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A dual description of the class of games with a population monotonic
allocation scheme

October 6, 2000

Henk Norde 1 Hans Reijnierse 1

Abstract: A vector of balanced weights infers an inequality that games with a nonempty

core obey. This paper gives a generalization of the notion `vector of balanced weights'.

Herewith it provides necessary and su±cient conditions to determine whether a TU-game

has a population monotonic allocation scheme or not.

Furthermore it shows that every 4-person integer valued game with a population mono-

tonic allocation scheme has an integer valued population monotonic allocation scheme

and it gives an example of a 7-person integer valued game that has only non-integer

valued population monotonic allocation schemes.

1. Introduction

In Sprumont (1990) the concept of a population monotonic allocation scheme (pmas for

short) has been de¯ned as a kind of extension of a core allocation (cf. Moulin (1989)).

A pmas gives a core allocation for every subgame of a TU-game such that every player

gets a weakly higher payo® in larger coalitions.

Games with a pmas have obviously a nonempty core. Bondareva (1963) and Shapley

(1967) independently proved that a game (N; v) has a nonempty core if and only if it

is balanced, that is, for each vector of balanced weights f¸SgSµN , the game obeys the
corresponding inequality: ¸Nv(N) ¸

X

SÃN
¸Sv(S).

Here, a vector of balanced weights consists of nonnegative numbers with the property

that ¸NeN =
P
SÃN ¸SeS, in which eS denotes the indicator vector of S. The class of

balanced games is a ¯nitely generated cone in the space of TU-games. The class of games

with a pmas is a subcone of it, also ¯nitely generated. Hence, there exists a collection

of inequalities that describes this subcone. This collection is larger than the collection

of inequalities describing the cone of balanced games and will be described in this paper

by introducing the notion `vector of subbalanced weights'. This description enables us

to answer an open question postulated in Reijnierse (1995):

"Do there exist integer valued games with only non-integer valued pmasses?". We will

show that the answer is negative for 4-person games. However, we give an example of

such a game with 7 players.

This paper is organized as follows. After some preliminaries in Section 2 the concept

of `vectors of subbalanced weights' is introduced in Section 3. In Section 4 we provide

1Dept. of Econometrics, Tilburg University, P.O.Box 90153, 5000 LE Tilburg, The Netherlands
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an algorithm for checking whether some vector is a vector of subbalanced weights or

not. In Section 5 we prove the main result of this paper, namely that a game has a

pmas if and only if it satis¯es all inequalities corresponding to vectors of subbalanced

weights. Section 6 provides a complete description of the vectors of subbalanced weights

for 4-person games, together with the result that every integer valued 4-person game

with a pmas has an integer valued pmas. In Section 7 an integer valued 7-person game

is given with only non-integer valued pmasses.

2. Preliminaries

Let N be a ¯nite set and let GN be the space of TU-games with player set N . Let

M := fS µ N j S 6= Ág.
De¯nition 1: A population monotonic allocation scheme or pmas of the game (N; v)

is a table x = fxS;igS2M;i2S with the properties:
(i)

X

i2S
xS;i = v(S) for all S 2 M;

(ii) xS;i · xT;i for all S; T 2 M; i 2 S ½ T:

The class of games with player set N that have a pmas is called PMN, or PM if no

confusion can occur. Sprumont (1990) was the ¯rst who proved the following result:

Theorem 2: (Sprumont (1990)) The class PMN is a cone and it is generated by the

collection of all simple monotonic i-veto games in GN, united with the games ¡ui (i 2 N).
This collection will be called g(PM). A game is called simple if all its coalitional values

are either 0 or 1, it is called monotonic if v(S) · v(T ) whenever S ½ T and it is called

i-veto if v(S) 6= 0 implies i 2 S. The simple game ui is de¯ned by ui(S) := 1 if and only
if i 2 S.
Reijnierse (1995) submits a complete section to pmasses. Other results concerning

pmasses can be found in Derks (1991).

3. Vectors of subbalanced weights

In Sprumont (1990) a brief dual characterization of the class PMN is provided by in-

troducing vectors of subbalanced weights. It is shown that a TU-game has a pmas if

and only if it satis¯es all inequalities corresponding to vectors of subbalanced weights.

Although this characterization is theoretically correct, it is of very limited practical use.

Vectors of subbalanced weights are de¯ned by the principle of duality and it is a very

tough task to check whether some vector is a vector of subbalanced weights or not.

A systematic description of all vectors of subbalanced weights along these lines seems

therefore impossible. Another remark concerning the dual characterization in Sprumont

(1990) is the fact that only a `dense' collection of elements of the dual cone of PMN

is provided and that many extreme directions of this dual cone are not generated by
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vectors of subbalanced weights. This automatically implies that, in order to see whether

a game has a pmas or not, an in¯nite number of inequalities has to be checked.

The aim of this section is to provide a constructive de¯nition of all elements of the

dual cone of PMN and to provide an interpretation of every such element. Since these

elements can be de¯ned by generalizing the notion of `vectors of balanced weights' (Bon-

dareva (1963) and Shapley (1967)), i.e. dual elements of the cone of balanced TU-games,

in an appropiate way we will ¯rst focus on these vectors.

So, let f¸SgS2M be a vector of balanced weights, i.e. the vector consists of nonnegative

numbers with the property that ¸NeN =
P
S2MnfNg ¸SeS. Here eS denotes the indica-

tor vector of S. The inequality for some game (N; v), corresponding to this vector of

balanced weights, is the following:

¸Nv(N) ¸
X

S2MnfNg
¸Sv(S):

The following interpretation can be given to this inequality: if every member of S works

¸S hours in coalition S, which generates a pro¯t of v(S) dollars per hour, and if every

player in N works the same number of hours (¸N) in total then it is more pro¯table for

the whole society to work together all of the time in the grand coalition.

If f¸SgS2M corresponds to an extreme direction of the dual cone of the cone of balanced

games we can assume that all weights ¸S are integer. An example of such a vector of

balanced weights for N = f1; 2; 3; 4g is the vector, de¯ned by ¸1234 = 2, ¸123 = ¸14 =
¸234 = 1, and ¸S = 0 for all other S. This vector corresponds to the inequality

2v(1234) ¸ v(123) + v(14) + v(234):

Geometrically this vector can be represented by the following matching between players

in the grand coalition and identical players in proper subcoalitions:

¡
¡¡

¡
¡¡

¡
¡¡

@
@@

¡
¡¡

@
@@

@
@@

@
@@

123 14 234

1234 1234

In fact, this is the `recipe' to construct all extreme elements of the dual cone of the cone

of balanced games: start with an integer number of duplicates of the grand coalition,

join these duplicates and regroup the various copies of players in proper subcoalitions,

thereby of course taking care of the fact that no two copies of the same player are

grouped together.

In order to get elements of the dual cone of PMN this `recipe' should be generalized

in the sense that one can start with (duplicates of) other coalitions than the grand
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coalition. Again, these coalitions are joined and regrouped, thereby taking care of the

fact that every copy of some player is regrouped in some coalition which is a subset of the

coalition to which he originally belonged (this condition is automatically satis¯ed if one

has started with an integer number of duplicates of the grand coalition). An example of

such a matching is

¡
¡¡

¡
¡¡

@
@@

¡
¡¡

@
@@

@
@@

12 23 34

123 234

which corresponds to the inequality

v(123) + v(234) ¸ v(12) + v(23) + v(34):

The following interpretation can be given to this inequality: if the society works accord-

ing to the schedule 12, 23, 34, i.e. 1 and 2 work one hour together, generating a pro¯t

of v(12) dollars per hour, 2 and 3 work one hour together, generating a pro¯t of v(23)

dollars per hour, and 3 and 4 work one hour together, generating a pro¯t of v(34) dollars

per hour, then it is more pro¯table for the whole society f1; 2; 3; 4g to reschedule their
e®orts according to the schedule 123, 234, in which 1, 2 and 3 work one hour together

and 2, 3, and 4 work one hour together. Note that according to the new schedule every

player works the same amount of time as before, but in larger coalitions. The di®erence

with vectors of balanced weights lies in the fact that the total amount of time that every

player works need not be the same for every player.

Arbitrary elements of the dual cone of PMN are obtained by considering inequalities

which are nonnegative combinations of the inequalities as constructed above. This leads

to the following formal de¯nition.

De¯nition 3: A vector of subbalanced weights, or vsw for short, is a tuple hf±SgS2¢;
f¸TgT2¤i with the following properties:

(i) ¢ and ¤ are disjoint subsets of M,

(ii) ±S > 0 and ¸T > 0 for all S 2 ¢, T 2 ¤,
(iii) it is possible to assign to each triple (i; S; T ) 2 N £¢£ ¤ with i 2 T ½ S,

a nonnegative number ¹iS;T in such a way that:X

T2¤:i2T½S
¹iS;T = ±S for each S 2 ¢ and i 2 S and

X

S2¢:i2T½S
¹iS;T = ¸T for each T 2 ¤ and i 2 T.

It is easy to infer that a vector of balanced weights is a vsw. Namely, if f¸SgS2M is a

vector of balanced weights, take ¢ := fNg, ¤ := fS Ã N j ¸S > 0g and ±N := ¸N .
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Then the tuple hf±SgS2¢; f¸TgT2¤i satis¯es the properties (i) and (ii) of the previous
de¯nition.

De¯ne for each T 2 ¤ and every i 2 T : ¹iN;T := ¸T . Then, for all i 2 N :X

T2¤:T3i
¹iN;T =

X

TÃN :T3i
¸T = ¸N = ±N .

Moreover, for each T 2 ¤ and every i 2 T :X

S2¢:T½S
¹iS;T = ¹

i
N;T = ¸T .

Hence, the third property of De¯nition 3 has been satis¯ed as well.

Example 4: Let ¢ = f(123); (234)g and ¤ = f(12); (23); (34)g. Let ±S = ¸T = 1 for all
S 2 ¢, T 2 ¤. Taking

¹1(123);(12) = ¹
2
(123);(12) = ¹

2
(234);(23) = ¹

3
(123);(23) = ¹

3
(234);(34) = ¹

4
(234);(34) = 1

¹2(123);(23) = ¹
3
(234);(23) = 0,

one veri¯es that the vector hf±SgS2¢; f¸TgT2¤i is a vsw. The vsw corresponds to the
inequality:

v(123) + v(234) ¸ v(12) + v(23) + v(34),

which is the inequality mentioned just before De¯nition 3. Note that the `matches' in

the geometrical representation correspond to elements (i; S; T ) with ¹iS;T = 1.

4. Verifying whether a tuple is a vsw

Let hf±SgS2¢; f¸TgT2¤i be a tuple with properties (i) and (ii) of De¯nition 3. How can
we ¯nd numbers ¹iS;T such that property (iii) is satis¯ed or show that such numbers do

not exist?

Let i 2 N . De¯ne ¢i := fS 2 ¢ j i 2 Sg and ¤i := fT 2 ¤ j i 2 Tg. Because
X

S2¢i
±S =

X

S2¢i

0
@ X

T2¤i:T½S
¹iS;T

1
A =

X

T2¤i

0
@ X

S2¢i:S¾T
¹iS;T

1
A =

X

T2¤i
¸T ,

the ¯rst test the tuple has to pass to be a vsw, is that
P
S2¢i ±S =

P
T2¤i ¸T . If so, a

°ow network ¡i = hV;Ei is constructed as follows. The node set V consists of a source,
a sink and a node for each coalition T in ¢i [ ¤i. The nodes will be called So, Si and
node(T ) (T 2 ¢i [ ¤i). The arc set E consists of directed arcs. For all S 2 ¢i there

is an arc from the source to node(S), called arc(S). The capacity of this arc is ±S. For

all T 2 ¤i there is an arc called arc(T ) from node(T ) to the sink with capacity ¸T . If

S 2 ¢i; T 2 ¤i and S ¾ T , there is an arc called arc(S; T ) from node(S) to node(T )

with a large capacity, i.e. strictly larger than
P
T2¤i ¸T .

Find a maximal source to sink °ow with the maximal °ow algorithm of Ford and Fulk-

erson (1956). If its value f equals
P
T2¤i ¸T , take ¹

i
S;T equal to the °ow in arc(S; T ).

On the other hand, if there exist appropriate numbers ¹iS;T (for this particular player

i), f will equal
P
T2¤i ¸T . Namely, take the °ow which uses the arcs from the source
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and the arcs to the sink with full capacity and which uses the other arcs arc(S; T ) with

capacity ¹iS;T .

These observations lead to the following Proposition:

Proposition 5: Let hf±SgS2¢; f¸TgT2¤i be a tuple with properties (i) and (ii) of De¯-
nition 3. Then hf±SgS2¢; f¸TgT2¤i is a vsw if and only if for every player i 2 N :X

S2¢i
±S =

X

T2¤i
¸T , and the network ¡i has value

X

T2¤i
¸T .

Let us give an example of such a network.

Example 6: Consider the tuple that corresponds to the inequality:

2v(1235) + v(12345) + v(1345) ¸ v(12) + v(235) + 2v(135) + v(245) + v(134).

Let i = 5. The following ¯gure illustrates the corresponding °ow network (a node is

represented by So, Si or its corresponding coalition):

©©©©©©

©©©©©©

HHHHHH

HH
HH

HH

©©
©©

©©

So

(1235) (12345) (1345)

(235) (135) (245)

Si

HHHHHH

©©©©©©

HHHHHH

©©©©©©

Thick arcs have large capacity, single tiny arcs have capacity 1, double tiny arcs have

capacity 2. The network has a unique maximal °ow, depicted in the following ¯gure:

©©©©©©

©©©©©©

HHHHHH

HH
HH

HH

©©
©©

©©

So

(1235) (12345) (1345)

(235) (135) (245)

Si

HHHHHH

HHHHHH

©©©©©©

Hence, the value f of the maximal °ow equals 4, which is necessary for the tuple to be

a vsw. The °ow shows how the numbers ¹5S;T can be chosen:

¹5(1235);(235) = ¹
5
(1235);(135) = ¹

5
(12345);(245) = ¹

5
(1345);(135) = 1 and

¹5(12345);(235) = ¹
5
(12345);(135) = 0.

For each player in N we can perform this test. Since all tests have a positive answer,

the tuple is a vsw.
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5. The duality result

We start this section with an example.

Example 7: If a game (N; v), with N = f1; 2; 3; 4g, has a pmas x, then it obeys the
inequality

v(123) + v(234) ¸ v(12) + v(23) + v(34);

which corresponds to the vsw in Example 4, since

v(123) + v(234) =

x123;1 + x123;2 + x123;3 + x234;2 + x234;3 + x234;4 ¸
x12;1 + x12;2 + x23;3 + x23;2 + x34;3 + x34;4 =

v(12) + v(23) + v(34):

Each relation corresponding to a vsw is a necessary condition for having a pmas:

Theorem 8: Let the game (N; v) have a population monotonic allocation scheme, say

x, and let hf±SgS2¢; f¸TgT2¤i be a vsw. Then v obeys the inequality:X

S2¢
±Sv(S) ¸

X

T2¤
¸Tv(T ).

Proof: Let for i 2 N , S 2 ¢ and T 2 ¤ with i 2 T ½ S the numbers ¹iS;T be as in

De¯nition 3. We have:X

S2¢
±Sv(S) =

X

S2¢
±S

X

i2S
xS;i =

X

S2¢

X

i2S
±SxS;i =

X

S2¢

X

i2S

X

T2¤:i2T½S
¹iS;TxS;i =

X

(i;S;T ):i2T½S
¹iS;TxS;i ¸

X

(i;S;T ):i2T½S
¹iS;TxT;i =

X

T2¤

X

i2T

X

S2¢:i2T½S
¹iS;TxT;i =

X

T2¤

X

i2T
¸TxT;i =

X

T2¤
¸Tv(T ). /

Corollary 9: Let (N; v) have a population monotonic allocation scheme x and let

hf±SgS2¢; f¸TgT2¤i be a vsw with associated numbers f¹iS;T j i 2 T 2 ¤; T ½ S 2 ¢g.
Suppose that

P
S2¢ ±Sv(S) =

P
T2¤ ¸Tv(T ). Then xS;i = xT;i for every triple (i; S; T )

with i 2 T ½ S and ¹iS;T > 0.

The converse of Theorem 8 is also true:

Theorem 10: Let the game (N; v) obey all inequalities that arise from vsw's. Then v

has a population monotonic allocation scheme.

Proof: The dual of the cone PM, called PM¤, is de¯ned by: fw 2 GN j hw; vi ¸ 0

for all v 2 PMg. Here, h¢; ¢i denotes the usual inner product of GN , i.e. hw; vi :=
P
S2M w(S)v(S).

Because the cone PM is generated by the ¯nite collection g(PM) (Theorem 2), we have

PM = PM¤¤= fv 2 GN j hw; vi ¸ 0 for all w 2 PM¤g.
Hence, to prove the Theorem, it is su±cient to prove that v 2 PM¤¤, i.e. that hw; vi ¸ 0

for every w 2 PM¤. In order to show this last statement, it su±ces to prove that every
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w 2 PM¤ induces an inequality that corresponds to some vsw. Therefore, let w 2 PM¤

and de¯ne hf±SgS2¢; f¸TgT2¤i as follows:
¢ := fS 2 M j w(S) > 0g, ¤ := fT 2 M j w(T ) < 0g,
±S := w(S) for every S 2 ¢ and ¸T := ¡w(T ) for every T 2 ¤.

For each i 2 N we must show that the tuple satis¯es property (iii) in De¯nition 3. Let

i 2 N . De¯ne N¡i := Nnfig and de¯ne w¡i 2 GN¡i
by w¡i(S) := w(S [ fig) for every

S µ N¡i. De¯ne moreover ¢¡i := fS µ N¡i j w¡i(S) > 0g and ¤¡i := fS µ N¡i j
w¡i(S) < 0g.
Let (N¡i; u) be a monotonic game in GN¡i

. The game (N; z), de¯ned by z(S) :=

u(Snfig) if i 2 S and z(S) := 0 otherwise, is a monotonic i-veto game in GN . So
z 2 PM and hence [w¡i; u] = hw; zi ¸ 0. Here [¢; ¢] denotes the usual inner product of
GN¡i

.

So w¡i is an element of the dual cone of the cone of monotonic games in GN¡i
. Since

this cone is completely described by the ¯nite set of inequalities u(S) ¡ u(T ) ¸ 0,

T ½ S µ N¡i, the vector w¡i is a nonnegative linear combination of the vectors eS¡ eT ,
T ½ S µ N¡i. One easily veri¯es that w¡i is even a nonnegative linear combination of

the vectors eS ¡ eT , with T ½ S µ N¡i, w¡i(S) > 0, w¡i(T ) < 0. So we may write

w¡i =
X

(S;T )2¢¡i£¤¡i:T½S
°S;T (eS ¡ eT )

for some nonnegative numbers °S;T , (S; T ) 2 ¢¡i £ ¤¡i; T ½ S. Now de¯ne, for every

(S; T ) 2 ¢£¤ with i 2 T ½ S, ¹iS;T := °Snfig;Tnfig. For every S 2 ¢ with i 2 S we have
X

T2¤:i2T½S
¹iS;T =

X

T2¤:i2T½S
°Snfig;Tnfig =

X

T2¤¡i:T½Snfig
°Snfig;T = w

¡i(Snfig) = w(S) = ±S

and for every T 2 ¤ with i 2 T we have
X

S2¢:i2T½S
¹iS;T =

X

S2¢:i2T½S
°Snfig;Tnfig =

X

S2¢¡i:Tnfig½S
°S;Tnfig = ¡w¡i(Tnfig) = ¡w(T ) = ¸T :

This ¯nishes the proof. /

6. Four person games

Consider for a (characteristic function of a) 4-person game v the following inequalities,

which correspond to vsw's:
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(A) v(ij) ¸ v(i) + v(j) (6 inequalities)

(B) v(ijk) ¸ v(i) + v(jk) (12 inequalities)

(C) v(1234) ¸ v(i) + v(jkl) (4 inequalities)

(D) v(ijk) + v(jkl) ¸ v(ij) + v(jk) + v(kl) (12 inequalities)

(E) 2v(ijk) ¸ v(ij) + v(ik) + v(jk) (4 inequalities)

(F) v(ijk) + v(1234) ¸ v(ij) + v(jk) + v(ikl) (12 inequalities)

(G) v(1234) ¸ v(ij) + v(kl) (3 inequalities)

(H) 2v(1234) ¸ v(ij) + v(jkl) + v(ikl) (6 inequalities)

(I) 3v(1234) ¸ v(123) + v(124) + v(134) + v(234) (1 inequality)

Di®erent characters are used to denote di®erent players. Note that all these inequalities

can be obtained following the `recipe' described in Section 3. If a 4-person game has a

pmas then this game satis¯es all conditions (A)-(I). In this section we prove that these

conditions are su±cient conditions in order to guarantee that a game has a pmas. As

a byproduct we get that an integer-valued 4-person game with a pmas has an integer-

valued pmas. Note that the conditions (A), (B), (C) and (G) imply superadditivity, the

conditions (A), (C), (G), (H) and (I) imply balancedness and the conditions (A), (B),

(C), (E), (G), (H) and (I) imply totally balancedness. Note moreover that for every

condition in (A)-(I) the following statement is true: if v is monotonic and v(S) = 0 for

some coalition S occuring in the right-hand side of this condition then v satis¯es this

condition.

In the sequel of this section we need the following de¯nition.

De¯nition 11: Let i 2 N and let S1; S2; : : : ; St be coalitions such that i 2 Sl for every
l 2 f1; 2; : : : ; tg. The game uS1;:::;St is the simple monotonic i-veto game which has
S1; : : : ; St as minimal winning coalitions, i.e. uS1;:::;St(S) = 1 if and only if S ¶ Sl for

some l 2 f1; 2; : : : ; tg.
If a 4-person game satis¯es the conditions (A)-(I) then the corresponding 0-normalized

game also satis¯es these conditions. This statement is an immediate consequence of

the fact that linear games satisfy all conditions (A)-(I) with equality. Moreover, due

to conditions (A)-(C), this 0-normalized game is monotonic. Let v be a 0-normalized

monotonic game. A 0-normalized monotonic simple veto game u is subtractable from v if

v¡"u is monotonic for some " > 0. Note that v(N) > v(Nni) is a necessary and su±cient
condition for the existence of a monotonic simple i-veto game which is subtractable from

v. Moreover, if u1 and u2 are both monotonic simple i-veto games which are subtractable

from v then also u := maxfu1; u2g is subtractable from v. This enables us (in case

v(N) > v(Nni)) to de¯ne uvi as the maximal monotonic simple i-veto game which is
subtractable from v. Moreover, the positive number avi := minfv(S) ¡ v(T ) : S ¾
T; uvi (S) = 1; u

v
i (T ) = 0g indicates how many times uvi can be subtracted from v at most

9



such that the remainder is still monotonic. If v(N) = v(Nni) then uvi := 0.
Lemma 12: If a 0-normalized 4-person game v satis¯es conditions (A)-(I) and v(S) > 0

for some S µ N then there is an i 2 S such that uvi (S) = 1.
Proof: Without loss of generality we may assume that v(S) > v(Snj) for every j 2 S (if
there is a j 2 S with v(S) = v(Snj) > 0 it is su±cient to prove the statement for Snj).
We distinguish between three cases: i) jSj = 4; ii) jSj = 3; iii) jSj = 2.
Case i): jSj = 4. Then S = (1234). Since v(S) > v(Snj) for every j 2 S the game u1234
is subtractable from v. Hence uvi (S) = 1 for every i 2 S.
Case ii): jSj = 3. Without loss of generality assume that S = (123). Since v satis¯es
condition (I) there is at least one j 2 S with v(N) > v(Nnj), say j = 1. Then at least
one of the games u123, u123;124, u123;134, u123;124;134 or u123;14 is subtractable from v. Hence

uv1(S) = 1.

Case iii): jSj = 2. Without loss of generality assume that S = (12). Either v(T ) >

v(Tn1) for every T ¾ S or v(T ) > v(Tn2) for every T ¾ S (otherwise there is a

T1 ¾ S with v(T1) = v(T1n1) and a T2 ¾ S with v(T2) = v(T2n2) which contradicts
condition v(T1) + v(T2) ¸ v(12) + v(T1n1) + v(T2n2), which is one of the conditions in
(D)-(F) and (H)). Assume v(T ) > v(Tn1) for every T ¾ S. If v(134) = v(34) then

v(123) > v(13) (because v(123) + v(134) ¸ v(12) + v(13) + v(34)) and v(124) > v(14)

(because v(124) + v(134) ¸ v(12) + v(14) + v(34)) and hence u12 is subtractable. If

v(134) > v(34) then the monotonic simple 1-veto game u de¯ned by u(S) := 1 i® 1 2 S
and v(S) > 0 is subtractable from v. Anyhow, uv1(S) = 1. /

Lemma 13: Let v be a 0-normalized 4-person game that satis¯es conditions (A)-(I)

and let N v µ N be the set of players i with uvi 6= 0. Let i¤ 2 N v be such that uvi¤ has a

minimal number of veto players. Then v ¡ avi¤uvi¤ also satis¯es conditions (A)-(I).
Proof: Let v0 := v ¡ avi¤uvi¤. We will distinguish between four cases.
Case i): uvi¤ has only one veto player, say i

¤ = 1. Then uv1(123) = u
v
1(124) = u

v
1(134) = 1.

In order to show that v0 satis¯es all conditions (A)-(I), consider an arbitrary condition

in (A)-(I), to be referred to as condition (¤). If uv1 satis¯es condition (¤) with equality
then clearly v0 satis¯es condition (¤). If uv1 satis¯es condition (¤) with strict inequality
then in the right-hand side of this inequality occurs some coalition S with 1 2 S and

uv1(S) = 0. So jSj · 2. If jSj = 1 then clearly v(S) = 0 and hence v0(S) = 0. If jSj = 2
then uv1(S) = 0 implies v(S) = 0 and we also get v

0(S) = 0. Now v0 satis¯es condition

(¤) because of monotonicity of v0.
Case ii): uvi¤ has two veto players, say 1 and 2. So, u

v
i¤ = u12 or u

v
i¤ = u123;124. If u

v
1(13) =

1 then uv1 has (13) and (124) as winning coalitions and therefore only one veto player,

giving a contradiction. Hence, uv1(13) = 0. If u
v
3(13) = 1 then u

v
3 = u13 is subtractable

and hence uv1(13) = 1 leading, as before, to a contradiction. So, uv1(13) = uv3(13) = 0
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and hence, according to Lemma 12, v(13) = 0. Analogously we get v(14) = v(23) =

v(24) = 0. Hence v0(13) = v0(14) = v0(23) = v0(24) = 0 and v0 satis¯es all conditions

(A)-(F) by monotonicity. Condition (G) with (ij) = (13) or (14) is satis¯ed by v0 due to

monotonicity. Condition (G) with (ij) = (12) is satis¯ed by v0 due to monotonicity in

case v(12) = v0(12) = 0 and due to the fact that uvi¤ = u12 satis¯es this condition with

equality in case v(12) > 0. Condition (H) with (ij) 2 f(13); (14); (23); (24)g is satis¯ed
by monotonicity of v0, condition (H) with (ij) = (34) is satis¯ed because uvi¤ satis¯es

this condition with equality and condition (H) with (ij) = (12) is satis¯ed because

v(134) = v(34) (and hence v0(134) = v0(34)) and v0(1234) ¸ v0(12) + v0(34). Condition

(I) is satis¯ed by v0 because v0(134) = v0(34), v0 satis¯es condition (H) with (ij) = (34)

and monotonicity of v0.

Case iii): uvi¤ has three veto players, say 1, 2 and 3. Then v(S) = 0 if S 6= (123) and
S 6= (1234) and the statement is trivial.
Case iv): uvi¤ has four veto players. Then v(S) = 0 if S 6= (1234) and the statement is
trivial. /

Lemmas 12 and 13 provide the basis for an algorithm in order to determine whether a

0-normalized 4-person game v has a pmas or not: compute in each step the games uvi
and subtract that game uvi which has a minimal number of veto players (a

v
i times). If

the game v satis¯es conditions (A)-(I) then Lemma 13 guarantees that after such a step

we are left with a game v0 := v ¡ avi uvi which also satis¯es conditions (A)-(I). Moreover,
if v0 6= 0, Lemma 12 guarantees that there is at least one player i with uv

0
i 6= 0 and

hence the algorithm does not stop. Eventually a game v, satisfying conditions (A)-(I), is

written as a positive linear combination of monotonic simple veto games and therefore,

according to Theorem 2, has a pmas. Note also that if v is integer valued, all avi 's are

integer. We have proved the following theorem.

Theorem 14: If v is a 4-person game satisfying conditions (A)-(I) then v has a pmas.

If, moreover, v is integer valued then v has an integer valued pmas.

Example 15: Let v be the 0-normalized game, given by v(1234) = 7, v(123) = v(124) =

v(134) = 4, v(234) = 6, v(12) = v(13) = v(14) = 2, v(23) = v(24) = 3, and v(34) =

4. Computing the uvi 's we get, e.g., u
v
2 = u21;23;24 (one veto player) with a

v
2 = 2.

Determination of v0 = v ¡ avi u
v
i yields v

0(1234) = 5, v0(123) = v0(124) = 2, v0(134) =

v0(234) = 4, v0(12) = 0, v0(13) = v0(14) = 2, v(23) = v(24) = 1, and v0(34) = 4.

Proceeding in the same way we subtract u31;32;34 in the second step, u31;34 in the third

step, u41;42;43 in the fourth step, u41;43 in the ¯fth step, and u1234 in the sixth step, after

which the algorithm ends. So, v = 2u21;23;24 + u31;32;34 + u31;34 + u41;42;43 + u41;43 + u1234:
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7. An integer game with only non-integer pmasses

In Section 6 we have presented an algorithm which produces for every 4-person integer

valued game with a pmas an integer valued pmas. In division problems with indivisible

goods the existence of such a pmas can be relevant. We will show, however, that such

an algorithm does not exist for games with 7 (or more) players. We will show that there

exists an integer game that has only non-integer pmasses.

Let N = (1234567) and consider the inequality:

2v(12345) + 2v(12346) + 2v(12347) ¸
3v(1234) + v(125) + v(136) + v(147) + v(237) + v(246) + v(345).

It is easy to verify that it arises from a vsw, namely take:

¢ := f(12345); (12346); (12347)g,
¤ := f(1234); (125); (136); (147); (237); (246); (345)g,
±S := 2 for all S 2 ¢, ¸(1234) := 3, ¸T := 1 for all T 2 ¤nf(1234)g,
¹iS;T := 1 for all (i; S; T ) 2 N £¢£ ¤ with i 2 T ½ S.

Suppose that we have a game v with a pmas x such that v(S) = 2 for S 2 ¢[f(1234)g
and v(T ) = 1 for T 2 ¤nf(1234)g. Then the inequality is tight. By Corollary 9 we can
infer that there exist numbers ®1; : : : ; ®7, such that for all S 2 ¢ [ ¤: xS;i = ®i for all
i 2 S.
We have: ®5 =

5X

i=1

®i ¡
4X

i=1

®i =
5X

i=1

x(12345);i ¡
4X

i=1

x(1234);i = v(12345)¡ v(1234) = 0.
Because of the symmetric roles of the players 5; 6 and 7, ®6 = ®7 = 0 as well.

Let i and j be players in (1234). Then there is a 3-person coalition T 2 ¤ which contains
(ij) and one player of the coalition (567). Therefore ®i + ®j = v(T ) = 1.

This makes ®i =
1
2
for every i 2 (1234).

Hence, in order to ¯nd an example we have to ¯nd a game v with the previous properties.

This can be done by de¯ning:

v(S) = 0 if there is no T 2 ¢ [ ¤ with T µ S,

v(S) = 1 if there are T 2 ¤nf(1234)g, U 2 ¢ such that T µ S Ã U ,

v(S) = 2 if S 2 ¢ [ f(1234)g and
v(S) = jS \ (1234)j else.

Let x be de¯ned as follows:

xS;i = 0 if v(S) = 0 or i 2 (567),
xS;i = 0 if v(S) = 1, i 2 S \ (1234) and Sni 2 ¤,
xS;i =

1
2

if v(S) = 1, i 2 S \ (1234) and Sni =2 ¤,
xS;i =

1
2

if S 2 ¢ [ f(1234)g and i 2 (1234) and
xS;i = 1 else.

Then x is a pmas of v.

We have not been able to ¯nd examples with less than 7 players.
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