Let E;F µ N with E \ F = ;. If
i0 =2 E [ F then int(E [ F ) = int(E) = int(F ) = ;, and thus v(int(E [ F )) =
v(int(E)) + v(int(F )) = 0. If i0 2 E [ F , assume without loss of generality that
i0 2 E. Then int(F ) = ;, and by monotonicity of v it holds that v(int(E [ F )) ¸
v(int(E)) = v(int(E)) + v(int(F )), showing superadditivity of vA.
Let x 2 RN be given by xi0 = v(N) and xi = 0, otherwise. Since x(N) = v(N),

x(E) = v(N) ¸ v(int(E)) if i0 2 E, and x(E) = 0 = v(int(E)) if i0 =2 E, it holds
that x 2 C(vA). So, vA is balanced. The atomic case is straightforward. ¤
Notice that the fact that the antimatroid has a unique atom means that there is

a top player in the permission structure, and if A is atomic then all players are in
the same level.
Convexity is a particularly desirable property of a game, since it implies balanced-

ness and superadditivity in combination with some geometric properties of the core.
However, there exist examples (see Gilles and Owen, 1999) that show that although
the game is monotone and convex and A is an atomic antimatroid, the restricted
game on the antimatroid does not have to be convex.
As it is well-known the set of the unanimity games fuT : T µ N; T 6= ;g is a basis

of the vector space ¡N (set of all TU-games). So, a TU-game v can be expressed as
a linear combination of the unanimity games, i.e., v =

P
T22Nnf;g dv (T )uT where

dv (T ) is called dividend of T in the game v and dv(;) = 0 (see Harsanyi, 1963).
Our next aim is to obtain the expression of the dividends of the restricted game

in terms of the dividends of the original game. For that, we …rst need some results.

Proposition 5 Let A be an antimatroid on N and E µ N. The restricted game of
the unanimity game uE on A is (uE)A =

W
F2A(E) uF . Moreover, its dividends are

given, for all F µ N; by

d(uE)A (F ) =
X

fHµF :9T2A(E);H¶Tg
(¡1)jF j¡jHj :

In particular, d(uE)A (F ) = 0, if F + E and d(uE)A (F ) = 1, if F 2 A (E) :

Proof. Let H µ N , then

(uE)A (H) = uE (int (H)) =
½
1; if E µ int (H)
0; otherwise.

If E µ int (H) 2 A then there exists F 2 A (E), such that F µ int (H) ; therefore
uF (H) = 1. In this case

W
F2A(E) uF (H) = 1. Otherwise, H does not contain any

feasible hull of E and therefore uF (H) = 0; for all F 2 A (E), which implies thatW
F2A(E) uF (H) = 0:

9



Let us consider F µ N;

d(uE)A (F ) =
X
HµF

(¡1)jF j¡jHj (uE)A (H) =
X
HµF

(¡1)jF j¡jHj
_

T2A(E)
uT (H)

=
X

fHµF :9T2A(E);H¶Tg
(¡1)jF j¡jHj :

If F + E then there is not any H µ F which contains some feasible hull of E and
hence d(uE)A (F ) = 0. Finally, if F 2 A (E) ; by de…nition, the unique term in the
above formula is obtained for H = F and therefore d(uE)A (F ) = 1. ¤
Next, we consider the particular case from a poset antimatroid. We will take into

account that for these antimatroids each coalition has a unique feasible hull (the set
obtained as the intersection of all feasible coalitions that contain the coalition) since
the intersection is a closed operation.

Corollary 1 Let A be a poset antimatroid on N and E µ N. The restricted game
(uE)A = uT ; where T is the unique feasible hull of E. Moreover, all dividends are
null except d(uE)A (T ) = 1:

Proof. By Proposition 5, if F = T then d(uE)A (T ) = 1: Moreover, if F + E then
d(uE)A (F ) = 0: Finally, if F ¶ E and F 6= T , since F ) T , we have that

d(uE)A (F ) =
X

TµHµF
(¡1)jF j¡jHj =

jF jX
h=jT j

µjF j ¡ jT j
h¡ jT j

¶
(¡1)jF j¡h = (1¡ 1)jF j¡jT j = 0:

This completes the proof. ¤
Using the dividends of the restricted games of unanimity games we can obtain

the dividends of any restricted game on the antimatroid.

Theorem 4 Let A be an antimatroid on N and let v be a cooperative game. The
dividends of the game vA are, for all F µ N;

dvA (F ) =

( P
EµF

d(uE)A (F ) dv (E) ; if F 2 A
0; otherwise.

Proof. We …rst suppose that F =2 A, then

dvA (F ) =
X
EµF

(¡1)jF j¡jEj v (int (E))

=
X

fEµF :E2Ag

0@ X
fHµF :int(H)=Eg

(¡1)jF j¡jHj
1A v (E) :

Observe that given E µ F such that E 2 A the possible elements in the set
fH µ F : int (H) = Eg are those coalitions H contained in F that contain E but
that do not contain any augmentation player of E (by condition A2). Let kE =
jF ¡ (E [ au (E)j then

dvA (F ) =
X

fEµF :E2Ag

Ã
kEX
p=0

µ
kE
p

¶
(¡1)jF j¡p

!
v (E)

= (¡1)jF j
X

fEµF :E2Ag
(1¡ 1)kE v (E) = 0:
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It is satis…ed that kE > 1 since F =2 A and moreover the set E [ [au (E) \ F ] is
feasible because E [ [au (E) \ F ] = Sj2au(E)\F (E [ fjg) 2 A, by the condition A3
and the augmentation player de…nition.
Suppose that F 2 A, now we use induction on the cardinal of F . If jF j = 1, then

F = fig and we have that

dvA (fig) =
X
Eµfig

(¡1)1¡jEj vA (E) = ¡v (int (;)) + v (int (fig)) = v (fig) ;

since by I1 int (;) = ; and as F 2 A then int (fig) = fig : On the other hand,X
Eµfig

d(uE)A (fig) dv (E) = d(u;)A (fig) dv (;) + d(ufig)A (fig) dv (fig) = v (fig) ;

because dv (;) = 0; dv (fig) = v (fig) and by Proposition 5, d(ufig)A (fig) = 1 sincefig is the feasible hull of fig. Suppose that the result is true if jF j · k and we will
prove it if jF j = k + 1. As F 2 A, int (F ) = F;X

EµF
dv (E) = v (F ) = vA (F ) =

X
EµF

dvA (E) =
X
E(F

dvA (E) + dvA (F ) :

By using the induction hypothesis and the case E =2 A considered above we have
that

dvA (F ) =
X
EµF

dv (E)¡
X

fE(F :E2Ag
dvA (E)

=
X
EµF

dv (E)¡
X

fE(F :E2Ag

0@X
HµE

d(uH)A (E) dv (H)

1A
=
X
EµF

dv (E)¡
X
E(F

0@ X
EµH(F

d(uE)A (H)

1Adv (E) ;
= dv (F ) +

X
E(F

0@1¡ X
EµH(F

d(uE)A (H)

1Adv (E) :
As d(uF )A (F ) = 1 by Proposition 5 and F 2 A, it remains to prove

1¡
X

EµH(F
d(uE)A (H) = d(uE)A (F ) ; 8E ( F ,

since F is the unique feasible hull of F . Applying Proposition 5, we get

1¡
X

EµH(F
d(uE)A (H) = 1¡

X
EµH(F

X
fTµH:9R2A(E);T¶Rg

(¡1)jHj¡jT j

= (¡1)jF j¡jF j ¡
X

fT(F :9R2A(E);T¶Rg

X
TµH(F

(¡1)jHj¡jT j :

Taking into account thatX
TµH(F

(¡1)jHj¡jT j =
X

TµHµF
(¡1)jHj¡jT j ¡ (¡1)jF j¡jT j = ¡ (¡1)jF j¡jT j

since X
TµHµF

(¡1)jHj¡jT j = (1¡ 1)jF j¡jT j = 0; (1)
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we conclude that

1¡
X

EµH(F
d(uE)A (H) = (¡1)

jF j¡jF j +
X

fT(F :9R2A(E);T¶Rg
(¡1)jF j¡jT j

=
X

fTµF :9R2A(E);T¶Rg
(¡1)jF j¡jT j = d(uE)A (F ) :

Note that in formula (1) we may take jF j ¡ jT j 6= 0, because otherwise F would
be a feasible hull of E and

P
EµH(F d(uE)A (H) = 0. ¤

In particular, in Proposition 5 the dividends of a non-feasible coalition for the
restricted game of a unanimity game are also zero.

Corollary 2 Let A be a poset antimatroid on N and let v be a cooperative game.
The dividends of the game vA are given, for all F µ N; by

dvA (F ) =
X

fEµF : F=A(E)g
dv (E) ;

where here A (E) denote the unique feasible hull of E.

Proof. It is straightforward obtained using Corollary 1 and Theorem 4. Notice that
if F =2 A then dvA (F ) = 0, since in this case F is not a feasible hull. ¤
In the next result we will show that the dividends can be expressed in terms of only

the characteristic function evaluated on the feasible coalitions in the antimatroid. For
this, we will use the Möbius inversion formula for partially ordered sets (see Stanley,
1986). Notice that an antimatroid A with the inclusion relation is, in particular,
a lattice taking into account the following operations, E _ F = E [ F; E ^ F =
int (E \ F ), for all E;F 2 A. We denote by [E;F ]A the interval of coalitions in
A that contain E and are contained in F . Given E 2 A the set E+ is the coalition
formed by E and the augmentation players, i.e., E+ = E [ au (E) :
Lemma 3 Let A be an antimatroid on N , it holds that

1. If F µ E; E;F 2 A, the interval [F;E]A is a Boolean algebra if and only if
E n F = au(F ) \E.

2. If E 2 A then [E;E+]A is a Boolean algebra.

Proof.
1. In the lattice A, a coalition T covers F if T = F [fig, where i 2 au (F ) (by the

augmentation property such i exists). We prove that [F;E]A is a Boolean algebra if
and only if E can be written as E =

S
i2au(F )\E (F [ fig) : If [F;E]A is a Boolean

algebra then F [ fig 2 A for all i 2 E n F and therefore i 2 au (F ) \ E. The other
inclusion is straightforward. So, we can conclude that [F;E]A is a Boolean algebra
if and only if E n F = au (F ) \E.
2. For all i 2 E+ n E it holds that i 2 au (E) and therefore E [ fig 2 A. By

property (A3) it is concluded that each coalition of [E;E+] is feasible. ¤

Lemma 4 Let A be an antimatroid on N and E;F 2 A; with F µ E. Then its
Möbius function is given by

¹ (F;E) =

½
(¡1)jEj¡jF j ; if E n F = au (F ) \E
0; otherwise.

Proof. It is well-known (Stanley, 1986) that the Möbius function of an interval
[F;E]A is zero unless E is the union of those coalitions that cover F in the interval.
By the proof of Lemma 3, this is equivalent to E nF = au (F )\E. By Lemma 3 the
equality is true if and only if [F;E] is a Boolean algebra. The Möbius function in the
Boolean algebra [F;E] is ¹ (F;E) = (¡1)jEj¡jF j. So, we conclude the result. ¤
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Theorem 5 Let A be an antimatroid on N and let v be a cooperative game. The
dividends of vA are, for all E µ N ,

dvA (E) =

8<:
P

fF2A:E2[F;F+]g
(¡1)jEj¡jF j v (F ) ; if E 2 A

0; otherwise.

Proof. For every E µ N it holds that

vA =
X
FµN

dvA (F )uF .

By Theorem 4, the dividends of any non-feasible coalition are zero. Given a feasible
coalition E 2 A then vA (E) = v (E) =

P
fF2A:FµEg dvA (F ) : Using the Möbius

inversion formula (Stanley, 1986) applied to v and dvA on A we get

dvA (E) =
X

fF2A:FµEg
¹ (F;E) v (F ) :

Then, replacing the Möbius function obtained in Lemma 4 we have that

dvA (E) =
X

fF2A:FµE;EnF=au(F )\Eg
(¡1)jEj¡jF j v (F ) :

The following equality is immediate

fF 2 A : F µ E; E n F = au (F ) \Eg = ©F 2 A : E 2 £F;F+¤Aª ;
and by Lemma 3, the interval [F;F+]A is a Boolean algebra. ¤

4 The restricted Shapley and Banzhaf values on antimatroids

In this section, we consider the Shapley and Banzhaf values of the restricted game on
an antimatroid to obtain new values for a game. Taking into account the cooperation
possibilities, the values that we de…ne generalize the Shapley and Banzhaf values
de…ned on permission structures and studied in van den Brink and Gilles (1996), van
den Brink (1997), Gilles et al. (1992), Gilles and Owen (1999). Given the game v the
Shapley (1953) and Banzhaf (1965) values for the player i in the game v are denoted
by Shi(v) and Bai(v) respectively and in terms of dividends they are given by

Shi (v) =
X

fEµN:i2Eg

dv (E)

jEj ; Bai (v) =
X

fEµN:i2Eg

dv (E)

2jEj¡1
.

The Banzhaf power index is introduced for voting situations. A generalization for
arbitrary cooperative games as in, e.g., Dubey and Shapley (1979) and Owen (1975)
is considered.

De…nition 6 Let A be an antimatroid on N and let v be a cooperative game. The
restricted Shapley value is de…ned by Sh (v;A) = Sh (vA). The restricted Banzhaf
value is given by Ba (v;A) = Ba (vA).
The linearity of these values and Theorem 4 imply that, for every i 2 N ,

Shi (v;A) =
X

fE2A:i2Eg

dvA (E)

jEj ; Bai (v;A) =
X

fE2A:i2Eg

dvA (E)

2jEj¡1
: (2)

From Theorem 5 we can get a formula to compute these values using directly the
characteristic function of the original game.
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Theorem 6 Let A be an antimatroid on N and let v be a cooperative game. We
consider the following collections, for i 2 N,

Ai = fE 2 A : i 2 Eg ;
A+i =

n
E 2 A : i 2 ex (E) ; (E n fig)+ = E+

o
;

A¤i =
n
E 2 A : i 2 au (E) ; (E [ fig)+ 6= E+

o
:

Then

1. The restricted Shapley value for player i is given by

Shi (v;A) =
X
E2A+

i

(e¡ 1)! (e+ ¡ e)!
e+!

[v (E)¡ v (E n fig)]

+
X

E2AinA+
i

(e¡ 1)! (e+ ¡ e)!
e+!

v (E)

¡
X
E2A¤

i

e! (e+ ¡ e¡ 1)!
e+!

v (E) :

2. The restricted Banzhaf value for player i is given by

Bai (v;A) =
X
E2A+

i

1

2e+¡1
[v (E)¡ v (E n fig)]

+
X

E2AinA+
i

1

2e+¡1
v (E)¡

X
E2A¤

i

1

2e+¡1
v (E) ;

where e = jEj and e+ = jE+j.

Proof. 1. By Theorem 5 and the formula (2)

Shi (v;A) =
X

fF2A:i2Fg

1

jF j

264 X
fE2A:F2[E;E+]Ag

(¡1)jF j¡jEj v (E)

375 :
Hence,

Shi (v;A) =
X
E2A

264 X
fF2[E;E+]A:i2Fg

1

jF j (¡1)
jF j¡jEj

375 v (E) = X
E2A

ci (E) v (E) ;

where we denote by ci(E) the coe¢cient of v(E) in the above sum. We are distinguish
two cases: i 2 E and i =2 E.
If i 2 E, as [E;E+]A is a Boolean algebra then

ci (E) =
e+X
k=e

µ
e+ ¡ e
k ¡ e

¶
(¡1)k¡e
k

=
e+¡eX
k=0

µ
e+ ¡ e
k

¶
(¡1)k
k + e

=
e+¡eX
k=0

µ
e+ ¡ e
k

¶
(¡1)k

Z 1

0

xk+e¡1dx

=

Z 1

0

xe¡1 (1¡ x)e+¡e dx = (e¡ 1)! (e+ ¡ e)!
e+!

:
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If i =2 E then i 2 au (E) otherwise ci (E) = 0. In that case, [E [ fig; E+] is a
Boolean algebra and hence

ci (E) =
e+X

k=e+1

µ
e+ ¡ e¡ 1
k ¡ e¡ 1

¶
(¡1)k¡e
k

=
e+¡e¡1X
k=0

µ
e+ ¡ e¡ 1

k

¶
(¡1)k+1
k + e+ 1

=¡
e+¡e¡1X
k=0

µ
e+ ¡ e¡ 1

k

¶
(¡1)k

Z 1

0

xk+edx

=¡
Z 1

0

xe (1¡ x)e+¡e¡1 dx = ¡e! (e
+ ¡ e¡ 1)!
e+!

:

Replacing the coe¢cients in the formula it boils down to

Shi (v;A) =
X
E2Ai

(e¡ 1)! (e+ ¡ e)!
e+!

v (E)¡
X

fE2A:i2au(E)g

e! (e+ ¡ e¡ 1)!
e+!

v (E) : (3)

For every E 2 Ai, if i 2 ex (E) and (E n fig)+ = E+, then E 2 A+i : In that case, we
have that E n fig 2 A and ci (E n fig) = ¡ci (E), and therefore we can group both
coe¢cients. If E 2 Ai n A+i its coe¢cient appears in the …rst sum but it can not be
grouped. Finally, if none of these possibilities happen then E 2 A, i 2 au (E) and
(E n fig)+ 6= E+, i.e., E 2 A¤i . So, these appear in the second sum.
2. By the above part, we know that

Bai (v;A) =
X
E2A

ci (E) v (E) ;

where in this case

ci (E) =
X

fF2[E;E+]A:i2Fg
1

2jF j¡1
(¡1)jF j¡jEj ;

if i 2 E then

ci (E) =
e+X
k=e

µ
e+ ¡ e
k ¡ e

¶
(¡1)k¡e
2k¡1

=
e+¡eX
k=0

µ
e+ ¡ e
k

¶
(¡1)k
2k+e¡1

=
1

2e+¡1
;

and if i 2 au (E) then

ci (E) =
e+X

k=e+1

µ
e+ ¡ e¡ 1
k ¡ e¡ 1

¶
(¡1)k¡e
2k¡1

= ¡
e+¡e¡1X
k=0

µ
e+ ¡ e¡ 1

k

¶
(¡1)k
2k+e

=
¡1
2e+¡1

:

Doing the same process as in the case of the Shapley value we get the formula for
the Banzhaf value. ¤

Remark 1 Notice that if A = 2N then the formulas obtained in Theorem 6 are equal
to the Shapley and Banzhaf values. Moreover, the equation (3) is e¢cient from the
computational point of view and coincides with the equation (11) of Shapley (1953).

To apply the computational method developed in this section we analyze two
examples.
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Example 4 Let N = f1; 2; 3; 4g, given v = uf4g the unanimity game on the coalition
f4g and S the acyclic permission structure on N given by (see Figure 4).

S(1) = f2; 3g ; S(2) = S(3) = f4g ; S (4) = ;:

The disjunctive and the conjunctive approaches in the permission structure are
the antimatroids considered in Examples 2 and 3 respectively (see Figures 2 and 3).
To compute the restricted Shapley value on A and B we use the formula (3)

since so we only have to calculate Ai and fE 2 A : i 2 au (E)g. Notice that with this
formula, if the game changes but the structure continue being the same the calcula-
tions on these sets only are done once. So, the corresponding sets Ai belong to the
disjunctive approach are given by

A1 = ff1g ; f1; 2g ; f1; 3g ; f1; 2; 3g ; f1; 2; 4g ; f1; 3; 4g ; Ng ;
A2 = ff1; 2g ; f1; 2; 3g ; f1; 2; 4g ; Ng ;
A3 = ff1; 3g ; f1; 2; 3g ; f1; 3; 4g ; Ng ;
A4 = ff1; 2; 4g ; f1; 3; 4g ; Ng ;

and

fE 2 A : 1 2 au (E)g= f;g ;
fE 2 A : 2 2 au (E)g= ff1g ; f1; 3g ; f1; 3; 4gg ;
fE 2 A : 3 2 au (E)g= ff1g ; f1; 2g ; f1; 2; 4gg ;
fE 2 A : 4 2 au (E)g= ff1; 2g ; f1; 3g ; f1; 2; 3gg ;

thus, applying the above formula we obtain Sh (v;A) = (5=12; 1=12; 1=12; 5=12) and
in a similar way Sh (v;B) = (1=4; 1=4; 1=4; 1=4).

Now, the following example shows that the generalization of the model of permis-
sion structures to antimatroids has applications in other scopes.

Example 5 Let G = (V;A) be a directed graph with root r 2 V and c : V ! R a map
on the nodes called capacity function. A directed path with root r and c-compatible is
a sequence of vertices (r; x1; : : : ; xk), such that rx1 : : : xk is a directed path and such
that c (r) ¸ k; c (x1) ¸ k¡ 1; : : : ; c (xk) ¸ 0: We interpret N = V n frg as the clients
of a certain source r and the edges as the directed network that can be established
among the clients from the source. The capacity of a vertex is the quantity that can
be retransmitted from it. The feasible coalitions that the clients can form are those
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in which, without in‡uence of others, can connect to the source through a directed
c-compatible path. The structure that is de…ned is an antimatroid called capacitated
point search,

A =
½
E µ N : 8x 2 E; 9 c-compatible path (r; x1; : : : ; xk)

such that fx1; : : : ; xkg µ E and xk = x

¾
:

These antimatroids do not satisfy the path property that characterize to the anti-
matroids which derived from a disjunctive approach on an acyclic permission struc-
ture, further they are not poset antimatroids, as it is seen in the following example.
Consider the directed graph corresponding to Figure 5, whose antimatroid of feasible
coalitions is the one described in Example 1. If we suppose that the source o¤ers a
discount in the prices of its service to groups that ask for it, depending on their needs,
the clients will obtain a pro…t cooperating among them. We de…ne a game that prizes
this pro…t for each cooperation assuming that it is proportional to the clients number.
Without loss of generality we consider v (S) = jSj ¡ 1, for every non-empty coalition
S µ N and v (;) = 0. In a cooperation among several players logically will be taken
into account the maximal feasible coalition that the players can form. We used the
Shapley value on the game vA to determine how to divide the pro…ts of a hypothetical
cooperation among the four clients. In order to calculate the payo¤ of the player 1
through the formula (3) obtained in Theorem 6 we have to calculate before the sets
Ai and fE 2 A : i 2 au (E)g. So, for instance

A1 = ff1g ; f1; 2g ; f1; 4g ; f1; 2; 3g ; f1; 2; 4g ; f1; 3; 4g ; f1; 2; 3; 4gg ;

fE 2 A : 1 2 au (E)g = f;; f4g ; f3; 4g ; f2; 3; 4gg :
In this way, the division of the pro…ts of the total cooperation, v (N) = 3 is given by
Sh (v;A) = (5=6; 2=3; 2=3; 5=6) :
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