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Abstract

We analyze a dynamic model of strategic interaction between a professional sport league

that organizes a tournament, the teams competing to win it, and the broadcasters paying

for the rights to televise it. Teams and broadcasters maximize expected profits, while the

league’s objective may be either to maximize the demand for the sport or to maximize the

teams’ joint profits. Demand depends positively on symmetry among teams (competitive

balance) and how aggressively teams try to win (incentives to win). Revenue sharing in-

creases competitive balance but decreases incentives to win. Under demand maximization, a

performance-based reward scheme (used by European sport leagues) may be optimal. Under

joint profit maximization, full revenue sharing (used by many US leagues) is always optimal.

These results reflect institutional differences among European and American sports leagues.
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1 Introduction

Revenue sharing is a controversial topic in the organization of many professional sport leagues.

In recent years, its importance has become even more evident given the large payments American

and European professional sports leagues fetch from television broadcasters.1 In this paper, we

present a rigorous analysis of the opposing views in this controversy.

The argument in favor of revenue sharing in sports observes that there are large differences

among revenues and wealth of teams. For example, Scully (1995) and Fort and Quirk (1995)

provide evidence on large disparities of ticket sales and revenues from local TV deals among

teams located in different cities. As a consequence, richer teams tend to be more successful since

they can afford better players.2 A mechanism which redistributes income from richer to poorer

teams makes future competition more balanced, hence more enjoyable to the fans. A consequence

of this argument is that revenue sharing increases future demand for the sport, hence increasing

the revenues of the league. Furthermore, if teams are profit maximizers, revenue sharing also

decreases the price teams pay for top players since their marginal value decreases. Hence, revenue

sharing also has a positive impact on the profit of teams.

The case against revenue sharing is based on the idea that if there are no prizes for winning

teams’ profits are independent of a competition’s outcome. Without a prize there are no monetary

incentives for a team to win. In the end, this may have a negative effect on demand since the

lack of incentives for team owners induces lack of incentives for players.3 As noticed by Daly

(1992) and Fort and Quirk (1995), if teams have nothing to compete for, fans may strongly doubt

the integrity of the competition on the playing field with an obvious negative effect on demand.

Hence, revenue sharing has a negative impact on current demand and team profits.

Unsurprisingly, professional economists have debated different revenue sharing arrangements,

and their consequences for teams and players as well as for the demand for sports (see Fort and

Quirk (1995) for a comprehensive review). In the end, the question is how to allocate revenues if

the product is the result of a joint production of effort by several participating firms. Surprisingly,

there are relatively few theoretical analyses of this question.

As seen above, revenue sharing has different consequences for current and future demand

for the sport. Therefore we study a dynamic model where professional teams compete to win a

tournament and the league decides how to allocate revenues generated by the competition among

1The latest reported television deals for NFL and NBA, for example, are $17.6 billion over eight years and

$2.4 billion over four years respectively (see Araton 1998).
2See Scully (1995) for detailed evidence.
3An example of this effect is given by the higher TV ratings for playoff matches when compared to regular

season ones.
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winners and losers. In particular, each period has the following sequence of moves. First, the

league’s revenues are determined by the sale of broadcasting rights. Then, the league decides

how to allocated these revenues among winners and losers. Finally, the teams compete to win the

tournament organized by the league. In this framework, we can properly address the following

question: how should a professional sport league allocate revenues among participating teams?

The starting point is a description of aggregate demand for a sporting competition. This

determines how much money the league may obtain for selling the rights to broadcast the event.

Aggregate demand for a sport is ultimately determined by how much the fans enjoy watching the

tournament in which the teams compete. Following the literature surveyed in Fort and Quirk

(1995), we assume it depends on three factors. These are quality of the league, how hard teams

try to prevail, and competitive balance in the tournament.

Quality of the league reflects its ability to attract talented athletes. It is measured by the

combined wealth of the teams. A wealthier league (i.e., a league with a larger total wealth

of teams) attracts better players. Therefore, teams’ combined wealth has a positive effect on

demand. The size of this effect is influenced by the environment in which the league operates.

For example, US sport leagues are essentially monopsonists in the market for players in a given

sport.4 In this case, only intra-league trades are observed and league-wide talent is roughly

constant. European sport leagues, on the other hand, compete with each for top players. In this

case, inter-league trades of top players are observed frequently.

Willingness to win by teams is reflected by the salaries teams pay to their athletes. If the

effort players produce is observable, a higher salary is the consequence of a higher effort. If the

effort is not observable, higher prize when winning the competition generates a higher effort.

Competitive balance is measured by uncertainty of the outcome. Fans enjoy more sporting

events whose winners are not easy to predict. In other words, the more symmetric the winning

chances of the competitors the more exciting the tournament is to watch. Since a team’s prob-

ability of winning ultimately depends on the athletes playing for it, competitive balance also

depends on a team’s wealth and how much it pays its athletes.

The league chooses a monetary reward scheme conditional on the tournament’s outcome.

It knows this choice influences how teams compete in the event. Hence, the league knows

more or less revenue sharing influence aggregate demand for the sport. In a dynamic setting,

revenue sharing has two effects on demand. The first effect we call competitive balance: increased

revenue sharing at time t increases demand at time t + 1 by making the teams’ future winning

chances more equal. This effect has consequences for competitive balance at time t + 1 even

if teams are identical at time t: a large prize for today’s winner introduces an asymmetry in

4There are very few cases of athletes being able to play more than one sport at professional level.
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tomorrow’s winning probabilities. The second effect we call incentives to win: increased revenue

sharing decreases current demand by lowering the monetary value of winning and consequently

diminishing teams’ interest and effort toward winning. This effect lowers demand since fans enjoy

more effort from players.

In this paper, we derive the optimal level of revenue sharing in a repeated tournament by

analyzing the trade-off between competitive balance and incentives to win. Of course, the optimal

level of revenue sharing depends on what the league wants to accomplish. We consider two

natural possibilities for the objective function of professional sport leagues. First, we assume

the league maximizes its revenues, given by the amount of money it obtains from television

broadcasters. In our framework, this assumption is equivalent to maximizing demand for the

sport. Second, we also consider the league as a cartel of profit maximizing firms and assume it

maximizes the teams’ joint profit (as assumed by Atkinson, Stanley and Tschirhart (1988)). The

first case roughly corresponds to sport leagues more independent from teams, and it matches the

European institutional organization of professional sports;5 the second case resembles more the

way in which American professional sport leagues are organized.

Under demand maximization, a performance-based reward scheme which depends on the

tournament’s outcome may be optimal. This implies that full revenue sharing is not optimal.

Under joint profits maximization, the reward scheme does not depend on the tournament’s

outcome: full revenue sharing is always optimal. These results match observed behavior of some

sports leagues. In European top soccer leagues, broadcasting revenues are distributed according

to performance (see Tables 1 and 2).6 Sharing of national TV deals, on the other hand, is more

common in US sport leagues (see Scully, 1995). The main reason for the difference of results

between the two objective functions is that under joint profit maximization the league internalizes

players’ salaries in its objective function while in the case of the demand maximization, it does

not.

Our paper extends the existing literature in several ways. First, we consider a multi-period

model. Therefore, we are able to capture the intertemporal trade-off generated by revenue sharing

between demand and profits today and demand and profits tomorrow. Second, we consider the

5For example, in France, the organization of the Premiere Division championship (top national competition)

is delegated by the Federation Francaise de Football (FFF) to the Ligue National de Football (LNF). All French

teams (both professional and non professional) are affiliated to the FFF. All professional teams (both those in

Premiere Division and those participating in minor championships) are affiliated to the LNF. A fraction of the

money received by the LNF for the sale of Premiere Division broadcasting rights is transferred to the FFF and

a fraction is allocated to minor championship teams. In such a context, the maximization of revenues from TV

deals seems a reasonable assumption.
6See also Hamil, Michie and Oughton (1999) for more details about England.
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possibility that a league faces competition from other leagues and that they compete for top

players as is the case in Europe. Therefore, we can study the influence of revenue sharing at time

t on league-wide talent at time t+ 1. Related papers in a competitive environment are those of

Hoen and Szymanski (1999) and Palomino and Sakovics (2000). Hoen and Szymanski study the

impact of the participation of top clubs in international competitions on the competitive balance

of the domestic leagues. They do not address the issue of the optimal level of revenue sharing.

Palomino and Sakovics (2000) consider a static model and compare the organization of markets

for talent when a league is isolated and when it operates in a competitive environment. They show

that full revenue sharing in US sports may result from monopsony power in the market for talent

rather then from competitive balance considerations. Other papers (El Hodiri and Quirk (1971),

Atkinson, Stanley and Tschirhart (1988), Fort and Quirk (1995), Vrooman (1999)) consider static

models and focus on the case of US sport leagues that do not face competition.

The analysis carried out in this paper goes beyond the sports literature. Our model presents

an example of a repeated moral-hazard problem between a principal and multiple agents in

which the difference in output produced by the agents is detrimental to the principal.7 An

example of such a situation is the production and distribution of electricity.8 In this setting, the

principal faces a trade-off between “output balance” among agents and incentives to produce

large quantities. The solution for the principal is to propose agent-specific contracts, the agent

with the higher productivity rate receiving a lower marginal revenue in order to decrease his

incentives to produce. The specific feature of a sport competition (or any other contest) is that

the contract the principal proposes has to be the same for all agents. Rewards can only be based

on relative performances. The reward for the winner cannot vary with his identity.

Our model is also related to Moldovanu and Sela (2000) who study the optimal allocation of

prizes in contests. They consider a contest where the highest bidder (or agent making the highest

effort) wins and the goal of the designer is to maximize the sum of all bids. In this framework,

they show that if the contestants face linear or concave cost functions, then the allocation of

the entire prize money to the winner is optimal. Conversely, if the contestants face convex cost

functions, several prizes may be optimal. Our model differs from Moldovanu and Sela’s in two

crucial ways. First, we consider sequential contests and both the bids (the effort in our context)

at time t and the outcome of the contest at time t influence bids made at time t+1. Hence, when

deciding on the allocation of prizes at time t, the contest designer (i.e., the league in our case)

7For example, consider a situation such that there are two agents 1 and 2, the income of the principal at time

t is Min(qt,1, qt,2), qt,i being the output of agent i at time t. Moreover, qt,i depends on agent i’s (unobservable)

effort, his productivity and some noise, and the productivity at time t depends on past income. (One can think

of productivity as being the consequence of investment in more or less sophisticated machines.)
8We would like to thank Ines Macho-Stadler for suggesting this example.
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must take into account the impact on future contests. Second, one of the specificity of sport

events is that competitive balance is valuable. This reduces incentives for the contest designer

to award all the prize money to the winner at time t since it may decrease competitive balance

at time t+ 1.

The organization of the paper is as follows. Section 2 introduces the basic model and Section 3

derives its equilibrium. Section 4 considers three possible extensions: multi-period TV contracts,

sources of teams revenues that do not depend on the leagues’ decisions, teams that cannot observe

players effort (how hard they try to win). Section 5 concludes.

2 The Model

In this section, we present a simple two periods model of strategic interaction between professional

sport teams, a professional sport league, and television broadcasters. Two teams compete in the

tournament organized by the league and shown on television by a broadcaster. More specifically,

the following sequence of moves occurs in each period. First, the broadcaster decides how much

to pay for the exclusive right to televise the sporting event. Then, the league decides how to

divide this money between the loser and the winner of the tournament. Finally, the teams

simultaneously decide how much to spend on players’ incentives. At the end of the period, the

tournament is played, the winner is determined, and money is awarded accordingly.

Before presenting the model in detail, two remarks are in order. First, we focus on the sale

of rights to national TV networks and on the allocation of the corresponding revenues among

teams. Of course, teams have other sources of revenues (for example, ticket sales, sponsoring,

merchandising, local TV deals). In our model, these are captured by differences in initial wealth

among teams; in other words, we assume these other sources of profits are constant over the

two periods. Second, the model does not explicitly include a market for talent.9,10 Although

both these aspects deserve attention, our focus is on a model simple enough to capture the basic

trade-off between competitive balance and incentives.

Demand

Demand for the sport depends on three sets of variables: the talent of the athletes playing

the sport (league quality), their attempt to prevail in the competition (willingness to win),

9See Palomino and Sakovics (2000) for a market for talent with competing leagues.
10Implicitly, we assume that talent is linear in price and that teams maximize their expected profit from talent

under the constraint that they cannot borrow. In this case, if for a cost of talent equal to the total wealth of a

team, the marginal profit is larger than the marginal cost, teams invest their entire wealth.
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and competitive balance of the tournament. The league’s quality is measured by the wealth

of the participating teams; this reflects their ability to attract skilled athletes away from other

sports. Willingness to win is measured by incentives to induce players’ effort; it is important

because fans enjoy athletes playing hard.11 Competitive balance is measured by uncertainty of

the tournament’s outcome; fans enjoy sporting events more if the winner is not easy to predict.

In other words, the more symmetric are the teams’ winning chances, the more exciting is the

tournament.

In each period t, Dt denotes demand in monetary terms, et,i denotes team i’s effort, pt,i its

probability of winning, and Wt,i its wealth; similarly for team j. Then, demand is given by

Dt = γ (et,i + et,j) + δ[1− (pt,i − pt,j)2] + ν (Wt,i +Wt,j) , (1)

with γ ∈ (0, 1), ν ∈ (0, 1), and δ > 0.12 Note that δ represents the monetary value of one unit
of competitive balance while γ represents the monetary value of one unit of willingness to win.

Equation (1) can loosely be interpreted as measuring fans welfare from watching the tournament.

In this respect, the first term measures the importance of watching athletes ‘give their best’. The

second term measures the importance of watching an evenly matched tournament. The third

term measures the importance of watching good athletes. Roughly, this last effect allows for

several competing leagues where each league talent level depends on the total wealth of its

teams.13

Broadcasters

The market for TV rights is perfectly competitive. Therefore, a broadcaster expects zero profits

in equilibrium. Since demand is expressed in monetary terms, we assume that broadcasting of

the games generates income from advertising and this income increases with the audience that

watches them. In particular, we let Kt denote the amount paid by the broadcaster and impose

Kt = Dt in each period. In other words, at this stage we only consider one-period deals between

broadcasters and the league. Later in the paper (see Section 4.1), we extend the framework to

include multi-period deals.

11A possible fourth set of variables may measure fans’ attachment to a team. Since we model demand for the

sport, we assume that these “individual team” effects wash out in the aggregate.
12Many simplifying assumptions, like the functional form chosen for the demand for the sport, are made for

simplicity and are not necessary for our qualitative results.
13This assumption corresponds to the case of European sport leagues who organize domestic competitions and

sign TV deals with national broadcasters. Top players often switch from one league to another, hence changing

league-wide talents. US sport leagues, on the other hand, are in an isolated environment where league-wide talent

is given and only intra-league trades occur (with few exceptions at the draft level).
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League

After receiving Kt from the broadcaster, the league decides how to allocate this sum between the

two teams. We assume this allocation can only be contingent on the outcome of the tournament.

In particular, this rules out allocations which explicitly depend on the teams’ wealth.14

The league’s interest is to maximize the demand for the sport. This does not necessarily

imply the league cares exclusively about fans’ welfare, since it may have long run objectives to

maximize demand.15 Given the assumption of perfect competition in the broadcasting industry,

this is equivalent to assuming that the league maximizes the revenues from the sale of TV rights.

Because of the perfect competition in broadcasting assumption, maximizing demand and

maximizing revenues from TV rights are equivalent objectives. Let Kt,w and Kt,l denote the

amounts allocated to period t winner and loser respectively (obviously, Kt,w+Kt,l = Kt). Then,

in period 2 the league chooses K2,w and K2,l to maximize D2, while in period 1 it chooses K1,w

and K1,l to maximize D1 +D2.

Probability of winning the tournament

The tournament’s outcome depends on the quality of each team and on their choices of incentives

for players. The first aspect represents teams’ initial ability; the second represents the effort

spent towards winning. A richer team can buy better players, hence having an initial advantage.

However, a poorer team can compensate this initial disadvantage by producing a higher effort

level. In order to make players produce a higher effort level, teams must reward them. Here, the

effort level is measured in monetary terms. We capture these ideas modelling the probability to

win.

The probability that team i wins period t tournament depends on its players’ talent and how

hard they play. Talent can be thought of as a team’s ability to sign players at the beginning

of the season; therefore, it is measured by the team’s wealth Wt,i. How hard players try to win

can be thought of as effort, and is measured by the incentives necessary for players to perform

during the season et,i. Formally, the probability that team i wins in period t is

pt,i =
α

et,i
et,i+et,j

+ β
Wt,i

Wt,i+Wt,j
if et,i + et,j > 0

Wt,i

Wt,i+Wt,j
if et,i + et,j = 0

14This does not seem an unrealistic assumption since we do not see tournament prizes of the sort “since the

richer team has won, amount x goes to the winner and amount y goes to the loser”.
15We also solve the equivalent model where the league maximizes teams’ joint profits. There, the league

internalizes the costs faced by the teams and it represents a cartel as assumed by Atkinson, Stanley and Tschirhart

(1988). Unsuprisingly, full revenue sharing is always optimal in that case since incentives to players by teams

cancel out with each other and represent a waste of resources from the cartel’s point of view.
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with α+β = 1. Quite obviously, pt,j = (1− pt,i) since there are only two teams. The probability
of winning increases with the difference in effort and the difference in wealth. When the two

teams are equally wealthy and produce the same effort level, their probability of winning is 1
2
.

One can think of α
β
as a measure of how winning depends on incentives relative to initial quality.

If α
β
> 1 the marginal return to effort is higher than the marginal return to wealth; loosely

speaking, trying hard is more important than being better.

Teams

Each team’s objective is to maximize current expected profits with an appropriate choice of

incentives for its players. This choice is made knowing the prizes the league will award to winner

and loser of the current tournament. Formally, team i’s profits are:

Πt,i = pt,iKt,w + (1− pt,i)Kt,l − et,i
Implicitly, here we assume that the effort produced by players is observable. Later we relax this

assumption and explicitly consider the case where it is not (see Section 4.3).

Team i has an initial wealth equal toW1,i. If it wins the tournament, its wealth in the second

period is

W2,i =W1,i +K1,w − e1,i.
If it looses the tournament, its wealth in the second period is

W2,i =W1,i +K1,l − e1,i.
Therefore, the prizes awarded to the winner and loser of the first period have an effect on

competitive balance in the second period.16 In other words, the probability of winning in period

2 depends on the outcome of period 1 because of the effect prizes have on the teams’ wealth,

hence on teams’ talent. Here, talent should be interpreted as a durable good. Team i invests

Wi,1 at the beginning of period 1 and Πi,1 at the beginning of period 2, and the amount of talent

accumulated at the beginning of period 2 is Wi,2 =Wi,1 +Πi,1.

Finally, we assume that in each period, teams cannot borrow and face a solvency constraint:

a losing team has enough cash to compensate players for their effort. This implies that for all t,

et,i ≤ Kt,l.
17

16Hence, a fully rational team should consider the influence of its strategy in period 1 on the game that will be

played in period 2. At this point, we consider the behavior of myopic teams. This seems realistic since a league is

usually made of a relatively large number of teams and the strategic influence of a specific team on the revenue of

the league in the following period is small. In any case, the behavior of farsighted fully rational teams is analyzed

in Appendix A.2.
17We could derive this restriction as the result of a much more complicated model. Suppose, for example, that
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3 The Equilibrium

In this section, we characterize the equilibrium of the game described previously. We begin by

analyzing the subgame starting at the beginning of period 2. The solution concept we use is

subgame perfect Nash equilibrium. We start with period 2 subgame and look at three optimiza-

tion problems. First, the teams’ optimal effort choices given their wealth, the prizes decided by

the league, and the TV rights; second, the league’s optimal prize choice, given the TV rights,

and the teams’ equilibrium play that follows; finally, the broadcaster’s optimal TV rights choice,

given teams’ and league equilibrium plays. Then, we repeat a similar procedure for period 1,

considering equilibrium play in period 2.

3.1 The Effort Game

Period 2 ends with the teams playing a simultaneous move game in which they choose incentives

for players. Each team i chooses the level of incentives to maximize period 2 profits. Formally,

team i solves maxei,t≤Kt,l Πt,i where

Πt,i = pt,iKt,w + (1− pt,i)Kt,l − et,i. (2)

In other words, in every period t we have a simultaneous moves game in effort.18 The equilibrium

of this game is characterized by the following proposition.

Proposition 1 In the equilibrium of the effort game, the optimal strategies are

et,i = et,j = min Kt,l,
α

4
∆Kt (3)

where ∆Kt ≡ Kt,w −Kt,l.

Proof: See Appendix.

This proposition says that the effort produced by teams increases with the difference between

the prize money going to the winner and the loser. For any given Kt, we can interpret the size as

∆Kt as a measure of (lack of) revenue sharing; in particular, full revenue sharing corresponds to

∆Kt = 0 (and therefore Kt,w = Kt,l =
1
2
Kt) while no revenue sharing corresponds to ∆Kt = Kt.

Then, Proposition 1 gives a relationship between the level of revenue sharing and the equilibrium

the league pays Kt,l upfront (before the tournament takes place) to both teams while ∆Kt is paid to the winner

after the tournament. In this case, wealth evolves over time along the lines described previously and, because of

the no borrowing condition, teams cannot pay more than Kt,l as incentives to players.
18As noticed previously, we assumer teams are myopic; hence, the game they play in period 1 is identical to

the one in period 2.
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choices of incentives by the teams. The larger the amount of revenue sharing (i.e., the smaller

∆Kt), the smaller the effort level produced by teams. Intuitively, players need incentives to

produce effort; the size of the prize for winning the tournament determines the incentives teams

are willing to pay to their players.

The equilibrium of the effort game has some consequences on the demand for the sport in

each period: substituting Equation (3) in Equation (1), we obtain

Dt = γ
α∆Kt

2
+ δ 1− β

Wt,i −Wt,j

Wt,i +Wt,j

2

+ ν (Wt,i +Wt,j) (4)

Since the effort level is symmetric, the competitive balance part of the demand is unaffected by

effort: it only depends on the wealth differential. The willingness to win part of the demand,

instead, is determined by the prize difference between winning and losing. Equilibrium in the

effort game implies that the strategically relevant variable from the league point of view is ∆Kt.

3.2 Play in the Second Period

While the effort game is, by assumption, the same in both periods, the analysis of league and

broadcasters behavior differs. Therefore, we start with the subgame in which the league has

received some money through the sale of the TV rights.

League Behavior in Period 2

Given the solution of the effort game, the league maximizes demand for the sport maximizing

the teams aggregate effort by making the prize for winning as large as possible. This can be seen

by substituting the teams’ equilibrium effort choices in period 2 demand function:

D2 = γ
α∆K2

2
+ δ 1− β

W2,i −W2,j

W2,i +W2,j

2

+ ν (W2,i +W2,j) .

The league’s optimal allocation for a given amount of funds available is described by the following

proposition.

Proposition 2 A league that maximizes demand for the sport chooses

∆K2 = K2,w −K2,l =
2

2 + α
K2 (5)

Proof: see Appendix.

10



In the last period of the game full revenue sharing cannot be optimal. Since this is the

end of the game, the effect prizes have on future wealth is irrelevant to the league decision.

Furthermore, current wealth does not depend on the outcome of this period’s tournament. In

other words, the competitive balance in the second period cannot be changed. Therefore, only

the incentives to win effect matters to the league. In these conditions, the optimal choice is to

make the effort chosen by teams as large as possible. When the demand for sport depends on

the effort produced by teams, and competitive balance is irrelevant, full revenue sharing does

not lead to the maximization of demand for the sport.

Broadcasters’ Behavior in Period 2

Using Proposition 2, we can write demand in period 2 as a function of K2:

D2 = γ
αK2

2 + α
+ δ 1− β

W2,i −W2,j

W2,i +W2,j

2

+ ν (W2,i +W2,j) . (6)

Demand for the sport depends positively on K2, the amount of money made available by TV

rights. This is due to the willingness to win effect: the more money the broadcaster pays, the

larger the prize awarded to the winner, the more incentives teams offer to players. In the end,

this represents a positive effect on demand because spectators enjoy players who try hard.

To conclude the analysis of play in period 2, we determine K2, the revenues paid to the league

by broadcasters. Since there is perfect competition in the broadcasting industry, broadcaster are

willing to pay the full monetary value of demand. Formally, D2 = K2. Substituting this in

Equation (6), we find that the equilibrium amount broadcaster pay in period 2 is given by

K2 =
2 + α

2 + α (1− γ) δ 1− β
W2,i −W2,j

W2,i +W2,j

2

+ ν (W2,i +W2,j) . (7)

The Equilibrium in Period 2 and the Link Between Periods

The following corollary to Proposition 1 and Proposition 2 describes the equilibrium in Period 2

subgame.

Corollary 3 The equilibrium in period 2 is characterized as follows: the amount paid for tele-

vision rights equals demand in that period and is given by

K∗
2 = D

∗
2 =

2 + α

2 + α (1− γ) δ 1− β
W2,i −W2,j

W2,i +W2,j

2

+ ν (W2,i +W2,j) ;
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the prize received by the team which wins the tournament is given by

∆K∗
2 =

2

2 + α (1− γ) δ 1− β
W2,i −W2,j

W2,i +W2,j

2

+ ν (W2,i +W2,j) ;

and the incentives teams pay are given by

e∗2,1 = e
∗
2,2 =

α

4 + 2α (1− γ) δ 1− β
W2,i −W2,j

W2,i +W2,j

2

+ ν (W2,i +W2,j) .

Proof: substitute Equation (7) in Equations (5) and (3). 2

The two periods are linked through the decisions players make in the first period and through

the outcome of the tournament in the first period. In particular, when winner and loser in period

1 perceive different prizes, this reflects on their wealth in period 2. Therefore, broadcasters and

league behavior in period 1 could influence the equilibrium in period 2 through the teams’ wealth.

In particular, two period 2 variables are relevant: aggregate wealth and the wealth difference.

Period 2 aggregate wealth does not depend on the outcome of the tournament which took

place in the first period:

W2,i +W2,j = W1,i +W1,j +K1 − (e1,i + e1,j)
= W1,i +W1,j +K1 − α∆K1

2
.

Period 2 difference in wealth, instead, depends on the outcome of this tournament. If team i has

won, the difference is given by:

W2,i −W2,j = W1,i −W1,j +∆K1 − e1,i + e1,j
= W1,i −W1,j +∆K1

while the same difference when team i has lost is

W2,i −W2,j = W1,i −W1,j −∆K1 − e1,i + e1,j
= W1,i −W1,j −∆K1

The demand (i.e., the amount the broadcaster pays), and the effort chosen by the teams both

depend on the outcome of period 1’s tournament. More specifically, let Di
2 denote the demand

in period 2 when team i has won the previous tournament, and let and Dj
2 denote the demand

in period 2 when team j (j 6= i) has won. Using Equation (7) we can compute these demands
explicitly, obtaining:
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Di
2 =

2 + α

2 + α (1− γ)
δ 1− β

W1,i−W1,j+∆K1

W1,i+W1,j+K1−α∆K1
2

2

+ν W1,i +W1,j +K1 − α∆K1
2

(8)

and

Dj
2 =

2 + α

2 + α (1− γ)
δ 1− β

W1,i−W1,j−∆K1
W1,i+W1,j+K1−α∆K1

2

2

+ν W1,i +W1,j +K1 − α∆K1
2

. (9)

3.3 League Behavior in the First Period

Since the game teams play in period 1 is identical to the one in period 2, Proposition 1 holds:

in equilibrium we have e1,i =
α(K1,w−K1,l)

4
. Therefore, we can study the league’s optimization

problem in period 1. The league takes into account the influence of period 1 decisions on the

games teams play in periods 1 and 2. Moreover, there is uncertainty about the game that will take

place in period 2 since W2,i −W2,j depends on which team has won the first period tournament

(if revenue sharing is not full).

The league needs to compute the expected revenues for period 2, considering the possible

outcomes of period 1’s tournament. That is, in the first period, the league maximizes

D = D1 + p1,iD
i
2 + p1,jD

j
2 (10)

The individual components of this objective function are then easily specified. First, Di
2 and D

i
2

are given by equations and (8), (9). Second, Proposition 1 applies and therefore we know that

p1,i =
α

2
+ β

W1,i

W1,i +W1,j
(11)

and

D1 = γ
α∆K1

2
+ δ 1− β

W1,i −W1,j

W1,i +W1,j

2

+ ν (W1,i +W1,j) . (12)

From equations (8) to (12), we deduce that the level of revenue sharing chosen by the league

in period 1, represented by ∆K1, influences demand for the sport in three ways. For example,

suppose the level of revenue sharing increases (∆K1 decreases). The first effect is to decrease

period 1 demand since the equilibrium level of effort in period 1 decreases. The second effect

is to increase period 2 demand through the larger total wealth of the teams after they receive

the tournament prizes. The third effect is to increase period 2 demand because more revenue

sharing implies the league is more balanced, i.e. |p2,1 − p2,2| decreases. Disregarding the role
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of league’s wealth in attracting talent, revenue sharing is chosen on the basis of the trade off

between incentives to win, represented by how sensitive demand is to effort, i.e., players trying

hard to win (the first effect above), and competitive balance, represented by how sensitive demand

is to uncertainty of the tournament’s outcome (the third effect above).

In general, a closed form solution for the optimal value of revenue sharing is difficult to

obtain even in our simple setting. The following propositions, though, characterizes the two

most interesting extreme cases.

Proposition 4 In the first period, revenue sharing is determined as follows:

(i) if γ 2+α(1−γ)
(2+α)

> ν there exists some δ such that for any δ < δ minimal revenue sharing is

optimal, that is, ∆K1 =
2
2+α
K1;

(ii) if γ 2+α(1−γ)
(2+α)

< ν full revenue sharing is optimal, that is, ∆K1 = 0.

Proof: see Appendix.

Part (i) states that when the incentives to win effect is large (so that the sensitivity of demand

to effort is large relative to the sensitivity of demand to total wealth) and the competitive balance

effect is small enough, the league chooses the level of revenue sharing so as to maximize the effort

level produced by teams (as in period 2). In this case, the league chooses minimal revenue sharing

(∆K1 = 2K1/(2 + α)). Intuitively, if effort is a relatively important factor for the fans of the

sport revenue sharing is not optimal.

Part (ii) of the proposition states that when the sensitivity of demand to effort is small relative

to the sensitivity of demand to total wealth the league chooses full revenue sharing. Notice that

this is only a sufficient condition for optimality of full revenue sharing since there may be values

of δ such that ∆K1 = 0 even when γ
2+α(1−γ)
(2+α)

> ν.

Finally two remarks should be made. First, although a full characterization of the equilibrium

is not provided by Proposition 4, we have an answer to the optimality of not sharing revenues. If

the incentives to win effect is large enough while the competitive balance effect is not too large,

then sharing revenues does not maximize demand for the sport.

Second, as mentioned previously, the equilibrium of the second period suffers from the absence

of a competitive balance effect, and is thus biased against revenue sharing. The incentives to win

effect dominates. What is more interesting, is that revenue sharing may not be optimal even if

the competitive balance effect is taken into account. Intuitively, the optimal prize for winning

depends on the trade-off between current incentives and future wealth asymmetries.
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3.4 Equilibrium When the League Maximizes Teams’ Profits

In this section we assume the league is a cartel that maximizes the joint profits of the two teams.

In this case, full revenue sharing is optimal. Intuitively, the value of an increase of television

revenues (via demand) through higher incentives for the teams’ players is exactly offset by the

cost of these incentives. Hence, the league chooses ∆Kt so that teams give no incentives to

players. In a cartel, competing hard to win is wasteful.

Let Π2 denote the joint profits of the teams in period 2; formally, we have

Πt = Πt,i +Πt,j = Kt,w +Kt,l − (et,i + et,j) = Kt − (et,i + et,j) .

Using the equilibrium condition for the effort game, we obtain

Πt = Kt − α
2
∆Kt.

One can see that Π2 is decreasing in the overall effort level. Hence, ∆K2 = 0. In period 1,

things are not so simple because effort produces an increase in demand which is then reflected

in higher payment for TV rights and hence higher revenues for teams. It runs out this increase

is exactly offset by the corresponding cost of providing effort. Hence, the first effect dominates

and full revenue sharing is optimal. This result, is stated formally as follows.

Proposition 5 If the league maximizes teams’ joint profit, full revenue sharing is optimal in

both periods; that is, ∆Kt = 0 and Kt,w = Kt,l =
1
2
Kt.

Proof: see Appendix.

4 Extensions of the Model

In this section, we propose three extensions of the basic model. First, we examine the situation

in which the league and the broadcaster sign a long term contract. Then, we analyze the case

were teams have sources of revenues which are performance based but independent from the

prizes awarded by the league. Finally, we analyze the case in which players effort is unobservable

and hence teams makes players’ compensation contingent of the outcome of the tournament.

All these extensions contribute to the realism of the model without changing the basic con-

clusion. Full revenue sharing is not always the way to maximize demand for the sport.
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4.1 Multi-period TV Contracts

In the previous section, TV deals were negotiated for one period at a time. In reality, broadcasting

contracts span many years. To account for this, we consider a modification of the model where

at the beginning of period 1 the league sells the right to broadcast games for both seasons. In

this case, the league decides two things: the allocation of total prizes between periods and the

division of the total prize between winner and loser in each period.

This change in assumptions has two main implications. First, at the beginning of period 1,

teams know prizes to be awarded in the second period. This was not the case before since K2 was

a function of the team that won in the first period. Second, we do not have Dt = Kt, (t = 1, 2).

If we denote K the revenue of the league at the beginning of period 1, then perfect competition

in the broadcasting industry yields K = D1 +E(D
i
2).

Note that the problem faced by teams in each period remains unchanged. Hence, Proposition

1 holds and the effort level of each team in period t equals α
4
∆Kt. Also, the league can still set

the second period prizes after observing the outcome of the first period tournament. Therefore,

Proposition 2 applies and ∆K2 =
2K2
2+α
. Hence, demand in period 2 depends on the winner of

period 1 tournament in the way described by Equation (6). More specifically, demand in period

2 is given by

Di
2 = γ

αK2

2 + α
+ δ 1− β

W1,i −W1,j +∆K1

W1,i +W1,j +K1 − α∆K1
2

2

+ ν W1,i +W1,j +K1 − α∆K1

2

when team i has won, and by

Dj
2 = γ

αK2

2 + α
+ δ 1− β

W1,i −W1,j −∆K1

W1,i +W1,j +K1 − α∆K1
2

2

+ ν W1,i +W1,j +K1 − α∆K1

2

when team j has won. Demand in the first period, instead, is computed according to Equation

(12). These observation imply the league chooses K1, K2, and ∆K1 to maximize

D = D1 + p1,iD
i
2 + p1,jD

j
2

or equivalently,

D = γ α∆K1
2
+ δ 1− β

W1,i−W1,j

W1,i+W1,j

2

+ ν (W1,i +W1,j) + γ
α(K−K1)
2+α

+ν W1,i +W1,j +K1 − α∆K1
2

+ δ 1− β2
(W1,i−W1,j)

2+(∆K1)
2+2β

(W1,i−W1,j)
2

W1,i+W1,j
∆K1

(W1,i+W1,j+K1−α∆K1
2 )

2

(13)
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The league prefers to concentrate incentives provided by the teams in the first period since

they increase total wealth in the next period. Also, for any given prize structure, the larger the

amount distributed in the first period the smaller the difference in relative wealth between the

two teams in the second period; hence the more balanced the competition. For these two reasons,

the league distributes all the prize money in the first period. From Equation (13), we have the

following result about revenue sharing.

Proposition 6 The equilibrium when there are two-period tv contracts has the following prop-

erties.

(i) If 1 ≥ α > 0 and γ > ν there exists some δ such that for any δ < δ minimal revenue sharing
is optimal, that is, ∆K1 =

2
2+α
K1; in this case, K2 = 0 and K1 = K.

(ii) If α = 1 and γ > ν, then ∆K1 = 2K/3, K1 = K, and K2 = 0.

(iii) If α = 0 or γ < ν, then ∆K1 = 0, K1 = K, and K2 = 0.

Proof: see Appendix.

As already mentioned, the league prefers to concentrate teams’ efforts in period 1 for two

reasons: first, they generate an increase in total wealth in period 2; second, for a given ∆K1 the

larger K1 the smaller the difference in relative wealth between the two teams in period 2 and the

more balanced the competition.

When deciding how to allocate money between teams and between periods, the league has

to take into account two effects. First, the sensitivity of the probability of winning to effort

(measured by α) relative to its sensitivity to wealth (measured by β). In particular, a large α

implies large incentives for players. Second, the sensitivity of demand to effort (measured by γ)

relative to the sensitivity of demand to wealth (measured by ν).

When α is strictly positive, the choice of∆K1 for a givenK1 depends on the values of γ and ν.

The league faces a trade-off between demand in the two periods. If ∆K1 is large, teams produce

a high effort level in period 1 and generate a high demand in that period. In this case, teams’

total profits are small since they face a high cost for such an effort level. Therefore, total wealth

in period 2 is small and so is the demand induced by period 2 total wealth. Given this trade-off

between demand in the first period and demand in the second, the level of revenue sharing chosen

by the league depends of the sensitivity of demand to quality (ν) relative to the sensitivity of

demand to effort (γ). When ν > γ, the league’s objective is equivalent to maximizing total

wealth in period 2. This is achieved by full revenue sharing in period 1 since it implies that total

profits in that period are maximized, and so is total wealth in period 2. Conversely, when ν < γ

the league’s objective is equivalent to maximizing total effort in period 1. This is achieved by

setting ∆K1 positive.
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Multi period contracts when the league maximizes teams’ profits

Matters are much simpler when the league maximizes the teams joint profits. As the following

proposition shows, then full revenue sharing is still optimal and multi-period contracts make no

difference

Proposition 7 If the league maximizes teams’ joint profits. Then, K1 = K, K2 = 0 and

∆K1 = 0.

Proof: see Appendix.

4.2 Teams Have Multiple Sources of Revenues

In this section, we assume that teams have revenues that are not submitted to possible revenue

sharing by the league. For example, these revenues may come from local TV deal or from

merchandising. However, we assume that these revenues are dependent of past performances,

the idea being that the better a team is performing, the more attractive it is, hence the higher its

revenue. Formally, we assume that the winner of the competition in period t receives Kt,w + A

with A strictly positive and independent of the degree of revenue sharing chosen by the league.

As before, the loser receives Kt,l. Under such an assumption we have the following results about

revenue sharing in period 2.

Proposition 8 Let

A∗ =
2δ

α(1− γ) 1− β2 (W2,i −W2,j)
2

(W2,i +W2,j)2
+

2ν

α(1− γ)(W2,i +W2,j)

If A > A∗ then ∆K2 = 0, e2,m =
α
4
A (m = i, j) and

K2 =
γαA

2
+ δ 1− β2 (W2,i −W2,j)

2

(W2,i +W2,j)2
+ ν(W2,i +W2,j) (14)

If A ≤ A∗ then ∆K2 =
2K2−αA
2+α

and e2,i = e2,j =
α
4
(∆K2 +A) and

K2 =
γαA

2 + α(1− γ) +
δ(2 + α)

2 + α(1− γ) 1− β2 (W2,i −W2,j)
2

(W2,i +W2,j)2
+

ν(2 + α)

2 + α(1− γ)(W2,i +W2,j) (15)

Proof: See Appendix.

The additional source of revenue A affects the effort level produced by teams in two ways.

The first effect is a direct one. If the amount earned by the winning team increases, it provides
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incentives for teams to increase their effort level. This generates an indirect effect: the no loss

constraint implies that the league increases the amount awarded to the loser, hence increasing

the level of revenue sharing. When A is not too large (i.e., smaller than A∗), the aggregate effect
is an increase of the equilibrium effort level: For a given K2, the effort level is increasing in A.

The consequence is an increase of the demand and therefore an increase of K2.

When the additional source of revenue is large (i.e., larger than A∗), the league chooses full
revenue sharing and teams’ effort level is only determined by A. Furthermore, the losing team

makes a loss.

In period 1, the problem teams face is the same as in period 2. Therefore,

e1,i = e1,j =
α(∆K1 +A)

4
(16)

From Proposition 8 and equation (16), we deduce the following result.

Proposition 9 If γ 2+α(1−γ)
(2+α)

> ν there exists Ā > 0 and δ such that for any A < Ā and δ < δ

then ∆K1 =
2
2+α
K1.

This result suggests that in a league in which revenues from TV deals represent a fraction not

too large of team revenues, full revenue sharing is not damaging to effort since other source of

revenues provide incentives for teams to produce effort. Conversely, in a league in which revenues

from TV represent a large fraction of teams’ revenues, then the league chooses a performance-

based prize allocation.

4.3 Unobservable Effort

So far, we have implicitly assumed that effort produced by team players was observable, hence

teams could offer effort-based compensation to players. In this section, we relax this assumption.

A direct consequence is that teams can only offer performance-based contracts to players. Let

µt,i(w) and µt,i(l) the fraction of the gain paid to players when team i earns Kt,w and Kt,l,

respectively. The objective of team i is to maximize

Πt,i = pt,i (1− µt,i(w))Kt,w + (1− pt,i) (1− µt,i(l))Kt,l

subject to µt,i(w) ≥ 0, µt,i(l) ≥ 0, and

e∗t,i ∈ argmax pt,iµt,i(w)Kt,w + (1− pt,i)µt,i(l)Kt,l (17)

This last equation represents the incentive compatibility constraint for the players.
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Let ∆Kt,i = µt,i(w)Kt,w − µt,i(l)Kt,l. Then, proceeding as in the proof of Proposition 1, one

shows that the equilibrium of the effort game is such that

e∗t,i = sup 0,
α(∆Kt,i)

2∆Kt,j

(∆Kt,1 +∆Kt,2)2
(18)

with i 6= j. It follows that if e∗t,i > 0, then

pt,i = α
∆Kt,i

∆Kt,1 +∆Kt,2
+ β

Wt,i

Wt,1 +Wt,2
(19)

From these results, we derive the following proposition about the compensation of players by

teams.

Proposition 10 Assume that ∆Kt > 0. There exists an equilibrium such that

(i) µt,i(l) = 0 (i = 1, 2)

(ii) If Wt,i > Wt,j, then 0 < µt,i(w) < µt,j(w) and pt,i > pt,j.

(iii) µt,i (i = 1, 2) is an increasing function of Kt,w.

We deduce that

e∗t,i =
αµt,i(w)

2µt,j(w)Kt,w

(µt,1(w) + µt,2(w))2

and

pt,i = α
µt,i(w)

µt,1(w) + µt,2(w)
+ β

Wt,i

Wt,1 +Wt,2

The proposition says that players are only compensated in case of success and the incentives

are more important for the team with the smaller wealth. It follows that players from the

wealthier team exert a lower effort. However, in equilibrium, the wealthier team has a higher

probability of winning the competition. A direct consequence of (iii) is that the level of revenue

sharing influences the effort level produced by teams in two ways: directly through the difference

of gains between the winner and the loser, and indirectly through the compensation scheme of

the players (µt,i(w)).

We turn now to the problem of the league. A main differences with the case of observable

effort is that teams never make losses. Hence, in period 1, the league does not have to take into

account the possibility that a team will have a negative wealth if it loses in period 1. From the

previous proposition we derive the following results about the level of revenue sharing in period

2.

Proposition 11 Assume that the league maximizes the demand for sport. Then:

(i) ∆K2 = K2.

(ii) There exists α < 1 such that if α > α and γ(6− γ) > 36ν then ∆K1 > 0.
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The proposition states that, qualitatively, the results obtained in the case of observable effort

still hold if this assumption is relaxed. That is, the league minimizes the level of revenue sharing

in the second period and if the influence of effort on demand is large enough with respect to the

influence of total wealth, then the league does not choose full revenue sharing in the first period.

5 Conclusions

We presented a theoretical model of revenue sharing in sport leagues. Our main results derive

explicit conditions under which full revenue sharing is optimal. These can be summarized by

looking at the relative importance of (current) incentives to win relative to (future) competitive

balance. Higher revenues sharing increases future demand through a better competitive balance,

but decreases current demand through a lower effort to win from teams. If the league maximizes

the demand for sport, then a performance-based reward scheme (as used by European top soccer

leagues for national TV deals) may be optimal. Conversely, if the league act as a cartel and

maximizes joint profits, then full revenue sharing (as used by US team sport leagues for national

TV deals) is always optimal.

Our results contribute to the moral-hazard and contest design literatures. In a moral hazard

context, our model is an example of a repeated agency problem between a principal and multiple

agents in which the difference in output produced by the agents is detrimental to the principal. In

this setting, the principal faces a trade-off between ‘output balance’ among agents and incentives

to produce large quantities. Our results show that the principal may have incentive to ‘invest’

in output balance; that is, lower the output today in order to get a lower difference in outputs

tomorrow.

For the contest design literature, our model describes a situation in which a winner-takes-all

prize allocation may be optimal for the one-contest case but not optimal in the case of repeated

contests. Multiple-prize allocations may be optimal for repeated contests if the outcome of the

contest at time t influences bids (or effort) in the following contests.
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A Appendix

A.1 Proofs

Proof of Proposition 1.

Firm i expected profits are:

Πt,i (et,i, et,j) =
α

et,i
et,i+et,j

+ β
Wt,i

Wt,i+Wt,j
∆Kt +Kt,l − et,i if et,i + et,j > 0

Wt,i

Wt,i+Wt,j
∆Kt +Kt,l if et,i + et,j = 0

Assume that ∆Kt > 0. Notice that

Πt,i (0, 0) =
Wt,i

Wt,i +Wt,j
∆Kt +Kt,l

and

Πt,i (e, 0) = α+ β
Wt,i

Wt,i +Wt,j
∆Kt +Kt,l − e;

hence

Πt,i (e, 0)−Πt,i (0, 0) = α+ (β − 1) Wt,i

Wt,i +Wt,j
∆Kt − e

= α− α Wt,i

Wt,i +Wt,j
∆Kt − e

= α
Wt,j

Wt,i +Wt,j
∆Kt − e.

Therefore, et,i = 0 is not a best reply to et,j = 0; this means aggregate effort equal to zero cannot

be an equilibrium. Setting the derivative of Πt,i with respect to effort equal to zero one gets:

et,j

(et,i + et,j)
2α∆Kt − 1 = 0

Therefore, given the constraint et,i ≤ Kt,l, team i’s best response is:

et,i = max 0,min Kt,l, αet,j∆Kt − et,j
and similarly for team j. Therefore, the Nash equilibrium of the game is

et,i = et,j = min Kt,l,
α

4
∆Kt .

Assume ∆K2 = 0. In this case, effort is costly and does not increase expected revenues.

Hence, they choose et,i = et,j = 0.

2
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Proof of Proposition 2.

The demand for the sport in period 2 is given by:

Di
2 =

γα

2
∆K2 + δ 1− β

W2,i −W2,j

W2,i +W2,j

2

+ ν (W2,i +W2,j) .

Therefore, given any K2 (the amount available for prizes to the winner and the loser) the demand

for the sport is maximized by choosing ∆K2 as large as possible. The only limit to the size of

∆K2 is the constraint that teams make no losses. This constraint implies

K2,l = e2,i =
α (K2,w −K2,l)

4

or
α

2
(K2,w −K2,l) = 2K2,l.

This can be rewritten as

α

2
(K2,w −K2,l) = K2,l +K2,w +K2,l −K2,w;

since K2,w +K2,l = K2, we can write

α

2
+ 1 (K2,w −K2,l) = K2

or

∆K2 =
1

1+ α
2

K2

yielding the result.

2

Proof of Proposition 4.

From Equations (8), (9), (12), and (11), we deduce that Equation (10) can be rewritten as

D =

γ α∆K1
2
+ δ 1− β

W1,i−W1,j

W1,i+W1,j

2

+ 4+α(2−γ)
2+α(1−γ)ν (W1,i +W1,j)

+ 2+α
2+α(1−γ)ν K1 − α∆K1

2
+ 2+α

2+α(1−γ)δ

− 2+α
2+α(1−γ)δβ

2

(W1,i−W1,j)
2+(∆K1)

2+2β
(W1,i−W1,j)

2

W1,i+W1,j
∆K1

(W1,i+W1,j+K1−α∆K1
2 )

2
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Let

H =
∆K1 (W1,1 +W1,2) +

αβ(W1,1−W1,2)2

2(W1,1+W1,2)
+ (β + α/2)(W1,1 −W1,2)

2

(W1,1 +W1,2 +K1 − α∆K1/2)3

then
∂D

∂∆K1
= − 2β

2δ(2 + α)

2 + α(1− γ)H +
α

2
γ − ν(2 + α)

2 + α(1− γ)
Note that H > 0. Therefore, if γ 2+α(1−γ)

(2+α)
− ν < 0 then ∂D

∂K1
is always negative and the optimal

∆K1 is zero. If γ 2+α(1−γ)
(2+α)

− ν > 0 and δ is small enough, then ∂D
∂K1

is always positive and the

optimal ∆K1 is the largest feasible value assuming teams make no current losses. In the proof

of Proposition 2 this value was shown to be α
2+α
K1. Finally, since

∂D
∂K1

is continuous in δ, there

are values such that ∆K1 is given by the solution(s) to
∂D
∂K1

= 0.

2

Proof of Proposition 5.

Demand for the sport in period 2 is given by

D2 = δ 1− β2 (W2,i −W2,j)
2

(W2,i +W2,j)
2 + ν (W2,i +W2,j) (20)

and this equals the payment the league receives from the broadcasters; that is D2 = K2. We

can now use this equation to compute the actual aggregate profits of the two teams in period 2

depending on who won the outcome of period 1 tournament. Let Πi2 and Π
j
2 indicate profits if

team i won or lost respectively; then:

Πi2 = δ 1− β2 (W1,i −W1,j +∆K1)
2

W1,i +W1,j +K1 − α
2
∆K1

2 + ν W1,i +W1,j +K1 − α
2
∆K1

Πj2 = δ 1− β2 (W1,i −W1,j −∆K1)
2

W1,i +W1,j +K1 − α
2
∆K1

2 + ν W1,i +W1,j +K1 − α
2
∆K1

Teams aggregate profits in period 1, defined Π1, are given by:

Π1 = Π1,i +Π1,j = K1 − α
2
∆K1.

Therefore, we can compute the objective function of the league as follows:

Π = K1 − α
2
∆K1 + p1,1Π

i
2 + (1− p1,1)Πi2
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which, after the appropriate substitutions, becomes:

Π =

K1 − α
2
∆K1 + ν W1,i +W1,j +K1 − α

2
∆K1

δ 1− β2
(W1,i−W1,j)

2+(∆K1)
2+2β

W1,i−W1,j
W1,i+W1,j

(W1,i−W1,j)∆K1

(W1,i+W1,j+K1−α
2
∆K1)

2

Differentiating this expression with respect to ∆K1 we have:

∂Π

∂∆K1
=

−α
2
(1− ν)− δβ2

2∆K1+2β
(W1,i−W1,j)

2

W1,i+W1,j
(W1,i+W1,j+K1)

(W1,i+W1,j+K1−α∆K1
2 )

3

−δβ2
α(W1,i−W1,j)

2+αβ
(W1,i−W1,j)

2

W1,i+W1,j
∆K1

(W1,i+W1,j+K1−α∆K1
2 )

3

This expression is negative for any value of ∆K1, hence ∆K1 = 0 at the optimum.

2

Proof of Proposition 6.

The league’s objective is to maximize

D =

γ α∆K1
2
δ 1− β

W1,i−W1,j

W1,i+W1,j

2

+ ν (W1,i +W1,j) + γ
α(K−K1)
2+α

+ ν W1,i +W1,j +K1 − α∆K1
2

+δ 1− β2
(W1,i−W1,j)

2+(∆K1)
2+2β

(W1,i−W1,j)
2

W1,i+W1,j
∆K1

(W1,i+W1,j+K1−α∆K1
2 )

2

(21)

Differentiating this expression with respect to ∆K1 one obtains:

∂D

∂∆K1
=

α
2
(γ − ν)

−δβ2
2∆K1+2β

(W1,i−W1,j)
2

W1,i+W1,j
(W1,i+W1,j+K1)+α(W1,i−W1,j)

2 1+β
∆K1

W1,i+W1,j

(W1,i+W1,j+K1−α∆K1
2 )

3

(22)

Proof of (iii): let α = 0. In this case, ∂D
∂∆K1

is negative for any value of ∆K1 since the second

term in the equation above is always negative. Hence, at the optimum we must have ∆K1 = 0.

Then D reduces to

D = δ 1− W1,i −W1,j

W1,i +W1,j

2

+ν (2(W1,i +W1,j) + (K −K2))+δ 1− (W1,i −W1,j)
2

(W1,i +W1,j + (K −K2))
2 .
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This can be differentiated with respect to K2 obtaining

∂D

∂K2
= −ν − 2δ (W1,i −W1,j)

2

(W1,i +W1,j + (K −K2))
3 ;

this is always negative, hence K1 = K, and K2 = 0.

Proof of (ii): let α = 1 and γ > ν. In this case, ∂D
∂∆K1

is positive for any value of ∆K1 since

the second term of Equation (22) is zero because β = 1 − α. Therefore, ∆K1 is as large as

feasible (revenue sharing is minimal) and, following Proposition 2, we have

∆K1 =
2K1

2 + α
=
2

3
K1.

Substituting this in Equation (21) we get

D =
γ

3
K1 + 2δ + ν (W1,i +W1,j) + γ

(K −K1)

3
+ ν W1,i +W1,j +

K1

3

which is strictly increasing in K1. Therefore, K2 = 0 and K1 = K.

Proof of (i): let 1 > α > 0 and γ > ν. Inspecting Equation (22) we note that ∂D
∂∆K1

is

continuous in δ. Therefore, there exists a δ small enough such that ∂D
∂∆K1

is positive for any value

of ∆K1 (say δ = 0 ). As noted above, this implies ∆K1 =
2
2+α
K1. Substituting this in Equation

(21) we get

D =

γ α
2+α
K1 + δ 1− β

W1,i−W1,j

W1,i+W1,j

2

+ ν (W1,i +W1,j) + γ
α(K−K1)
2+α

+ ν W1,i +W1,j +K1
2
2+α

+δ 1− β2
(W1,i−W1,j)

2+( 2
2+α

K1)
2
+2 2

2+α
K1(W1,i−W1,j)β

W1,i−W1,j
W1,i+W1,j

(W1,i+W1,j+K1
2

2+α)
2

which can be differentiated with respect to K1 to obtain

∂D

∂K1
= ν

α

2 + α
− 2 2

2 + α
δβ2

2
2+α
K1 (W1,i +W1,j)− 2

2+α
K1β

(W1,i−W1,j)
2

W1,i+W1,j
− α (W1,i −W1,j)

2

W1,i +W1,j +K1
2
2+α

3 .

This is continuous in δ and therefore there exists some small δ such that ∂D
∂K1

is positive for any

value of K1. Hence K2 = 0 and K1 = K, concluding the proof.

2

Proof of Proposition 7.

Given that et,1 = et,2 = α∆Kt/4, the league maximizes

Π = 2(γ − ν − 1)e1,1 + δ α
2
+ β W1,1

W1,i+W1,j
1− β2 (W1,i−W1,j+∆K1)2

(W1,i+W1,j+K1−2e1,1)2

+δ α
2
+ β W1,2

W1,i+W1,j
1− β2 (W1,i−W1,j−∆K1)2

(W1,i+W1,j+K1−2e1,1)2 + 2(γ − 1)e2,1 + νK1

(23)
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subject to K = K1 +K2, ∆Kt ≤ Kt,l (t = 1, 2).

It is straightforward that Π is decreasing in the effort in period 2. Hence the league sets

∆K2 = 0. Now,

∂Π
∂∆K1

= α
2
(γ − ν − 1)− β2{α2 (α(W1,i−W1,j)

2+2∆K1(W1,i+W1,j+K1))}
(W1,i+W1,j+K1−2e1,1)3

−
β2∆K1

W1,i+W1,j
(K1(W1,i+W1,j)+(W1,i+W1,j)

2+α
2
(W1,i−W1,j)

2)
(W1,i+W1,j+K1−2e1,1)3

−
β2(W1,i−W1,j)2

K1
W1,i+W1,j

+1+α
2

(W1,i+W1,j+K1−2e1,1)3 < 0

(24)

Hence, ∆K1 = 0. Furthermore, it is straightforward that at ∆K1 = 0, ∂Π/∂K1 > 0 while

∂Π/∂K2 = 0. Hence, we have the desired result.

2

Proof of Proposition 8.

Proceeding as in the proof of Proposition 1, one shows that

e2,i = e2,j =
α(∆K2 +A)

4
.

Then, proceeding as in the proof of Proposition 2, we obtain that the league chooses

K2,w =Max
4K2 + α(K2 −A)

2(2 + α)
,
K2

2

which implies

∆K2 =Max
2K2 − αA
2 + α

, 0 .

If ∆K2 > 0, then K2 is given by (14) and K2 >
α
2
A is equivalent to A < A∗. If ∆K2 = 0 then

K2 =
α
2
A∗, then K2 <

α
2
A is equivalent to A > A∗.

2

Proof of Proposition 9.

Let
A∗1(A) =

2δ
α(1−γ) 1− β2 (W1,i−W1,j+∆K1+A)2

(W1,i+W1,j+K1(A)+A−α(∆K1+A)/2)2

+ 2ν
α(1−γ)(W1,i +W1,j +K1(A) +A− α(∆K1 +A)/2)

A∗2(A) =
2δ

α(1−γ) 1− β2 (W1,i−W1,j−∆K1−A)2
(W1,i+W1,j+K1(A)+A−α(∆K1+A)/2)2

+ 2ν
α(1−γ)(W1,i +W1,j +K1(A) +A− α(∆K1 +A)/2)
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with

K1(A) =
γαA

2 + α(1− γ) +
δ(2 + α)

2 + α(1− γ) 1− β2 (W1,i −W1,j)
2

(W1,i +W1,j)2
+

ν(2 + α)

2 + α(1− γ)(W1,i+W1,j) (25)

Define the functions F1(A) and F2(A) as follows

F1(A) =
F1,s(A) if A ≤ A∗1
F1,l(A) if A > A∗1

F2(A) =
F2,s(A) if A ≤ A∗2
F2,l(A) if A > A∗2

where
F1,l(A) =

γαA
2
+ δ 1− β2 (W1,i−W1,j+∆K1+A)

2

(W1,i+W1,j+K1(A)+A−α(∆K1+A)/2)2

+ν(W2,i +W2,j +K1(A) +A− α(∆K1 +A)/2)

F1,s(A) =
γαA

2+α(1−γ) +
δ(2+α)
2+α(1−γ) 1− β2 (W1,i−W1,j+∆K1+A)2

(W1,i+W1,j+K1(A)+A−α(∆K1+A)/2)2

+ ν(2+α)
2+α(1−γ)(W1,i +W1,j +K1(A) +A− α(∆K1 +A)/2)

F2,l(A) =
γαA
2
+ δ 1− β2 (W1,i−W1,j−∆K1−A)2

(W1,i+W1,j+K1(A)+A−α(∆K1+A)/2)2

+ν(W2,i +W2,j +K1(A) +A− α(∆K1 +A)/2)

F2,s(A) =
γαA

2+α(1−γ) +
δ(2+α)
2+α(1−γ) 1− β2 (W1,i−W1,j−∆K1−A)2

(W1,i+W1,j+K1(A)+A−α(∆K1+A)/2)2

+ ν(2+α)
2+α(1−γ)(W1,i +W1,j +K1(A) +A− α(∆K1 +A)/2)

Let

D = D1 + p1,1F1,s(A) + (1− p1,1)F2,s(A)
where D1 and p1,i are given by (12) and (11), respectively. Now, it is straightforward that there

exists Ā2 such that if A < Ā2, then F1(A) = F1,s(A) and F2(A) = F2,s(A). Therefore, if A < Ā2,

then proceeding as in the proof of Proposition 4, one shows that if γ 2+α(1−γ)
(2+α)

> ν, there exists δ

such that ∂D
∂∆K1

> 0. Let

Ā1 =
2δ

α(1− γ) 1− β2 (W1,i −W1,j)
2

(W1,i +W1,j)2
+

2ν

α(1− γ)(W1,i +W1,j)

Proceeding as in the proof of Proposition 8, one shows that if A < Ā1, then

∆K1 =
2K1(A)− αA

2 + α
(26)

Then, then assumption of perfect competition in the broadcasting industry in period 1 (i.e.,

D1 = K1) implies that K1 is given by (25). Hence, taking Ā =Min(Ā1, Ā2), we have the desired

result.

2
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Proof of Proposition 10.

Proof of part (i). From equations (18) and (19), we derive that

∂πt,i
∂µt,i(w)

=
α∆Kt,jKt,w

(∆Kt,1 +∆Kt,2)2
[(1− µt,i(w))Kt,w − (1− µt,i(l))Kt,l]− pt,iKt,w (27)

∂πt,i
∂µt,i(l)

= − α∆Kt,jKt,l

(∆Kt,1 +∆Kt,2)2
[(1− µt,i(w))Kt,w − (1− µt,i(l))Kt,l] + (pt,i − 1)Kt,l (28)

Assume that there exists an equilibrium with µt,i(w) > 0. This implies that

(1− µt,i(w))Kt,w − (1− µt,i(l))Kt,l > 0

In turn, this implies that ∂π/∂µt,i(l) < 0 in equilibrium. Hence, µt,i(l) = 0. Now, we need to

show that the system of equations

αµt,j(w)

(µt,1(w) + µt,2(w))2
[(1− µt,i(w))Kt,w −Kt,l]− pt,iKt,w = 0 i = 1, 2 i 6= j (29)

has a solution in (0, 1)× (0, 1) which satisfies the second order conditions of profit maximization.
From equation (27), it is straightforward that if µt,i(l) = 0 then ∂

2πt,i/(∂µt,i(w))
2 < 0. Now,

when µt,1(w) and µt,2(w) converge to 0 at the same speed (so that there exists H > 0 such that

H < µt,i(w)/µt,j(w) (i = 1, 2 and i 6= j) as when µt,1(w) and µt,2(w) converge to 0), then the LHS
of (29) goes to infinity. Furthermore, for any given µt,i(w) > 0, αµt,j(w)/(µt,1(w) + µt,2(w))

2

converges to 0 as µt,j(w) converges to zero. Hence, we deduce that by continuity, there exist

µt,1(w) and µt,2(w) such that the system of equations (29) has a solution in (0, 1)× (0, 1).
Proof of part (ii): We use a contradiction argument. Assume that Wt,i > Wt,j and µt,i(w) ≥
µt,j(w). This implies that pt,i > pt,j. From (29), it follows that

µt,j(w)

µt,i(w)
>
(1− µt,j(w))Kt,w −Kt,l

(1− µt,i(w))Kt,w −Kt,l

The LHS of this inequality is smaller than 1 while the RHS is larger than 1. Hence, the inequality

does not hold and if Wt,i > Wt,j then µt,i(w) < µt,j(w). Now, µt,i(w) > µt,j(w) implies πt,i > πt,j

follows directly from (29).

Proof of part (iii): Let Rt = Kt/Kt,w. From (29), we deduce that

∂µt,i(w)

∂Rt
= − [µt,j(w)(2−Rt)(µt,1(w) + µt,2(w))]−1 (30)

Hence, µt,1(w) and µt,2(w) are increasing functions of Kt,w.

2
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Proof of Proposition 11.

Proof of (i): From Proposition 10, we know that in each period the effort level is increasing in

Kw. Hence, we only need to show that (p2,1 − p2,2)2 is not increasing in ∆K2.

p2,1 − p2,2 = αµ2,1(w)− µ2,2(w)
µ2,1(w) + µ2,2(w)

+ β
W2,i −W2,j

W2,i +W2,j

Let Rt = Kt/Kt,w.

d(p2,1 − p2,2)
dR2

=
2(µ2,2(w)

dµ2,1(w)

dR2
− µ2,1(w)dµ2,2(w)dR2

)

(µ2,1(w) + µ2,2(w))2
(31)

From equation (30), we derive that d(p2,1 − p2,2)/dR2 = 0. It follows that Di
2 is increasing in

∆K2 and so the leagues sets ∆K2 = K2.

Proof of (ii). Assume that α = 1. In such a case,

µ2,1(w) = µ2,2(w) =
2K2,w −K2

3K2,w

and

e2,1 = e2,2 =
2K2,w −K1

12
From part (i), we know that K2,w = K2. We deduce that

K2 =
δ + ν(W2,i +W2,j)

1− αγ/6 (32)

Now, consider the problem of the league in period 1. Teams face the same problem as in

period 2. Hence,

µ1,1(w) = µ1,2(w) =
2K1,w −K1

3K1,w

Therefore, if team i wins in period 1, then

W2,i =W1,i + 1− 2K1,w −K1

3K1,w
K1,w

while if it looses,

W2,i =W1,i +K1,l

We deduce that, in period 1, the league maximizes

D = (δ + ν(W1,i +W1,j)(1+
6

6− γ ) + (2K1,w −K1)(
γ

6
− 6ν

6− γ )

Hence, if γ(6− γ) > 36ν then dD/dK1,w > 0. By continuity, we derive that there exists α such

that if α > α dD/dK1,w > 0, ∆K1 > 0.

2
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A.2 Fully Rational Teams

Fully rational teams take into account the impact of their action at time 1 on their wealth in

period 2. Since probabilities of winning in period 2 and the revenue of the league in period 2

depend on teams’ wealth, it follows that they take into the influence of their action in period

1 on their probability of winning in period 2 and on K2. In period 2, the problem of the fully

rational team is identical to that of a myopic team.

Formally, in period 1, fully rational team i solves the following problem

Maxe1,ip1,i K1,w + p2,i(i)K
∗
2,w(k, i) + (1− p2,i(i))K∗

2,l(i)− e2,i(i)
+(1− p1,i) K1,l + p2,i(j)K

∗
2,w(j) + (1− p2,i(j))K∗

2,l(j)− e2,i(j) − e1,i
(33)

with i 6= j. e2,i(m), K∗
2,w(m) and K

∗
2,l(m) represent the effort produced by team i in period 2,

the amount awarded to the winner in period 2, the amount awarded to the loser in period 2,

respectively, if team m wins in period 1 (m = i, j).

In the corner cases α = 0 and α = 1, we are able to derive closed form solution in the effort

game played by teams. First, if α = 0, it is straightforward that teams do not produce any effort

. Hence, the problem faced by the league is identical to the case with myopic teams. Therefore,

the league sets ∆K1 = 0. If α = 1 we have the following result.

Proposition 12 Assume that the league maximize the demand for sport and α = 1. Then

e1,1 = e1,2 =
(3− γ)∆K1

12

If γ(3− γ) ≥ 3ν the league sets ∆K1 = 5K1/6. If γ(3− γ) < 3ν the league sets ∆K1 = 0.

Proof: If α = 1, then

K∗
2(1) = K

∗
2(2) =

3

3− γ (δ + ν(W1,i +W1,j +K1 − e1,1 − e1,2))

and p2,j(i) = 1/2 (i, j = 1, 2). Proceeding as in the proof of Proposition 1, we obtain that the

equilibrium effort produced by teams in period 1 is

e1,i = e1 =
(3− γ)∆K1

2[2(3− γ) + 3ν]
The objective of the league in period 1 is to maximize

D = 2 γ − 3ν

3− γ e1 + 1+
3

3− γ (δ + ν(W1,i +W1,j))
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Hence, if γ(3 − γ) < 3ν, the league sets ∆K1 so as to minimize the effort level produced by

teams, i.e., ∆K1 = 0. Conversely, if γ(3− γ) > 3ν the leagues sets ∆K1 so as to maximize the

level of effort by teams, i.e.,
(3− γ)∆K1

2[2(3− γ) + 3ν] = K1,l

Given that ∆K1 = 2K1,w −K1 and K1,l = K1 −K1,l, we obtain

K1,w =
5(3− γ) + 6ν
6[(3− γ) + ν]

We deduce that ∆K1 = 5K1/6. By continuity, it implies that if γ(3 − γ) > 3ν, there exists α
such that if α > α, then ∆K1 > 0.

2

From Proposition 12 we deduce that fully rational teams choose a lower effort level than

myopic teams. The reason is that they take into account the influence of their effort in period 1

on the demand of period 2 through their wealth. It follows that by decreasing their effort level,

they increase their future wealth, hence increasing the revenue of the league in period 2 and their

expected gain in that period.
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A.3 Tables

Table 1. Revenue allocation in the LNF (season 1999-2000, in Million FF)

Ranking Fixed Amount Variable Amount Total

1 54.5 45.5 100

2 54.5 40.25 94.75

3 54.5 36.75 91.25

4 54.5 31.5 86

5 54.5 29.75 84.25

6 54.5 28 82.5

7 54.5 24.5 79

8 54.5 21 75.5

9 54.5 19.25 73.75

10 54.5 17.5 72

11 54.5 14 68.5

12 54.5 10.5 65

13 54.5 8.75 63.25

14 54.5 7 61.5

15 54.5 5.25 59.75

16 54.5 2 56.5

17 54.5 2 56.5

18 54.5 2 56.5

Table 2. Ratio of revenues for the season 1999-2000 is some top European soccer leagues.

Source: L’Equipe.

Country Best/Worst

England 2.2

France 1.8

Germany 1.7

Italy 3.4
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